summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/pow_test.cpp
blob: d004f0d9bd6ddb55cb7be6f1cff524a7ffaf48db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//  Boost pow_test.cpp test file
//  Tests the pow function

//  (C) Copyright Bruno Lalande 2008.
//  Distributed under the Boost Software License, Version 1.0.
//  (See accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)

#include <cmath>
#include <string>
#include <iostream>

#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/tools/test.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>

#include <boost/typeof/typeof.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/static_assert.hpp>

#include <boost/math/special_functions/pow.hpp>

#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()
BOOST_TYPEOF_REGISTER_TYPE(boost::math::concepts::real_concept)

using namespace boost;
using namespace boost::math;

template <int N, class T>
void test_pow(T base)
{
    typedef typename tools::promote_args<T>::type result_type;

    BOOST_MATH_STD_USING

    if ((base == 0) && N < 0)
    {
       BOOST_MATH_CHECK_THROW(math::pow<N>(base), std::overflow_error);
    }
    else
    {
       BOOST_CHECK_CLOSE(math::pow<N>(base),
              pow(static_cast<result_type>(base), static_cast<result_type>(N)),
              boost::math::tools::epsilon<result_type>() * 100 * 400); // 400 eps as a %
    }
}

template <int N, class T>
void test_with_big_bases()
{
    for (T base = T(); base < T(1000); ++base)
        test_pow<N>(base);
}

template <int N, class T>
void test_with_small_bases()
{
    T base = 0.9f;
    for (int i = 0; i < 10; ++i)
    {
        base += base/50;
        test_pow<N>(base);
    }
}

template <class T, int Factor>
void test_with_small_exponents()
{
    test_with_big_bases<0, T>();
    test_with_big_bases<Factor*1, T>();
    test_with_big_bases<Factor*2, T>();
    test_with_big_bases<Factor*3, T>();
    test_with_big_bases<Factor*5, T>();
    test_with_big_bases<Factor*6, T>();
    test_with_big_bases<Factor*7, T>();
    test_with_big_bases<Factor*8, T>();
    test_with_big_bases<Factor*9, T>();
    test_with_big_bases<Factor*10, T>();
    test_with_big_bases<Factor*11, T>();
    test_with_big_bases<Factor*12, T>();
}

template <class T, int Factor>
void test_with_big_exponents()
{
    test_with_small_bases<Factor*50, T>();
    test_with_small_bases<Factor*100, T>();
    test_with_small_bases<Factor*150, T>();
    test_with_small_bases<Factor*200, T>();
    test_with_small_bases<Factor*250, T>();
    test_with_small_bases<Factor*300, T>();
    test_with_small_bases<Factor*350, T>();
    test_with_small_bases<Factor*400, T>();
    test_with_small_bases<Factor*450, T>();
    test_with_small_bases<Factor*500, T>();
}


void test_return_types()
{
    BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(pow<2>('\1')), double>::value));
    BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(pow<2>(L'\2')), double>::value));
    BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(pow<2>(3)), double>::value));
    BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(pow<2>(4u)), double>::value));
    BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(pow<2>(5ul)), double>::value));
    BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(pow<2>(6.0f)), float>::value));
    BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(pow<2>(7.0)), double>::value));
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(pow<2>(7.0l)), long double>::value));
#endif
}


namespace boost { namespace math { namespace policies {
template <class T>
T user_overflow_error(const char*, const char*, const T&)
{ return T(123.45); }
}}}

namespace boost { namespace math { namespace policies {
template <class T>
T user_indeterminate_result_error(const char*, const char*, const T&)
{ return T(456.78); }
}}}


void test_error_policy()
{
    using namespace policies;

    BOOST_CHECK(pow<-2>(
                    0.0,
                    policy< ::boost::math::policies::overflow_error<user_error> >()
                )
                == 123.45);

    BOOST_CHECK(pow<0>(
                    0.0,
                    policy< ::boost::math::policies::indeterminate_result_error<user_error> >()
                )
                == 456.78);
}

BOOST_AUTO_TEST_CASE( test_main )
{
    using namespace std;

    cout << "Testing with integral bases and positive small exponents" << endl;
    test_with_small_exponents<int, 1>();
    cout << "Testing with integral bases and negative small exponents" << endl;
    test_with_small_exponents<int, -1>();

    cout << "Testing with float precision bases and positive small exponents" << endl;
    test_with_small_exponents<float, 1>();
    cout << "Testing with float precision bases and negative small exponents" << endl;
    test_with_small_exponents<float, -1>();

    cout << "Testing with float precision bases and positive big exponents" << endl;
    test_with_big_exponents<float, 1>();
    cout << "Testing with float precision bases and negative big exponents" << endl;
    test_with_big_exponents<float, -1>();

     cout << "Testing with double precision bases and positive small exponents" << endl;
    test_with_small_exponents<double, 1>();
    cout << "Testing with double precision bases and negative small exponents" << endl;
    test_with_small_exponents<double, -1>();

    cout << "Testing with double precision bases and positive big exponents" << endl;
    test_with_big_exponents<double, 1>();
    cout << "Testing with double precision bases and negative big exponents" << endl;
    test_with_big_exponents<double, -1>();

#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    cout << "Testing with long double precision bases and positive small exponents" << endl;
    test_with_small_exponents<long double, 1>();
    cout << "Testing with long double precision bases and negative small exponents" << endl;
    test_with_small_exponents<long double, -1>();

    cout << "Testing with long double precision bases and positive big exponents" << endl;
    test_with_big_exponents<long double, 1>();
    cout << "Testing with long double precision bases and negative big exponents" << endl;
    test_with_big_exponents<long double, -1>();

    cout << "Testing with concepts::real_concept precision bases and positive small exponents" << endl;
    test_with_small_exponents<boost::math::concepts::real_concept, 1>();
    cout << "Testing with concepts::real_concept precision bases and negative small exponents" << endl;
    test_with_small_exponents<boost::math::concepts::real_concept, -1>();

    cout << "Testing with concepts::real_concept precision bases and positive big exponents" << endl;
    test_with_big_exponents<boost::math::concepts::real_concept, 1>();
    cout << "Testing with concepts::real_concept precision bases and negative big exponents" << endl;
    test_with_big_exponents<boost::math::concepts::real_concept, -1>();
#endif

    test_return_types();

    test_error_policy();
}

/*

  Running 1 test case...
  Testing with integral bases and positive small exponents
  Testing with integral bases and negative small exponents
  Testing with float precision bases and positive small exponents
  Testing with float precision bases and negative small exponents
  Testing with float precision bases and positive big exponents
  Testing with float precision bases and negative big exponents
  Testing with double precision bases and positive small exponents
  Testing with double precision bases and negative small exponents
  Testing with double precision bases and positive big exponents
  Testing with double precision bases and negative big exponents
  Testing with long double precision bases and positive small exponents
  Testing with long double precision bases and negative small exponents
  Testing with long double precision bases and positive big exponents
  Testing with long double precision bases and negative big exponents
  Testing with concepts::real_concept precision bases and positive small exponents
  Testing with concepts::real_concept precision bases and negative small exponents
  Testing with concepts::real_concept precision bases and positive big exponents
  Testing with concepts::real_concept precision bases and negative big exponents
  
  *** No errors detected

  */