/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk_cunit.h" #include "common/lib/test_env.c" #include "common/lib/test_rdma.c" #include "nvmf/rdma.c" #include "nvmf/transport.c" uint64_t g_mr_size; uint64_t g_mr_next_size; struct ibv_mr g_rdma_mr; #define RDMA_UT_UNITS_IN_MAX_IO 16 struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = { .max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH, .max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR, .in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE, .max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO), .io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE, .max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH, .num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS, }; SPDK_LOG_REGISTER_COMPONENT("nvmf", SPDK_LOG_NVMF) DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr, uint64_t size, uint64_t translation), 0); DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr, uint64_t size), 0); DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL); DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair, nvmf_qpair_disconnect_cb cb_fn, void *ctx), 0); DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap)); struct spdk_trace_histories *g_trace_histories; DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn)); DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix)); DEFINE_STUB_V(spdk_trace_register_description, (const char *name, uint16_t tpoint_id, uint8_t owner_type, uint8_t object_type, uint8_t new_object, uint8_t arg1_type, const char *arg1_name)); DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id, uint32_t size, uint64_t object_id, uint64_t arg1)); DEFINE_STUB_V(spdk_nvmf_ctrlr_data_init, (struct spdk_nvmf_transport_opts *opts, struct spdk_nvmf_ctrlr_data *cdata)); DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req)); DEFINE_STUB(spdk_nvmf_request_complete, int, (struct spdk_nvmf_request *req), 0); DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1, const struct spdk_nvme_transport_id *trid2), 0); DEFINE_STUB_V(nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr)); DEFINE_STUB(spdk_nvmf_request_get_dif_ctx, bool, (struct spdk_nvmf_request *req, struct spdk_dif_ctx *dif_ctx), false); DEFINE_STUB_V(spdk_nvme_trid_populate_transport, (struct spdk_nvme_transport_id *trid, enum spdk_nvme_transport_type trtype)); DEFINE_STUB_V(spdk_nvmf_tgt_new_qpair, (struct spdk_nvmf_tgt *tgt, struct spdk_nvmf_qpair *qpair)); DEFINE_STUB(nvmf_ctrlr_abort_request, int, (struct spdk_nvmf_request *req), 0); const char * spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype) { switch (trtype) { case SPDK_NVME_TRANSPORT_PCIE: return "PCIe"; case SPDK_NVME_TRANSPORT_RDMA: return "RDMA"; case SPDK_NVME_TRANSPORT_FC: return "FC"; default: return NULL; } } int spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring) { int len, i; if (trstring == NULL) { return -EINVAL; } len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN); if (len == SPDK_NVMF_TRSTRING_MAX_LEN) { return -EINVAL; } /* cast official trstring to uppercase version of input. */ for (i = 0; i < len; i++) { trid->trstring[i] = toupper(trstring[i]); } return 0; } uint64_t spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size) { if (g_mr_size != 0) { *(uint32_t *)size = g_mr_size; if (g_mr_next_size != 0) { g_mr_size = g_mr_next_size; } } return (uint64_t)&g_rdma_mr; } static void reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req) { int i; rdma_req->req.length = 0; rdma_req->req.data_from_pool = false; rdma_req->req.data = NULL; rdma_req->data.wr.num_sge = 0; rdma_req->data.wr.wr.rdma.remote_addr = 0; rdma_req->data.wr.wr.rdma.rkey = 0; memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) { rdma_req->req.iov[i].iov_base = 0; rdma_req->req.iov[i].iov_len = 0; rdma_req->req.buffers[i] = 0; rdma_req->data.wr.sg_list[i].addr = 0; rdma_req->data.wr.sg_list[i].length = 0; rdma_req->data.wr.sg_list[i].lkey = 0; } rdma_req->req.iovcnt = 0; } static void test_spdk_nvmf_rdma_request_parse_sgl(void) { struct spdk_nvmf_rdma_transport rtransport; struct spdk_nvmf_rdma_device device; struct spdk_nvmf_rdma_request rdma_req = {}; struct spdk_nvmf_rdma_recv recv; struct spdk_nvmf_rdma_poll_group group; struct spdk_nvmf_rdma_qpair rqpair; struct spdk_nvmf_rdma_poller poller; union nvmf_c2h_msg cpl; union nvmf_h2c_msg cmd; struct spdk_nvme_sgl_descriptor *sgl; struct spdk_nvmf_transport_pg_cache_buf bufs[4]; struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}}; struct spdk_nvmf_rdma_request_data data; struct spdk_nvmf_transport_pg_cache_buf buffer; struct spdk_nvmf_transport_pg_cache_buf *buffer_ptr; int rc, i; data.wr.sg_list = data.sgl; STAILQ_INIT(&group.group.buf_cache); group.group.buf_cache_size = 0; group.group.buf_cache_count = 0; group.group.transport = &rtransport.transport; STAILQ_INIT(&group.retired_bufs); poller.group = &group; rqpair.poller = &poller; rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES; sgl = &cmd.nvme_cmd.dptr.sgl1; rdma_req.recv = &recv; rdma_req.req.cmd = &cmd; rdma_req.req.rsp = &cpl; rdma_req.data.wr.sg_list = rdma_req.data.sgl; rdma_req.req.qpair = &rqpair.qpair; rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST; rtransport.transport.opts = g_rdma_ut_transport_opts; rtransport.data_wr_pool = NULL; rtransport.transport.data_buf_pool = NULL; device.attr.device_cap_flags = 0; g_rdma_mr.lkey = 0xABCD; sgl->keyed.key = 0xEEEE; sgl->address = 0xFFFF; rdma_req.recv->buf = (void *)0xDDDD; /* Test 1: sgl type: keyed data block subtype: address */ sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; /* Part 1: simple I/O, one SGL smaller than the transport io unit size */ MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2; device.map = (void *)0x0; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2); CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 1); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2); CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey); /* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */ reset_nvmf_rdma_request(&rdma_req); sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO); CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) { CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size); CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey); } /* Part 3: simple I/O one SGL larger than the transport max io size */ reset_nvmf_rdma_request(&rdma_req); sgl->keyed.length = rtransport.transport.opts.max_io_size * 2; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == -1); /* Part 4: Pretend there are no buffer pools */ MOCK_SET(spdk_mempool_get, NULL); reset_nvmf_rdma_request(&rdma_req); sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == false); CU_ASSERT(rdma_req.req.data == NULL); CU_ASSERT(rdma_req.data.wr.num_sge == 0); CU_ASSERT(rdma_req.req.buffers[0] == NULL); CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0); CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0); CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0); rdma_req.recv->buf = (void *)0xDDDD; /* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */ sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; /* Part 1: Normal I/O smaller than in capsule data size no offset */ reset_nvmf_rdma_request(&rdma_req); sgl->address = 0; sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data == (void *)0xDDDD); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size); CU_ASSERT(rdma_req.req.data_from_pool == false); /* Part 2: I/O offset + length too large */ reset_nvmf_rdma_request(&rdma_req); sgl->address = rtransport.transport.opts.in_capsule_data_size; sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == -1); /* Part 3: I/O too large */ reset_nvmf_rdma_request(&rdma_req); sgl->address = 0; sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == -1); /* Test 3: Multi SGL */ sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; sgl->address = 0; rdma_req.recv->buf = (void *)&sgl_desc; MOCK_SET(spdk_mempool_get, &data); /* part 1: 2 segments each with 1 wr. */ reset_nvmf_rdma_request(&rdma_req); sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor); for (i = 0; i < 2; i++) { sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size; sgl_desc[i].address = 0x4000 + i * rtransport.transport.opts.io_unit_size; sgl_desc[i].keyed.key = 0x44; } rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 2); CU_ASSERT(rdma_req.data.wr.num_sge == 1); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000); CU_ASSERT(rdma_req.data.wr.next == &data.wr); CU_ASSERT(data.wr.wr.rdma.rkey == 0x44); CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size); CU_ASSERT(data.wr.num_sge == 1); CU_ASSERT(data.wr.next == &rdma_req.rsp.wr); /* part 2: 2 segments, each with 1 wr containing 8 sge_elements */ reset_nvmf_rdma_request(&rdma_req); sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor); for (i = 0; i < 2; i++) { sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size * 8; sgl_desc[i].address = 0x4000 + i * 8 * rtransport.transport.opts.io_unit_size; sgl_desc[i].keyed.key = 0x44; } rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16); CU_ASSERT(rdma_req.req.iovcnt == 16); CU_ASSERT(rdma_req.data.wr.num_sge == 8); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000); CU_ASSERT(rdma_req.data.wr.next == &data.wr); CU_ASSERT(data.wr.wr.rdma.rkey == 0x44); CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 8); CU_ASSERT(data.wr.num_sge == 8); CU_ASSERT(data.wr.next == &rdma_req.rsp.wr); /* part 3: 2 segments, one very large, one very small */ reset_nvmf_rdma_request(&rdma_req); for (i = 0; i < 2; i++) { sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; sgl_desc[i].keyed.key = 0x44; } sgl_desc[0].keyed.length = rtransport.transport.opts.io_unit_size * 15 + rtransport.transport.opts.io_unit_size / 2; sgl_desc[0].address = 0x4000; sgl_desc[1].keyed.length = rtransport.transport.opts.io_unit_size / 2; sgl_desc[1].address = 0x4000 + rtransport.transport.opts.io_unit_size * 15 + rtransport.transport.opts.io_unit_size / 2; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16); CU_ASSERT(rdma_req.req.iovcnt == 17); CU_ASSERT(rdma_req.data.wr.num_sge == 16); for (i = 0; i < 15; i++) { CU_ASSERT(rdma_req.data.sgl[i].length == rtransport.transport.opts.io_unit_size); } CU_ASSERT(rdma_req.data.sgl[15].length == rtransport.transport.opts.io_unit_size / 2); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000); CU_ASSERT(rdma_req.data.wr.next == &data.wr); CU_ASSERT(data.wr.wr.rdma.rkey == 0x44); CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 15 + rtransport.transport.opts.io_unit_size / 2); CU_ASSERT(data.sgl[0].length == rtransport.transport.opts.io_unit_size / 2); CU_ASSERT(data.wr.num_sge == 1); CU_ASSERT(data.wr.next == &rdma_req.rsp.wr); /* Test 4: use PG buffer cache */ sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; sgl->address = 0xFFFF; rdma_req.recv->buf = (void *)0xDDDD; g_rdma_mr.lkey = 0xABCD; sgl->keyed.key = 0xEEEE; for (i = 0; i < 4; i++) { STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link); } /* part 1: use the four buffers from the pg cache */ group.group.buf_cache_size = 4; group.group.buf_cache_count = 4; MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); sgl->keyed.length = rtransport.transport.opts.io_unit_size * 4; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); SPDK_CU_ASSERT_FATAL(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4); CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK)); CU_ASSERT(rdma_req.data.wr.num_sge == 4); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT(group.group.buf_cache_count == 0); CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache)); for (i = 0; i < 4; i++) { CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]); CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size); } /* part 2: now that we have used the buffers from the cache, try again. We should get mempool buffers. */ reset_nvmf_rdma_request(&rdma_req); rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); SPDK_CU_ASSERT_FATAL(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4); CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 4); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT(group.group.buf_cache_count == 0); CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache)); for (i = 0; i < 4; i++) { CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size); CU_ASSERT(group.group.buf_cache_count == 0); } /* part 3: half and half */ group.group.buf_cache_count = 2; for (i = 0; i < 2; i++) { STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link); } reset_nvmf_rdma_request(&rdma_req); rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); SPDK_CU_ASSERT_FATAL(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4); CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK)); CU_ASSERT(rdma_req.data.wr.num_sge == 4); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT(group.group.buf_cache_count == 0); for (i = 0; i < 2; i++) { CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]); CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size); } for (i = 2; i < 4; i++) { CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size); } reset_nvmf_rdma_request(&rdma_req); /* Test 5 dealing with a buffer split over two Memory Regions */ MOCK_SET(spdk_mempool_get, (void *)&buffer); sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2; g_mr_size = rtransport.transport.opts.io_unit_size / 4; g_mr_next_size = rtransport.transport.opts.io_unit_size / 2; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); SPDK_CU_ASSERT_FATAL(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2); CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK)); CU_ASSERT(rdma_req.data.wr.num_sge == 1); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT(rdma_req.req.buffers[0] == &buffer); CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK)); CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2); CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey); buffer_ptr = STAILQ_FIRST(&group.retired_bufs); CU_ASSERT(buffer_ptr == &buffer); STAILQ_REMOVE(&group.retired_bufs, buffer_ptr, spdk_nvmf_transport_pg_cache_buf, link); CU_ASSERT(STAILQ_EMPTY(&group.retired_bufs)); g_mr_size = 0; g_mr_next_size = 0; reset_nvmf_rdma_request(&rdma_req); } static struct spdk_nvmf_rdma_recv * create_recv(struct spdk_nvmf_rdma_qpair *rqpair, enum spdk_nvme_nvm_opcode opc) { struct spdk_nvmf_rdma_recv *rdma_recv; union nvmf_h2c_msg *cmd; struct spdk_nvme_sgl_descriptor *sgl; rdma_recv = calloc(1, sizeof(*rdma_recv)); rdma_recv->qpair = rqpair; cmd = calloc(1, sizeof(*cmd)); rdma_recv->sgl[0].addr = (uintptr_t)cmd; cmd->nvme_cmd.opc = opc; sgl = &cmd->nvme_cmd.dptr.sgl1; sgl->keyed.key = 0xEEEE; sgl->address = 0xFFFF; sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; sgl->keyed.length = 1; return rdma_recv; } static void free_recv(struct spdk_nvmf_rdma_recv *rdma_recv) { free((void *)rdma_recv->sgl[0].addr); free(rdma_recv); } static struct spdk_nvmf_rdma_request * create_req(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_recv *rdma_recv) { struct spdk_nvmf_rdma_request *rdma_req; union nvmf_c2h_msg *cpl; rdma_req = calloc(1, sizeof(*rdma_req)); rdma_req->recv = rdma_recv; rdma_req->req.qpair = &rqpair->qpair; rdma_req->state = RDMA_REQUEST_STATE_NEW; rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; rdma_req->data.wr.sg_list = rdma_req->data.sgl; cpl = calloc(1, sizeof(*cpl)); rdma_req->rsp.sgl[0].addr = (uintptr_t)cpl; rdma_req->req.rsp = cpl; return rdma_req; } static void free_req(struct spdk_nvmf_rdma_request *rdma_req) { free((void *)rdma_req->rsp.sgl[0].addr); free(rdma_req); } static void qpair_reset(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_poller *poller, struct spdk_nvmf_rdma_device *device, struct spdk_nvmf_rdma_resources *resources) { memset(rqpair, 0, sizeof(*rqpair)); STAILQ_INIT(&rqpair->pending_rdma_write_queue); STAILQ_INIT(&rqpair->pending_rdma_read_queue); rqpair->poller = poller; rqpair->device = device; rqpair->resources = resources; rqpair->qpair.qid = 1; rqpair->ibv_state = IBV_QPS_RTS; rqpair->qpair.state = SPDK_NVMF_QPAIR_ACTIVE; rqpair->max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES; rqpair->max_send_depth = 16; rqpair->max_read_depth = 16; resources->recvs_to_post.first = resources->recvs_to_post.last = NULL; } static void poller_reset(struct spdk_nvmf_rdma_poller *poller, struct spdk_nvmf_rdma_poll_group *group) { memset(poller, 0, sizeof(*poller)); STAILQ_INIT(&poller->qpairs_pending_recv); STAILQ_INIT(&poller->qpairs_pending_send); poller->group = group; } static void test_spdk_nvmf_rdma_request_process(void) { struct spdk_nvmf_rdma_transport rtransport = {}; struct spdk_nvmf_rdma_poll_group group = {}; struct spdk_nvmf_rdma_poller poller = {}; struct spdk_nvmf_rdma_device device = {}; struct spdk_nvmf_rdma_resources resources = {}; struct spdk_nvmf_rdma_qpair rqpair = {}; struct spdk_nvmf_rdma_recv *rdma_recv; struct spdk_nvmf_rdma_request *rdma_req; bool progress; STAILQ_INIT(&group.group.buf_cache); STAILQ_INIT(&group.group.pending_buf_queue); group.group.buf_cache_size = 0; group.group.buf_cache_count = 0; poller_reset(&poller, &group); qpair_reset(&rqpair, &poller, &device, &resources); rtransport.transport.opts = g_rdma_ut_transport_opts; rtransport.transport.data_buf_pool = spdk_mempool_create("test_data_pool", 16, 128, 0, 0); rtransport.data_wr_pool = spdk_mempool_create("test_wr_pool", 128, sizeof(struct spdk_nvmf_rdma_request_data), 0, 0); MOCK_CLEAR(spdk_mempool_get); device.attr.device_cap_flags = 0; device.map = (void *)0x0; g_rdma_mr.lkey = 0xABCD; /* Test 1: single SGL READ request */ rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_READ); rdma_req = create_req(&rqpair, rdma_recv); rqpair.current_recv_depth = 1; /* NEW -> EXECUTING */ progress = nvmf_rdma_request_process(&rtransport, rdma_req); CU_ASSERT(progress == true); CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING); CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST); /* EXECUTED -> TRANSFERRING_C2H */ rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; progress = nvmf_rdma_request_process(&rtransport, rdma_req); CU_ASSERT(progress == true); CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST); CU_ASSERT(rdma_req->recv == NULL); CU_ASSERT(resources.recvs_to_post.first == &rdma_recv->wr); CU_ASSERT(resources.recvs_to_post.last == &rdma_recv->wr); /* COMPLETED -> FREE */ rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; progress = nvmf_rdma_request_process(&rtransport, rdma_req); CU_ASSERT(progress == true); CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE); free_recv(rdma_recv); free_req(rdma_req); poller_reset(&poller, &group); qpair_reset(&rqpair, &poller, &device, &resources); /* Test 2: single SGL WRITE request */ rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE); rdma_req = create_req(&rqpair, rdma_recv); rqpair.current_recv_depth = 1; /* NEW -> TRANSFERRING_H2C */ progress = nvmf_rdma_request_process(&rtransport, rdma_req); CU_ASSERT(progress == true); CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER); CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); STAILQ_INIT(&poller.qpairs_pending_send); /* READY_TO_EXECUTE -> EXECUTING */ rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; progress = nvmf_rdma_request_process(&rtransport, rdma_req); CU_ASSERT(progress == true); CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING); /* EXECUTED -> COMPLETING */ rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; progress = nvmf_rdma_request_process(&rtransport, rdma_req); CU_ASSERT(progress == true); CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING); CU_ASSERT(rdma_req->recv == NULL); CU_ASSERT(resources.recvs_to_post.first == &rdma_recv->wr); CU_ASSERT(resources.recvs_to_post.last == &rdma_recv->wr); /* COMPLETED -> FREE */ rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; progress = nvmf_rdma_request_process(&rtransport, rdma_req); CU_ASSERT(progress == true); CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE); free_recv(rdma_recv); free_req(rdma_req); poller_reset(&poller, &group); qpair_reset(&rqpair, &poller, &device, &resources); /* Test 3: WRITE+WRITE ibv_send batching */ { struct spdk_nvmf_rdma_recv *recv1, *recv2; struct spdk_nvmf_rdma_request *req1, *req2; recv1 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE); req1 = create_req(&rqpair, recv1); recv2 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE); req2 = create_req(&rqpair, recv2); /* WRITE 1: NEW -> TRANSFERRING_H2C */ rqpair.current_recv_depth = 1; nvmf_rdma_request_process(&rtransport, req1); CU_ASSERT(req1->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER); /* WRITE 2: NEW -> TRANSFERRING_H2C */ rqpair.current_recv_depth = 2; nvmf_rdma_request_process(&rtransport, req2); CU_ASSERT(req2->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER); STAILQ_INIT(&poller.qpairs_pending_send); /* WRITE 1 completes before WRITE 2 has finished RDMA reading */ /* WRITE 1: READY_TO_EXECUTE -> EXECUTING */ req1->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; nvmf_rdma_request_process(&rtransport, req1); CU_ASSERT(req1->state == RDMA_REQUEST_STATE_EXECUTING); /* WRITE 1: EXECUTED -> COMPLETING */ req1->state = RDMA_REQUEST_STATE_EXECUTED; nvmf_rdma_request_process(&rtransport, req1); CU_ASSERT(req1->state == RDMA_REQUEST_STATE_COMPLETING); STAILQ_INIT(&poller.qpairs_pending_send); /* WRITE 1: COMPLETED -> FREE */ req1->state = RDMA_REQUEST_STATE_COMPLETED; nvmf_rdma_request_process(&rtransport, req1); CU_ASSERT(req1->state == RDMA_REQUEST_STATE_FREE); /* Now WRITE 2 has finished reading and completes */ /* WRITE 2: COMPLETED -> FREE */ /* WRITE 2: READY_TO_EXECUTE -> EXECUTING */ req2->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; nvmf_rdma_request_process(&rtransport, req2); CU_ASSERT(req2->state == RDMA_REQUEST_STATE_EXECUTING); /* WRITE 1: EXECUTED -> COMPLETING */ req2->state = RDMA_REQUEST_STATE_EXECUTED; nvmf_rdma_request_process(&rtransport, req2); CU_ASSERT(req2->state == RDMA_REQUEST_STATE_COMPLETING); STAILQ_INIT(&poller.qpairs_pending_send); /* WRITE 1: COMPLETED -> FREE */ req2->state = RDMA_REQUEST_STATE_COMPLETED; nvmf_rdma_request_process(&rtransport, req2); CU_ASSERT(req2->state == RDMA_REQUEST_STATE_FREE); free_recv(recv1); free_req(req1); free_recv(recv2); free_req(req2); poller_reset(&poller, &group); qpair_reset(&rqpair, &poller, &device, &resources); } spdk_mempool_free(rtransport.transport.data_buf_pool); spdk_mempool_free(rtransport.data_wr_pool); } #define TEST_GROUPS_COUNT 5 static void test_nvmf_rdma_get_optimal_poll_group(void) { struct spdk_nvmf_rdma_transport rtransport = {}; struct spdk_nvmf_transport *transport = &rtransport.transport; struct spdk_nvmf_rdma_qpair rqpair = {}; struct spdk_nvmf_transport_poll_group *groups[TEST_GROUPS_COUNT]; struct spdk_nvmf_rdma_poll_group *rgroups[TEST_GROUPS_COUNT]; struct spdk_nvmf_transport_poll_group *result; uint32_t i; rqpair.qpair.transport = transport; pthread_mutex_init(&rtransport.lock, NULL); TAILQ_INIT(&rtransport.poll_groups); for (i = 0; i < TEST_GROUPS_COUNT; i++) { groups[i] = nvmf_rdma_poll_group_create(transport); CU_ASSERT(groups[i] != NULL); rgroups[i] = SPDK_CONTAINEROF(groups[i], struct spdk_nvmf_rdma_poll_group, group); groups[i]->transport = transport; } CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[0]); CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[0]); /* Emulate connection of %TEST_GROUPS_COUNT% initiators - each creates 1 admin and 1 io qp */ for (i = 0; i < TEST_GROUPS_COUNT; i++) { rqpair.qpair.qid = 0; result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair); CU_ASSERT(result == groups[i]); CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]); CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i]); rqpair.qpair.qid = 1; result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair); CU_ASSERT(result == groups[i]); CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]); CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]); } /* wrap around, admin/io pg point to the first pg Destroy all poll groups except of the last one */ for (i = 0; i < TEST_GROUPS_COUNT - 1; i++) { nvmf_rdma_poll_group_destroy(groups[i]); CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[i + 1]); CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i + 1]); } CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]); CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]); /* Check that pointers to the next admin/io poll groups are not changed */ rqpair.qpair.qid = 0; result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair); CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]); CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]); CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]); rqpair.qpair.qid = 1; result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair); CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]); CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]); CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]); /* Remove the last poll group, check that pointers are NULL */ nvmf_rdma_poll_group_destroy(groups[TEST_GROUPS_COUNT - 1]); CU_ASSERT(rtransport.conn_sched.next_admin_pg == NULL); CU_ASSERT(rtransport.conn_sched.next_io_pg == NULL); /* Request optimal poll group, result must be NULL */ rqpair.qpair.qid = 0; result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair); CU_ASSERT(result == NULL); rqpair.qpair.qid = 1; result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair); CU_ASSERT(result == NULL); pthread_mutex_destroy(&rtransport.lock); } #undef TEST_GROUPS_COUNT static void test_spdk_nvmf_rdma_request_parse_sgl_with_md(void) { struct spdk_nvmf_rdma_transport rtransport; struct spdk_nvmf_rdma_device device; struct spdk_nvmf_rdma_request rdma_req = {}; struct spdk_nvmf_rdma_recv recv; struct spdk_nvmf_rdma_poll_group group; struct spdk_nvmf_rdma_qpair rqpair; struct spdk_nvmf_rdma_poller poller; union nvmf_c2h_msg cpl; union nvmf_h2c_msg cmd; struct spdk_nvme_sgl_descriptor *sgl; struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}}; struct spdk_nvmf_rdma_request_data data; struct spdk_nvmf_transport_pg_cache_buf buffer; struct spdk_nvmf_transport_pg_cache_buf *buffer_ptr; const uint32_t data_bs = 512; const uint32_t md_size = 8; int rc, i; void *aligned_buffer; data.wr.sg_list = data.sgl; STAILQ_INIT(&group.group.buf_cache); group.group.buf_cache_size = 0; group.group.buf_cache_count = 0; group.group.transport = &rtransport.transport; STAILQ_INIT(&group.retired_bufs); poller.group = &group; rqpair.poller = &poller; rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES; sgl = &cmd.nvme_cmd.dptr.sgl1; rdma_req.recv = &recv; rdma_req.req.cmd = &cmd; rdma_req.req.rsp = &cpl; rdma_req.data.wr.sg_list = rdma_req.data.sgl; rdma_req.req.qpair = &rqpair.qpair; rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST; rtransport.transport.opts = g_rdma_ut_transport_opts; rtransport.data_wr_pool = NULL; rtransport.transport.data_buf_pool = NULL; device.attr.device_cap_flags = 0; device.map = NULL; g_rdma_mr.lkey = 0xABCD; sgl->keyed.key = 0xEEEE; sgl->address = 0xFFFF; rdma_req.recv->buf = (void *)0xDDDD; /* Test 1: sgl type: keyed data block subtype: address */ sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; /* Part 1: simple I/O, one SGL smaller than the transport io unit size, block size 512 */ MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = data_bs * 8; sgl->keyed.length = data_bs * 4; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs * 4); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4); CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 4); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000); for (i = 0; i < 4; ++i) { CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs); CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey); } /* Part 2: simple I/O, one SGL equal to io unit size, io_unit_size is not aligned with md_size, block size 512 */ MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = data_bs * 4; sgl->keyed.length = data_bs * 4; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs * 4); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4); CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 5); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000); for (i = 0; i < 3; ++i) { CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs); CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey); } CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488); CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == g_rdma_mr.lkey); /* 2nd buffer consumed */ CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24); CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == g_rdma_mr.lkey); /* Part 3: simple I/O, one SGL equal io unit size, io_unit_size is equal to block size 512 bytes */ MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = data_bs; sgl->keyed.length = data_bs; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == data_bs + md_size); CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 1); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs); CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey); CU_ASSERT(rdma_req.req.iovcnt == 2); CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)((unsigned long)0x2000)); CU_ASSERT(rdma_req.req.iov[0].iov_len == data_bs); /* 2nd buffer consumed for metadata */ CU_ASSERT(rdma_req.req.iov[1].iov_base == (void *)((unsigned long)0x2000)); CU_ASSERT(rdma_req.req.iov[1].iov_len == md_size); /* Part 4: simple I/O, one SGL equal io unit size, io_unit_size is aligned with md_size, block size 512 */ MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4; sgl->keyed.length = data_bs * 4; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs * 4); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4); CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 4); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000); for (i = 0; i < 4; ++i) { CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs); CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey); } /* Part 5: simple I/O, one SGL equal to 2x io unit size, io_unit_size is aligned with md_size, block size 512 */ MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 2; sgl->keyed.length = data_bs * 4; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs * 4); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4); CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 4); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000); for (i = 0; i < 2; ++i) { CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs); } for (i = 0; i < 2; ++i) { CU_ASSERT(rdma_req.data.wr.sg_list[i + 2].addr == 0x2000 + i * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[i + 2].length == data_bs); } /* Part 6: simple I/O, one SGL larger than the transport io unit size, io_unit_size is not aligned to md_size, block size 512 */ MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = data_bs * 4; sgl->keyed.length = data_bs * 6; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs * 6); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 6); CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 7); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000); for (i = 0; i < 3; ++i) { CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs); CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey); } CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488); CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == g_rdma_mr.lkey); /* 2nd IO buffer consumed */ CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24); CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == g_rdma_mr.lkey); CU_ASSERT(rdma_req.data.wr.sg_list[5].addr == 0x2000 + 24 + md_size); CU_ASSERT(rdma_req.data.wr.sg_list[5].length == 512); CU_ASSERT(rdma_req.data.wr.sg_list[5].lkey == g_rdma_mr.lkey); CU_ASSERT(rdma_req.data.wr.sg_list[6].addr == 0x2000 + 24 + 512 + md_size * 2); CU_ASSERT(rdma_req.data.wr.sg_list[6].length == 512); CU_ASSERT(rdma_req.data.wr.sg_list[6].lkey == g_rdma_mr.lkey); /* Part 7: simple I/O, number of SGL entries exceeds the number of entries one WR can hold. Additional WR is chained */ MOCK_SET(spdk_mempool_get, &data); aligned_buffer = (void *)((uintptr_t)((char *)&data + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = data_bs * 16; sgl->keyed.length = data_bs * 16; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs * 16); CU_ASSERT(rdma_req.req.iovcnt == 2); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 16); CU_ASSERT(rdma_req.req.data == aligned_buffer); CU_ASSERT(rdma_req.data.wr.num_sge == 16); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); /* additional wr from pool */ CU_ASSERT(rdma_req.data.wr.next == (void *)&data.wr); CU_ASSERT(rdma_req.data.wr.next->num_sge == 1); CU_ASSERT(rdma_req.data.wr.next->next == &rdma_req.rsp.wr); /* Part 8: simple I/O, data with metadata do not fit to 1 io_buffer */ MOCK_SET(spdk_mempool_get, (void *)0x2000); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = 516; sgl->keyed.length = data_bs * 2; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs * 2); CU_ASSERT(rdma_req.req.iovcnt == 3); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 2); CU_ASSERT(rdma_req.req.data == (void *)0x2000); CU_ASSERT(rdma_req.data.wr.num_sge == 2); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000); CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 512); CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey); /* 2nd IO buffer consumed, offset 4 bytes due to part of the metadata is located at the beginning of that buffer */ CU_ASSERT(rdma_req.data.wr.sg_list[1].addr == 0x2000 + 4); CU_ASSERT(rdma_req.data.wr.sg_list[1].length == 512); CU_ASSERT(rdma_req.data.wr.sg_list[1].lkey == g_rdma_mr.lkey); /* Test 9 dealing with a buffer split over two Memory Regions */ MOCK_SET(spdk_mempool_get, (void *)&buffer); reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = data_bs * 4; sgl->keyed.length = data_bs * 2; g_mr_size = data_bs; g_mr_next_size = rtransport.transport.opts.io_unit_size; rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); SPDK_CU_ASSERT_FATAL(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2); CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK)); CU_ASSERT(rdma_req.data.wr.num_sge == 2); CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF); CU_ASSERT(rdma_req.req.buffers[0] == &buffer); for (i = 0; i < 2; i++) { CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uint64_t)rdma_req.req.data + i * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs); CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey); } buffer_ptr = STAILQ_FIRST(&group.retired_bufs); CU_ASSERT(buffer_ptr == &buffer); STAILQ_REMOVE(&group.retired_bufs, buffer_ptr, spdk_nvmf_transport_pg_cache_buf, link); CU_ASSERT(STAILQ_EMPTY(&group.retired_bufs)); g_mr_size = 0; g_mr_next_size = 0; /* Test 2: Multi SGL */ sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; sgl->address = 0; rdma_req.recv->buf = (void *)&sgl_desc; MOCK_SET(spdk_mempool_get, &data); aligned_buffer = (void *)((uintptr_t)((char *)&data + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK); /* part 1: 2 segments each with 1 wr. io_unit_size is aligned with data_bs + md_size */ reset_nvmf_rdma_request(&rdma_req); spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false, SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0); rdma_req.req.dif.dif_insert_or_strip = true; rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4; sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor); for (i = 0; i < 2; i++) { sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; sgl_desc[i].keyed.length = data_bs * 4; sgl_desc[i].address = 0x4000 + i * data_bs * 4; sgl_desc[i].keyed.key = 0x44; } rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req); CU_ASSERT(rc == 0); CU_ASSERT(rdma_req.req.data_from_pool == true); CU_ASSERT(rdma_req.req.length == data_bs * 4 * 2); CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length); CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4 * 2); CU_ASSERT(rdma_req.data.wr.num_sge == 4); for (i = 0; i < 4; ++i) { CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)((unsigned char *)aligned_buffer) + i * (data_bs + md_size)); CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs); } CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44); CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000); CU_ASSERT(rdma_req.data.wr.next == &data.wr); CU_ASSERT(data.wr.wr.rdma.rkey == 0x44); CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + data_bs * 4); CU_ASSERT(data.wr.num_sge == 4); for (i = 0; i < 4; ++i) { CU_ASSERT(data.wr.sg_list[i].addr == (uintptr_t)((unsigned char *)aligned_buffer) + i * (data_bs + md_size)); CU_ASSERT(data.wr.sg_list[i].length == data_bs); } CU_ASSERT(data.wr.next == &rdma_req.rsp.wr); } int main(int argc, char **argv) { CU_pSuite suite = NULL; unsigned int num_failures; CU_set_error_action(CUEA_ABORT); CU_initialize_registry(); suite = CU_add_suite("nvmf", NULL, NULL); CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl); CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_process); CU_ADD_TEST(suite, test_nvmf_rdma_get_optimal_poll_group); CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl_with_md); CU_basic_set_mode(CU_BRM_VERBOSE); CU_basic_run_tests(); num_failures = CU_get_number_of_failures(); CU_cleanup_registry(); return num_failures; }