summaryrefslogtreecommitdiffstats
path: root/src/isa-l/crc/crc64_ecma_refl_by8.asm
blob: e6518f424aa380ac6faa14d7ad1e69a69ab7f3d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;  Copyright(c) 2011-2016 Intel Corporation All rights reserved.
;
;  Redistribution and use in source and binary forms, with or without
;  modification, are permitted provided that the following conditions
;  are met:
;    * Redistributions of source code must retain the above copyright
;      notice, this list of conditions and the following disclaimer.
;    * Redistributions in binary form must reproduce the above copyright
;      notice, this list of conditions and the following disclaimer in
;      the documentation and/or other materials provided with the
;      distribution.
;    * Neither the name of Intel Corporation nor the names of its
;      contributors may be used to endorse or promote products derived
;      from this software without specific prior written permission.
;
;  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
;  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
;  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
;  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;       Function API:
;       uint64_t crc64_ecma_refl_by8(
;               uint64_t init_crc, //initial CRC value, 64 bits
;               const unsigned char *buf, //buffer pointer to calculate CRC on
;               uint64_t len //buffer length in bytes (64-bit data)
;       );
;
;       Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
;       sample yasm command line:
;       yasm -f x64 -f elf64 -X gnu -g dwarf2 crc64_ecma_refl_by8
%include "reg_sizes.asm"

%define	fetch_dist	1024

[bits 64]
default rel

section .text


%ifidn __OUTPUT_FORMAT__, win64
        %xdefine        arg1 rcx
        %xdefine        arg2 rdx
        %xdefine        arg3 r8
%else
        %xdefine        arg1 rdi
        %xdefine        arg2 rsi
        %xdefine        arg3 rdx
%endif

%define TMP 16*0
%ifidn __OUTPUT_FORMAT__, win64
        %define XMM_SAVE 16*2
        %define VARIABLE_OFFSET 16*10+8
%else
        %define VARIABLE_OFFSET 16*2+8
%endif


align 16
global crc64_ecma_refl_by8:ISAL_SYM_TYPE_FUNCTION
crc64_ecma_refl_by8:
        ; uint64_t c = crc ^ 0xffffffff,ffffffffL;
	not arg1
        sub     rsp, VARIABLE_OFFSET

%ifidn __OUTPUT_FORMAT__, win64
        ; push the xmm registers into the stack to maintain
        movdqa  [rsp + XMM_SAVE + 16*0], xmm6
        movdqa  [rsp + XMM_SAVE + 16*1], xmm7
        movdqa  [rsp + XMM_SAVE + 16*2], xmm8
        movdqa  [rsp + XMM_SAVE + 16*3], xmm9
        movdqa  [rsp + XMM_SAVE + 16*4], xmm10
        movdqa  [rsp + XMM_SAVE + 16*5], xmm11
        movdqa  [rsp + XMM_SAVE + 16*6], xmm12
        movdqa  [rsp + XMM_SAVE + 16*7], xmm13
%endif

        ; check if smaller than 256B
        cmp     arg3, 256

        ; for sizes less than 256, we can't fold 128B at a time...
        jl      _less_than_256


        ; load the initial crc value
        movq    xmm10, arg1      ; initial crc
      ; receive the initial 128B data, xor the initial crc value
        movdqu  xmm0, [arg2+16*0]
        movdqu  xmm1, [arg2+16*1]
        movdqu  xmm2, [arg2+16*2]
        movdqu  xmm3, [arg2+16*3]
        movdqu  xmm4, [arg2+16*4]
        movdqu  xmm5, [arg2+16*5]
        movdqu  xmm6, [arg2+16*6]
        movdqu  xmm7, [arg2+16*7]

        ; XOR the initial_crc value
        pxor    xmm0, xmm10
        movdqa  xmm10, [rk3]    ;xmm10 has rk3 and rk4
                                        ;imm value of pclmulqdq instruction will determine which constant to use
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
        ; we subtract 256 instead of 128 to save one instruction from the loop
        sub     arg3, 256

        ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The _fold_128_B_loop
        ; loop will fold 128B at a time until we have 128+y Bytes of buffer


        ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
_fold_128_B_loop:

        ; update the buffer pointer
        add     arg2, 128

	prefetchnta [arg2+fetch_dist+0]
        movdqu  xmm9, [arg2+16*0]
        movdqu  xmm12, [arg2+16*1]
        movdqa  xmm8, xmm0
        movdqa  xmm13, xmm1
        pclmulqdq       xmm0, xmm10, 0x10
        pclmulqdq       xmm8, xmm10 , 0x1
        pclmulqdq       xmm1, xmm10, 0x10
        pclmulqdq       xmm13, xmm10 , 0x1
        pxor    xmm0, xmm9
        xorps   xmm0, xmm8
        pxor    xmm1, xmm12
        xorps   xmm1, xmm13

	prefetchnta [arg2+fetch_dist+32]
        movdqu  xmm9, [arg2+16*2]
        movdqu  xmm12, [arg2+16*3]
        movdqa  xmm8, xmm2
        movdqa  xmm13, xmm3
        pclmulqdq       xmm2, xmm10, 0x10
        pclmulqdq       xmm8, xmm10 , 0x1
        pclmulqdq       xmm3, xmm10, 0x10
        pclmulqdq       xmm13, xmm10 , 0x1
        pxor    xmm2, xmm9
        xorps   xmm2, xmm8
        pxor    xmm3, xmm12
        xorps   xmm3, xmm13

	prefetchnta [arg2+fetch_dist+64]
        movdqu  xmm9, [arg2+16*4]
        movdqu  xmm12, [arg2+16*5]
        movdqa  xmm8, xmm4
        movdqa  xmm13, xmm5
        pclmulqdq       xmm4, xmm10, 0x10
        pclmulqdq       xmm8, xmm10 , 0x1
        pclmulqdq       xmm5, xmm10, 0x10
        pclmulqdq       xmm13, xmm10 , 0x1
        pxor    xmm4, xmm9
        xorps   xmm4, xmm8
        pxor    xmm5, xmm12
        xorps   xmm5, xmm13

	prefetchnta [arg2+fetch_dist+96]
        movdqu  xmm9, [arg2+16*6]
        movdqu  xmm12, [arg2+16*7]
        movdqa  xmm8, xmm6
        movdqa  xmm13, xmm7
        pclmulqdq       xmm6, xmm10, 0x10
        pclmulqdq       xmm8, xmm10 , 0x1
        pclmulqdq       xmm7, xmm10, 0x10
        pclmulqdq       xmm13, xmm10 , 0x1
        pxor    xmm6, xmm9
        xorps   xmm6, xmm8
        pxor    xmm7, xmm12
        xorps   xmm7, xmm13

        sub     arg3, 128

        ; check if there is another 128B in the buffer to be able to fold
        jge     _fold_128_B_loop
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

        add     arg2, 128
        ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
        ; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7


        ; fold the 8 xmm registers to 1 xmm register with different constants
	; xmm0 to xmm7
        movdqa  xmm10, [rk9]
        movdqa  xmm8, xmm0
        pclmulqdq       xmm0, xmm10, 0x1
        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        xorps   xmm7, xmm0
        ;xmm1 to xmm7
        movdqa  xmm10, [rk11]
        movdqa  xmm8, xmm1
        pclmulqdq       xmm1, xmm10, 0x1
        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        xorps   xmm7, xmm1

        movdqa  xmm10, [rk13]
        movdqa  xmm8, xmm2
        pclmulqdq       xmm2, xmm10, 0x1
        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        pxor    xmm7, xmm2

        movdqa  xmm10, [rk15]
        movdqa  xmm8, xmm3
        pclmulqdq       xmm3, xmm10, 0x1
        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        xorps   xmm7, xmm3

        movdqa  xmm10, [rk17]
        movdqa  xmm8, xmm4
        pclmulqdq       xmm4, xmm10, 0x1
        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        pxor    xmm7, xmm4

        movdqa  xmm10, [rk19]
        movdqa  xmm8, xmm5
        pclmulqdq       xmm5, xmm10, 0x1
        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        xorps   xmm7, xmm5
	; xmm6 to xmm7
        movdqa  xmm10, [rk1]
        movdqa  xmm8, xmm6
        pclmulqdq       xmm6, xmm10, 0x1
        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        pxor    xmm7, xmm6


        ; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
        ; instead of a cmp instruction, we use the negative flag with the jl instruction
        add     arg3, 128-16
        jl      _final_reduction_for_128

        ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
        ; we can fold 16 bytes at a time if y>=16
        ; continue folding 16B at a time

_16B_reduction_loop:
        movdqa  xmm8, xmm7
        pclmulqdq       xmm7, xmm10, 0x1
        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        movdqu  xmm0, [arg2]
        pxor    xmm7, xmm0
        add     arg2, 16
        sub     arg3, 16
        ; instead of a cmp instruction, we utilize the flags with the jge instruction
        ; equivalent of: cmp arg3, 16-16
        ; check if there is any more 16B in the buffer to be able to fold
        jge     _16B_reduction_loop

        ;now we have 16+z bytes left to reduce, where 0<= z < 16.
        ;first, we reduce the data in the xmm7 register


_final_reduction_for_128:
        add arg3, 16
        je _128_done
  ; here we are getting data that is less than 16 bytes.
        ; since we know that there was data before the pointer, we can offset the input pointer before the actual point, to receive exactly 16 bytes.
        ; after that the registers need to be adjusted.
_get_last_two_xmms:


        movdqa xmm2, xmm7
        movdqu xmm1, [arg2 - 16 + arg3]

        ; get rid of the extra data that was loaded before
        ; load the shift constant
        lea     rax, [pshufb_shf_table]
        add     rax, arg3
        movdqu  xmm0, [rax]


        pshufb  xmm7, xmm0
        pxor    xmm0, [mask3]
        pshufb  xmm2, xmm0

        pblendvb        xmm2, xmm1     ;xmm0 is implicit
        ;;;;;;;;;;
        movdqa  xmm8, xmm7
        pclmulqdq       xmm7, xmm10, 0x1

        pclmulqdq       xmm8, xmm10, 0x10
        pxor    xmm7, xmm8
        pxor    xmm7, xmm2

_128_done:
        ; compute crc of a 128-bit value
        movdqa  xmm10, [rk5]
        movdqa  xmm0, xmm7

        ;64b fold
        pclmulqdq       xmm7, xmm10, 0
        psrldq  xmm0, 8
        pxor    xmm7, xmm0

        ;barrett reduction
_barrett:
        movdqa  xmm1, xmm7
        movdqa  xmm10, [rk7]

        pclmulqdq       xmm7, xmm10, 0
        movdqa  xmm2, xmm7
        pclmulqdq       xmm7, xmm10, 0x10
        pslldq  xmm2, 8
        pxor    xmm7, xmm2
        pxor    xmm7, xmm1
        pextrq  rax, xmm7, 1

_cleanup:
        ; return c ^ 0xffffffff, ffffffffL;
        not     rax


%ifidn __OUTPUT_FORMAT__, win64
        movdqa  xmm6, [rsp + XMM_SAVE + 16*0]
        movdqa  xmm7, [rsp + XMM_SAVE + 16*1]
        movdqa  xmm8, [rsp + XMM_SAVE + 16*2]
        movdqa  xmm9, [rsp + XMM_SAVE + 16*3]
        movdqa  xmm10, [rsp + XMM_SAVE + 16*4]
        movdqa  xmm11, [rsp + XMM_SAVE + 16*5]
        movdqa  xmm12, [rsp + XMM_SAVE + 16*6]
        movdqa  xmm13, [rsp + XMM_SAVE + 16*7]
%endif
        add     rsp, VARIABLE_OFFSET
        ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

align 16
_less_than_256:

        ; check if there is enough buffer to be able to fold 16B at a time
        cmp     arg3, 32
        jl      _less_than_32

        ; if there is, load the constants
        movdqa  xmm10, [rk1]    ; rk1 and rk2 in xmm10

        movq    xmm0, arg1       ; get the initial crc value
        movdqu  xmm7, [arg2]            ; load the plaintext
        pxor    xmm7, xmm0

        ; update the buffer pointer
        add     arg2, 16

        ; update the counter. subtract 32 instead of 16 to save one instruction from the loop
        sub     arg3, 32

        jmp     _16B_reduction_loop

align 16
_less_than_32:
        ; mov initial crc to the return value. this is necessary for zero-length buffers.
        mov     rax, arg1
        test    arg3, arg3
        je      _cleanup

        movq    xmm0, arg1       ; get the initial crc value

        cmp     arg3, 16
        je      _exact_16_left
        jl      _less_than_16_left

        movdqu  xmm7, [arg2]            ; load the plaintext
        pxor    xmm7, xmm0              ; xor the initial crc value
        add     arg2, 16
        sub     arg3, 16
        movdqa  xmm10, [rk1]    ; rk1 and rk2 in xmm10
        jmp     _get_last_two_xmms


align 16
_less_than_16_left:
        ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.

        pxor    xmm1, xmm1
        mov     r11, rsp
        movdqa  [r11], xmm1

        ;       backup the counter value
        mov     r9, arg3
        cmp     arg3, 8
        jl      _less_than_8_left

        ; load 8 Bytes
        mov     rax, [arg2]
        mov     [r11], rax
        add     r11, 8
        sub     arg3, 8
        add     arg2, 8
_less_than_8_left:

        cmp     arg3, 4
        jl      _less_than_4_left

        ; load 4 Bytes
        mov     eax, [arg2]
        mov     [r11], eax
        add     r11, 4
        sub     arg3, 4
        add     arg2, 4
_less_than_4_left:

        cmp     arg3, 2
        jl      _less_than_2_left

        ; load 2 Bytes
        mov     ax, [arg2]
        mov     [r11], ax
        add     r11, 2
        sub     arg3, 2
        add     arg2, 2
_less_than_2_left:
        cmp     arg3, 1
        jl      _zero_left

        ; load 1 Byte
        mov     al, [arg2]
        mov     [r11], al

_zero_left:
        movdqa  xmm7, [rsp]
        pxor    xmm7, xmm0      ; xor the initial crc value

        lea rax,[pshufb_shf_table]

	cmp     r9, 8
        jl      _end_1to7

_end_8to15:
        movdqu  xmm0, [rax + r9]
        pshufb  xmm7,xmm0
        jmp     _128_done

_end_1to7:
	; Left shift (8-length) bytes in XMM
        movdqu  xmm0, [rax + r9 + 8]
        pshufb  xmm7,xmm0

        jmp     _barrett

align 16
_exact_16_left:
        movdqu  xmm7, [arg2]
        pxor    xmm7, xmm0      ; xor the initial crc value

        jmp     _128_done

section .data

; precomputed constants
align 16
; rk7 = floor(2^128/Q)
; rk8 = Q
rk1 :
DQ 0xdabe95afc7875f40
rk2 :
DQ 0xe05dd497ca393ae4
rk3 :
DQ 0xd7d86b2af73de740
rk4 :
DQ 0x8757d71d4fcc1000
rk5 :
DQ 0xdabe95afc7875f40
rk6 :
DQ 0x0000000000000000
rk7 :
DQ 0x9c3e466c172963d5
rk8 :
DQ 0x92d8af2baf0e1e84
rk9 :
DQ 0x947874de595052cb
rk10 :
DQ 0x9e735cb59b4724da
rk11 :
DQ 0xe4ce2cd55fea0037
rk12 :
DQ 0x2fe3fd2920ce82ec
rk13 :
DQ 0xe31d519421a63a5
rk14 :
DQ 0x2e30203212cac325
rk15 :
DQ 0x81f6054a7842df4
rk16 :
DQ 0x6ae3efbb9dd441f3
rk17 :
DQ 0x69a35d91c3730254
rk18 :
DQ 0xb5ea1af9c013aca4
rk19 :
DQ 0x3be653a30fe1af51
rk20 :
DQ 0x60095b008a9efa44


pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
;       dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
;       dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
;       dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
;       dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
;       dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
;       dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
;       dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9  (16-7) / shr7
;       dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8  (16-8) / shr8
;       dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7  (16-9) / shr9
;       dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6  (16-10) / shr10
;       dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5  (16-11) / shr11
;       dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4  (16-12) / shr12
;       dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3  (16-13) / shr13
;       dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2  (16-14) / shr14
;       dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1  (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908


mask:
dq     0xFFFFFFFFFFFFFFFF, 0x0000000000000000
mask2:
dq     0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
mask3:
dq     0x8080808080808080, 0x8080808080808080

;;;       func        core, ver, snum
slversion crc64_ecma_refl_by8, 01,   00,  001d