summaryrefslogtreecommitdiffstats
path: root/src/isa-l/crc/crc32_gzip_refl_by16_10.asm
blob: 40236f67b472f0d00e07d58349f83400149bbfe6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;  Copyright(c) 2011-2020 Intel Corporation All rights reserved.
;
;  Redistribution and use in source and binary forms, with or without
;  modification, are permitted provided that the following conditions
;  are met:
;    * Redistributions of source code must retain the above copyright
;      notice, this list of conditions and the following disclaimer.
;    * Redistributions in binary form must reproduce the above copyright
;      notice, this list of conditions and the following disclaimer in
;      the documentation and/or other materials provided with the
;      distribution.
;    * Neither the name of Intel Corporation nor the names of its
;      contributors may be used to endorse or promote products derived
;      from this software without specific prior written permission.
;
;  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
;  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
;  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
;  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;       Function API:
;       UINT32 crc32_gzip_refl_by16_10(
;               UINT32 init_crc, //initial CRC value, 32 bits
;               const unsigned char *buf, //buffer pointer to calculate CRC on
;               UINT64 len //buffer length in bytes (64-bit data)
;       );
;
;       Authors:
;               Erdinc Ozturk
;               Vinodh Gopal
;               James Guilford
;
;       Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
;       URL: http://download.intel.com/design/intarch/papers/323102.pdf
;
;
;       sample yasm command line:
;       yasm -f x64 -f elf64 -X gnu -g dwarf2 crc32_gzip_refl_by8
;
;       As explained here:
;       http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html
;       CRC-32 checksum is described in RFC 1952
;       Implementing RFC 1952 CRC:
;       http://www.ietf.org/rfc/rfc1952.txt

%include "reg_sizes.asm"

%ifndef FUNCTION_NAME
%define FUNCTION_NAME crc32_gzip_refl_by16_10
%endif

%if (AS_FEATURE_LEVEL) >= 10

%define	fetch_dist	1024

[bits 64]
default rel

section .text


%ifidn __OUTPUT_FORMAT__, win64
	%xdefine	arg1 rcx
	%xdefine	arg2 rdx
	%xdefine	arg3 r8

	%xdefine	arg1_low32 ecx
%else
	%xdefine	arg1 rdi
	%xdefine	arg2 rsi
	%xdefine	arg3 rdx

	%xdefine	arg1_low32 edi
%endif

%define TMP 16*0
%ifidn __OUTPUT_FORMAT__, win64
	%define XMM_SAVE 16*2
	%define VARIABLE_OFFSET 16*12+8
%else
	%define VARIABLE_OFFSET 16*2+8
%endif

align 16
global FUNCTION_NAME:ISAL_SYM_TYPE_FUNCTION
FUNCTION_NAME:

	not		arg1_low32
	sub		rsp, VARIABLE_OFFSET

%ifidn __OUTPUT_FORMAT__, win64
	; push the xmm registers into the stack to maintain
	vmovdqa		[rsp + XMM_SAVE + 16*0], xmm6
	vmovdqa		[rsp + XMM_SAVE + 16*1], xmm7
	vmovdqa		[rsp + XMM_SAVE + 16*2], xmm8
	vmovdqa		[rsp + XMM_SAVE + 16*3], xmm9
	vmovdqa		[rsp + XMM_SAVE + 16*4], xmm10
	vmovdqa		[rsp + XMM_SAVE + 16*5], xmm11
	vmovdqa		[rsp + XMM_SAVE + 16*6], xmm12
	vmovdqa		[rsp + XMM_SAVE + 16*7], xmm13
	vmovdqa		[rsp + XMM_SAVE + 16*8], xmm14
	vmovdqa		[rsp + XMM_SAVE + 16*9], xmm15
%endif

	; check if smaller than 256B
	cmp		arg3, 256
	jl		.less_than_256

	; load the initial crc value
	vmovd		xmm10, arg1_low32      ; initial crc

	; receive the initial 64B data, xor the initial crc value
	vmovdqu8	zmm0, [arg2+16*0]
	vmovdqu8	zmm4, [arg2+16*4]
	vpxorq		zmm0, zmm10
	vbroadcasti32x4	zmm10, [rk3]	;xmm10 has rk3 and rk4
					;imm value of pclmulqdq instruction will determine which constant to use

	sub		arg3, 256
	cmp		arg3, 256
	jl		.fold_128_B_loop

	vmovdqu8	zmm7, [arg2+16*8]
	vmovdqu8	zmm8, [arg2+16*12]
	vbroadcasti32x4 zmm16, [rk_1]	;zmm16 has rk-1 and rk-2
	sub		arg3, 256

.fold_256_B_loop:
	add		arg2, 256
	vmovdqu8	zmm3, [arg2+16*0]
	vpclmulqdq	zmm1, zmm0, zmm16, 0x10
	vpclmulqdq	zmm2, zmm0, zmm16, 0x01
	vpxorq		zmm0, zmm1, zmm2
	vpxorq		zmm0, zmm0, zmm3

	vmovdqu8	zmm9, [arg2+16*4]
	vpclmulqdq	zmm5, zmm4, zmm16, 0x10
	vpclmulqdq	zmm6, zmm4, zmm16, 0x01
	vpxorq		zmm4, zmm5, zmm6
	vpxorq		zmm4, zmm4, zmm9

	vmovdqu8	zmm11, [arg2+16*8]
	vpclmulqdq	zmm12, zmm7, zmm16, 0x10
	vpclmulqdq	zmm13, zmm7, zmm16, 0x01
	vpxorq		zmm7, zmm12, zmm13
	vpxorq		zmm7, zmm7, zmm11

	vmovdqu8	zmm17, [arg2+16*12]
	vpclmulqdq	zmm14, zmm8, zmm16, 0x10
	vpclmulqdq	zmm15, zmm8, zmm16, 0x01
	vpxorq		zmm8, zmm14, zmm15
	vpxorq		zmm8, zmm8, zmm17

	sub		arg3, 256
	jge     	.fold_256_B_loop

	;; Fold 256 into 128
	add		arg2, 256
	vpclmulqdq	zmm1, zmm0, zmm10, 0x01
	vpclmulqdq	zmm2, zmm0, zmm10, 0x10
	vpternlogq	zmm7, zmm1, zmm2, 0x96	; xor ABC

	vpclmulqdq	zmm5, zmm4, zmm10, 0x01
	vpclmulqdq	zmm6, zmm4, zmm10, 0x10
	vpternlogq	zmm8, zmm5, zmm6, 0x96	; xor ABC

	vmovdqa32	zmm0, zmm7
	vmovdqa32	zmm4, zmm8

	add		arg3, 128
	jmp		.fold_128_B_register



	; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
	; loop will fold 128B at a time until we have 128+y Bytes of buffer

	; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
.fold_128_B_loop:
	add		arg2, 128
	vmovdqu8	zmm8, [arg2+16*0]
	vpclmulqdq	zmm2, zmm0, zmm10, 0x10
	vpclmulqdq	zmm1, zmm0, zmm10, 0x01
	vpxorq		zmm0, zmm2, zmm1
	vpxorq		zmm0, zmm0, zmm8

	vmovdqu8	zmm9, [arg2+16*4]
	vpclmulqdq	zmm5, zmm4, zmm10, 0x10
	vpclmulqdq	zmm6, zmm4, zmm10, 0x01
	vpxorq		zmm4, zmm5, zmm6
	vpxorq		zmm4, zmm4, zmm9

	sub		arg3, 128
	jge		.fold_128_B_loop
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

	add		arg2, 128
	; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
	; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7

.fold_128_B_register:
	; fold the 8 128b parts into 1 xmm register with different constants
	vmovdqu8	zmm16, [rk9]		; multiply by rk9-rk16
	vmovdqu8	zmm11, [rk17]		; multiply by rk17-rk20, rk1,rk2, 0,0
	vpclmulqdq	zmm1, zmm0, zmm16, 0x01
	vpclmulqdq	zmm2, zmm0, zmm16, 0x10
	vextracti64x2	xmm7, zmm4, 3		; save last that has no multiplicand

	vpclmulqdq	zmm5, zmm4, zmm11, 0x01
	vpclmulqdq	zmm6, zmm4, zmm11, 0x10
	vmovdqa		xmm10, [rk1]		; Needed later in reduction loop
	vpternlogq	zmm1, zmm2, zmm5, 0x96	; xor ABC
	vpternlogq	zmm1, zmm6, zmm7, 0x96	; xor ABC

	vshufi64x2      zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
	vpxorq          ymm8, ymm8, ymm1
	vextracti64x2   xmm5, ymm8, 1
	vpxorq          xmm7, xmm5, xmm8

	; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
	; instead of a cmp instruction, we use the negative flag with the jl instruction
	add		arg3, 128-16
	jl		.final_reduction_for_128

	; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
	; we can fold 16 bytes at a time if y>=16
	; continue folding 16B at a time

.16B_reduction_loop:
	vpclmulqdq	xmm8, xmm7, xmm10, 0x1
	vpclmulqdq	xmm7, xmm7, xmm10, 0x10
	vpxor		xmm7, xmm8
	vmovdqu		xmm0, [arg2]
	vpxor		xmm7, xmm0
	add		arg2, 16
	sub		arg3, 16
	; instead of a cmp instruction, we utilize the flags with the jge instruction
	; equivalent of: cmp arg3, 16-16
	; check if there is any more 16B in the buffer to be able to fold
	jge		.16B_reduction_loop

	;now we have 16+z bytes left to reduce, where 0<= z < 16.
	;first, we reduce the data in the xmm7 register


.final_reduction_for_128:
	add		arg3, 16
	je		.128_done

	; here we are getting data that is less than 16 bytes.
	; since we know that there was data before the pointer, we can offset
	; the input pointer before the actual point, to receive exactly 16 bytes.
	; after that the registers need to be adjusted.
.get_last_two_xmms:

	vmovdqa		xmm2, xmm7
	vmovdqu		xmm1, [arg2 - 16 + arg3]

	; get rid of the extra data that was loaded before
	; load the shift constant
	lea		rax, [pshufb_shf_table]
	add		rax, arg3
	vmovdqu		xmm0, [rax]

	vpshufb		xmm7, xmm0
	vpxor		xmm0, [mask3]
	vpshufb		xmm2, xmm0

	vpblendvb	xmm2, xmm2, xmm1, xmm0
	;;;;;;;;;;
	vpclmulqdq	xmm8, xmm7, xmm10, 0x1
	vpclmulqdq	xmm7, xmm7, xmm10, 0x10
	vpxor		xmm7, xmm8
	vpxor		xmm7, xmm2

.128_done:
	; compute crc of a 128-bit value
	vmovdqa		xmm10, [rk5]
	vmovdqa		xmm0, xmm7

	;64b fold
	vpclmulqdq	xmm7, xmm10, 0
	vpsrldq		xmm0, 8
	vpxor		xmm7, xmm0

	;32b fold
	vmovdqa		xmm0, xmm7
	vpslldq		xmm7, 4
	vpclmulqdq	xmm7, xmm10, 0x10
	vpxor		xmm7, xmm0


	;barrett reduction
.barrett:
	vpand		xmm7, [mask2]
	vmovdqa		xmm1, xmm7
	vmovdqa		xmm2, xmm7
	vmovdqa		xmm10, [rk7]

	vpclmulqdq	xmm7, xmm10, 0
	vpxor		xmm7, xmm2
	vpand		xmm7, [mask]
	vmovdqa		xmm2, xmm7
	vpclmulqdq	xmm7, xmm10, 0x10
	vpxor		xmm7, xmm2
	vpxor		xmm7, xmm1
	vpextrd		eax, xmm7, 2

.cleanup:
	not		eax


%ifidn __OUTPUT_FORMAT__, win64
	vmovdqa		xmm6, [rsp + XMM_SAVE + 16*0]
	vmovdqa		xmm7, [rsp + XMM_SAVE + 16*1]
	vmovdqa		xmm8, [rsp + XMM_SAVE + 16*2]
	vmovdqa		xmm9, [rsp + XMM_SAVE + 16*3]
	vmovdqa		xmm10, [rsp + XMM_SAVE + 16*4]
	vmovdqa		xmm11, [rsp + XMM_SAVE + 16*5]
	vmovdqa		xmm12, [rsp + XMM_SAVE + 16*6]
	vmovdqa		xmm13, [rsp + XMM_SAVE + 16*7]
	vmovdqa		xmm14, [rsp + XMM_SAVE + 16*8]
	vmovdqa		xmm15, [rsp + XMM_SAVE + 16*9]
%endif
	add		rsp, VARIABLE_OFFSET
	ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

align 16
.less_than_256:

	; check if there is enough buffer to be able to fold 16B at a time
	cmp	arg3, 32
	jl	.less_than_32

	; if there is, load the constants
	vmovdqa	xmm10, [rk1]    ; rk1 and rk2 in xmm10

	vmovd	xmm0, arg1_low32	; get the initial crc value
	vmovdqu	xmm7, [arg2]		; load the plaintext
	vpxor	xmm7, xmm0

	; update the buffer pointer
	add	arg2, 16

	; update the counter. subtract 32 instead of 16 to save one instruction from the loop
	sub	arg3, 32

	jmp	.16B_reduction_loop


align 16
.less_than_32:
	; mov initial crc to the return value. this is necessary for zero-length buffers.
	mov	eax, arg1_low32
	test	arg3, arg3
	je	.cleanup

	vmovd	xmm0, arg1_low32	; get the initial crc value

	cmp	arg3, 16
	je	.exact_16_left
	jl	.less_than_16_left

	vmovdqu	xmm7, [arg2]		; load the plaintext
	vpxor	xmm7, xmm0		; xor the initial crc value
	add	arg2, 16
	sub	arg3, 16
	vmovdqa	xmm10, [rk1]		; rk1 and rk2 in xmm10
	jmp	.get_last_two_xmms

align 16
.less_than_16_left:
	; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.

	vpxor	xmm1, xmm1
	mov	r11, rsp
	vmovdqa	[r11], xmm1

	cmp	arg3, 4
	jl	.only_less_than_4

	; backup the counter value
	mov	r9, arg3
	cmp	arg3, 8
	jl	.less_than_8_left

	; load 8 Bytes
	mov	rax, [arg2]
	mov	[r11], rax
	add	r11, 8
	sub	arg3, 8
	add	arg2, 8
.less_than_8_left:

	cmp	arg3, 4
	jl	.less_than_4_left

	; load 4 Bytes
	mov	eax, [arg2]
	mov	[r11], eax
	add	r11, 4
	sub	arg3, 4
	add	arg2, 4
.less_than_4_left:

	cmp	arg3, 2
	jl	.less_than_2_left

	; load 2 Bytes
	mov	ax, [arg2]
	mov	[r11], ax
	add	r11, 2
	sub	arg3, 2
	add	arg2, 2
.less_than_2_left:
	cmp	arg3, 1
	jl	.zero_left

	; load 1 Byte
	mov	al, [arg2]
	mov	[r11], al

.zero_left:
	vmovdqa	xmm7, [rsp]
	vpxor	xmm7, xmm0	; xor the initial crc value

	lea	rax,[pshufb_shf_table]
	vmovdqu	xmm0, [rax + r9]
	vpshufb	xmm7,xmm0
	jmp	.128_done

align 16
.exact_16_left:
	vmovdqu	xmm7, [arg2]
	vpxor	xmm7, xmm0      ; xor the initial crc value
	jmp	.128_done

.only_less_than_4:
	cmp	arg3, 3
	jl	.only_less_than_3

	; load 3 Bytes
	mov	al, [arg2]
	mov	[r11], al

	mov	al, [arg2+1]
	mov	[r11+1], al

	mov	al, [arg2+2]
	mov	[r11+2], al

	vmovdqa	xmm7, [rsp]
	vpxor	xmm7, xmm0	; xor the initial crc value

	vpslldq	xmm7, 5
	jmp	.barrett

.only_less_than_3:
	cmp	arg3, 2
	jl	.only_less_than_2

	; load 2 Bytes
	mov	al, [arg2]
	mov	[r11], al

	mov	al, [arg2+1]
	mov	[r11+1], al

	vmovdqa	xmm7, [rsp]
	vpxor	xmm7, xmm0	; xor the initial crc value

	vpslldq	xmm7, 6
	jmp	.barrett

.only_less_than_2:
	; load 1 Byte
	mov	al, [arg2]
	mov	[r11], al

	vmovdqa	xmm7, [rsp]
	vpxor	xmm7, xmm0      ; xor the initial crc value

	vpslldq	xmm7, 7
	jmp	.barrett

section .data
align 32

%ifndef USE_CONSTS
; precomputed constants
rk_1: dq 0x00000000e95c1271
rk_2: dq 0x00000000ce3371cb
rk1:  dq 0x00000000ccaa009e
rk2:  dq 0x00000001751997d0
rk3:  dq 0x000000014a7fe880
rk4:  dq 0x00000001e88ef372
rk5:  dq 0x00000000ccaa009e
rk6:  dq 0x0000000163cd6124
rk7:  dq 0x00000001f7011640
rk8:  dq 0x00000001db710640
rk9:  dq 0x00000001d7cfc6ac
rk10: dq 0x00000001ea89367e
rk11: dq 0x000000018cb44e58
rk12: dq 0x00000000df068dc2
rk13: dq 0x00000000ae0b5394
rk14: dq 0x00000001c7569e54
rk15: dq 0x00000001c6e41596
rk16: dq 0x0000000154442bd4
rk17: dq 0x0000000174359406
rk18: dq 0x000000003db1ecdc
rk19: dq 0x000000015a546366
rk20: dq 0x00000000f1da05aa

rk_1b: dq 0x00000000ccaa009e
rk_2b: dq 0x00000001751997d0
	dq 0x0000000000000000
	dq 0x0000000000000000
%else
INCLUDE_CONSTS
%endif

pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
;       dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
;       dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
;       dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
;       dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
;       dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
;       dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
;       dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9  (16-7) / shr7
;       dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8  (16-8) / shr8
;       dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7  (16-9) / shr9
;       dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6  (16-10) / shr10
;       dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5  (16-11) / shr11
;       dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4  (16-12) / shr12
;       dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3  (16-13) / shr13
;       dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2  (16-14) / shr14
;       dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1  (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908

mask:  dq     0xFFFFFFFFFFFFFFFF, 0x0000000000000000
mask2: dq     0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
mask3: dq     0x8080808080808080, 0x8080808080808080

%else  ; Assembler doesn't understand these opcodes. Add empty symbol for windows.
%ifidn __OUTPUT_FORMAT__, win64
global no_ %+ FUNCTION_NAME
no_ %+ FUNCTION_NAME %+ :
%endif
%endif ; (AS_FEATURE_LEVEL) >= 10