1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
// (C) Copyright John Maddock 2018.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_TEST_MODULE test_recurrences
#include <boost/config.hpp>
#ifndef BOOST_NO_CXX11_HDR_TUPLE
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/math/tools/recurrence.hpp>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
//#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/concepts/real_concept.hpp>
#ifdef BOOST_MSVC
#pragma warning(disable:4127)
#endif
template <class T>
struct bessel_jy_recurrence
{
bessel_jy_recurrence(T v, T z) : v(v), z(z) {}
boost::math::tuple<T, T, T> operator()(int k)const
{
return boost::math::tuple<T, T, T>(T(1), -2 * (v + k) / z, T(1));
}
T v, z;
};
template <class T>
struct bessel_ik_recurrence
{
bessel_ik_recurrence(T v, T z) : v(v), z(z) {}
boost::math::tuple<T, T, T> operator()(int k)const
{
return boost::math::tuple<T, T, T>(T(1), -2 * (v + k) / z, T(-1));
}
T v, z;
};
template <class T>
void test_spots(T, const char* name)
{
std::cout << "Running tests for type " << name << std::endl;
T tol = boost::math::tools::epsilon<T>() * 5;
if ((std::numeric_limits<T>::digits > 53) || (std::numeric_limits<T>::digits == 0))
tol *= 5;
//
// Test forward recurrence on Y_v(x):
//
{
T v = 22.25;
T x = 4.125;
bessel_jy_recurrence<T> coef(v, x);
T prev;
T first = boost::math::cyl_neumann(v - 1, x);
T second = boost::math::cyl_neumann(v, x);
T sixth = boost::math::tools::apply_recurrence_relation_forward(coef, 6, first, second, (int*)0, &prev);
T expected1 = boost::math::cyl_neumann(v + 6, x);
T expected2 = boost::math::cyl_neumann(v + 5, x);
BOOST_CHECK_CLOSE_FRACTION(sixth, expected1, tol);
BOOST_CHECK_CLOSE_FRACTION(prev, expected2, tol);
boost::math::tools::forward_recurrence_iterator< bessel_jy_recurrence<T> > it(coef, first, second);
for (unsigned i = 0; i < 15; ++i)
{
expected1 = boost::math::cyl_neumann(v + i, x);
T found = *it;
BOOST_CHECK_CLOSE_FRACTION(found, expected1, tol);
++it;
}
if (std::numeric_limits<T>::max_exponent > 300)
{
//
// This calculates the ratio Y_v(x)/Y_v+1(x) from the recurrence relations
// which are only transiently stable since Y_v is not minimal as v->-INF
// but only as v->0. We have to be sure that v is sufficiently large that
// convergence is complete before we reach the origin.
//
v = 102.75;
boost::uintmax_t max_iter = 200;
T ratio = boost::math::tools::function_ratio_from_forwards_recurrence(bessel_jy_recurrence<T>(v, x), boost::math::tools::epsilon<T>(), max_iter);
first = boost::math::cyl_neumann(v, x);
second = boost::math::cyl_neumann(v + 1, x);
BOOST_CHECK_CLOSE_FRACTION(ratio, first / second, tol);
boost::math::tools::forward_recurrence_iterator< bessel_jy_recurrence<T> > it2(bessel_jy_recurrence<T>(v, x), boost::math::cyl_neumann(v, x));
for (unsigned i = 0; i < 15; ++i)
{
expected1 = boost::math::cyl_neumann(v + i, x);
T found = *it2;
BOOST_CHECK_CLOSE_FRACTION(found, expected1, tol);
++it2;
}
}
}
//
// Test backward recurrence on J_v(x):
//
{
if ((std::numeric_limits<T>::digits > 53) || !std::numeric_limits<T>::is_specialized)
tol *= 5;
T v = 22.25;
T x = 4.125;
bessel_jy_recurrence<T> coef(v, x);
T prev;
T first = boost::math::cyl_bessel_j(v + 1, x);
T second = boost::math::cyl_bessel_j(v, x);
T sixth = boost::math::tools::apply_recurrence_relation_backward(coef, 6, first, second, (int*)0, &prev);
T expected1 = boost::math::cyl_bessel_j(v - 6, x);
T expected2 = boost::math::cyl_bessel_j(v - 5, x);
BOOST_CHECK_CLOSE_FRACTION(sixth, expected1, tol);
BOOST_CHECK_CLOSE_FRACTION(prev, expected2, tol);
boost::math::tools::backward_recurrence_iterator< bessel_jy_recurrence<T> > it(coef, first, second);
for (unsigned i = 0; i < 15; ++i)
{
expected1 = boost::math::cyl_bessel_j(v - i, x);
T found = *it;
BOOST_CHECK_CLOSE_FRACTION(found, expected1, tol);
++it;
}
boost::uintmax_t max_iter = 200;
T ratio = boost::math::tools::function_ratio_from_backwards_recurrence(bessel_jy_recurrence<T>(v, x), boost::math::tools::epsilon<T>(), max_iter);
first = boost::math::cyl_bessel_j(v, x);
second = boost::math::cyl_bessel_j(v - 1, x);
BOOST_CHECK_CLOSE_FRACTION(ratio, first / second, tol);
boost::math::tools::backward_recurrence_iterator< bessel_jy_recurrence<T> > it2(bessel_jy_recurrence<T>(v, x), boost::math::cyl_bessel_j(v, x));
//boost::math::tools::backward_recurrence_iterator< bessel_jy_recurrence<T> > it3(bessel_jy_recurrence<T>(v, x), boost::math::cyl_neumann(v+1, x), boost::math::cyl_neumann(v, x));
for (unsigned i = 0; i < 15; ++i)
{
expected1 = boost::math::cyl_bessel_j(v - i, x);
T found = *it2;
BOOST_CHECK_CLOSE_FRACTION(found, expected1, tol);
++it2;
}
}
}
BOOST_AUTO_TEST_CASE( test_main )
{
BOOST_MATH_CONTROL_FP;
#if !defined(TEST) || TEST == 1
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L, "long double");
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_spots(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#endif
#endif
#if !defined(TEST) || TEST == 2 || TEST == 3
test_spots(boost::multiprecision::cpp_bin_float_quad(), "cpp_bin_float_quad");
#endif
}
#else
int main() { return 0; }
#endif
|