1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
//=======================================================================
// Copyright 2001 Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee,
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/range/irange.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <iostream>
using namespace boost;
template < typename TimeMap >
class dfs_time_visitor : public default_dfs_visitor
{
typedef typename property_traits< TimeMap >::value_type T;
public:
dfs_time_visitor(TimeMap dmap, TimeMap fmap, T& t)
: m_dtimemap(dmap), m_ftimemap(fmap), m_time(t)
{
}
template < typename Vertex, typename Graph >
void discover_vertex(Vertex u, const Graph& g) const
{
put(m_dtimemap, u, m_time++);
}
template < typename Vertex, typename Graph >
void finish_vertex(Vertex u, const Graph& g) const
{
put(m_ftimemap, u, m_time++);
}
TimeMap m_dtimemap;
TimeMap m_ftimemap;
T& m_time;
};
int main()
{
// Select the graph type we wish to use
typedef adjacency_list< vecS, vecS, directedS > graph_t;
typedef graph_traits< graph_t >::vertices_size_type size_type;
// Set up the vertex names
enum
{
u,
v,
w,
x,
y,
z,
N
};
char name[] = { 'u', 'v', 'w', 'x', 'y', 'z' };
// Specify the edges in the graph
typedef std::pair< int, int > E;
E edge_array[] = { E(u, v), E(u, x), E(x, v), E(y, x), E(v, y), E(w, y),
E(w, z), E(z, z) };
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300
graph_t g(N);
for (std::size_t j = 0; j < sizeof(edge_array) / sizeof(E); ++j)
add_edge(edge_array[j].first, edge_array[j].second, g);
#else
graph_t g(edge_array, edge_array + sizeof(edge_array) / sizeof(E), N);
#endif
// discover time and finish time properties
std::vector< size_type > dtime(num_vertices(g));
std::vector< size_type > ftime(num_vertices(g));
typedef iterator_property_map< std::vector< size_type >::iterator,
property_map< graph_t, vertex_index_t >::const_type >
time_pm_type;
time_pm_type dtime_pm(dtime.begin(), get(vertex_index, g));
time_pm_type ftime_pm(ftime.begin(), get(vertex_index, g));
size_type t = 0;
dfs_time_visitor< time_pm_type > vis(dtime_pm, ftime_pm, t);
depth_first_search(g, visitor(vis));
// use std::sort to order the vertices by their discover time
std::vector< size_type > discover_order(N);
integer_range< size_type > r(0, N);
std::copy(r.begin(), r.end(), discover_order.begin());
std::sort(discover_order.begin(), discover_order.end(),
indirect_cmp< time_pm_type, std::less< size_type > >(dtime_pm));
std::cout << "order of discovery: ";
int i;
for (i = 0; i < N; ++i)
std::cout << name[discover_order[i]] << " ";
std::vector< size_type > finish_order(N);
std::copy(r.begin(), r.end(), finish_order.begin());
std::sort(finish_order.begin(), finish_order.end(),
indirect_cmp< time_pm_type, std::less< size_type > >(ftime_pm));
std::cout << std::endl << "order of finish: ";
for (i = 0; i < N; ++i)
std::cout << name[finish_order[i]] << " ";
std::cout << std::endl;
return EXIT_SUCCESS;
}
|