summaryrefslogtreecommitdiffstats
path: root/src/crimson/common/errorator.h
blob: af1e6ea45c8e701023627cceebc64914ec7b4303 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab

#pragma once

#include <exception>
#include <system_error>

#include <seastar/core/future-util.hh>

#include "include/ceph_assert.h"

namespace crimson {

template<typename Iterator, typename AsyncAction>
inline auto do_for_each(Iterator begin, Iterator end, AsyncAction action) {
  using futurator = \
    ::seastar::futurize<std::invoke_result_t<AsyncAction, decltype(*begin)>>;

  if (begin == end) {
    return futurator::type::errorator_type::template make_ready_future<>();
  }
  while (true) {
    auto f = futurator::invoke(action, *begin);
    ++begin;
    if (begin == end) {
      return f;
    }
    if (!f.available() || seastar::need_preempt()) {
      return std::move(f)._then(
        [ action = std::move(action),
          begin = std::move(begin),
          end = std::move(end)
        ] () mutable {
          return ::crimson::do_for_each(std::move(begin),
                                        std::move(end),
                                        std::move(action));
      });
    }
    if (f.failed()) {
      return f;
    }
  }
}
template<typename Container, typename AsyncAction>
inline auto do_for_each(Container& c, AsyncAction action) {
  return ::crimson::do_for_each(std::begin(c), std::end(c), std::move(action));
}

template<typename AsyncAction>
inline auto do_until(AsyncAction action) {
  using errorator_t =
    typename ::seastar::futurize_t<std::invoke_result_t<AsyncAction>>::errorator_type;

  while (true) {
    auto f = ::seastar::futurize_invoke(action);
    if (f.failed()) {
      return errorator_t::template make_exception_future2<>(
        f.get_exception()
      );
    } else if (f.available()) {
      if (auto done = f.get0()) {
        return errorator_t::template make_ready_future<>();
      }
    } else {
      return std::move(f)._then(
        [action = std::move(action)] (auto &&done) mutable {
          if (done) {
            return errorator_t::template make_ready_future<>();
          }
          return ::crimson::do_until(
            std::move(action));
        });
    }
  }
}

// define the interface between error types and errorator
template <class ConcreteErrorT>
class error_t {
  static constexpr const std::type_info& get_exception_ptr_type_info() {
    return ConcreteErrorT::exception_ptr_type_info();
  }

  std::exception_ptr to_exception_ptr() const {
    const auto* concrete_error = static_cast<const ConcreteErrorT*>(this);
    return concrete_error->to_exception_ptr();
  }

  decltype(auto) static from_exception_ptr(std::exception_ptr ep) {
    return ConcreteErrorT::from_exception_ptr(std::move(ep));
  }

  template <class... AllowedErrorsT>
  friend struct errorator;

  template <class ErrorVisitorT, class FuturatorT>
  friend class maybe_handle_error_t;

public:
  template <class Func>
  static decltype(auto) handle(Func&& func) {
    return ConcreteErrorT::handle(std::forward<Func>(func));
  }
};

// unthrowable_wrapper ensures compilation failure when somebody
// would like to `throw make_error<...>)()` instead of returning.
// returning allows for the compile-time verification of future's
// AllowedErrorsV and also avoid the burden of throwing.
template <class ErrorT, ErrorT ErrorV>
struct unthrowable_wrapper : error_t<unthrowable_wrapper<ErrorT, ErrorV>> {
  unthrowable_wrapper(const unthrowable_wrapper&) = delete;
  [[nodiscard]] static const auto& make() {
    static constexpr unthrowable_wrapper instance{};
    return instance;
  }

  template<class Func>
  static auto handle(Func&& func) {
    return [
      func = std::forward<Func>(func)
    ] (const unthrowable_wrapper&) mutable -> decltype(auto) {
      if constexpr (std::is_invocable_v<Func, ErrorT>) {
        return std::invoke(std::forward<Func>(func), ErrorV);
      } else {
        return std::invoke(std::forward<Func>(func));
      }
    };
  }

  struct pass_further {
    decltype(auto) operator()(const unthrowable_wrapper& e) {
      return e;
    }
  };

  struct discard {
    decltype(auto) operator()(const unthrowable_wrapper&) {
    }
  };


private:
  // can be used only to initialize the `instance` member
  explicit unthrowable_wrapper() = default;

  // implement the errorable interface
  struct throwable_carrier{};
  static std::exception_ptr carrier_instance;

  static constexpr const std::type_info& exception_ptr_type_info() {
    return typeid(throwable_carrier);
  }
  auto to_exception_ptr() const {
    // error codes don't need to instantiate `std::exception_ptr` each
    // time as the code is actually a part of the type itself.
    // `std::make_exception_ptr()` on modern enough GCCs is quite cheap
    // (see the Gleb Natapov's patch eradicating throw/catch there),
    // but using one instance per type boils down the overhead to just
    // ref-counting.
    return carrier_instance;
  }
  static const auto& from_exception_ptr(std::exception_ptr) {
    return make();
  }

  friend class error_t<unthrowable_wrapper<ErrorT, ErrorV>>;
};

template <class ErrorT, ErrorT ErrorV>
std::exception_ptr unthrowable_wrapper<ErrorT, ErrorV>::carrier_instance = \
  std::make_exception_ptr<
    unthrowable_wrapper<ErrorT, ErrorV>::throwable_carrier>({});


template <class ErrorT>
struct stateful_error_t : error_t<stateful_error_t<ErrorT>> {
  template <class... Args>
  explicit stateful_error_t(Args&&... args)
    : ep(std::make_exception_ptr<ErrorT>(std::forward<Args>(args)...)) {
  }

  template<class Func>
  static auto handle(Func&& func) {
    static_assert(std::is_invocable_v<Func, ErrorT>);
    return [
      func = std::forward<Func>(func)
    ] (stateful_error_t<ErrorT>&& e) mutable -> decltype(auto) {
      try {
        std::rethrow_exception(e.ep);
      } catch (const ErrorT& obj) {
        return std::invoke(std::forward<Func>(func), obj);
      }
      ceph_abort_msg("exception type mismatch – impossible!");
    };
  }

private:
  std::exception_ptr ep;

  explicit stateful_error_t(std::exception_ptr ep) : ep(std::move(ep)) {}

  static constexpr const std::type_info& exception_ptr_type_info() {
    return typeid(ErrorT);
  }
  auto to_exception_ptr() const {
    return ep;
  }
  static stateful_error_t<ErrorT> from_exception_ptr(std::exception_ptr ep) {
    return stateful_error_t<ErrorT>(std::move(ep));
  }

  friend class error_t<stateful_error_t<ErrorT>>;
};

namespace _impl {
  template <class T> struct always_false : std::false_type {};
};

template <class ErrorVisitorT, class FuturatorT>
class maybe_handle_error_t {
  const std::type_info& type_info;
  typename FuturatorT::type result;
  ErrorVisitorT errfunc;

public:
  maybe_handle_error_t(ErrorVisitorT&& errfunc, std::exception_ptr ep)
    : type_info(*ep.__cxa_exception_type()),
      result(FuturatorT::make_exception_future(std::move(ep))),
      errfunc(std::forward<ErrorVisitorT>(errfunc)) {
  }

  template <class ErrorT>
  void handle() {
    static_assert(std::is_invocable<ErrorVisitorT, ErrorT>::value,
                  "provided Error Visitor is not exhaustive");
    // In C++ throwing an exception isn't the sole way to signal
    // error with it. This approach nicely fits cold, infrequent cases
    // but when applied to a hot one, it will likely hurt performance.
    //
    // Alternative approach is to create `std::exception_ptr` on our
    // own and place it in the future via `make_exception_future()`.
    // When it comes to handling, the pointer can be interrogated for
    // pointee's type with `__cxa_exception_type()` instead of costly
    // re-throwing (via `std::rethrow_exception()`) and matching with
    // `catch`. The limitation here is lack of support for hierarchies
    // of exceptions. The code below checks for exact match only while
    // `catch` would allow to match against a base class as well.
    // However, this shouldn't be a big issue for `errorator` as Error
    // Visitors are already checked for exhaustiveness at compile-time.
    //
    // NOTE: `__cxa_exception_type()` is an extension of the language.
    // It should be available both in GCC and Clang but a fallback
    // (based on `std::rethrow_exception()` and `catch`) can be made
    // to handle other platforms if necessary.
    if (type_info == ErrorT::error_t::get_exception_ptr_type_info()) {
      // set `state::invalid` in internals of `seastar::future` to not
      // call `report_failed_future()` during `operator=()`.
      [[maybe_unused]] auto&& ep = std::move(result).get_exception();

      using return_t = std::invoke_result_t<ErrorVisitorT, ErrorT>;
      if constexpr (std::is_assignable_v<decltype(result), return_t>) {
        result = std::invoke(std::forward<ErrorVisitorT>(errfunc),
                             ErrorT::error_t::from_exception_ptr(std::move(ep)));
      } else if constexpr (std::is_same_v<return_t, void>) {
        // void denotes explicit discarding
        // execute for the sake a side effects. Typically this boils down
        // to throwing an exception by the handler.
        std::invoke(std::forward<ErrorVisitorT>(errfunc),
                    ErrorT::error_t::from_exception_ptr(std::move(ep)));
      } else {
        static_assert(_impl::always_false<return_t>::value,
                      "return of Error Visitor is not assignable to future");
        // do nothing with `ep`.
      }
    }
  }

  auto get_result() && {
    return std::move(result);
  }
};

template <class FuncHead, class... FuncTail>
static constexpr auto composer(FuncHead&& head, FuncTail&&... tail) {
  return [
    head = std::forward<FuncHead>(head),
    // perfect forwarding in lambda's closure isn't available in C++17
    // using tuple as workaround; see: https://stackoverflow.com/a/49902823
    tail = std::make_tuple(std::forward<FuncTail>(tail)...)
  ] (auto&&... args) mutable -> decltype(auto) {
    if constexpr (std::is_invocable_v<FuncHead, decltype(args)...>) {
      return std::invoke(std::forward<FuncHead>(head),
                         std::forward<decltype(args)>(args)...);
    } else if constexpr (sizeof...(FuncTail) > 0) {
      using next_composer_t = decltype(composer<FuncTail...>);
      auto&& next = std::apply<next_composer_t>(composer<FuncTail...>,
                                                std::move(tail));
      return std::invoke(std::move(next),
                         std::forward<decltype(args)>(args)...);
    } else {
      static_assert(
	std::is_invocable_v<FuncHead, decltype(args)...> ||
	(sizeof...(FuncTail) > 0),
      "composition is not exhaustive");
    }
  };
}

template <class ValueT>
struct errorated_future_marker{};

template <class... AllowedErrors>
struct errorator {
  template <class T>
  static inline constexpr bool is_error_v = std::is_base_of_v<error_t<T>, T>;

  static_assert((... && is_error_v<AllowedErrors>),
                "errorator expects presence of ::is_error in all error types");

  template <class ErrorT>
  struct contains_once {
    static constexpr bool value =
      (0 + ... + std::is_same_v<ErrorT, AllowedErrors>) == 1;
  };
  template <class... Errors>
  struct contains_once<errorator<Errors...>> {
    static constexpr bool value = (... && contains_once<Errors>::value);
  };
  template <class T>
  static constexpr bool contains_once_v = contains_once<T>::value;

  static_assert((... && contains_once_v<AllowedErrors>),
                "no error type in errorator can be duplicated");

  struct ready_future_marker{};
  struct exception_future_marker{};

private:
  // see the comment for `using future = _future` below.
  template <class>
  class _future {};
  template <class ValueT>
  class _future<::crimson::errorated_future_marker<ValueT>>
    : private seastar::future<ValueT> {
    using base_t = seastar::future<ValueT>;
    // we need the friendship for the sake of `get_exception() &&` when
    // `safe_then()` is going to return an errorated future as a result of
    // chaining. In contrast to `seastar::future`, errorator<T...>::future`
    // has this member private.
    template <class ErrorVisitor, class Futurator>
    friend class maybe_handle_error_t;

    // any `seastar::futurize` specialization must be able to access the base.
    // see : `satisfy_with_result_of()` far below.
    template <typename>
    friend class seastar::futurize;

    template <typename T1, typename T2, typename... More>
    friend auto seastar::internal::do_with_impl(T1&& rv1, T2&& rv2, More&&... more);

    template <class, class = std::void_t<>>
    struct get_errorator {
      // generic template for non-errorated things (plain types and
      // vanilla seastar::future as well).
      using type = errorator<>;
    };
    template <class FutureT>
    struct get_errorator<FutureT,
                         std::void_t<typename FutureT::errorator_type>> {
      using type = typename FutureT::errorator_type;
    };
    template <class T>
    using get_errorator_t = typename get_errorator<T>::type;

    template <class ValueFuncErroratorT, class... ErrorVisitorRetsT>
    struct make_errorator {
      // NOP. The generic template.
    };
    template <class... ValueFuncAllowedErrors,
              class    ErrorVisitorRetsHeadT,
              class... ErrorVisitorRetsTailT>
    struct make_errorator<errorator<ValueFuncAllowedErrors...>,
                          ErrorVisitorRetsHeadT,
                          ErrorVisitorRetsTailT...> {
    private:
      using step_errorator = errorator<ValueFuncAllowedErrors...>;
      // add ErrorVisitorRetsHeadT only if 1) it's an error type and
      // 2) isn't already included in the errorator's error set.
      // It's enough to negate contains_once_v as any errorator<...>
      // type is already guaranteed to be free of duplications.
      using next_errorator = std::conditional_t<
        is_error_v<ErrorVisitorRetsHeadT> &&
          !step_errorator::template contains_once_v<ErrorVisitorRetsHeadT>,
        typename step_errorator::template extend<ErrorVisitorRetsHeadT>,
        step_errorator>;

    public:
      using type = typename make_errorator<next_errorator,
                                           ErrorVisitorRetsTailT...>::type;
    };
    // finish the recursion
    template <class... ValueFuncAllowedErrors>
    struct make_errorator<errorator<ValueFuncAllowedErrors...>> {
      using type = ::crimson::errorator<ValueFuncAllowedErrors...>;
    };
    template <class... Args>
    using make_errorator_t = typename make_errorator<Args...>::type;

    using base_t::base_t;

    template <class Futurator, class Future, class ErrorVisitor>
    [[gnu::noinline]]
    static auto _safe_then_handle_errors(Future&& future,
                                         ErrorVisitor&& errfunc) {
      maybe_handle_error_t<ErrorVisitor, Futurator> maybe_handle_error(
        std::forward<ErrorVisitor>(errfunc),
        std::move(future).get_exception()
      );
      (maybe_handle_error.template handle<AllowedErrors>() , ...);
      return std::move(maybe_handle_error).get_result();
    }

  public:
    using errorator_type = ::crimson::errorator<AllowedErrors...>;
    using promise_type = seastar::promise<ValueT>;

    using base_t::available;
    using base_t::failed;
    // need this because of the legacy in PG::do_osd_ops().
    using base_t::handle_exception_type;

    [[gnu::always_inline]]
    _future(base_t&& base)
      : base_t(std::move(base)) {
    }

    template <class... A>
    [[gnu::always_inline]]
    _future(ready_future_marker, A&&... a)
      : base_t(::seastar::make_ready_future<ValueT>(std::forward<A>(a)...)) {
    }
    [[gnu::always_inline]]
    _future(exception_future_marker, ::seastar::future_state_base&& state) noexcept
      : base_t(::seastar::futurize<base_t>::make_exception_future(std::move(state))) {
    }
    [[gnu::always_inline]]
    _future(exception_future_marker, std::exception_ptr&& ep) noexcept
      : base_t(::seastar::futurize<base_t>::make_exception_future(std::move(ep))) {
    }

    template <template <class...> class ErroratedFuture,
              class = std::void_t<
                typename ErroratedFuture<
                  ::crimson::errorated_future_marker<ValueT>>::errorator_type>>
    operator ErroratedFuture<errorated_future_marker<ValueT>> () && {
      using dest_errorator_t = \
        typename ErroratedFuture<
          ::crimson::errorated_future_marker<ValueT>>::errorator_type;
      static_assert(dest_errorator_t::template contains_once_v<errorator_type>,
                    "conversion is possible to more-or-eq errorated future!");
      return static_cast<base_t&&>(*this);
    }

    // initialize future as failed without throwing. `make_exception_future()`
    // internally uses `std::make_exception_ptr()`. cppreference.com shouldn't
    // be misinterpreted when it says:
    //
    //   "This is done as if executing the following code:
    //     try {
    //         throw e;
    //     } catch(...) {
    //         return std::current_exception();
    //     }",
    //
    // the "as if" is absolutely crucial because modern GCCs employ optimized
    // path for it. See:
    //   * https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=cce8e59224e18858749a2324bce583bcfd160d6c,
    //   * https://gcc.gnu.org/ml/gcc-patches/2016-08/msg00373.html.
    //
    // This behavior, combined with `__cxa_exception_type()` for inspecting
    // exception's type, allows for throw/catch-free handling of stateless
    // exceptions (which is fine for error codes). Stateful jumbos would be
    // actually a bit harder as `_M_get()` is private, and thus rethrowing is
    // necessary to get to the state inside. However, it's not unthinkable to
    // see another extension bringing operator*() to the exception pointer...
    //
    // TODO: we don't really need to `make_exception_ptr` each time. It still
    // allocates memory underneath while can be replaced with single instance
    // per type created on start-up.
    template <class ErrorT,
              class DecayedT = std::decay_t<ErrorT>,
              bool IsError = is_error_v<DecayedT>,
              class = std::enable_if_t<IsError>>
    _future(ErrorT&& e)
      : base_t(
          seastar::make_exception_future<ValueT>(
            errorator_type::make_exception_ptr(e))) {
      static_assert(errorator_type::contains_once_v<DecayedT>,
                    "ErrorT is not enlisted in errorator");
    }

    template <class ValueFuncT, class ErrorVisitorT>
    auto safe_then(ValueFuncT&& valfunc, ErrorVisitorT&& errfunc) {
      static_assert((... && std::is_invocable_v<ErrorVisitorT,
                                                AllowedErrors>),
                    "provided Error Visitor is not exhaustive");

      using value_func_result_t =
        typename std::conditional_t<std::is_void_v<ValueT>,
				    std::invoke_result<ValueFuncT>,
				    std::invoke_result<ValueFuncT, ValueT>>::type;
      // recognize whether there can be any error coming from the Value
      // Function.
      using value_func_errorator_t = get_errorator_t<value_func_result_t>;
      // mutate the Value Function's errorator to harvest errors coming
      // from the Error Visitor. Yes, it's perfectly fine to fail error
      // handling at one step and delegate even broader set of issues
      // to next continuation.
      using return_errorator_t = make_errorator_t<
        value_func_errorator_t,
        std::decay_t<std::invoke_result_t<ErrorVisitorT, AllowedErrors>>...>;
      // OK, now we know about all errors next continuation must take
      // care about. If Visitor handled everything and the Value Func
      // doesn't return any, we'll finish with errorator<>::future
      // which is just vanilla seastar::future – that's it, next cont
      // finally could use `.then()`!
      using futurator_t = \
        typename return_errorator_t::template futurize<value_func_result_t>;
      // `seastar::futurize`, used internally by `then_wrapped()`, would
      // wrap any non-`seastar::future` type coming from Value Func into
      // `seastar::future`. As we really don't want to end with things
      // like `seastar::future<errorator::future<...>>`, we need either:
      //   * convert the errorated future into plain in the lambda below
      //     and back here or
      //   * specialize the `seastar::futurize<T>` to get proper kind of
      //     future directly from `::then_wrapped()`.
      // As C++17 doesn't guarantee copy elision when non-same types are
      // involved while examination of assemblies from GCC 8.1 confirmed
      // extra copying, switch to the second approach has been made.
      return this->then_wrapped(
        [ valfunc = std::forward<ValueFuncT>(valfunc),
          errfunc = std::forward<ErrorVisitorT>(errfunc)
        ] (auto&& future) mutable noexcept {
          if (__builtin_expect(future.failed(), false)) {
            return _safe_then_handle_errors<futurator_t>(
              std::move(future), std::forward<ErrorVisitorT>(errfunc));
          } else {
            // NOTE: using `seastar::future::get()` here is a bit bloaty
            // as the method rechecks availability of future's value and,
            // if it's unavailable, does the `::do_wait()` path (yes, it
            // targets `seastar::thread`). Actually this is dead code as
            // `then_wrapped()` executes the lambda only when the future
            // is available (which means: failed or ready). However, GCC
            // hasn't optimized it out:
            //
            //          if (__builtin_expect(future.failed(), false)) {
            //    ea25:       48 83 bd c8 fe ff ff    cmpq   $0x2,-0x138(%rbp)
            //    ea2c:       02
            //    ea2d:       0f 87 f0 05 00 00       ja     f023 <ceph::osd::
            // ...
            //    /// If get() is called in a \ref seastar::thread context,
            //    /// then it need not be available; instead, the thread will
            //    /// be paused until the future becomes available.
            //    [[gnu::always_inline]]
            //    std::tuple<T...> get() {
            //        if (!_state.available()) {
            //    ea3a:       0f 85 1b 05 00 00       jne    ef5b <ceph::osd::
            //    }
            // ...
            //
            // I don't perceive this as huge issue. Though, it cannot be
            // claimed errorator has 0 overhead on hot path. The perfect
            // solution here would be mark the `::get_available_state()`
            // as `protected` and use dedicated `get_value()` exactly as
            // `::then()` already does.
            return futurator_t::invoke(std::forward<ValueFuncT>(valfunc),
                                       std::move(future).get());
          }
        });
    }

    /**
     * unsafe_thread_get
     *
     * Only valid within a seastar_thread.  Ignores errorator protections
     * and throws any contained exceptions.
     *
     * Should really only be used within test code
     * (see test/crimson/gtest_seastar.h).
     */
    auto &&unsafe_get() {
      return seastar::future<ValueT>::get();
    }
    auto unsafe_get0() {
      return seastar::future<ValueT>::get0();
    }

    template <class FuncT>
    _future finally(FuncT &&func) {
      return this->then_wrapped(
        [func = std::forward<FuncT>(func)](auto &&result) mutable noexcept {
        if constexpr (seastar::is_future<std::invoke_result_t<FuncT>>::value) {
          return ::seastar::futurize_invoke(std::forward<FuncT>(func)).then_wrapped(
            [result = std::move(result)](auto&& f_res) mutable {
            // TODO: f_res.failed()
            (void)f_res.discard_result();
            return std::move(result);
          });
        } else {
          try {
            func();
          } catch (...) {
            // TODO: rethrow
          }
          return std::move(result);
        }
      });
    }

    // taking ErrorFuncOne and ErrorFuncTwo separately from ErrorFuncTail
    // to avoid SFINAE
    template <class ValueFunc,
              class ErrorFuncHead,
              class... ErrorFuncTail>
    auto safe_then(ValueFunc&& value_func,
                   ErrorFuncHead&& error_func_head,
                   ErrorFuncTail&&... error_func_tail) {
      static_assert(sizeof...(ErrorFuncTail) > 0);
      return safe_then(
        std::forward<ValueFunc>(value_func),
        composer(std::forward<ErrorFuncHead>(error_func_head),
                 std::forward<ErrorFuncTail>(error_func_tail)...));
    }

    template <class ValueFunc>
    auto safe_then(ValueFunc&& value_func) {
      return safe_then(std::forward<ValueFunc>(value_func),
                       errorator_type::pass_further{});
    }

    template <class Func>
    void then(Func&&) = delete;

    template <class ErrorVisitorT>
    auto handle_error(ErrorVisitorT&& errfunc) {
      static_assert((... && std::is_invocable_v<ErrorVisitorT,
                                                AllowedErrors>),
                    "provided Error Visitor is not exhaustive");
      using return_errorator_t = make_errorator_t<
        errorator<>,
        std::decay_t<std::invoke_result_t<ErrorVisitorT, AllowedErrors>>...>;
      using futurator_t = \
        typename return_errorator_t::template futurize<::seastar::future<ValueT>>;
      return this->then_wrapped(
        [ errfunc = std::forward<ErrorVisitorT>(errfunc)
        ] (auto&& future) mutable noexcept {
          if (__builtin_expect(future.failed(), false)) {
            return _safe_then_handle_errors<futurator_t>(
              std::move(future), std::forward<ErrorVisitorT>(errfunc));
          } else {
            return typename futurator_t::type{ std::move(future) };
          }
        });
    }
    template <class ErrorFuncHead,
              class... ErrorFuncTail>
    auto handle_error(ErrorFuncHead&& error_func_head,
                      ErrorFuncTail&&... error_func_tail) {
      static_assert(sizeof...(ErrorFuncTail) > 0);
      return this->handle_error(
        composer(std::forward<ErrorFuncHead>(error_func_head),
                 std::forward<ErrorFuncTail>(error_func_tail)...));
    }

  private:
    // for ::crimson::do_for_each
    template <class Func>
    auto _then(Func&& func) {
      return base_t::then(std::forward<Func>(func));
    }
    template<typename Iterator, typename AsyncAction>
    friend inline auto ::crimson::do_for_each(Iterator begin,
                                              Iterator end,
                                              AsyncAction action);

    template<typename AsyncAction>
    friend inline auto ::crimson::do_until(AsyncAction action);

    template <typename Result>
    friend class ::seastar::future;

    // let seastar::do_with_impl to up-cast us to seastar::future.
    template<typename T, typename F>
    friend inline auto ::seastar::internal::do_with_impl(T&& rvalue, F&& f);
    template<typename T1, typename T2, typename T3_or_F, typename... More>
    friend inline auto ::seastar::internal::do_with_impl(T1&& rv1, T2&& rv2, T3_or_F&& rv3, More&&... more);
  };

  class Enabler {};

  template <typename T>
  using EnableIf = typename std::enable_if<contains_once_v<std::decay_t<T>>, Enabler>::type;

  template <typename ErrorFunc>
  struct all_same_way_t {
    ErrorFunc func;
    all_same_way_t(ErrorFunc &&error_func)
      : func(std::forward<ErrorFunc>(error_func)) {}

    template <typename ErrorT, EnableIf<ErrorT>...>
    decltype(auto) operator()(ErrorT&& e) {
      using decayed_t = std::decay_t<decltype(e)>;
      auto&& handler =
        decayed_t::error_t::handle(std::forward<ErrorFunc>(func));
      static_assert(std::is_invocable_v<decltype(handler), ErrorT>);
      return std::invoke(std::move(handler), std::forward<ErrorT>(e));
    }
  };

public:
  // HACK: `errorated_future_marker` and `_future` is just a hack to
  // specialize `seastar::futurize` for category of class templates:
  // `future<...>` from distinct errorators. Such tricks are usually
  // performed basing on SFINAE and `std::void_t` to check existence
  // of a trait/member (`future<...>::errorator_type` in our case).
  // Unfortunately, this technique can't be applied as the `futurize`
  // lacks the optional parameter. The problem looks awfully similar
  // to following SO item:  https://stackoverflow.com/a/38860413.
  template <class ValueT=void>
  using future = _future<::crimson::errorated_future_marker<ValueT>>;

  // the visitor that forwards handling of all errors to next continuation
  struct pass_further {
    template <class ErrorT, EnableIf<ErrorT>...>
    decltype(auto) operator()(ErrorT&& e) {
      static_assert(contains_once_v<std::decay_t<ErrorT>>,
                    "passing further disallowed ErrorT");
      return std::forward<ErrorT>(e);
    }
  };

  struct discard_all {
    template <class ErrorT, EnableIf<ErrorT>...>
    void operator()(ErrorT&&) {
      static_assert(contains_once_v<std::decay_t<ErrorT>>,
                    "discarding disallowed ErrorT");
    }
  };

  // assert_all{ "TODO" };
  class assert_all {
    const char* const msg = nullptr;
  public:
    template <std::size_t N>
    assert_all(const char (&msg)[N])
      : msg(msg) {
    }
    assert_all() = default;

    template <class ErrorT, EnableIf<ErrorT>...>
    void operator()(ErrorT&&) {
      static_assert(contains_once_v<std::decay_t<ErrorT>>,
                    "discarding disallowed ErrorT");
      if (msg) {
        ceph_abort_msg(msg);
      } else {
        ceph_abort();
      }
    }
  };

  template <class ErrorFunc>
  static decltype(auto) all_same_way(ErrorFunc&& error_func) {
    return all_same_way_t<ErrorFunc>{std::forward<ErrorFunc>(error_func)};
  };

  // get a new errorator by extending current one with new error
  template <class... NewAllowedErrorsT>
  using extend = errorator<AllowedErrors..., NewAllowedErrorsT...>;

  // get a new errorator by summing and deduplicating error set of
  // the errorator `unify<>` is applied on with another errorator
  // provided as template parameter.
  template <class OtherErroratorT>
  struct unify {
    // 1st: generic NOP template
  };
  template <class    OtherAllowedErrorsHead,
            class... OtherAllowedErrorsTail>
  struct unify<errorator<OtherAllowedErrorsHead,
                         OtherAllowedErrorsTail...>> {
  private:
    // 2nd: specialization for errorators with non-empty error set.
    //
    // split error set of other errorator, passed as template param,
    // into head and tail. Mix error set of this errorator with head
    // of the other one only if it isn't already present in the set.
    using step_errorator = std::conditional_t<
      contains_once_v<OtherAllowedErrorsHead> == false,
      errorator<AllowedErrors..., OtherAllowedErrorsHead>,
      errorator<AllowedErrors...>>;
    using rest_errorator = errorator<OtherAllowedErrorsTail...>;

  public:
    using type = typename step_errorator::template unify<rest_errorator>::type;
  };
  template <class... EmptyPack>
  struct unify<errorator<EmptyPack...>> {
    // 3rd: recursion finisher
    static_assert(sizeof...(EmptyPack) == 0);
    using type = errorator<AllowedErrors...>;
  };

  template <typename T=void, typename... A>
  static future<T> make_ready_future(A&&... value) {
    return future<T>(ready_future_marker(), std::forward<A>(value)...);
  }

  template <typename T=void>
  static
  future<T> make_exception_future2(std::exception_ptr&& ex) noexcept {
    return future<T>(exception_future_marker(), std::move(ex));
  }
  template <typename T=void>
  static
  future<T> make_exception_future2(seastar::future_state_base&& state) noexcept {
    return future<T>(exception_future_marker(), std::move(state));
  }
  template <typename T=void, typename Exception>
  static
  future<T> make_exception_future2(Exception&& ex) noexcept {
    return make_exception_future2<T>(std::make_exception_ptr(std::forward<Exception>(ex)));
  }

  static auto now() {
    return make_ready_future<>();
  }

private:
  template <class T, class = std::void_t<T>>
  class futurize {
    using vanilla_futurize = seastar::futurize<T>;

    // explicit specializations for nested type is not allowed unless both
    // the member template and the enclosing template are specialized. see
    // section temp.expl.spec, N4659
    template <class Stored, int Dummy = 0>
    struct stored_to_future {
      using type = future<Stored>;
    };
    template <int Dummy>
    struct stored_to_future <seastar::internal::monostate, Dummy> {
      using type = future<>;
    };

  public:
    using type =
      typename stored_to_future<typename vanilla_futurize::value_type>::type;

    template <class Func, class... Args>
    static type invoke(Func&& func, Args&&... args) {
      try {
        return vanilla_futurize::invoke(std::forward<Func>(func),
                                        std::forward<Args>(args)...);
      } catch (...) {
        return make_exception_future(std::current_exception());
      }
    }

    template <class Func>
    static type invoke(Func&& func, seastar::internal::monostate) {
      try {
        return vanilla_futurize::invoke(std::forward<Func>(func));
      } catch (...) {
        return make_exception_future(std::current_exception());
      }
    }

    template <typename Arg>
    static type make_exception_future(Arg&& arg) {
      return vanilla_futurize::make_exception_future(std::forward<Arg>(arg));
    }
  };
  template <template <class...> class ErroratedFutureT,
            class ValueT>
  class futurize<ErroratedFutureT<::crimson::errorated_future_marker<ValueT>>,
                 std::void_t<
                   typename ErroratedFutureT<
                     ::crimson::errorated_future_marker<ValueT>>::errorator_type>> {
  public:
    using type = ::crimson::errorator<AllowedErrors...>::future<ValueT>;

    template <class Func, class... Args>
    static type apply(Func&& func, std::tuple<Args...>&& args) {
      try {
        return ::seastar::futurize_apply(std::forward<Func>(func),
					 std::forward<std::tuple<Args...>>(args));
      } catch (...) {
        return make_exception_future(std::current_exception());
      }
    }

    template <class Func, class... Args>
    static type invoke(Func&& func, Args&&... args) {
      try {
        return ::seastar::futurize_invoke(std::forward<Func>(func),
                                          std::forward<Args>(args)...);
      } catch (...) {
        return make_exception_future(std::current_exception());
      }
    }

    template <class Func>
    static type invoke(Func&& func, seastar::internal::monostate) {
      try {
        return ::seastar::futurize_invoke(std::forward<Func>(func));
      } catch (...) {
        return make_exception_future(std::current_exception());
      }
    }

    template <typename Arg>
    static type make_exception_future(Arg&& arg) {
      return ::crimson::errorator<AllowedErrors...>::make_exception_future2<ValueT>(std::forward<Arg>(arg));
    }
  };

  template <class ErrorT>
  static std::exception_ptr make_exception_ptr(ErrorT&& e) {
    // calling via interface class due to encapsulation and friend relations.
    return e.error_t<std::decay_t<ErrorT>>::to_exception_ptr();
  }

  // needed because of:
  //  * return_errorator_t::template futurize<...> in `safe_then()`,
  //  * conversion to `std::exception_ptr` in `future::future(ErrorT&&)`.
  // the friendship with all errorators is an idea from Kefu to fix build
  // issues on GCC 9. This version likely fixes some access violation bug
  // we were exploiting before.
  template <class...>
  friend class errorator;
}; // class errorator, generic template

// no errors? errorator<>::future is plain seastar::future then!
template <>
class errorator<> {
public:
  template <class ValueT>
  using future = ::seastar::future<ValueT>;

  template <class T>
  using futurize = ::seastar::futurize<T>;

  // get a new errorator by extending current one with new error
  template <class... NewAllowedErrors>
  using extend = errorator<NewAllowedErrors...>;

  // errorator with empty error set never contains any error
  template <class T>
  static constexpr bool contains_once_v = false;
}; // class errorator, <> specialization


template <class    ErroratorOne,
          class    ErroratorTwo,
          class... FurtherErrators>
struct compound_errorator {
private:
  // generic template. Empty `FurtherErrators` are handled by
  // the specialization below.
  static_assert(sizeof...(FurtherErrators) > 0);
  using step =
    typename compound_errorator<ErroratorOne, ErroratorTwo>::type;

public:
  using type =
    typename compound_errorator<step, FurtherErrators...>::type;
};
template <class ErroratorOne,
          class ErroratorTwo>
struct compound_errorator<ErroratorOne, ErroratorTwo>  {
  // specialization for empty `FurtherErrators` arg pack
  using type =
    typename ErroratorOne::template unify<ErroratorTwo>::type;
};
template <class... Args>
using compound_errorator_t = typename compound_errorator<Args...>::type;

// this is conjunction of two nasty features: C++14's variable template
// and inline global variable of C++17. The latter is crucial to ensure
// the variable will get the same address across all translation units.
template <std::errc ErrorV>
inline std::error_code ec = std::make_error_code(ErrorV);

template <std::errc ErrorV>
using ct_error_code = unthrowable_wrapper<const std::error_code&, ec<ErrorV>>;

namespace ct_error {
  using enoent = ct_error_code<std::errc::no_such_file_or_directory>;
  using enodata = ct_error_code<std::errc::no_message_available>;
  using invarg =  ct_error_code<std::errc::invalid_argument>;
  using input_output_error = ct_error_code<std::errc::io_error>;
  using object_corrupted = ct_error_code<std::errc::illegal_byte_sequence>;
  using permission_denied = ct_error_code<std::errc::permission_denied>;
  using operation_not_supported =
    ct_error_code<std::errc::operation_not_supported>;
  using not_connected = ct_error_code<std::errc::not_connected>;
  using timed_out = ct_error_code<std::errc::timed_out>;
  using erange =
    ct_error_code<std::errc::result_out_of_range>;
  using ebadf =
    ct_error_code<std::errc::bad_file_descriptor>;
  using enospc =
    ct_error_code<std::errc::no_space_on_device>;
  using value_too_large = ct_error_code<std::errc::value_too_large>;
  using eagain =
    ct_error_code<std::errc::resource_unavailable_try_again>;
  using file_too_large =
    ct_error_code<std::errc::file_too_large>;
  using address_in_use = ct_error_code<std::errc::address_in_use>;

  struct pass_further_all {
    template <class ErrorT>
    decltype(auto) operator()(ErrorT&& e) {
      return std::forward<ErrorT>(e);
    }
  };

  struct discard_all {
    template <class ErrorT>
    void operator()(ErrorT&&) {
    }
  };

  class assert_all {
    const char* const msg = nullptr;
  public:
    template <std::size_t N>
    assert_all(const char (&msg)[N])
      : msg(msg) {
    }
    assert_all() = default;

    template <class ErrorT>
    void operator()(ErrorT&&) {
      if (msg) {
        ceph_abort(msg);
      } else {
        ceph_abort();
      }
    }
  };

  template <class ErrorFunc>
  static decltype(auto) all_same_way(ErrorFunc&& error_func) {
    return [
      error_func = std::forward<ErrorFunc>(error_func)
    ] (auto&& e) mutable -> decltype(auto) {
      using decayed_t = std::decay_t<decltype(e)>;
      auto&& handler =
        decayed_t::error_t::handle(std::forward<ErrorFunc>(error_func));
      return std::invoke(std::move(handler), std::forward<decltype(e)>(e));
    };
  };
}

using stateful_errc = stateful_error_t<std::errc>;
using stateful_errint = stateful_error_t<int>;
using stateful_ec = stateful_error_t<std::error_code>;

} // namespace crimson


// open the `seastar` namespace to specialize `futurize`. This is not
// pretty for sure. I just hope it's not worse than e.g. specializing
// `hash` in the `std` namespace. The justification is copy avoidance
// in `future<...>::safe_then()`. See the comments there for details.
namespace seastar {

// Container is a placeholder for errorator::_future<> template
template <template <class> class Container,
          class Value>
struct futurize<Container<::crimson::errorated_future_marker<Value>>> {
  using errorator_type = typename Container<
    ::crimson::errorated_future_marker<Value>>::errorator_type;

  using type = typename errorator_type::template future<Value>;
  using value_type = seastar::internal::future_stored_type_t<Value>;

  template<typename Func, typename... FuncArgs>
  [[gnu::always_inline]]
  static inline type invoke(Func&& func, FuncArgs&&... args) noexcept {
    try {
      return func(std::forward<FuncArgs>(args)...);
    } catch (...) {
      return make_exception_future(std::current_exception());
    }
  }

  template <class Func>
  [[gnu::always_inline]]
  static type invoke(Func&& func, seastar::internal::monostate) noexcept {
    try {
      return func();
    } catch (...) {
      return make_exception_future(std::current_exception());
    }
  }

  template <typename Arg>
  [[gnu::always_inline]]
  static type make_exception_future(Arg&& arg) {
    return errorator_type::template make_exception_future2<Value>(std::forward<Arg>(arg));
  }

private:
  template<typename PromiseT, typename Func>
  static void satisfy_with_result_of(PromiseT&& pr, Func&& func) {
    // this may use the protected variant of `seastar::future::forward_to()`
    // because:
    //   1. `seastar::future` established a friendship with with all
    //      specializations of `seastar::futurize`, including this
    //      one (we're in the `seastar` namespace!) WHILE
    //   2. any errorated future declares now the friendship with any
    //      `seastar::futurize<...>`.
    func().forward_to(std::move(pr));
  }
  template <typename U>
  friend class future;
};

template <template <class> class Container,
          class Value>
struct continuation_base_from_future<Container<::crimson::errorated_future_marker<Value>>> {
  using type = continuation_base<Value>;
};

} // namespace seastar