summaryrefslogtreecommitdiffstats
path: root/src/crypto/isa-l/isa-l_crypto/aes/gcm256_sse.asm
blob: ab49e0770babf721b98fc932f5b3483698464c14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;  Copyright(c) 2011-2016 Intel Corporation All rights reserved.
;
;  Redistribution and use in source and binary forms, with or without
;  modification, are permitted provided that the following conditions 
;  are met:
;    * Redistributions of source code must retain the above copyright
;      notice, this list of conditions and the following disclaimer.
;    * Redistributions in binary form must reproduce the above copyright
;      notice, this list of conditions and the following disclaimer in
;      the documentation and/or other materials provided with the
;      distribution.
;    * Neither the name of Intel Corporation nor the names of its
;      contributors may be used to endorse or promote products derived
;      from this software without specific prior written permission.
;
;  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
;  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
;  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
;  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Authors:
;       Erdinc Ozturk
;       Vinodh Gopal
;       James Guilford
;
;
; References:
;       This code was derived and highly optimized from the code described in paper:
;               Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on Intel Architecture Processors. August, 2010
;
;       For the shift-based reductions used in this code, we used the method described in paper:
;               Shay Gueron, Michael E. Kounavis. Intel Carry-Less Multiplication Instruction and its Usage for Computing the GCM Mode. January, 2010.
;
;
;
;
; Assumptions:
;
;
;
; iv:
;       0                   1                   2                   3
;       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                             Salt  (From the SA)               |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                     Initialization Vector                     |
;       |         (This is the sequence number from IPSec header)       |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                              0x1                              |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;
;
;
; AAD:
;       AAD will be padded with 0 to the next 16byte multiple
;       for example, assume AAD is a u32 vector
;
;       if AAD is 8 bytes:
;       AAD[3] = {A0, A1};
;       padded AAD in xmm register = {A1 A0 0 0}
;
;       0                   1                   2                   3
;       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                               SPI (A1)                        |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                     32-bit Sequence Number (A0)               |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                              0x0                              |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;
;                                       AAD Format with 32-bit Sequence Number
;
;       if AAD is 12 bytes:
;       AAD[3] = {A0, A1, A2};
;       padded AAD in xmm register = {A2 A1 A0 0}
;
;       0                   1                   2                   3
;       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                               SPI (A2)                        |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                 64-bit Extended Sequence Number {A1,A0}       |
;       |                                                               |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;       |                              0x0                              |
;       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;
;        AAD Format with 64-bit Extended Sequence Number
;
;
; aadLen:
;       Must be a multiple of 4 bytes and from the definition of the spec.
;       The code additionally supports any aadLen length.
;
; TLen:
;       from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
;
; poly = x^128 + x^127 + x^126 + x^121 + 1
; throughout the code, one tab and two tab indentations are used. one tab is for GHASH part, two tabs is for AES part.
;

%include "reg_sizes.asm"
%include "gcm_defines.asm"

default rel
; need to push 4 registers into stack to maintain
%define STACK_OFFSET 8*4

%define	TMP2	16*0    ; Temporary storage for AES State 2 (State 1 is stored in an XMM register)
%define	TMP3	16*1    ; Temporary storage for AES State 3
%define	TMP4	16*2    ; Temporary storage for AES State 4
%define	TMP5	16*3    ; Temporary storage for AES State 5
%define	TMP6	16*4    ; Temporary storage for AES State 6
%define	TMP7	16*5    ; Temporary storage for AES State 7
%define	TMP8	16*6    ; Temporary storage for AES State 8

%define	LOCAL_STORAGE	16*7

%ifidn __OUTPUT_FORMAT__, win64
	%define	XMM_STORAGE	16*10
%else
	%define	XMM_STORAGE	0
%endif

%define	VARIABLE_OFFSET	LOCAL_STORAGE + XMM_STORAGE

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Utility Macros
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
; Input: A and B (128-bits each, bit-reflected)
; Output: C = A*B*x mod poly, (i.e. >>1 )
; To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
; GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro  GHASH_MUL  7
%define %%GH %1         ; 16 Bytes
%define %%HK %2         ; 16 Bytes
%define %%T1 %3
%define %%T2 %4
%define %%T3 %5
%define %%T4 %6
%define %%T5 %7
        ; %%GH, %%HK hold the values for the two operands which are carry-less multiplied
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
        ; Karatsuba Method
        movdqa  %%T1, %%GH
        pshufd  %%T2, %%GH, 01001110b
        pshufd  %%T3, %%HK, 01001110b
        pxor    %%T2, %%GH                              ; %%T2 = (a1+a0)
        pxor    %%T3, %%HK                              ; %%T3 = (b1+b0)

        pclmulqdq       %%T1, %%HK, 0x11                ; %%T1 = a1*b1
        pclmulqdq       %%GH, %%HK, 0x00                ; %%GH = a0*b0
        pclmulqdq       %%T2, %%T3, 0x00                ; %%T2 = (a1+a0)*(b1+b0)
        pxor    %%T2, %%GH
        pxor    %%T2, %%T1                              ; %%T2 = a0*b1+a1*b0

        movdqa  %%T3, %%T2
        pslldq  %%T3, 8                                 ; shift-L %%T3 2 DWs
        psrldq  %%T2, 8                                 ; shift-R %%T2 2 DWs
        pxor    %%GH, %%T3
        pxor    %%T1, %%T2                              ; <%%T1:%%GH> holds the result of the carry-less multiplication of %%GH by %%HK


        ;first phase of the reduction
        movdqa  %%T2, %%GH
        movdqa  %%T3, %%GH
        movdqa  %%T4, %%GH                              ; move %%GH into %%T2, %%T3, %%T4 in order to perform the three shifts independently

        pslld   %%T2, 31                                ; packed right shifting << 31
        pslld   %%T3, 30                                ; packed right shifting shift << 30
        pslld   %%T4, 25                                ; packed right shifting shift << 25
        pxor    %%T2, %%T3                              ; xor the shifted versions
        pxor    %%T2, %%T4

        movdqa  %%T5, %%T2
        psrldq  %%T5, 4                                 ; shift-R %%T5 1 DW

        pslldq  %%T2, 12                                ; shift-L %%T2 3 DWs
        pxor    %%GH, %%T2                              ; first phase of the reduction complete
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

        ;second phase of the reduction
        movdqa  %%T2,%%GH                               ; make 3 copies of %%GH (in in %%T2, %%T3, %%T4) for doing three shift operations
        movdqa  %%T3,%%GH
        movdqa  %%T4,%%GH

        psrld   %%T2,1                                  ; packed left shifting >> 1
        psrld   %%T3,2                                  ; packed left shifting >> 2
        psrld   %%T4,7                                  ; packed left shifting >> 7
        pxor    %%T2,%%T3                               ; xor the shifted versions
        pxor    %%T2,%%T4

        pxor    %%T2, %%T5
        pxor    %%GH, %%T2
        pxor    %%GH, %%T1                              ; the result is in %%T1


%endmacro


%macro PRECOMPUTE 8
%define	%%GDATA	%1
%define	%%HK	%2
%define	%%T1	%3
%define	%%T2	%4
%define	%%T3	%5
%define	%%T4	%6
%define	%%T5	%7
%define	%%T6	%8


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
        movdqa  %%T4, %%HK
        pshufd  %%T1, %%HK, 01001110b
        pxor    %%T1, %%HK
        movdqu  [%%GDATA + HashKey_k], %%T1


        GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6      ;  %%T4 = HashKey^2<<1 mod poly
        movdqu  [%%GDATA + HashKey_2], %%T4                         ;  [HashKey_2] = HashKey^2<<1 mod poly
        pshufd  %%T1, %%T4, 01001110b
        pxor    %%T1, %%T4
        movdqu  [%%GDATA + HashKey_2_k], %%T1

        GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6              ;  %%T4 = HashKey^3<<1 mod poly
        movdqu  [%%GDATA + HashKey_3], %%T4
        pshufd  %%T1, %%T4, 01001110b
        pxor    %%T1, %%T4
        movdqu  [%%GDATA + HashKey_3_k], %%T1


        GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6              ;  %%T4 = HashKey^4<<1 mod poly
        movdqu  [%%GDATA + HashKey_4], %%T4
        pshufd  %%T1, %%T4, 01001110b
        pxor    %%T1, %%T4
        movdqu  [%%GDATA + HashKey_4_k], %%T1

        GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6              ;  %%T4 = HashKey^5<<1 mod poly
        movdqu  [%%GDATA + HashKey_5], %%T4
        pshufd  %%T1, %%T4, 01001110b
        pxor    %%T1, %%T4
        movdqu  [%%GDATA + HashKey_5_k], %%T1


        GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6              ;  %%T4 = HashKey^6<<1 mod poly
        movdqu  [%%GDATA + HashKey_6], %%T4
        pshufd  %%T1, %%T4, 01001110b
        pxor    %%T1, %%T4
        movdqu  [%%GDATA + HashKey_6_k], %%T1

        GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6              ;  %%T4 = HashKey^7<<1 mod poly
        movdqu  [%%GDATA + HashKey_7], %%T4
        pshufd  %%T1, %%T4, 01001110b
        pxor    %%T1, %%T4
        movdqu  [%%GDATA + HashKey_7_k], %%T1

        GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6              ;  %%T4 = HashKey^8<<1 mod poly
        movdqu  [%%GDATA + HashKey_8], %%T4
        pshufd  %%T1, %%T4, 01001110b
        pxor    %%T1, %%T4
        movdqu  [%%GDATA + HashKey_8_k], %%T1


%endmacro


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; READ_SMALL_DATA_INPUT: Packs xmm register with data when data input is less than 16 bytes.
; Returns 0 if data has length 0.
; Input: The input data (INPUT), that data's length (LENGTH).
; Output: The packed xmm register (OUTPUT).
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro READ_SMALL_DATA_INPUT	6
%define	%%OUTPUT		%1 ; %%OUTPUT is an xmm register
%define	%%INPUT			%2
%define	%%LENGTH		%3
%define	%%END_READ_LOCATION	%4 ; All this and the lower inputs are temp registers
%define	%%COUNTER		%5
%define	%%TMP1			%6

	pxor	%%OUTPUT, %%OUTPUT
	mov	%%COUNTER, %%LENGTH
	mov	%%END_READ_LOCATION, %%INPUT
	add	%%END_READ_LOCATION, %%LENGTH
	xor	%%TMP1, %%TMP1


	cmp	%%COUNTER, 8
	jl	%%_byte_loop_2
	pinsrq	%%OUTPUT, [%%INPUT],0		;Read in 8 bytes if they exists
	je	%%_done

	sub	%%COUNTER, 8

%%_byte_loop_1:					;Read in data 1 byte at a time while data is left
	shl	%%TMP1, 8			;This loop handles when 8 bytes were already read in
	dec	%%END_READ_LOCATION
	mov	BYTE(%%TMP1), BYTE [%%END_READ_LOCATION]
	dec	%%COUNTER
	jg	%%_byte_loop_1
	pinsrq	%%OUTPUT, %%TMP1, 1
	jmp	%%_done

%%_byte_loop_2:					;Read in data 1 byte at a time while data is left
	cmp	%%COUNTER, 0
	je	%%_done
	shl	%%TMP1, 8			;This loop handles when no bytes were already read in
	dec	%%END_READ_LOCATION
	mov	BYTE(%%TMP1), BYTE [%%END_READ_LOCATION]
	dec	%%COUNTER
	jg	%%_byte_loop_2
	pinsrq	%%OUTPUT, %%TMP1, 0
%%_done:

%endmacro ; READ_SMALL_DATA_INPUT


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted.
; Input: The input data (A_IN), that data's length (A_LEN), and the hash key (HASH_KEY).
; Output: The hash of the data (AAD_HASH).
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro	CALC_AAD_HASH	14
%define	%%A_IN		%1
%define	%%A_LEN		%2
%define	%%AAD_HASH	%3
%define	%%HASH_KEY	%4
%define	%%XTMP1		%5	; xmm temp reg 5
%define	%%XTMP2		%6
%define	%%XTMP3		%7
%define	%%XTMP4		%8
%define	%%XTMP5		%9	; xmm temp reg 5
%define	%%T1		%10	; temp reg 1
%define	%%T2		%11
%define	%%T3		%12
%define	%%T4		%13
%define	%%T5		%14	; temp reg 5


	mov	%%T1, %%A_IN		; T1 = AAD
	mov	%%T2, %%A_LEN		; T2 = aadLen
	pxor	%%AAD_HASH, %%AAD_HASH

	cmp	%%T2, 16
	jl	%%_get_small_AAD_block

%%_get_AAD_loop16:

	movdqu	%%XTMP1, [%%T1]
	;byte-reflect the AAD data
	pshufb	%%XTMP1, [SHUF_MASK]
	pxor	%%AAD_HASH, %%XTMP1
	GHASH_MUL	%%AAD_HASH, %%HASH_KEY, %%XTMP1, %%XTMP2, %%XTMP3, %%XTMP4, %%XTMP5

	sub	%%T2, 16
	je	%%_CALC_AAD_done

	add	%%T1, 16
	cmp	%%T2, 16
	jge	%%_get_AAD_loop16

%%_get_small_AAD_block:
	READ_SMALL_DATA_INPUT	%%XTMP1, %%T1, %%T2, %%T3, %%T4, %%T5
	;byte-reflect the AAD data
	pshufb	%%XTMP1, [SHUF_MASK]
	pxor	%%AAD_HASH, %%XTMP1
	GHASH_MUL	%%AAD_HASH, %%HASH_KEY, %%XTMP1, %%XTMP2, %%XTMP3, %%XTMP4, %%XTMP5

%%_CALC_AAD_done:

%endmacro ; CALC_AAD_HASH



;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks between update calls.
; Requires the input data be at least 1 byte long.
; Input: gcm_data struct* (GDATA), input text (PLAIN_CYPH_IN), input text length (PLAIN_CYPH_LEN),
; the current data offset (DATA_OFFSET), and whether encoding or decoding (ENC_DEC)
; Output: A cypher of the first partial block (CYPH_PLAIN_OUT), and updated GDATA
; Clobbers rax, r10, r12, r13, r15, xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm9, xmm10, xmm11, xmm13
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro PARTIAL_BLOCK	7
%define	%%GDATA			%1
%define	%%CYPH_PLAIN_OUT	%2
%define	%%PLAIN_CYPH_IN		%3
%define	%%PLAIN_CYPH_LEN	%4
%define	%%DATA_OFFSET		%5
%define	%%AAD_HASH		%6
%define	%%ENC_DEC		%7
	mov	r13, [%%GDATA + PBlockLen]
	cmp	r13, 0
	je	%%_partial_block_done		;Leave Macro if no partial blocks

	cmp	%%PLAIN_CYPH_LEN, 16		;Read in input data without over reading
	jl	%%_fewer_than_16_bytes
	XLDR	xmm1, [%%PLAIN_CYPH_IN]		;If more than 16 bytes of data, just fill the xmm register
	jmp	%%_data_read

%%_fewer_than_16_bytes:
	lea	r10, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
	READ_SMALL_DATA_INPUT	xmm1, r10, %%PLAIN_CYPH_LEN, rax, r12, r15
	mov	r13, [%%GDATA + PBlockLen]

%%_data_read:				;Finished reading in data


	movdqu	xmm9, [%%GDATA + PBlockEncKey]	;xmm9 = my_ctx_data.partial_block_enc_key
	movdqu	xmm13, [%%GDATA + HashKey]

	lea	r12, [SHIFT_MASK]

	add	r12, r13			; adjust the shuffle mask pointer to be able to shift r13 bytes (16-r13 is the number of bytes in plaintext mod 16)
	movdqu	xmm2, [r12]			; get the appropriate shuffle mask
	pshufb	xmm9, xmm2			;shift right r13 bytes

%ifidn	%%ENC_DEC, DEC
	movdqa	xmm3, xmm1
	pxor	xmm9, xmm1			; Cyphertext XOR E(K, Yn)

	mov	r15, %%PLAIN_CYPH_LEN
	add	r15, r13
	sub	r15, 16				;Set r15 to be the amount of data left in CYPH_PLAIN_IN after filling the block
	jge	%%_no_extra_mask_1		;Determine if if partial block is not being filled and shift mask accordingly
	sub	r12, r15
%%_no_extra_mask_1:

	movdqu	xmm1, [r12 + ALL_F-SHIFT_MASK]	; get the appropriate mask to mask out bottom r13 bytes of xmm9
	pand	xmm9, xmm1			; mask out bottom r13 bytes of xmm9

	pand	xmm3, xmm1
	pshufb	xmm3, [SHUF_MASK]
	pshufb	xmm3, xmm2
	pxor	%%AAD_HASH, xmm3


	cmp	r15,0
	jl	%%_partial_incomplete_1

	GHASH_MUL	%%AAD_HASH, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6	;GHASH computation for the last <16 Byte block
	xor	rax,rax
	mov	[%%GDATA+PBlockLen], rax
	jmp	%%_dec_done
%%_partial_incomplete_1:
	add	[%%GDATA+PBlockLen], %%PLAIN_CYPH_LEN
%%_dec_done:
	movdqu	[%%GDATA + AadHash], %%AAD_HASH

%else
	pxor	xmm9, xmm1	; Plaintext XOR E(K, Yn)

	mov	r15, %%PLAIN_CYPH_LEN
	add	r15, r13
	sub	r15, 16				;Set r15 to be the amount of data left in CYPH_PLAIN_IN after filling the block
	jge	%%_no_extra_mask_2		;Determine if if partial block is not being filled and shift mask accordingly
	sub	r12, r15
%%_no_extra_mask_2:

	movdqu	xmm1, [r12 + ALL_F-SHIFT_MASK]	; get the appropriate mask to mask out bottom r13 bytes of xmm9
	pand	xmm9, xmm1			; mask out bottom r13  bytes of xmm9

	pshufb	xmm9, [SHUF_MASK]
	pshufb	xmm9, xmm2
	pxor	%%AAD_HASH, xmm9

	cmp	r15,0
	jl	%%_partial_incomplete_2

	GHASH_MUL	%%AAD_HASH, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6	;GHASH computation for the last <16 Byte block
	xor	rax,rax
	mov	[%%GDATA+PBlockLen], rax
	jmp	%%_encode_done
%%_partial_incomplete_2:
	add [%%GDATA+PBlockLen], %%PLAIN_CYPH_LEN
%%_encode_done:
	movdqu	[%%GDATA + AadHash], %%AAD_HASH

	pshufb	xmm9, [SHUF_MASK]	; shuffle xmm9 back to output as ciphertext
	pshufb	xmm9, xmm2
%endif


	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	; output encrypted Bytes
	cmp	r15,0
	jl	%%_partial_fill
	mov	r12, r13
	mov	r13, 16
	sub	r13, r12			; Set r13 to be the number of bytes to write out
	jmp	%%_count_set
%%_partial_fill:
	mov	r13, %%PLAIN_CYPH_LEN
%%_count_set:
	movq	rax, xmm9
	cmp	r13, 8
	jle	%%_less_than_8_bytes_left

	mov	[%%CYPH_PLAIN_OUT+ %%DATA_OFFSET], rax
	add	%%DATA_OFFSET, 8
	psrldq	xmm9, 8
	movq	rax, xmm9
	sub	r13, 8
%%_less_than_8_bytes_left:
	mov	BYTE [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], al
	add	%%DATA_OFFSET, 1
	shr	rax, 8
	sub	r13, 1
	jne	%%_less_than_8_bytes_left
         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%%_partial_block_done:
%endmacro ; PARTIAL_BLOCK


; if a = number of total plaintext bytes
; b = floor(a/16)
; %%num_initial_blocks = b mod 8;
; encrypt the initial %%num_initial_blocks blocks and apply ghash on the ciphertext
; %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r14 are used as a pointer only, not modified
; Updated AAD_HASH is returned in %%T3

%macro INITIAL_BLOCKS 23
%define	%%GDATA			%1
%define	%%CYPH_PLAIN_OUT	%2
%define	%%PLAIN_CYPH_IN		%3
%define	%%LENGTH		%4
%define	%%DATA_OFFSET		%5
%define	%%num_initial_blocks	%6	; can be 0, 1, 2, 3, 4, 5, 6 or 7
%define	%%T1		%7
%define	%%HASH_KEY	%8
%define	%%T3		%9
%define	%%T4		%10
%define	%%T5		%11
%define	%%CTR		%12
%define	%%XMM1		%13
%define	%%XMM2		%14
%define	%%XMM3		%15
%define	%%XMM4		%16
%define	%%XMM5		%17
%define	%%XMM6		%18
%define	%%XMM7		%19
%define	%%XMM8		%20
%define	%%T6		%21
%define	%%T_key		%22
%define	%%ENC_DEC	%23

%assign i       (8-%%num_initial_blocks)
		movdqu	reg(i), %%XMM8	; move AAD_HASH to temp reg

	        ; start AES for %%num_initial_blocks blocks
	        movdqu  %%CTR, [%%GDATA + CurCount]	; %%CTR = Y0


%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
                paddd   %%CTR, [ONE]           ; INCR Y0
                movdqa  reg(i), %%CTR
                pshufb  reg(i), [SHUF_MASK]     ; perform a 16Byte swap
%assign i (i+1)
%endrep

movdqu  %%T_key, [%%GDATA+16*0]
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
                pxor    reg(i),%%T_key
%assign i (i+1)
%endrep

%assign j 1
%rep 13							; encrypt N blocks with 13 key rounds
movdqu  %%T_key, [%%GDATA+16*j]
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
                aesenc  reg(i),%%T_key
%assign i (i+1)
%endrep

%assign j (j+1)
%endrep


movdqu  %%T_key, [%%GDATA+16*j]				; encrypt with last (14th) key round
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
                aesenclast      reg(i),%%T_key
%assign i (i+1)
%endrep

%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
                pxor    reg(i), %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], reg(i)            ; write back ciphertext for %%num_initial_blocks blocks
                add     %%DATA_OFFSET, 16
                %ifidn  %%ENC_DEC, DEC
                movdqa  reg(i), %%T1
                %endif
                pshufb  reg(i), [SHUF_MASK]     ; prepare ciphertext for GHASH computations
%assign i (i+1)
%endrep


%assign i (8-%%num_initial_blocks)
%assign j (9-%%num_initial_blocks)

%rep %%num_initial_blocks
        pxor    reg(j), reg(i)
        GHASH_MUL       reg(j), %%HASH_KEY, %%T1, %%T3, %%T4, %%T5, %%T6      ; apply GHASH on %%num_initial_blocks blocks
%assign i (i+1)
%assign j (j+1)
%endrep
        ; %%XMM8 has the current Hash Value
        movdqa  %%T3, %%XMM8

        cmp     %%LENGTH, 128
        jl      %%_initial_blocks_done                  ; no need for precomputed constants

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
                paddd   %%CTR, [ONE]                   ; INCR Y0
                movdqa  %%XMM1, %%CTR
                pshufb  %%XMM1, [SHUF_MASK]             ; perform a 16Byte swap

                paddd   %%CTR, [ONE]                   ; INCR Y0
                movdqa  %%XMM2, %%CTR
                pshufb  %%XMM2, [SHUF_MASK]             ; perform a 16Byte swap

                paddd   %%CTR, [ONE]                   ; INCR Y0
                movdqa  %%XMM3, %%CTR
                pshufb  %%XMM3, [SHUF_MASK]             ; perform a 16Byte swap

                paddd   %%CTR, [ONE]                   ; INCR Y0
                movdqa  %%XMM4, %%CTR
                pshufb  %%XMM4, [SHUF_MASK]             ; perform a 16Byte swap

                paddd   %%CTR, [ONE]                   ; INCR Y0
                movdqa  %%XMM5, %%CTR
                pshufb  %%XMM5, [SHUF_MASK]             ; perform a 16Byte swap

                paddd   %%CTR, [ONE]                   ; INCR Y0
                movdqa  %%XMM6, %%CTR
                pshufb  %%XMM6, [SHUF_MASK]             ; perform a 16Byte swap

                paddd   %%CTR, [ONE]                   ; INCR Y0
                movdqa  %%XMM7, %%CTR
                pshufb  %%XMM7, [SHUF_MASK]             ; perform a 16Byte swap

                paddd   %%CTR, [ONE]                   ; INCR Y0
                movdqa  %%XMM8, %%CTR
                pshufb  %%XMM8, [SHUF_MASK]             ; perform a 16Byte swap

                movdqu  %%T_key, [%%GDATA+16*0]
                pxor    %%XMM1, %%T_key
                pxor    %%XMM2, %%T_key
                pxor    %%XMM3, %%T_key
                pxor    %%XMM4, %%T_key
                pxor    %%XMM5, %%T_key
                pxor    %%XMM6, %%T_key
                pxor    %%XMM7, %%T_key
                pxor    %%XMM8, %%T_key


%assign i 1
%rep    13       						; do early (13) rounds
                movdqu  %%T_key, [%%GDATA+16*i]
                aesenc  %%XMM1, %%T_key
                aesenc  %%XMM2, %%T_key
                aesenc  %%XMM3, %%T_key
                aesenc  %%XMM4, %%T_key
                aesenc  %%XMM5, %%T_key
                aesenc  %%XMM6, %%T_key
                aesenc  %%XMM7, %%T_key
                aesenc  %%XMM8, %%T_key
%assign i (i+1)
%endrep


                movdqu          %%T_key, [%%GDATA+16*i]		; do final key round
                aesenclast      %%XMM1, %%T_key
                aesenclast      %%XMM2, %%T_key
                aesenclast      %%XMM3, %%T_key
                aesenclast      %%XMM4, %%T_key
                aesenclast      %%XMM5, %%T_key
                aesenclast      %%XMM6, %%T_key
                aesenclast      %%XMM7, %%T_key
                aesenclast      %%XMM8, %%T_key

                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*0]
                pxor    %%XMM1, %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*0], %%XMM1
                %ifidn  %%ENC_DEC, DEC
                movdqa  %%XMM1, %%T1
                %endif

                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*1]
                pxor    %%XMM2, %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*1], %%XMM2
                %ifidn  %%ENC_DEC, DEC
                movdqa  %%XMM2, %%T1
                %endif

                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*2]
                pxor    %%XMM3, %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*2], %%XMM3
                %ifidn  %%ENC_DEC, DEC
                movdqa  %%XMM3, %%T1
                %endif

                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*3]
                pxor    %%XMM4, %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*3], %%XMM4
                %ifidn  %%ENC_DEC, DEC
                movdqa  %%XMM4, %%T1
                %endif

                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*4]
                pxor    %%XMM5, %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*4], %%XMM5
                %ifidn  %%ENC_DEC, DEC
                movdqa  %%XMM5, %%T1
                %endif

                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*5]
                pxor    %%XMM6, %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*5], %%XMM6
                %ifidn  %%ENC_DEC, DEC
                movdqa  %%XMM6, %%T1
                %endif

                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*6]
                pxor    %%XMM7, %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*6], %%XMM7
                %ifidn  %%ENC_DEC, DEC
                movdqa  %%XMM7, %%T1
                %endif

                XLDR  %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*7]
                pxor    %%XMM8, %%T1
                XSTR  [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*7], %%XMM8
                %ifidn  %%ENC_DEC, DEC
                movdqa  %%XMM8, %%T1
                %endif

                add     %%DATA_OFFSET, 128

                pshufb  %%XMM1, [SHUF_MASK]             ; perform a 16Byte swap
                pxor    %%XMM1, %%T3                    ; combine GHASHed value with the corresponding ciphertext
                pshufb  %%XMM2, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM3, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM4, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM5, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM6, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM7, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM8, [SHUF_MASK]             ; perform a 16Byte swap

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

%%_initial_blocks_done:


%endmacro



; encrypt 8 blocks at a time
; ghash the 8 previously encrypted ciphertext blocks
; %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN are used as pointers only, not modified
; %%DATA_OFFSET is the data offset value
%macro GHASH_8_ENCRYPT_8_PARALLEL 22
%define	%%GDATA			%1
%define	%%CYPH_PLAIN_OUT	%2
%define	%%PLAIN_CYPH_IN		%3
%define	%%DATA_OFFSET		%4
%define	%%T1	%5
%define	%%T2	%6
%define	%%T3	%7
%define	%%T4	%8
%define	%%T5	%9
%define	%%T6	%10
%define	%%CTR	%11
%define	%%XMM1	%12
%define	%%XMM2	%13
%define	%%XMM3	%14
%define	%%XMM4	%15
%define	%%XMM5	%16
%define	%%XMM6	%17
%define	%%XMM7	%18
%define	%%XMM8	%19
%define	%%T7	%20
%define	%%loop_idx	%21
%define	%%ENC_DEC	%22

        movdqa  %%T7, %%XMM1
        movdqu  [rsp + TMP2], %%XMM2
        movdqu  [rsp + TMP3], %%XMM3
        movdqu  [rsp + TMP4], %%XMM4
        movdqu  [rsp + TMP5], %%XMM5
        movdqu  [rsp + TMP6], %%XMM6
        movdqu  [rsp + TMP7], %%XMM7
        movdqu  [rsp + TMP8], %%XMM8

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
        ;; Karatsuba Method

        movdqa  %%T4, %%T7
        pshufd  %%T6, %%T7, 01001110b
        pxor    %%T6, %%T7
                %ifidn %%loop_idx, in_order
                paddd  %%CTR, [ONE]                    ; INCR CNT
                %else
                paddd  %%CTR, [ONEf]                   ; INCR CNT
                %endif
        movdqu  %%T5, [%%GDATA + HashKey_8]
        pclmulqdq       %%T4, %%T5, 0x11                        ; %%T1 = a1*b1
        pclmulqdq       %%T7, %%T5, 0x00                        ; %%T7 = a0*b0
        movdqu  %%T5, [%%GDATA + HashKey_8_k]
        pclmulqdq       %%T6, %%T5, 0x00                        ; %%T2 = (a1+a0)*(b1+b0)
                movdqa %%XMM1, %%CTR

                %ifidn %%loop_idx, in_order
                paddd  %%CTR, [ONE]                    ; INCR CNT
                movdqa %%XMM2, %%CTR

                paddd  %%CTR, [ONE]                    ; INCR CNT
                movdqa %%XMM3, %%CTR

                paddd  %%CTR, [ONE]                    ; INCR CNT
                movdqa %%XMM4, %%CTR

                paddd  %%CTR, [ONE]                    ; INCR CNT
                movdqa %%XMM5, %%CTR

                paddd  %%CTR, [ONE]                    ; INCR CNT
                movdqa %%XMM6, %%CTR

                paddd  %%CTR, [ONE]                    ; INCR CNT
                movdqa %%XMM7, %%CTR

                paddd  %%CTR, [ONE]                    ; INCR CNT
                movdqa %%XMM8, %%CTR

                pshufb  %%XMM1, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM2, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM3, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM4, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM5, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM6, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM7, [SHUF_MASK]             ; perform a 16Byte swap
                pshufb  %%XMM8, [SHUF_MASK]             ; perform a 16Byte swap
                %else
                paddd  %%CTR, [ONEf]                   ; INCR CNT
                movdqa %%XMM2, %%CTR

                paddd  %%CTR, [ONEf]                   ; INCR CNT
                movdqa %%XMM3, %%CTR

                paddd  %%CTR, [ONEf]                   ; INCR CNT
                movdqa %%XMM4, %%CTR

                paddd  %%CTR, [ONEf]                   ; INCR CNT
                movdqa %%XMM5, %%CTR

                paddd  %%CTR, [ONEf]                   ; INCR CNT
                movdqa %%XMM6, %%CTR

                paddd  %%CTR, [ONEf]                   ; INCR CNT
                movdqa %%XMM7, %%CTR

                paddd  %%CTR, [ONEf]                   ; INCR CNT
                movdqa %%XMM8, %%CTR
                %endif
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

                movdqu  %%T1, [%%GDATA + 16*0]
                pxor    %%XMM1, %%T1
                pxor    %%XMM2, %%T1
                pxor    %%XMM3, %%T1
                pxor    %%XMM4, %%T1
                pxor    %%XMM5, %%T1
                pxor    %%XMM6, %%T1
                pxor    %%XMM7, %%T1
                pxor    %%XMM8, %%T1

        ;; %%XMM6, %%T5 hold the values for the two operands which are carry-less multiplied
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
        ;; Karatsuba Method
        movdqu  %%T1, [rsp + TMP2]
        movdqa  %%T3, %%T1

        pshufd  %%T2, %%T3, 01001110b
        pxor    %%T2, %%T3
        movdqu  %%T5, [%%GDATA + HashKey_7]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1
        pclmulqdq       %%T3, %%T5, 0x00                ; %%T3 = a0*b0
        movdqu  %%T5, [%%GDATA + HashKey_7_k]
        pclmulqdq       %%T2, %%T5, 0x00                ; %%T2 = (a1+a0)*(b1+b0)
        pxor    %%T4, %%T1                              ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
        pxor    %%T7, %%T3
        pxor    %%T6, %%T2

                movdqu  %%T1, [%%GDATA + 16*1]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1


                movdqu  %%T1, [%%GDATA + 16*2]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
        ; Karatsuba Method
        movdqu  %%T1, [rsp + TMP3]
        movdqa  %%T3, %%T1
        pshufd  %%T2, %%T3, 01001110b
        pxor    %%T2, %%T3
        movdqu  %%T5, [%%GDATA + HashKey_6]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1
        pclmulqdq       %%T3, %%T5, 0x00                ; %%T3 = a0*b0
        movdqu  %%T5, [%%GDATA + HashKey_6_k]
        pclmulqdq       %%T2, %%T5, 0x00                ; %%T2 = (a1+a0)*(b1+b0)
        pxor    %%T4, %%T1                              ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
        pxor    %%T7, %%T3
        pxor    %%T6, %%T2

                movdqu  %%T1, [%%GDATA + 16*3]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1

        movdqu  %%T1, [rsp + TMP4]
        movdqa  %%T3, %%T1
        pshufd  %%T2, %%T3, 01001110b
        pxor    %%T2, %%T3
        movdqu  %%T5, [%%GDATA + HashKey_5]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1
        pclmulqdq       %%T3, %%T5, 0x00                ; %%T3 = a0*b0
        movdqu  %%T5, [%%GDATA + HashKey_5_k]
        pclmulqdq       %%T2, %%T5, 0x00                ; %%T2 = (a1+a0)*(b1+b0)
        pxor    %%T4, %%T1                              ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
        pxor    %%T7, %%T3
        pxor    %%T6, %%T2

                movdqu  %%T1, [%%GDATA + 16*4]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1

                movdqu  %%T1, [%%GDATA + 16*5]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1

        movdqu  %%T1, [rsp + TMP5]
        movdqa  %%T3, %%T1
        pshufd  %%T2, %%T3, 01001110b
        pxor    %%T2, %%T3
        movdqu  %%T5, [%%GDATA + HashKey_4]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1
        pclmulqdq       %%T3, %%T5, 0x00                ; %%T3 = a0*b0
        movdqu  %%T5, [%%GDATA + HashKey_4_k]
        pclmulqdq       %%T2, %%T5, 0x00                ; %%T2 = (a1+a0)*(b1+b0)
        pxor    %%T4, %%T1                              ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
        pxor    %%T7, %%T3
        pxor    %%T6, %%T2


                movdqu  %%T1, [%%GDATA + 16*6]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1
        movdqu  %%T1, [rsp + TMP6]
        movdqa  %%T3, %%T1
        pshufd  %%T2, %%T3, 01001110b
        pxor    %%T2, %%T3
        movdqu  %%T5, [%%GDATA + HashKey_3]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1
        pclmulqdq       %%T3, %%T5, 0x00                ; %%T3 = a0*b0
        movdqu  %%T5, [%%GDATA + HashKey_3_k]
        pclmulqdq       %%T2, %%T5, 0x00                ; %%T2 = (a1+a0)*(b1+b0)
        pxor    %%T4, %%T1                              ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
        pxor    %%T7, %%T3
        pxor    %%T6, %%T2

                movdqu  %%T1, [%%GDATA + 16*7]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1

        movdqu  %%T1, [rsp + TMP7]
        movdqa  %%T3, %%T1
        pshufd  %%T2, %%T3, 01001110b
        pxor    %%T2, %%T3
        movdqu  %%T5, [%%GDATA + HashKey_2]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1
        pclmulqdq       %%T3, %%T5, 0x00                ; %%T3 = a0*b0
        movdqu  %%T5, [%%GDATA + HashKey_2_k]
        pclmulqdq       %%T2, %%T5, 0x00                ; %%T2 = (a1+a0)*(b1+b0)
        pxor    %%T4, %%T1                              ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
        pxor    %%T7, %%T3
        pxor    %%T6, %%T2

                movdqu  %%T1, [%%GDATA + 16*8]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1


        ;; %%XMM8, %%T5 hold the values for the two operands which are carry-less multiplied
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
        ;; Karatsuba Method
        movdqu  %%T1, [rsp + TMP8]
        movdqa  %%T3, %%T1

        pshufd  %%T2, %%T3, 01001110b
        pxor    %%T2, %%T3
        movdqu  %%T5, [%%GDATA + HashKey]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1
        pclmulqdq       %%T3, %%T5, 0x00                ; %%T3 = a0*b0
        movdqu  %%T5, [%%GDATA + HashKey_k]
        pclmulqdq       %%T2, %%T5, 0x00                ; %%T2 = (a1+a0)*(b1+b0)
        pxor    %%T7, %%T3
        pxor    %%T4, %%T1

                movdqu  %%T1, [%%GDATA + 16*9]
                aesenc  %%XMM1, %%T1
                aesenc  %%XMM2, %%T1
                aesenc  %%XMM3, %%T1
                aesenc  %%XMM4, %%T1
                aesenc  %%XMM5, %%T1
                aesenc  %%XMM6, %%T1
                aesenc  %%XMM7, %%T1
                aesenc  %%XMM8, %%T1


		movdqu	%%T1, [%%GDATA + 16*10]
		aesenc	%%XMM1, %%T1
		aesenc	%%XMM2, %%T1
		aesenc	%%XMM3, %%T1
		aesenc	%%XMM4, %%T1
		aesenc	%%XMM5, %%T1
		aesenc	%%XMM6, %%T1
		aesenc	%%XMM7, %%T1
		aesenc	%%XMM8, %%T1

		movdqu	%%T1, [%%GDATA + 16*11]
		aesenc	%%XMM1, %%T1
		aesenc	%%XMM2, %%T1
		aesenc	%%XMM3, %%T1
		aesenc	%%XMM4, %%T1
		aesenc	%%XMM5, %%T1
		aesenc	%%XMM6, %%T1
		aesenc	%%XMM7, %%T1
		aesenc	%%XMM8, %%T1

		movdqu	%%T1, [%%GDATA + 16*12]
		aesenc	%%XMM1, %%T1
		aesenc	%%XMM2, %%T1
		aesenc	%%XMM3, %%T1
		aesenc	%%XMM4, %%T1
		aesenc	%%XMM5, %%T1
		aesenc	%%XMM6, %%T1
		aesenc	%%XMM7, %%T1
		aesenc	%%XMM8, %%T1

		movdqu	%%T1, [%%GDATA + 16*13]
		aesenc	%%XMM1, %%T1
		aesenc	%%XMM2, %%T1
		aesenc	%%XMM3, %%T1
		aesenc	%%XMM4, %%T1
		aesenc	%%XMM5, %%T1
		aesenc	%%XMM6, %%T1
		aesenc	%%XMM7, %%T1
		aesenc	%%XMM8, %%T1

		movdqu	%%T5, [%%GDATA + 16*14]        ; finish last key round


%assign i 0
%assign j 1
%rep 8
                XLDR  %%T1, [%%PLAIN_CYPH_IN+%%DATA_OFFSET+16*i]

                %ifidn %%ENC_DEC, DEC
                movdqa  %%T3, %%T1
                %endif

                pxor    %%T1, %%T5
                aesenclast      reg(j), %%T1          ; XMM1:XMM8
                XSTR  [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*i], reg(j)       ; Write to the Output buffer

                %ifidn %%ENC_DEC, DEC
                movdqa  reg(j), %%T3
                %endif
%assign i (i+1)
%assign j (j+1)
%endrep




        pxor    %%T2, %%T6
        pxor    %%T2, %%T4
        pxor    %%T2, %%T7


        movdqa  %%T3, %%T2
        pslldq  %%T3, 8                                 ; shift-L %%T3 2 DWs
        psrldq  %%T2, 8                                 ; shift-R %%T2 2 DWs
        pxor    %%T7, %%T3
        pxor    %%T4, %%T2                              ; accumulate the results in %%T4:%%T7



        ;first phase of the reduction
        movdqa  %%T2, %%T7
        movdqa  %%T3, %%T7
        movdqa  %%T1, %%T7                              ; move %%T7 into %%T2, %%T3, %%T1 in order to perform the three shifts independently

        pslld   %%T2, 31                                ; packed right shifting << 31
        pslld   %%T3, 30                                ; packed right shifting shift << 30
        pslld   %%T1, 25                                ; packed right shifting shift << 25
        pxor    %%T2, %%T3                              ; xor the shifted versions
        pxor    %%T2, %%T1

        movdqa  %%T5, %%T2
        psrldq  %%T5, 4                                 ; shift-R %%T5 1 DW

        pslldq  %%T2, 12                                ; shift-L %%T2 3 DWs
        pxor    %%T7, %%T2                              ; first phase of the reduction complete
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

                pshufb  %%XMM1, [SHUF_MASK]     ; perform a 16Byte swap
                pshufb  %%XMM2, [SHUF_MASK]     ; perform a 16Byte swap
                pshufb  %%XMM3, [SHUF_MASK]     ; perform a 16Byte swap
                pshufb  %%XMM4, [SHUF_MASK]     ; perform a 16Byte swap
                pshufb  %%XMM5, [SHUF_MASK]     ; perform a 16Byte swap
                pshufb  %%XMM6, [SHUF_MASK]     ; perform a 16Byte swap
                pshufb  %%XMM7, [SHUF_MASK]     ; perform a 16Byte swap
                pshufb  %%XMM8, [SHUF_MASK]     ; perform a 16Byte swap

        ;second phase of the reduction
        movdqa  %%T2,%%T7                               ; make 3 copies of %%T7 (in in %%T2, %%T3, %%T1) for doing three shift operations
        movdqa  %%T3,%%T7
        movdqa  %%T1,%%T7

        psrld   %%T2,1                                  ; packed left shifting >> 1
        psrld   %%T3,2                                  ; packed left shifting >> 2
        psrld   %%T1,7                                  ; packed left shifting >> 7
        pxor    %%T2,%%T3                               ; xor the shifted versions
        pxor    %%T2,%%T1

        pxor    %%T2, %%T5
        pxor    %%T7, %%T2
        pxor    %%T7, %%T4                              ; the result is in %%T4


        pxor    %%XMM1, %%T7

%endmacro


; GHASH the last 4 ciphertext blocks.
%macro	GHASH_LAST_8 16
%define	%%GDATA	%1
%define	%%T1	%2
%define	%%T2	%3
%define	%%T3	%4
%define	%%T4	%5
%define	%%T5	%6
%define	%%T6	%7
%define	%%T7	%8
%define	%%XMM1	%9
%define	%%XMM2	%10
%define	%%XMM3	%11
%define	%%XMM4	%12
%define	%%XMM5	%13
%define	%%XMM6	%14
%define	%%XMM7	%15
%define	%%XMM8	%16

        ; Karatsuba Method
        movdqa  %%T6, %%XMM1
        pshufd  %%T2, %%XMM1, 01001110b
        pxor    %%T2, %%XMM1
        movdqu  %%T5, [%%GDATA + HashKey_8]
        pclmulqdq       %%T6, %%T5, 0x11                ; %%T6 = a1*b1

        pclmulqdq       %%XMM1, %%T5, 0x00              ; %%XMM1 = a0*b0
        movdqu  %%T4, [%%GDATA + HashKey_8_k]
        pclmulqdq       %%T2, %%T4, 0x00                ; %%T2 = (a1+a0)*(b1+b0)

        movdqa  %%T7, %%XMM1
        movdqa  %%XMM1, %%T2                            ; result in %%T6, %%T7, %%XMM1


        ; Karatsuba Method
        movdqa  %%T1, %%XMM2
        pshufd  %%T2, %%XMM2, 01001110b
        pxor    %%T2, %%XMM2
        movdqu  %%T5, [%%GDATA + HashKey_7]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1

        pclmulqdq       %%XMM2, %%T5, 0x00              ; %%XMM2 = a0*b0
        movdqu  %%T4, [%%GDATA + HashKey_7_k]
        pclmulqdq       %%T2, %%T4, 0x00                ; %%T2 = (a1+a0)*(b1+b0)

        pxor    %%T6, %%T1
        pxor    %%T7, %%XMM2
        pxor    %%XMM1, %%T2                            ; results accumulated in %%T6, %%T7, %%XMM1


        ; Karatsuba Method
        movdqa  %%T1, %%XMM3
        pshufd  %%T2, %%XMM3, 01001110b
        pxor    %%T2, %%XMM3
        movdqu  %%T5, [%%GDATA + HashKey_6]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1

        pclmulqdq       %%XMM3, %%T5, 0x00              ; %%XMM3 = a0*b0
        movdqu  %%T4, [%%GDATA + HashKey_6_k]
        pclmulqdq       %%T2, %%T4, 0x00                ; %%T2 = (a1+a0)*(b1+b0)

        pxor    %%T6, %%T1
        pxor    %%T7, %%XMM3
        pxor    %%XMM1, %%T2                            ; results accumulated in %%T6, %%T7, %%XMM1

        ; Karatsuba Method
        movdqa  %%T1, %%XMM4
        pshufd  %%T2, %%XMM4, 01001110b
        pxor    %%T2, %%XMM4
        movdqu  %%T5, [%%GDATA + HashKey_5]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1

        pclmulqdq       %%XMM4, %%T5, 0x00              ; %%XMM3 = a0*b0
        movdqu  %%T4, [%%GDATA + HashKey_5_k]
        pclmulqdq       %%T2, %%T4, 0x00                ; %%T2 = (a1+a0)*(b1+b0)

        pxor    %%T6, %%T1
        pxor    %%T7, %%XMM4
        pxor    %%XMM1, %%T2                            ; results accumulated in %%T6, %%T7, %%XMM1

        ; Karatsuba Method
        movdqa  %%T1, %%XMM5
        pshufd  %%T2, %%XMM5, 01001110b
        pxor    %%T2, %%XMM5
        movdqu  %%T5, [%%GDATA + HashKey_4]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1

        pclmulqdq       %%XMM5, %%T5, 0x00              ; %%XMM3 = a0*b0
        movdqu  %%T4, [%%GDATA + HashKey_4_k]
        pclmulqdq       %%T2, %%T4, 0x00                ; %%T2 = (a1+a0)*(b1+b0)

        pxor    %%T6, %%T1
        pxor    %%T7, %%XMM5
        pxor    %%XMM1, %%T2                            ; results accumulated in %%T6, %%T7, %%XMM1

        ; Karatsuba Method
        movdqa  %%T1, %%XMM6
        pshufd  %%T2, %%XMM6, 01001110b
        pxor    %%T2, %%XMM6
        movdqu  %%T5, [%%GDATA + HashKey_3]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1

        pclmulqdq       %%XMM6, %%T5, 0x00              ; %%XMM3 = a0*b0
        movdqu  %%T4, [%%GDATA + HashKey_3_k]
        pclmulqdq       %%T2, %%T4, 0x00                ; %%T2 = (a1+a0)*(b1+b0)

        pxor    %%T6, %%T1
        pxor    %%T7, %%XMM6
        pxor    %%XMM1, %%T2                            ; results accumulated in %%T6, %%T7, %%XMM1

        ; Karatsuba Method
        movdqa  %%T1, %%XMM7
        pshufd  %%T2, %%XMM7, 01001110b
        pxor    %%T2, %%XMM7
        movdqu  %%T5, [%%GDATA + HashKey_2]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1

        pclmulqdq       %%XMM7, %%T5, 0x00              ; %%XMM3 = a0*b0
        movdqu  %%T4, [%%GDATA + HashKey_2_k]
        pclmulqdq       %%T2, %%T4, 0x00                ; %%T2 = (a1+a0)*(b1+b0)

        pxor    %%T6, %%T1
        pxor    %%T7, %%XMM7
        pxor    %%XMM1, %%T2                            ; results accumulated in %%T6, %%T7, %%XMM1


        ; Karatsuba Method
        movdqa  %%T1, %%XMM8
        pshufd  %%T2, %%XMM8, 01001110b
        pxor    %%T2, %%XMM8
        movdqu  %%T5, [%%GDATA + HashKey]
        pclmulqdq       %%T1, %%T5, 0x11                ; %%T1 = a1*b1

        pclmulqdq       %%XMM8, %%T5, 0x00              ; %%XMM4 = a0*b0
        movdqu  %%T4, [%%GDATA + HashKey_k]
        pclmulqdq       %%T2, %%T4, 0x00                ; %%T2 = (a1+a0)*(b1+b0)

        pxor    %%T6, %%T1
        pxor    %%T7, %%XMM8
        pxor    %%T2, %%XMM1
        pxor    %%T2, %%T6
        pxor    %%T2, %%T7                              ; middle section of the temp results combined as in Karatsuba algorithm


        movdqa  %%T4, %%T2
        pslldq  %%T4, 8                                 ; shift-L %%T4 2 DWs
        psrldq  %%T2, 8                                 ; shift-R %%T2 2 DWs
        pxor    %%T7, %%T4
        pxor    %%T6, %%T2                              ; <%%T6:%%T7> holds the result of the accumulated carry-less multiplications


        ;first phase of the reduction
        movdqa %%T2, %%T7
        movdqa %%T3, %%T7
        movdqa %%T4, %%T7                               ; move %%T7 into %%T2, %%T3, %%T4 in order to perform the three shifts independently

        pslld %%T2, 31                                  ; packed right shifting << 31
        pslld %%T3, 30                                  ; packed right shifting shift << 30
        pslld %%T4, 25                                  ; packed right shifting shift << 25
        pxor %%T2, %%T3                                 ; xor the shifted versions
        pxor %%T2, %%T4

        movdqa %%T1, %%T2
        psrldq %%T1, 4                                  ; shift-R %%T1 1 DW

        pslldq %%T2, 12                                 ; shift-L %%T2 3 DWs
        pxor %%T7, %%T2                                 ; first phase of the reduction complete
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

        ;second phase of the reduction
        movdqa %%T2,%%T7                                ; make 3 copies of %%T7 (in in %%T2, %%T3, %%T4) for doing three shift operations
        movdqa %%T3,%%T7
        movdqa %%T4,%%T7

        psrld %%T2,1                                    ; packed left shifting >> 1
        psrld %%T3,2                                    ; packed left shifting >> 2
        psrld %%T4,7                                    ; packed left shifting >> 7
        pxor %%T2,%%T3                                  ; xor the shifted versions
        pxor %%T2,%%T4

        pxor %%T2, %%T1
        pxor %%T7, %%T2
        pxor %%T6, %%T7                                 ; the result is in %%T6

%endmacro

; Encryption of a single block
%macro ENCRYPT_SINGLE_BLOCK 3
%define	%%GDATA	%1
%define	%%ST	%2
%define	%%T1	%3
		movdqu	%%T1, [%%GDATA+16*0]
                pxor    %%ST, %%T1
%assign i 1
%rep 13
		movdqu	%%T1, [%%GDATA+16*i]
                aesenc  %%ST, %%T1
%assign i (i+1)
%endrep
		movdqu	%%T1, [%%GDATA+16*i]
                aesenclast      %%ST, %%T1
%endmacro


;; Start of Stack Setup

%macro FUNC_SAVE 0
	;; Required for Update/GMC_ENC
	;the number of pushes must equal STACK_OFFSET
        push    r12
        push    r13
        push    r14
        push    r15
        mov     r14, rsp

	sub     rsp, VARIABLE_OFFSET
	and     rsp, ~63

%ifidn __OUTPUT_FORMAT__, win64
        ; xmm6:xmm15 need to be maintained for Windows
        movdqu [rsp + LOCAL_STORAGE + 0*16],xmm6
        movdqu [rsp + LOCAL_STORAGE + 1*16],xmm7
        movdqu [rsp + LOCAL_STORAGE + 2*16],xmm8
        movdqu [rsp + LOCAL_STORAGE + 3*16],xmm9
        movdqu [rsp + LOCAL_STORAGE + 4*16],xmm10
        movdqu [rsp + LOCAL_STORAGE + 5*16],xmm11
        movdqu [rsp + LOCAL_STORAGE + 6*16],xmm12
        movdqu [rsp + LOCAL_STORAGE + 7*16],xmm13
        movdqu [rsp + LOCAL_STORAGE + 8*16],xmm14
        movdqu [rsp + LOCAL_STORAGE + 9*16],xmm15
%endif
%endmacro


%macro FUNC_RESTORE 0

%ifidn __OUTPUT_FORMAT__, win64
        movdqu xmm15  , [rsp + LOCAL_STORAGE + 9*16]
        movdqu xmm14  , [rsp + LOCAL_STORAGE + 8*16]
        movdqu xmm13  , [rsp + LOCAL_STORAGE + 7*16]
        movdqu xmm12  , [rsp + LOCAL_STORAGE + 6*16]
        movdqu xmm11  , [rsp + LOCAL_STORAGE + 5*16]
        movdqu xmm10  , [rsp + LOCAL_STORAGE + 4*16]
        movdqu xmm9 , [rsp + LOCAL_STORAGE + 3*16]
        movdqu xmm8 , [rsp + LOCAL_STORAGE + 2*16]
        movdqu xmm7 , [rsp + LOCAL_STORAGE + 1*16]
        movdqu xmm6 , [rsp + LOCAL_STORAGE + 0*16]
%endif

;; Required for Update/GMC_ENC
        mov     rsp, r14
        pop     r15
        pop     r14
        pop     r13
        pop     r12
%endmacro


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GCM_INIT initializes a gcm_data struct to prepare for encoding/decoding.
; Input: gcm_data struct* (GDATA), IV, Additional Authentication data (A_IN), Additional
; Data length (A_LEN)
; Output: Updated GDATA with the hash of A_IN (AadHash) and initialized other parts of GDATA.
; Clobbers rax, r10-r13 and xmm0-xmm6
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro  GCM_INIT 	4
%define %%GDATA		%1
%define %%IV		%2
%define %%A_IN		%3
%define %%A_LEN		%4
%define %%AAD_HASH	xmm0
%define %%SUBHASH	xmm1


        movdqu  %%SUBHASH, [%%GDATA + HashKey]

	CALC_AAD_HASH %%A_IN, %%A_LEN, %%AAD_HASH, %%SUBHASH, xmm2, xmm3, xmm4, xmm5, xmm6, r10, r11, r12, r13, rax
	pxor	xmm2, xmm3
	mov	r10, %%A_LEN

	movdqu	[%%GDATA + AadHash], %%AAD_HASH		; my_ctx_data.aad hash = aad_hash
	mov	[%%GDATA + AadLen], r10			; my_ctx_data.aad_length = aad_length
	xor	r10, r10
	mov	[%%GDATA + InLen], r10			; my_ctx_data.in_length = 0
	mov	[%%GDATA + PBlockLen], r10		; my_ctx_data.partial_block_length = 0
	movdqu	[%%GDATA + PBlockEncKey], xmm2		; my_ctx_data.partial_block_enc_key = 0
	mov	r10, %%IV
	movdqu	xmm2, [r10]
	movdqu	[%%GDATA + OrigIV], xmm2		; my_ctx_data.orig_IV = iv

	pshufb xmm2, [SHUF_MASK]

	movdqu	[%%GDATA + CurCount], xmm2		; my_ctx_data.current_counter = iv
%endmacro


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GCM_ENC_DEC Encodes/Decodes given data. Assumes that the passed gcm_data struct has been
; initialized by GCM_INIT
; Requires the input data be at least 1 byte long because of READ_SMALL_INPUT_DATA.
; Input: gcm_data struct* (GDATA), input text (PLAIN_CYPH_IN), input text length (PLAIN_CYPH_LEN),
; and whether encoding or decoding (ENC_DEC)
; Output: A cypher of the given plain text (CYPH_PLAIN_OUT), and updated GDATA
; Clobbers rax, r10-r15, and xmm0-xmm15
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro	GCM_ENC_DEC		5
%define	%%GDATA			%1
%define	%%CYPH_PLAIN_OUT	%2
%define	%%PLAIN_CYPH_IN		%3
%define	%%PLAIN_CYPH_LEN	%4
%define	%%ENC_DEC		%5
%define	%%DATA_OFFSET		r11

; Macro flow:
; calculate the number of 16byte blocks in the message
; process (number of 16byte blocks) mod 8 '%%_initial_num_blocks_is_# .. %%_initial_blocks_encrypted'
; process 8 16 byte blocks at a time until all are done '%%_encrypt_by_8_new .. %%_eight_cipher_left'
; if there is a block of less tahn 16 bytes process it '%%_zero_cipher_left .. %%_multiple_of_16_bytes'

	cmp	%%PLAIN_CYPH_LEN, 0
	je	%%_multiple_of_16_bytes

	xor	%%DATA_OFFSET, %%DATA_OFFSET
	add	[%%GDATA+InLen], %%PLAIN_CYPH_LEN ;Update length of data processed
	movdqu	xmm13, [%%GDATA + HashKey]                 ; xmm13 = HashKey
	movdqu	xmm8, [%%GDATA + AadHash]


	PARTIAL_BLOCK %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%PLAIN_CYPH_LEN, %%DATA_OFFSET, xmm8, %%ENC_DEC

        mov     r13, %%PLAIN_CYPH_LEN                               ; save the number of bytes of plaintext/ciphertext
	sub	r13, %%DATA_OFFSET
	mov	r10, r13	;save the amount of data left to process in r10
        and     r13, -16                                ; r13 = r13 - (r13 mod 16)

        mov     r12, r13
        shr     r12, 4
        and     r12, 7
        jz      %%_initial_num_blocks_is_0

        cmp     r12, 7
        je      %%_initial_num_blocks_is_7
        cmp     r12, 6
        je      %%_initial_num_blocks_is_6
        cmp     r12, 5
        je      %%_initial_num_blocks_is_5
        cmp     r12, 4
        je      %%_initial_num_blocks_is_4
        cmp     r12, 3
        je      %%_initial_num_blocks_is_3
        cmp     r12, 2
        je      %%_initial_num_blocks_is_2

        jmp     %%_initial_num_blocks_is_1

%%_initial_num_blocks_is_7:
	INITIAL_BLOCKS	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 7, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
        sub     r13, 16*7
        jmp     %%_initial_blocks_encrypted

%%_initial_num_blocks_is_6:
	INITIAL_BLOCKS	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 6, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
        sub     r13, 16*6
        jmp     %%_initial_blocks_encrypted

%%_initial_num_blocks_is_5:
	INITIAL_BLOCKS	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 5, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
        sub     r13, 16*5
        jmp     %%_initial_blocks_encrypted

%%_initial_num_blocks_is_4:
	INITIAL_BLOCKS	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 4, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
        sub     r13, 16*4
        jmp     %%_initial_blocks_encrypted


%%_initial_num_blocks_is_3:
	INITIAL_BLOCKS	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 3, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
        sub     r13, 16*3
        jmp     %%_initial_blocks_encrypted
%%_initial_num_blocks_is_2:
	INITIAL_BLOCKS	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 2, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
        sub     r13, 16*2
        jmp     %%_initial_blocks_encrypted

%%_initial_num_blocks_is_1:
	INITIAL_BLOCKS	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 1, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
        sub     r13, 16
        jmp     %%_initial_blocks_encrypted

%%_initial_num_blocks_is_0:
	INITIAL_BLOCKS	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 0, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC


%%_initial_blocks_encrypted:
        cmp     r13, 0
        je      %%_zero_cipher_left

        sub     r13, 128
        je      %%_eight_cipher_left




        movd    r15d, xmm9
        and     r15d, 255
        pshufb  xmm9, [SHUF_MASK]


%%_encrypt_by_8_new:
        cmp     r15d, 255-8
        jg      %%_encrypt_by_8



        add     r15b, 8
	GHASH_8_ENCRYPT_8_PARALLEL	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, out_order, %%ENC_DEC
        add     %%DATA_OFFSET, 128
        sub     r13, 128
        jne     %%_encrypt_by_8_new

        pshufb  xmm9, [SHUF_MASK]
        jmp     %%_eight_cipher_left

%%_encrypt_by_8:
        pshufb  xmm9, [SHUF_MASK]
        add     r15b, 8
	GHASH_8_ENCRYPT_8_PARALLEL	%%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, in_order, %%ENC_DEC
        pshufb  xmm9, [SHUF_MASK]
        add     %%DATA_OFFSET, 128
        sub     r13, 128
        jne     %%_encrypt_by_8_new

        pshufb  xmm9, [SHUF_MASK]




%%_eight_cipher_left:
	GHASH_LAST_8	%%GDATA, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8


%%_zero_cipher_left:
	movdqu	[%%GDATA + AadHash], xmm14
	movdqu	[%%GDATA + CurCount], xmm9

        mov     r13, r10
        and     r13, 15                                ; r13 = (%%PLAIN_CYPH_LEN mod 16)

        je      %%_multiple_of_16_bytes

	mov	[%%GDATA + PBlockLen], r13		; my_ctx.data.partial_blck_length = r13
        ; handle the last <16 Byte block seperately

        paddd   xmm9, [ONE]                     ; INCR CNT to get Yn
	movdqu	[%%GDATA + CurCount], xmm9		; my_ctx.data.current_counter = xmm9
        pshufb  xmm9, [SHUF_MASK]
	ENCRYPT_SINGLE_BLOCK	%%GDATA, xmm9, xmm2                    ; E(K, Yn)
	movdqu	[%%GDATA + PBlockEncKey], xmm9		; my_ctx_data.partial_block_enc_key = xmm9

	cmp	%%PLAIN_CYPH_LEN, 16
	jge	%%_large_enough_update

	lea	r10, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
	READ_SMALL_DATA_INPUT	xmm1, r10, r13, r12, r15, rax
	lea	r12, [SHIFT_MASK + 16]
	sub	r12, r13
	jmp	%%_data_read

%%_large_enough_update:
        sub     %%DATA_OFFSET, 16
        add     %%DATA_OFFSET, r13

        movdqu  xmm1, [%%PLAIN_CYPH_IN+%%DATA_OFFSET]                        ; receive the last <16 Byte block

	sub     %%DATA_OFFSET, r13
        add     %%DATA_OFFSET, 16

        lea     r12, [SHIFT_MASK + 16]
        sub     r12, r13                                ; adjust the shuffle mask pointer to be able to shift 16-r13 bytes (r13 is the number of bytes in plaintext mod 16)
        movdqu  xmm2, [r12]                             ; get the appropriate shuffle mask
        pshufb  xmm1, xmm2                              ; shift right 16-r13 bytes
%%_data_read:
        %ifidn  %%ENC_DEC, DEC
        movdqa  xmm2, xmm1
        pxor    xmm9, xmm1                              ; Plaintext XOR E(K, Yn)
        movdqu  xmm1, [r12 + ALL_F - SHIFT_MASK]        ; get the appropriate mask to mask out top 16-r13 bytes of xmm9
        pand    xmm9, xmm1                              ; mask out top 16-r13 bytes of xmm9
        pand    xmm2, xmm1
        pshufb  xmm2, [SHUF_MASK]
        pxor    xmm14, xmm2
	movdqu	[%%GDATA + AadHash], xmm14

        %else
        pxor    xmm9, xmm1                              ; Plaintext XOR E(K, Yn)
        movdqu  xmm1, [r12 + ALL_F - SHIFT_MASK]        ; get the appropriate mask to mask out top 16-r13 bytes of xmm9
        pand    xmm9, xmm1                              ; mask out top 16-r13 bytes of xmm9
        pshufb  xmm9, [SHUF_MASK]
        pxor    xmm14, xmm9
	movdqu	[%%GDATA + AadHash], xmm14

        pshufb  xmm9, [SHUF_MASK]               ; shuffle xmm9 back to output as ciphertext
        %endif


        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
        ; output r13 Bytes
        movq    rax, xmm9
        cmp     r13, 8
        jle     %%_less_than_8_bytes_left

        mov     [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], rax
        add     %%DATA_OFFSET, 8
        psrldq  xmm9, 8
        movq    rax, xmm9
        sub     r13, 8

%%_less_than_8_bytes_left:
        mov     BYTE [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], al
        add     %%DATA_OFFSET, 1
        shr     rax, 8
        sub     r13, 1
        jne     %%_less_than_8_bytes_left
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

%%_multiple_of_16_bytes:

%endmacro


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GCM_COMPLETE Finishes Encyrption/Decryption of last partial block after GCM_UPDATE finishes.
; Input: A gcm_data struct* (GDATA) and  whether encoding or decoding (ENC_DEC).
; Output: Authorization Tag (AUTH_TAG) and Authorization Tag length (AUTH_TAG_LEN)
; Clobbers rax, r10-r12, and xmm0, xmm1, xmm5, xmm6, xmm9, xmm11, xmm14, xmm15
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro	GCM_COMPLETE		4
%define	%%GDATA			%1
%define	%%AUTH_TAG		%2
%define	%%AUTH_TAG_LEN		%3
%define	%%ENC_DEC		%4
%define	%%PLAIN_CYPH_LEN	rax

        mov     r12, [%%GDATA + PBlockLen]		; r12 = aadLen (number of bytes)
	movdqu	xmm14, [%%GDATA + AadHash]
	movdqu	xmm13, [%%GDATA + HashKey]

	cmp	r12, 0

	je %%_partial_done

	GHASH_MUL xmm14, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block
	movdqu	[%%GDATA+AadHash], xmm14

%%_partial_done:

	mov	r12, [%%GDATA + AadLen]			; r12 = aadLen (number of bytes)
	mov	%%PLAIN_CYPH_LEN, [%%GDATA + InLen]

        shl     r12, 3                                  ; convert into number of bits
        movd    xmm15, r12d                             ; len(A) in xmm15

        shl     %%PLAIN_CYPH_LEN, 3                     ; len(C) in bits  (*128)
        movq    xmm1, %%PLAIN_CYPH_LEN
        pslldq  xmm15, 8                                ; xmm15 = len(A)|| 0x0000000000000000
        pxor    xmm15, xmm1                             ; xmm15 = len(A)||len(C)

        pxor    xmm14, xmm15
        GHASH_MUL       xmm14, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6    ; final GHASH computation
        pshufb  xmm14, [SHUF_MASK]              ; perform a 16Byte swap

        movdqu  xmm9, [%%GDATA + OrigIV]                             ; xmm9 = Y0

	ENCRYPT_SINGLE_BLOCK	%%GDATA, xmm9, xmm2	; E(K, Y0)

        pxor    xmm9, xmm14



%%_return_T:
	mov	r10, %%AUTH_TAG				; r10 = authTag
	mov	r11, %%AUTH_TAG_LEN			; r11 = auth_tag_len

        cmp     r11, 16
        je      %%_T_16

        cmp     r11, 12
        je      %%_T_12

%%_T_8:
        movq    rax, xmm9
        mov     [r10], rax
        jmp     %%_return_T_done
%%_T_12:
        movq    rax, xmm9
        mov     [r10], rax
        psrldq  xmm9, 8
        movd    eax, xmm9
        mov     [r10 + 8], eax
        jmp     %%_return_T_done

%%_T_16:
        movdqu  [r10], xmm9

%%_return_T_done:
%endmacro ;GCM_COMPLETE


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void	aesni_gcm256_precomp_sse
;        (gcm_data     *my_ctx_data);
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
global aesni_gcm256_precomp_sse
aesni_gcm256_precomp_sse:
        push    r12
        push    r13
        push    r14
        push    r15

        mov     r14, rsp



        sub     rsp, VARIABLE_OFFSET
        and     rsp, ~63                                ; align rsp to 64 bytes

%ifidn __OUTPUT_FORMAT__, win64
        ; only xmm6 needs to be maintained
        movdqu [rsp + LOCAL_STORAGE + 0*16],xmm6
%endif

	pxor	xmm6, xmm6
	ENCRYPT_SINGLE_BLOCK	arg1, xmm6, xmm2	; xmm6 = HashKey

        pshufb  xmm6, [SHUF_MASK]
        ;;;;;;;;;;;;;;;  PRECOMPUTATION of HashKey<<1 mod poly from the HashKey;;;;;;;;;;;;;;;
        movdqa  xmm2, xmm6
        psllq   xmm6, 1
        psrlq   xmm2, 63
        movdqa  xmm1, xmm2
        pslldq  xmm2, 8
        psrldq  xmm1, 8
        por     xmm6, xmm2
        ;reduction
        pshufd  xmm2, xmm1, 00100100b
        pcmpeqd xmm2, [TWOONE]
        pand    xmm2, [POLY]
        pxor    xmm6, xmm2                             ; xmm6 holds the HashKey<<1 mod poly
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
        movdqu  [arg1 + HashKey], xmm6                  ; store HashKey<<1 mod poly


        PRECOMPUTE  arg1, xmm6, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5

%ifidn __OUTPUT_FORMAT__, win64
       movdqu xmm6, [rsp + LOCAL_STORAGE + 0*16]
%endif
        mov     rsp, r14

        pop     r15
        pop     r14
        pop     r13
        pop     r12
ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void   aesni_gcm256_init_sse(
;        gcm_data        *my_ctx_data,
;        u8      *iv, /* Pre-counter block j0: 4 byte salt (from Security Association) concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) concatenated with 0x00000001. 16-byte pointer. */
;        const   u8 *aad, /* Additional Authentication Data (AAD)*/
;        u64     aad_len); /* Length of AAD in bytes (must be a multiple of 4 bytes). */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
global aesni_gcm256_init_sse
aesni_gcm256_init_sse:
	push	r12
	push	r13
%ifidn __OUTPUT_FORMAT__, win64
	; xmm6:xmm15 need to be maintained for Windows
	sub	rsp, 1*16
	movdqu	[rsp + 0*16],xmm6
%endif

	GCM_INIT arg1, arg2, arg3, arg4

%ifidn __OUTPUT_FORMAT__, win64
	movdqu	xmm6 , [rsp + 0*16]
	add	rsp, 1*16
%endif
	pop	r13
	pop	r12
ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void   aesni_gcm256_enc_update_sse(
;        gcm_data        *my_ctx_data,
;        u8      *out, /* Ciphertext output. Encrypt in-place is allowed.  */
;        const   u8 *in, /* Plaintext input */
;        u64     plaintext_len); /* Length of data in Bytes for encryption. must be a multiple of 16 bytes*/
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
global aesni_gcm256_enc_update_sse
aesni_gcm256_enc_update_sse:

	FUNC_SAVE

	GCM_ENC_DEC arg1, arg2, arg3, arg4, ENC

	FUNC_RESTORE

	ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void   aesni_gcm256_dec_update_sse(
;        gcm_data        *my_ctx_data,
;        u8      *out, /* Plaintext output. Encrypt in-place is allowed.  */
;        const   u8 *in, /* Cyphertext input */
;        u64     plaintext_len); /* Length of data in Bytes for encryption. must be a multiple of 16 bytes*/
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
global aesni_gcm256_dec_update_sse
aesni_gcm256_dec_update_sse:

	FUNC_SAVE

	GCM_ENC_DEC arg1, arg2, arg3, arg4, DEC

	FUNC_RESTORE

	ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void   aesni_gcm256_enc_finalize_sse(
;        gcm_data        *my_ctx_data,
;        u8      *auth_tag, /* Authenticated Tag output. */
;        u64     auth_tag_len); /* Authenticated Tag Length in bytes. Valid values are 16 (most likely), 12 or 8. */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
global aesni_gcm256_enc_finalize_sse
aesni_gcm256_enc_finalize_sse:

	push r12

%ifidn __OUTPUT_FORMAT__, win64
	; xmm6:xmm15 need to be maintained for Windows
	sub	rsp, 5*16
	movdqu	[rsp + 0*16],xmm6
	movdqu	[rsp + 1*16],xmm9
	movdqu	[rsp + 2*16],xmm11
	movdqu	[rsp + 3*16],xmm14
	movdqu	[rsp + 4*16],xmm15
%endif
	GCM_COMPLETE	arg1, arg2, arg3, ENC

%ifidn __OUTPUT_FORMAT__, win64
	movdqu	xmm15  , [rsp + 4*16]
	movdqu	xmm14  , [rsp+ 3*16]
	movdqu	xmm11  , [rsp + 2*16]
	movdqu	xmm9 , [rsp + 1*16]
	movdqu	xmm6 , [rsp + 0*16]
	add	rsp, 5*16
%endif

	pop r12
ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void   aesni_gcm256_dec_finalize_sse(
;	 gcm_data        *my_ctx_data,
;        u8      *auth_tag, /* Authenticated Tag output. */
;        u64     auth_tag_len); /* Authenticated Tag Length in bytes. Valid values are 16 (most likely), 12 or 8. */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
global aesni_gcm256_dec_finalize_sse
aesni_gcm256_dec_finalize_sse:

	push r12

%ifidn __OUTPUT_FORMAT__, win64
	; xmm6:xmm15 need to be maintained for Windows
	sub	rsp, 5*16
	movdqu	[rsp + 0*16],xmm6
	movdqu	[rsp + 1*16],xmm9
	movdqu	[rsp + 2*16],xmm11
	movdqu	[rsp + 3*16],xmm14
	movdqu	[rsp + 4*16],xmm15
%endif
	GCM_COMPLETE	arg1, arg2, arg3, DEC

%ifidn __OUTPUT_FORMAT__, win64
	movdqu	xmm15  , [rsp + 4*16]
	movdqu	xmm14  , [rsp+ 3*16]
	movdqu	xmm11  , [rsp + 2*16]
	movdqu	xmm9 , [rsp + 1*16]
	movdqu	xmm6 , [rsp + 0*16]
	add	rsp, 5*16
%endif

	pop r12
ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void   aesni_gcm256_enc_sse(
;        gcm_data        *my_ctx_data,
;        u8      *out, /* Ciphertext output. Encrypt in-place is allowed.  */
;        const   u8 *in, /* Plaintext input */
;        u64     plaintext_len, /* Length of data in Bytes for encryption. */
;        u8      *iv, /* Pre-counter block j0: 4 byte salt (from Security Association) concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) concatenated with 0x00000001. 16-byte pointer. */
;        const   u8 *aad, /* Additional Authentication Data (AAD)*/
;        u64     aad_len, /* Length of AAD in bytes (must be a multiple of 4 bytes). */
;        u8      *auth_tag, /* Authenticated Tag output. */
;        u64     auth_tag_len); /* Authenticated Tag Length in bytes. Valid values are 16 (most likely), 12 or 8. */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
global aesni_gcm256_enc_sse
aesni_gcm256_enc_sse:

	FUNC_SAVE

	GCM_INIT arg1, arg5, arg6, arg7

	GCM_ENC_DEC  arg1, arg2, arg3, arg4, ENC

	GCM_COMPLETE arg1, arg8, arg9, ENC

	FUNC_RESTORE

	ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void   aesni_gcm256_dec_sse(
;        gcm_data        *my_ctx_data,
;        u8      *out, /* Plaintext output. Decrypt in-place is allowed.  */
;        const   u8 *in, /* Ciphertext input */
;        u64     plaintext_len, /* Length of data in Bytes for encryption. */
;        u8      *iv, /* Pre-counter block j0: 4 byte salt (from Security Association) concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) concatenated with 0x00000001. 16-byte pointer. */
;        const   u8 *aad, /* Additional Authentication Data (AAD)*/
;        u64     aad_len, /* Length of AAD in bytes (must be a multiple of 4 bytes). */
;        u8      *auth_tag, /* Authenticated Tag output. */
;        u64     auth_tag_len); /* Authenticated Tag Length in bytes. Valid values are 16 (most likely), 12 or 8. */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
global aesni_gcm256_dec_sse
aesni_gcm256_dec_sse:

	FUNC_SAVE

	GCM_INIT arg1, arg5, arg6, arg7

	GCM_ENC_DEC  arg1, arg2, arg3, arg4, DEC

	GCM_COMPLETE arg1, arg8, arg9, DEC

	FUNC_RESTORE

	ret