summaryrefslogtreecommitdiffstats
path: root/src/jaegertracing/thrift/lib/csharp/src/Protocol/TCompactProtocol.cs
blob: ff673975efac95926a59c252fe81c03b23b46ea2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 *
 * Contains some contributions under the Thrift Software License.
 * Please see doc/old-thrift-license.txt in the Thrift distribution for
 * details.
 */

using System;
using System.Text;
using Thrift.Transport;
using System.Collections;
using System.IO;
using System.Collections.Generic;

namespace Thrift.Protocol
{
    public class TCompactProtocol : TProtocol
    {
        private static TStruct ANONYMOUS_STRUCT = new TStruct("");
        private static TField TSTOP = new TField("", TType.Stop, (short)0);

        private static byte[] ttypeToCompactType = new byte[16];

        private const byte PROTOCOL_ID = 0x82;
        private const byte VERSION = 1;
        private const byte VERSION_MASK = 0x1f; // 0001 1111
        private const byte TYPE_MASK = 0xE0; // 1110 0000
        private const byte TYPE_BITS = 0x07; // 0000 0111
        private const int TYPE_SHIFT_AMOUNT = 5;

        /// <summary>
        /// All of the on-wire type codes.
        /// </summary>
        private static class Types
        {
            public const byte STOP = 0x00;
            public const byte BOOLEAN_TRUE = 0x01;
            public const byte BOOLEAN_FALSE = 0x02;
            public const byte BYTE = 0x03;
            public const byte I16 = 0x04;
            public const byte I32 = 0x05;
            public const byte I64 = 0x06;
            public const byte DOUBLE = 0x07;
            public const byte BINARY = 0x08;
            public const byte LIST = 0x09;
            public const byte SET = 0x0A;
            public const byte MAP = 0x0B;
            public const byte STRUCT = 0x0C;
        }

        /// <summary>
        /// Used to keep track of the last field for the current and previous structs,
        /// so we can do the delta stuff.
        /// </summary>
        private Stack<short> lastField_ = new Stack<short>(15);

        private short lastFieldId_ = 0;

        /// <summary>
        /// If we encounter a boolean field begin, save the TField here so it can
        /// have the value incorporated.
        /// </summary>
        private Nullable<TField> booleanField_;

        /// <summary>
        /// If we Read a field header, and it's a boolean field, save the boolean
        /// value here so that ReadBool can use it.
        /// </summary>
        private Nullable<Boolean> boolValue_;


        #region CompactProtocol Factory

        public class Factory : TProtocolFactory
        {
            public Factory() { }

            public TProtocol GetProtocol(TTransport trans)
            {
                return new TCompactProtocol(trans);
            }
        }

        #endregion

        public TCompactProtocol(TTransport trans)
            : base(trans)
        {
            ttypeToCompactType[(int)TType.Stop] = Types.STOP;
            ttypeToCompactType[(int)TType.Bool] = Types.BOOLEAN_TRUE;
            ttypeToCompactType[(int)TType.Byte] = Types.BYTE;
            ttypeToCompactType[(int)TType.I16] = Types.I16;
            ttypeToCompactType[(int)TType.I32] = Types.I32;
            ttypeToCompactType[(int)TType.I64] = Types.I64;
            ttypeToCompactType[(int)TType.Double] = Types.DOUBLE;
            ttypeToCompactType[(int)TType.String] = Types.BINARY;
            ttypeToCompactType[(int)TType.List] = Types.LIST;
            ttypeToCompactType[(int)TType.Set] = Types.SET;
            ttypeToCompactType[(int)TType.Map] = Types.MAP;
            ttypeToCompactType[(int)TType.Struct] = Types.STRUCT;
        }

        public void reset()
        {
            lastField_.Clear();
            lastFieldId_ = 0;
        }

        #region Write Methods

        /// <summary>
        /// Writes a byte without any possibility of all that field header nonsense.
        /// Used internally by other writing methods that know they need to Write a byte.
        /// </summary>
        private byte[] byteDirectBuffer = new byte[1];

        private void WriteByteDirect(byte b)
        {
            byteDirectBuffer[0] = b;
            trans.Write(byteDirectBuffer);
        }

        /// <summary>
        /// Writes a byte without any possibility of all that field header nonsense.
        /// </summary>
        private void WriteByteDirect(int n)
        {
            WriteByteDirect((byte)n);
        }

        /// <summary>
        /// Write an i32 as a varint. Results in 1-5 bytes on the wire.
        /// TODO: make a permanent buffer like WriteVarint64?
        /// </summary>
        byte[] i32buf = new byte[5];

        private void WriteVarint32(uint n)
        {
            int idx = 0;
            while (true)
            {
                if ((n & ~0x7F) == 0)
                {
                    i32buf[idx++] = (byte)n;
                    // WriteByteDirect((byte)n);
                    break;
                    // return;
                }
                else
                {
                    i32buf[idx++] = (byte)((n & 0x7F) | 0x80);
                    // WriteByteDirect((byte)((n & 0x7F) | 0x80));
                    n >>= 7;
                }
            }
            trans.Write(i32buf, 0, idx);
        }

        /// <summary>
        /// Write a message header to the wire. Compact Protocol messages contain the
        /// protocol version so we can migrate forwards in the future if need be.
        /// </summary>
        public override void WriteMessageBegin(TMessage message)
        {
            WriteByteDirect(PROTOCOL_ID);
            WriteByteDirect((byte)((VERSION & VERSION_MASK) | ((((uint)message.Type) << TYPE_SHIFT_AMOUNT) & TYPE_MASK)));
            WriteVarint32((uint)message.SeqID);
            WriteString(message.Name);
        }

        /// <summary>
        /// Write a struct begin. This doesn't actually put anything on the wire. We
        /// use it as an opportunity to put special placeholder markers on the field
        /// stack so we can get the field id deltas correct.
        /// </summary>
        public override void WriteStructBegin(TStruct strct)
        {
            lastField_.Push(lastFieldId_);
            lastFieldId_ = 0;
        }

        /// <summary>
        /// Write a struct end. This doesn't actually put anything on the wire. We use
        /// this as an opportunity to pop the last field from the current struct off
        /// of the field stack.
        /// </summary>
        public override void WriteStructEnd()
        {
            lastFieldId_ = lastField_.Pop();
        }

        /// <summary>
        /// Write a field header containing the field id and field type. If the
        /// difference between the current field id and the last one is small (&lt; 15),
        /// then the field id will be encoded in the 4 MSB as a delta. Otherwise, the
        /// field id will follow the type header as a zigzag varint.
        /// </summary>
        public override void WriteFieldBegin(TField field)
        {
            if (field.Type == TType.Bool)
            {
                // we want to possibly include the value, so we'll wait.
                booleanField_ = field;
            }
            else
            {
                WriteFieldBeginInternal(field, 0xFF);
            }
        }

        /// <summary>
        /// The workhorse of WriteFieldBegin. It has the option of doing a
        /// 'type override' of the type header. This is used specifically in the
        /// boolean field case.
        /// </summary>
        private void WriteFieldBeginInternal(TField field, byte typeOverride)
        {
            // short lastField = lastField_.Pop();

            // if there's a type override, use that.
            byte typeToWrite = typeOverride == 0xFF ? getCompactType(field.Type) : typeOverride;

            // check if we can use delta encoding for the field id
            if (field.ID > lastFieldId_ && field.ID - lastFieldId_ <= 15)
            {
                // Write them together
                WriteByteDirect((field.ID - lastFieldId_) << 4 | typeToWrite);
            }
            else
            {
                // Write them separate
                WriteByteDirect(typeToWrite);
                WriteI16(field.ID);
            }

            lastFieldId_ = field.ID;
            // lastField_.push(field.id);
        }

        /// <summary>
        /// Write the STOP symbol so we know there are no more fields in this struct.
        /// </summary>
        public override void WriteFieldStop()
        {
            WriteByteDirect(Types.STOP);
        }

        /// <summary>
        /// Write a map header. If the map is empty, omit the key and value type
        /// headers, as we don't need any additional information to skip it.
        /// </summary>
        public override void WriteMapBegin(TMap map)
        {
            if (map.Count == 0)
            {
                WriteByteDirect(0);
            }
            else
            {
                WriteVarint32((uint)map.Count);
                WriteByteDirect(getCompactType(map.KeyType) << 4 | getCompactType(map.ValueType));
            }
        }

        /// <summary>
        /// Write a list header.
        /// </summary>
        public override void WriteListBegin(TList list)
        {
            WriteCollectionBegin(list.ElementType, list.Count);
        }

        /// <summary>
        /// Write a set header.
        /// </summary>
        public override void WriteSetBegin(TSet set)
        {
            WriteCollectionBegin(set.ElementType, set.Count);
        }

        /// <summary>
        /// Write a boolean value. Potentially, this could be a boolean field, in
        /// which case the field header info isn't written yet. If so, decide what the
        /// right type header is for the value and then Write the field header.
        /// Otherwise, Write a single byte.
        /// </summary>
        public override void WriteBool(Boolean b)
        {
            if (booleanField_ != null)
            {
                // we haven't written the field header yet
                WriteFieldBeginInternal(booleanField_.Value, b ? Types.BOOLEAN_TRUE : Types.BOOLEAN_FALSE);
                booleanField_ = null;
            }
            else
            {
                // we're not part of a field, so just Write the value.
                WriteByteDirect(b ? Types.BOOLEAN_TRUE : Types.BOOLEAN_FALSE);
            }
        }

        /// <summary>
        /// Write a byte. Nothing to see here!
        /// </summary>
        public override void WriteByte(sbyte b)
        {
            WriteByteDirect((byte)b);
        }

        /// <summary>
        /// Write an I16 as a zigzag varint.
        /// </summary>
        public override void WriteI16(short i16)
        {
            WriteVarint32(intToZigZag(i16));
        }

        /// <summary>
        /// Write an i32 as a zigzag varint.
        /// </summary>
        public override void WriteI32(int i32)
        {
            WriteVarint32(intToZigZag(i32));
        }

        /// <summary>
        /// Write an i64 as a zigzag varint.
        /// </summary>
        public override void WriteI64(long i64)
        {
            WriteVarint64(longToZigzag(i64));
        }

        /// <summary>
        /// Write a double to the wire as 8 bytes.
        /// </summary>
        public override void WriteDouble(double dub)
        {
            byte[] data = new byte[] { 0, 0, 0, 0, 0, 0, 0, 0 };
            fixedLongToBytes(BitConverter.DoubleToInt64Bits(dub), data, 0);
            trans.Write(data);
        }

        /// <summary>
        /// Write a string to the wire with a varint size preceding.
        /// </summary>
        public override void WriteString(string str)
        {
            byte[] bytes = UTF8Encoding.UTF8.GetBytes(str);
            WriteBinary(bytes, 0, bytes.Length);
        }

        /// <summary>
        /// Write a byte array, using a varint for the size.
        /// </summary>
        public override void WriteBinary(byte[] bin)
        {
            WriteBinary(bin, 0, bin.Length);
        }

        private void WriteBinary(byte[] buf, int offset, int length)
        {
            WriteVarint32((uint)length);
            trans.Write(buf, offset, length);
        }

        //
        // These methods are called by structs, but don't actually have any wire
        // output or purpose.
        //

        public override void WriteMessageEnd() { }
        public override void WriteMapEnd() { }
        public override void WriteListEnd() { }
        public override void WriteSetEnd() { }
        public override void WriteFieldEnd() { }

        //
        // Internal writing methods
        //

        /// <summary>
        /// Abstract method for writing the start of lists and sets. List and sets on
        /// the wire differ only by the type indicator.
        /// </summary>
        protected void WriteCollectionBegin(TType elemType, int size)
        {
            if (size <= 14)
            {
                WriteByteDirect(size << 4 | getCompactType(elemType));
            }
            else
            {
                WriteByteDirect(0xf0 | getCompactType(elemType));
                WriteVarint32((uint)size);
            }
        }

        /// <summary>
        /// Write an i64 as a varint. Results in 1-10 bytes on the wire.
        /// </summary>
        byte[] varint64out = new byte[10];
        private void WriteVarint64(ulong n)
        {
            int idx = 0;
            while (true)
            {
                if ((n & ~(ulong)0x7FL) == 0)
                {
                    varint64out[idx++] = (byte)n;
                    break;
                }
                else
                {
                    varint64out[idx++] = ((byte)((n & 0x7F) | 0x80));
                    n >>= 7;
                }
            }
            trans.Write(varint64out, 0, idx);
        }

        /// <summary>
        /// Convert l into a zigzag long. This allows negative numbers to be
        /// represented compactly as a varint.
        /// </summary>
        private ulong longToZigzag(long n)
        {
            return (ulong)(n << 1) ^ (ulong)(n >> 63);
        }

        /// <summary>
        /// Convert n into a zigzag int. This allows negative numbers to be
        /// represented compactly as a varint.
        /// </summary>
        private uint intToZigZag(int n)
        {
            return (uint)(n << 1) ^ (uint)(n >> 31);
        }

        /// <summary>
        /// Convert a long into little-endian bytes in buf starting at off and going
        /// until off+7.
        /// </summary>
        private void fixedLongToBytes(long n, byte[] buf, int off)
        {
            buf[off + 0] = (byte)(n & 0xff);
            buf[off + 1] = (byte)((n >> 8) & 0xff);
            buf[off + 2] = (byte)((n >> 16) & 0xff);
            buf[off + 3] = (byte)((n >> 24) & 0xff);
            buf[off + 4] = (byte)((n >> 32) & 0xff);
            buf[off + 5] = (byte)((n >> 40) & 0xff);
            buf[off + 6] = (byte)((n >> 48) & 0xff);
            buf[off + 7] = (byte)((n >> 56) & 0xff);
        }

        #endregion

        #region ReadMethods

        /// <summary>
        /// Read a message header.
        /// </summary>
        public override TMessage ReadMessageBegin()
        {
            byte protocolId = (byte)ReadByte();
            if (protocolId != PROTOCOL_ID)
            {
                throw new TProtocolException("Expected protocol id " + PROTOCOL_ID.ToString("X") + " but got " + protocolId.ToString("X"));
            }
            byte versionAndType = (byte)ReadByte();
            byte version = (byte)(versionAndType & VERSION_MASK);
            if (version != VERSION)
            {
                throw new TProtocolException("Expected version " + VERSION + " but got " + version);
            }
            byte type = (byte)((versionAndType >> TYPE_SHIFT_AMOUNT) & TYPE_BITS);
            int seqid = (int)ReadVarint32();
            string messageName = ReadString();
            return new TMessage(messageName, (TMessageType)type, seqid);
        }

        /// <summary>
        /// Read a struct begin. There's nothing on the wire for this, but it is our
        /// opportunity to push a new struct begin marker onto the field stack.
        /// </summary>
        public override TStruct ReadStructBegin()
        {
            lastField_.Push(lastFieldId_);
            lastFieldId_ = 0;
            return ANONYMOUS_STRUCT;
        }

        /// <summary>
        /// Doesn't actually consume any wire data, just removes the last field for
        /// this struct from the field stack.
        /// </summary>
        public override void ReadStructEnd()
        {
            // consume the last field we Read off the wire.
            lastFieldId_ = lastField_.Pop();
        }

        /// <summary>
        /// Read a field header off the wire.
        /// </summary>
        public override TField ReadFieldBegin()
        {
            byte type = (byte)ReadByte();

            // if it's a stop, then we can return immediately, as the struct is over.
            if (type == Types.STOP)
            {
                return TSTOP;
            }

            short fieldId;

            // mask off the 4 MSB of the type header. it could contain a field id delta.
            short modifier = (short)((type & 0xf0) >> 4);
            if (modifier == 0)
            {
                // not a delta. look ahead for the zigzag varint field id.
                fieldId = ReadI16();
            }
            else
            {
                // has a delta. add the delta to the last Read field id.
                fieldId = (short)(lastFieldId_ + modifier);
            }

            TField field = new TField("", getTType((byte)(type & 0x0f)), fieldId);

            // if this happens to be a boolean field, the value is encoded in the type
            if (isBoolType(type))
            {
                // save the boolean value in a special instance variable.
                boolValue_ = (byte)(type & 0x0f) == Types.BOOLEAN_TRUE ? true : false;
            }

            // push the new field onto the field stack so we can keep the deltas going.
            lastFieldId_ = field.ID;
            return field;
        }

        /// <summary>
        /// Read a map header off the wire. If the size is zero, skip Reading the key
        /// and value type. This means that 0-length maps will yield TMaps without the
        /// "correct" types.
        /// </summary>
        public override TMap ReadMapBegin()
        {
            int size = (int)ReadVarint32();
            byte keyAndValueType = size == 0 ? (byte)0 : (byte)ReadByte();
            return new TMap(getTType((byte)(keyAndValueType >> 4)), getTType((byte)(keyAndValueType & 0xf)), size);
        }

        /// <summary>
        /// Read a list header off the wire. If the list size is 0-14, the size will
        /// be packed into the element type header. If it's a longer list, the 4 MSB
        /// of the element type header will be 0xF, and a varint will follow with the
        /// true size.
        /// </summary>
        public override TList ReadListBegin()
        {
            byte size_and_type = (byte)ReadByte();
            int size = (size_and_type >> 4) & 0x0f;
            if (size == 15)
            {
                size = (int)ReadVarint32();
            }
            TType type = getTType(size_and_type);
            return new TList(type, size);
        }

        /// <summary>
        /// Read a set header off the wire. If the set size is 0-14, the size will
        /// be packed into the element type header. If it's a longer set, the 4 MSB
        /// of the element type header will be 0xF, and a varint will follow with the
        /// true size.
        /// </summary>
        public override TSet ReadSetBegin()
        {
            return new TSet(ReadListBegin());
        }

        /// <summary>
        /// Read a boolean off the wire. If this is a boolean field, the value should
        /// already have been Read during ReadFieldBegin, so we'll just consume the
        /// pre-stored value. Otherwise, Read a byte.
        /// </summary>
        public override Boolean ReadBool()
        {
            if (boolValue_ != null)
            {
                bool result = boolValue_.Value;
                boolValue_ = null;
                return result;
            }
            return ReadByte() == Types.BOOLEAN_TRUE;
        }

        byte[] byteRawBuf = new byte[1];
        /// <summary>
        /// Read a single byte off the wire. Nothing interesting here.
        /// </summary>
        public override sbyte ReadByte()
        {
            trans.ReadAll(byteRawBuf, 0, 1);
            return (sbyte)byteRawBuf[0];
        }

        /// <summary>
        /// Read an i16 from the wire as a zigzag varint.
        /// </summary>
        public override short ReadI16()
        {
            return (short)zigzagToInt(ReadVarint32());
        }

        /// <summary>
        /// Read an i32 from the wire as a zigzag varint.
        /// </summary>
        public override int ReadI32()
        {
            return zigzagToInt(ReadVarint32());
        }

        /// <summary>
        /// Read an i64 from the wire as a zigzag varint.
        /// </summary>
        public override long ReadI64()
        {
            return zigzagToLong(ReadVarint64());
        }

        /// <summary>
        /// No magic here - just Read a double off the wire.
        /// </summary>
        public override double ReadDouble()
        {
            byte[] longBits = new byte[8];
            trans.ReadAll(longBits, 0, 8);
            return BitConverter.Int64BitsToDouble(bytesToLong(longBits));
        }

        /// <summary>
        /// Reads a byte[] (via ReadBinary), and then UTF-8 decodes it.
        /// </summary>
        public override string ReadString()
        {
            int length = (int)ReadVarint32();

            if (length == 0)
            {
                return "";
            }

            return Encoding.UTF8.GetString(ReadBinary(length));
        }

        /// <summary>
        /// Read a byte[] from the wire.
        /// </summary>
        public override byte[] ReadBinary()
        {
            int length = (int)ReadVarint32();
            if (length == 0) return new byte[0];

            byte[] buf = new byte[length];
            trans.ReadAll(buf, 0, length);
            return buf;
        }

        /// <summary>
        /// Read a byte[] of a known length from the wire.
        /// </summary>
        private byte[] ReadBinary(int length)
        {
            if (length == 0) return new byte[0];

            byte[] buf = new byte[length];
            trans.ReadAll(buf, 0, length);
            return buf;
        }

        //
        // These methods are here for the struct to call, but don't have any wire
        // encoding.
        //
        public override void ReadMessageEnd() { }
        public override void ReadFieldEnd() { }
        public override void ReadMapEnd() { }
        public override void ReadListEnd() { }
        public override void ReadSetEnd() { }

        //
        // Internal Reading methods
        //

        /// <summary>
        /// Read an i32 from the wire as a varint. The MSB of each byte is set
        /// if there is another byte to follow. This can Read up to 5 bytes.
        /// </summary>
        private uint ReadVarint32()
        {
            uint result = 0;
            int shift = 0;
            while (true)
            {
                byte b = (byte)ReadByte();
                result |= (uint)(b & 0x7f) << shift;
                if ((b & 0x80) != 0x80) break;
                shift += 7;
            }
            return result;
        }

        /// <summary>
        /// Read an i64 from the wire as a proper varint. The MSB of each byte is set
        /// if there is another byte to follow. This can Read up to 10 bytes.
        /// </summary>
        private ulong ReadVarint64()
        {
            int shift = 0;
            ulong result = 0;
            while (true)
            {
                byte b = (byte)ReadByte();
                result |= (ulong)(b & 0x7f) << shift;
                if ((b & 0x80) != 0x80) break;
                shift += 7;
            }

            return result;
        }

        #endregion

        //
        // encoding helpers
        //

        /// <summary>
        /// Convert from zigzag int to int.
        /// </summary>
        private int zigzagToInt(uint n)
        {
            return (int)(n >> 1) ^ (-(int)(n & 1));
        }

        /// <summary>
        /// Convert from zigzag long to long.
        /// </summary>
        private long zigzagToLong(ulong n)
        {
            return (long)(n >> 1) ^ (-(long)(n & 1));
        }

        /// <summary>
        /// Note that it's important that the mask bytes are long literals,
        /// otherwise they'll default to ints, and when you shift an int left 56 bits,
        /// you just get a messed up int.
        /// </summary>
        private long bytesToLong(byte[] bytes)
        {
            return
              ((bytes[7] & 0xffL) << 56) |
              ((bytes[6] & 0xffL) << 48) |
              ((bytes[5] & 0xffL) << 40) |
              ((bytes[4] & 0xffL) << 32) |
              ((bytes[3] & 0xffL) << 24) |
              ((bytes[2] & 0xffL) << 16) |
              ((bytes[1] & 0xffL) << 8) |
              ((bytes[0] & 0xffL));
        }

        //
        // type testing and converting
        //

        private Boolean isBoolType(byte b)
        {
            int lowerNibble = b & 0x0f;
            return lowerNibble == Types.BOOLEAN_TRUE || lowerNibble == Types.BOOLEAN_FALSE;
        }

        /// <summary>
        /// Given a TCompactProtocol.Types constant, convert it to its corresponding
        /// TType value.
        /// </summary>
        private TType getTType(byte type)
        {
            switch ((byte)(type & 0x0f))
            {
                case Types.STOP:
                    return TType.Stop;
                case Types.BOOLEAN_FALSE:
                case Types.BOOLEAN_TRUE:
                    return TType.Bool;
                case Types.BYTE:
                    return TType.Byte;
                case Types.I16:
                    return TType.I16;
                case Types.I32:
                    return TType.I32;
                case Types.I64:
                    return TType.I64;
                case Types.DOUBLE:
                    return TType.Double;
                case Types.BINARY:
                    return TType.String;
                case Types.LIST:
                    return TType.List;
                case Types.SET:
                    return TType.Set;
                case Types.MAP:
                    return TType.Map;
                case Types.STRUCT:
                    return TType.Struct;
                default:
                    throw new TProtocolException("don't know what type: " + (byte)(type & 0x0f));
            }
        }

        /// <summary>
        /// Given a TType value, find the appropriate TCompactProtocol.Types constant.
        /// </summary>
        private byte getCompactType(TType ttype)
        {
            return ttypeToCompactType[(int)ttype];
        }
    }
}