summaryrefslogtreecommitdiffstats
path: root/src/pmdk/src/libpmemobj/memblock.c
blob: 0e1dd1468e15f26c607780ae00bb4fa1844a7cea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
// SPDX-License-Identifier: BSD-3-Clause
/* Copyright 2016-2020, Intel Corporation */

/*
 * memblock.c -- implementation of memory block
 *
 * Memory block is a representation of persistent object that resides in the
 * heap. A valid memory block must be either a huge (free or used) chunk or a
 * block inside a run.
 *
 * Huge blocks are 1:1 correlated with the chunk headers in the zone whereas
 * run blocks are represented by bits in corresponding chunk bitmap.
 *
 * This file contains implementations of abstract operations on memory blocks.
 * Instead of storing the mbops structure inside each memory block the correct
 * method implementation is chosen at runtime.
 */

#include <string.h>

#include "obj.h"
#include "heap.h"
#include "memblock.h"
#include "out.h"
#include "valgrind_internal.h"
#include "alloc_class.h"

/* calculates the size of the entire run, including any additional chunks */
#define SIZEOF_RUN(runp, size_idx)\
	(sizeof(*(runp)) + (((size_idx) - 1) * CHUNKSIZE))

/*
 * memblock_header_type -- determines the memory block's header type
 */
static enum header_type
memblock_header_type(const struct memory_block *m)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);

	if (hdr->flags & CHUNK_FLAG_COMPACT_HEADER)
		return HEADER_COMPACT;

	if (hdr->flags & CHUNK_FLAG_HEADER_NONE)
		return HEADER_NONE;

	return HEADER_LEGACY;
}

/*
 * memblock_header_legacy_get_size --
 *	(internal) returns the size stored in a legacy header
 */
static size_t
memblock_header_legacy_get_size(const struct memory_block *m)
{
	struct allocation_header_legacy *hdr = m->m_ops->get_real_data(m);

	return hdr->size;
}

/*
 * memblock_header_compact_get_size --
 *	(internal) returns the size stored in a compact header
 */
static size_t
memblock_header_compact_get_size(const struct memory_block *m)
{
	struct allocation_header_compact *hdr = m->m_ops->get_real_data(m);

	return hdr->size & ALLOC_HDR_FLAGS_MASK;
}

/*
 * memblock_header_none_get_size --
 *	(internal) determines the sizes of an object without a header
 */
static size_t
memblock_header_none_get_size(const struct memory_block *m)
{
	return m->m_ops->block_size(m);
}

/*
 * memblock_header_legacy_get_extra --
 *	(internal) returns the extra field stored in a legacy header
 */
static uint64_t
memblock_header_legacy_get_extra(const struct memory_block *m)
{
	struct allocation_header_legacy *hdr = m->m_ops->get_real_data(m);

	return hdr->type_num;
}

/*
 * memblock_header_compact_get_extra --
 *	(internal) returns the extra field stored in a compact header
 */
static uint64_t
memblock_header_compact_get_extra(const struct memory_block *m)
{
	struct allocation_header_compact *hdr = m->m_ops->get_real_data(m);

	return hdr->extra;
}

/*
 * memblock_header_none_get_extra --
 *	(internal) objects without a header don't have an extra field
 */
static uint64_t
memblock_header_none_get_extra(const struct memory_block *m)
{
	return 0;
}

/*
 * memblock_header_legacy_get_flags --
 *	(internal) returns the flags stored in a legacy header
 */
static uint16_t
memblock_header_legacy_get_flags(const struct memory_block *m)
{
	struct allocation_header_legacy *hdr = m->m_ops->get_real_data(m);

	return (uint16_t)(hdr->root_size >> ALLOC_HDR_SIZE_SHIFT);
}

/*
 * memblock_header_compact_get_flags --
 *	(internal) returns the flags stored in a compact header
 */
static uint16_t
memblock_header_compact_get_flags(const struct memory_block *m)
{
	struct allocation_header_compact *hdr = m->m_ops->get_real_data(m);

	return (uint16_t)(hdr->size >> ALLOC_HDR_SIZE_SHIFT);
}

/*
 * memblock_header_none_get_flags --
 *	(internal) objects without a header do not support flags
 */
static uint16_t
memblock_header_none_get_flags(const struct memory_block *m)
{
	return 0;
}

/*
 * memblock_header_legacy_write --
 *	(internal) writes a legacy header of an object
 */
static void
memblock_header_legacy_write(const struct memory_block *m,
	size_t size, uint64_t extra, uint16_t flags)
{
	struct allocation_header_legacy hdr;
	hdr.size = size;
	hdr.type_num = extra;
	hdr.root_size = ((uint64_t)flags << ALLOC_HDR_SIZE_SHIFT);

	struct allocation_header_legacy *hdrp = m->m_ops->get_real_data(m);

	VALGRIND_DO_MAKE_MEM_UNDEFINED(hdrp, sizeof(*hdrp));

	VALGRIND_ADD_TO_TX(hdrp, sizeof(*hdrp));
	pmemops_memcpy(&m->heap->p_ops, hdrp, &hdr,
		sizeof(hdr), /* legacy header is 64 bytes in size */
		PMEMOBJ_F_MEM_WC | PMEMOBJ_F_MEM_NODRAIN | PMEMOBJ_F_RELAXED);
	VALGRIND_REMOVE_FROM_TX(hdrp, sizeof(*hdrp));

	/* unused fields of the legacy headers are used as a red zone */
	VALGRIND_DO_MAKE_MEM_NOACCESS(hdrp->unused, sizeof(hdrp->unused));
}

/*
 * memblock_header_compact_write --
 *	(internal) writes a compact header of an object
 */
static void
memblock_header_compact_write(const struct memory_block *m,
	size_t size, uint64_t extra, uint16_t flags)
{
	COMPILE_ERROR_ON(ALLOC_HDR_COMPACT_SIZE > CACHELINE_SIZE);

	struct {
		struct allocation_header_compact hdr;
		uint8_t padding[CACHELINE_SIZE - ALLOC_HDR_COMPACT_SIZE];
	} padded;

	padded.hdr.size = size | ((uint64_t)flags << ALLOC_HDR_SIZE_SHIFT);
	padded.hdr.extra = extra;

	struct allocation_header_compact *hdrp = m->m_ops->get_real_data(m);

	VALGRIND_DO_MAKE_MEM_UNDEFINED(hdrp, sizeof(*hdrp));

	/*
	 * If possible write the entire header with a single memcpy, this allows
	 * the copy implementation to avoid a cache miss on a partial cache line
	 * write.
	 */
	size_t hdr_size = ALLOC_HDR_COMPACT_SIZE;
	if ((uintptr_t)hdrp % CACHELINE_SIZE == 0 && size >= sizeof(padded))
		hdr_size = sizeof(padded);

	VALGRIND_ADD_TO_TX(hdrp, hdr_size);

	pmemops_memcpy(&m->heap->p_ops, hdrp, &padded, hdr_size,
		PMEMOBJ_F_MEM_WC | PMEMOBJ_F_MEM_NODRAIN | PMEMOBJ_F_RELAXED);
	VALGRIND_DO_MAKE_MEM_UNDEFINED((char *)hdrp + ALLOC_HDR_COMPACT_SIZE,
		hdr_size - ALLOC_HDR_COMPACT_SIZE);

	VALGRIND_REMOVE_FROM_TX(hdrp, hdr_size);
}

/*
 * memblock_header_none_write --
 *	(internal) nothing to write
 */
static void
memblock_header_none_write(const struct memory_block *m,
	size_t size, uint64_t extra, uint16_t flags)
{
	/* NOP */
}

/*
 * memblock_header_legacy_invalidate --
 *	(internal) invalidates a legacy header
 */
static void
memblock_header_legacy_invalidate(const struct memory_block *m)
{
	struct allocation_header_legacy *hdr = m->m_ops->get_real_data(m);
	VALGRIND_SET_CLEAN(hdr, sizeof(*hdr));
}

/*
 * memblock_header_compact_invalidate --
 *	(internal) invalidates a compact header
 */
static void
memblock_header_compact_invalidate(const struct memory_block *m)
{
	struct allocation_header_compact *hdr = m->m_ops->get_real_data(m);
	VALGRIND_SET_CLEAN(hdr, sizeof(*hdr));
}

/*
 * memblock_no_header_invalidate --
 *	(internal) nothing to invalidate
 */
static void
memblock_header_none_invalidate(const struct memory_block *m)
{
	/* NOP */
}

/*
 * memblock_header_legacy_reinit --
 *	(internal) reinitializes a legacy header after a heap restart
 */
static void
memblock_header_legacy_reinit(const struct memory_block *m)
{
	struct allocation_header_legacy *hdr = m->m_ops->get_real_data(m);

	VALGRIND_DO_MAKE_MEM_DEFINED(hdr, sizeof(*hdr));

	/* unused fields of the legacy headers are used as a red zone */
	VALGRIND_DO_MAKE_MEM_NOACCESS(hdr->unused, sizeof(hdr->unused));
}

/*
 * memblock_header_compact_reinit --
 *	(internal) reinitializes a compact header after a heap restart
 */
static void
memblock_header_compact_reinit(const struct memory_block *m)
{
	struct allocation_header_compact *hdr = m->m_ops->get_real_data(m);

	VALGRIND_DO_MAKE_MEM_DEFINED(hdr, sizeof(*hdr));
}

/*
 * memblock_header_none_reinit --
 *	(internal) nothing to reinitialize
 */
static void
memblock_header_none_reinit(const struct memory_block *m)
{
	/* NOP */
}

static const struct {
	/* determines the sizes of an object */
	size_t (*get_size)(const struct memory_block *m);

	/* returns the extra field (if available, 0 if not) */
	uint64_t (*get_extra)(const struct memory_block *m);

	/* returns the flags stored in a header (if available, 0 if not) */
	uint16_t (*get_flags)(const struct memory_block *m);

	/*
	 * Stores size, extra info and flags in header of an object
	 * (if available, does nothing otherwise).
	 */
	void (*write)(const struct memory_block *m,
		size_t size, uint64_t extra, uint16_t flags);
	void (*invalidate)(const struct memory_block *m);

	/*
	 * Reinitializes a header after a heap restart (if available, does
	 * nothing otherwise) (VG).
	 */
	void (*reinit)(const struct memory_block *m);
} memblock_header_ops[MAX_HEADER_TYPES] = {
	[HEADER_LEGACY] = {
		memblock_header_legacy_get_size,
		memblock_header_legacy_get_extra,
		memblock_header_legacy_get_flags,
		memblock_header_legacy_write,
		memblock_header_legacy_invalidate,
		memblock_header_legacy_reinit,
	},
	[HEADER_COMPACT] = {
		memblock_header_compact_get_size,
		memblock_header_compact_get_extra,
		memblock_header_compact_get_flags,
		memblock_header_compact_write,
		memblock_header_compact_invalidate,
		memblock_header_compact_reinit,
	},
	[HEADER_NONE] = {
		memblock_header_none_get_size,
		memblock_header_none_get_extra,
		memblock_header_none_get_flags,
		memblock_header_none_write,
		memblock_header_none_invalidate,
		memblock_header_none_reinit,
	}
};

/*
 * memblock_run_default_nallocs -- returns the number of memory blocks
 *	available in the in a run with given parameters using the default
 *	fixed-bitmap algorithm
 */
static unsigned
memblock_run_default_nallocs(uint32_t *size_idx, uint16_t flags,
	uint64_t unit_size, uint64_t alignment)
{
	unsigned nallocs = (unsigned)
		(RUN_DEFAULT_SIZE_BYTES(*size_idx) / unit_size);

	while (nallocs > RUN_DEFAULT_BITMAP_NBITS) {
		LOG(3, "tried to create a run (%lu) with number "
			"of units (%u) exceeding the bitmap size (%u)",
			unit_size, nallocs, RUN_DEFAULT_BITMAP_NBITS);
		if (*size_idx > 1) {
			*size_idx -= 1;
			/* recalculate the number of allocations */
			nallocs = (uint32_t)
				(RUN_DEFAULT_SIZE_BYTES(*size_idx) / unit_size);
			LOG(3, "run (%lu) was constructed with "
				"fewer (%u) than requested chunks (%u)",
				unit_size, *size_idx, *size_idx + 1);
		} else {
			LOG(3, "run (%lu) was constructed with "
				"fewer units (%u) than optimal (%u), "
				"this might lead to "
				"inefficient memory utilization!",
				unit_size,
				RUN_DEFAULT_BITMAP_NBITS, nallocs);

			nallocs = RUN_DEFAULT_BITMAP_NBITS;
		}
	}

	return nallocs - (alignment ? 1 : 0);
}

/*
 * memblock_run_bitmap -- calculate bitmap parameters for given arguments
 */
void
memblock_run_bitmap(uint32_t *size_idx, uint16_t flags,
	uint64_t unit_size, uint64_t alignment, void *content,
	struct run_bitmap *b)
{
	ASSERTne(*size_idx, 0);

	/*
	 * Flexible bitmaps have a variably sized values array. The size varies
	 * depending on:
	 *	alignment - initial run alignment might require up-to a unit
	 *	size idx - the larger the run, the more units it carries
	 *	unit_size - the smaller the unit size, the more units per run
	 *
	 * The size of the bitmap also has to be calculated in such a way that
	 * the beginning of allocations data is cacheline aligned. This is
	 * required to perform many optimizations throughout the codebase.
	 * This alignment requirement means that some of the bitmap values might
	 * remain unused and will serve only as a padding for data.
	 */
	if (flags & CHUNK_FLAG_FLEX_BITMAP) {
		/*
		 * First calculate the number of values without accounting for
		 * the bitmap size.
		 */
		size_t content_size = RUN_CONTENT_SIZE_BYTES(*size_idx);
		b->nbits = (unsigned)(content_size / unit_size);
		b->nvalues = util_div_ceil(b->nbits, RUN_BITS_PER_VALUE);

		/*
		 * Then, align the number of values up, so that the cacheline
		 * alignment is preserved.
		 */
		b->nvalues = ALIGN_UP(b->nvalues + RUN_BASE_METADATA_VALUES,
			(unsigned)(CACHELINE_SIZE / sizeof(*b->values)))
			- RUN_BASE_METADATA_VALUES;

		/*
		 * This is the total number of bytes needed for the bitmap AND
		 * padding.
		 */
		b->size = b->nvalues * sizeof(*b->values);

		/*
		 * Calculate the number of allocations again, but this time
		 * accounting for the bitmap/padding.
		 */
		b->nbits = (unsigned)((content_size - b->size) / unit_size)
			- (alignment ? 1U : 0U);

		/*
		 * The last step is to calculate how much of the padding
		 * is left at the end of the bitmap.
		 */
		unsigned unused_bits = (b->nvalues * RUN_BITS_PER_VALUE)
			- b->nbits;
		unsigned unused_values = unused_bits / RUN_BITS_PER_VALUE;
		b->nvalues -= unused_values;

		b->values = (uint64_t *)content;

		return;
	}

	b->size = RUN_DEFAULT_BITMAP_SIZE;
	b->nbits = memblock_run_default_nallocs(size_idx, flags,
		unit_size, alignment);

	unsigned unused_bits = RUN_DEFAULT_BITMAP_NBITS - b->nbits;
	unsigned unused_values = unused_bits / RUN_BITS_PER_VALUE;
	b->nvalues = RUN_DEFAULT_BITMAP_VALUES - unused_values;

	b->values = (uint64_t *)content;
}

/*
 * run_get_bitmap -- initializes run bitmap information
 */
static void
run_get_bitmap(const struct memory_block *m, struct run_bitmap *b)
{
	struct chunk_run *run = heap_get_chunk_run(m->heap, m);

	if (m->cached_bitmap != NULL) {
		*b = *m->cached_bitmap;
		b->values = (uint64_t *)run->content;
	} else {
		struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);

		uint32_t size_idx = hdr->size_idx;
		memblock_run_bitmap(&size_idx, hdr->flags, run->hdr.block_size,
			run->hdr.alignment, run->content, b);
		ASSERTeq(size_idx, hdr->size_idx);
	}
}

/*
 * huge_block_size -- returns the compile-time constant which defines the
 *	huge memory block size.
 */
static size_t
huge_block_size(const struct memory_block *m)
{
	return CHUNKSIZE;
}

/*
 * run_block_size -- looks for the right chunk and returns the block size
 *	information that is attached to the run block metadata.
 */
static size_t
run_block_size(const struct memory_block *m)
{
	struct chunk_run *run = heap_get_chunk_run(m->heap, m);

	return run->hdr.block_size;
}

/*
 * huge_get_real_data -- returns pointer to the beginning data of a huge block
 */
static void *
huge_get_real_data(const struct memory_block *m)
{
	return heap_get_chunk(m->heap, m)->data;
}

/*
 * run_get_data_start -- (internal) returns the pointer to the beginning of
 *	allocations in a run
 */
static char *
run_get_data_start(const struct memory_block *m)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);
	struct chunk_run *run = heap_get_chunk_run(m->heap, m);

	struct run_bitmap b;
	run_get_bitmap(m, &b);

	if (hdr->flags & CHUNK_FLAG_ALIGNED) {
		/*
		 * Alignment is property of user data in allocations. And
		 * since objects have headers, we need to take them into
		 * account when calculating the address.
		 */
		uintptr_t hsize = header_type_to_size[m->header_type];
		uintptr_t base = (uintptr_t)run->content +
			b.size + hsize;
		return (char *)(ALIGN_UP(base, run->hdr.alignment) - hsize);
	} else {
		return (char *)&run->content + b.size;
	}
}

/*
 * run_get_data_offset -- (internal) returns the number of bytes between
 *	run base metadata and data
 */
static size_t
run_get_data_offset(const struct memory_block *m)
{
	struct chunk_run *run = heap_get_chunk_run(m->heap, m);
	return (size_t)run_get_data_start(m) - (size_t)&run->content;
}

/*
 * run_get_real_data -- returns pointer to the beginning data of a run block
 */
static void *
run_get_real_data(const struct memory_block *m)
{
	struct chunk_run *run = heap_get_chunk_run(m->heap, m);
	ASSERT(run->hdr.block_size != 0);

	return run_get_data_start(m) + (run->hdr.block_size * m->block_off);
}

/*
 * block_get_user_data -- returns pointer to the data of a block
 */
static void *
block_get_user_data(const struct memory_block *m)
{
	return (char *)m->m_ops->get_real_data(m) +
		header_type_to_size[m->header_type];
}

/*
 * chunk_get_chunk_hdr_value -- (internal) get value of a header for redo log
 */
static uint64_t
chunk_get_chunk_hdr_value(uint16_t type, uint16_t flags, uint32_t size_idx)
{
	uint64_t val;
	COMPILE_ERROR_ON(sizeof(struct chunk_header) != sizeof(uint64_t));

	struct chunk_header hdr;
	hdr.type = type;
	hdr.flags = flags;
	hdr.size_idx = size_idx;
	memcpy(&val, &hdr, sizeof(val));

	return val;
}

/*
 * huge_prep_operation_hdr -- prepares the new value of a chunk header that will
 *	be set after the operation concludes.
 */
static void
huge_prep_operation_hdr(const struct memory_block *m, enum memblock_state op,
	struct operation_context *ctx)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);

	/*
	 * Depending on the operation that needs to be performed a new chunk
	 * header needs to be prepared with the new chunk state.
	 */
	uint64_t val = chunk_get_chunk_hdr_value(
		op == MEMBLOCK_ALLOCATED ? CHUNK_TYPE_USED : CHUNK_TYPE_FREE,
		hdr->flags,
		m->size_idx);

	if (ctx == NULL) {
		util_atomic_store_explicit64((uint64_t *)hdr, val,
			memory_order_relaxed);
		pmemops_persist(&m->heap->p_ops, hdr, sizeof(*hdr));
	} else {
		operation_add_entry(ctx, hdr, val, ULOG_OPERATION_SET);
	}

	VALGRIND_DO_MAKE_MEM_NOACCESS(hdr + 1,
		(hdr->size_idx - 1) * sizeof(struct chunk_header));

	/*
	 * In the case of chunks larger than one unit the footer must be
	 * created immediately AFTER the persistent state is safely updated.
	 */
	if (m->size_idx == 1)
		return;

	struct chunk_header *footer = hdr + m->size_idx - 1;
	VALGRIND_DO_MAKE_MEM_UNDEFINED(footer, sizeof(*footer));

	val = chunk_get_chunk_hdr_value(CHUNK_TYPE_FOOTER, 0, m->size_idx);

	/*
	 * It's only safe to write the footer AFTER the persistent part of
	 * the operation have been successfully processed because the footer
	 * pointer might point to a currently valid persistent state
	 * of a different chunk.
	 * The footer entry change is updated as transient because it will
	 * be recreated at heap boot regardless - it's just needed for runtime
	 * operations.
	 */
	if (ctx == NULL) {
		util_atomic_store_explicit64((uint64_t *)footer, val,
			memory_order_relaxed);
		VALGRIND_SET_CLEAN(footer, sizeof(*footer));
	} else {
		operation_add_typed_entry(ctx,
			footer, val, ULOG_OPERATION_SET, LOG_TRANSIENT);
	}
}

/*
 * run_prep_operation_hdr -- prepares the new value for a select few bytes of
 *	a run bitmap that will be set after the operation concludes.
 *
 * It's VERY important to keep in mind that the particular value of the
 * bitmap this method is modifying must not be changed after this function
 * is called and before the operation is processed.
 */
static void
run_prep_operation_hdr(const struct memory_block *m, enum memblock_state op,
	struct operation_context *ctx)
{
	ASSERT(m->size_idx <= RUN_BITS_PER_VALUE);

	/*
	 * Free blocks are represented by clear bits and used blocks by set
	 * bits - which is the reverse of the commonly used scheme.
	 *
	 * Here a bit mask is prepared that flips the bits that represent the
	 * memory block provided by the caller - because both the size index and
	 * the block offset are tied 1:1 to the bitmap this operation is
	 * relatively simple.
	 */
	uint64_t bmask;
	if (m->size_idx == RUN_BITS_PER_VALUE) {
		ASSERTeq(m->block_off % RUN_BITS_PER_VALUE, 0);
		bmask = UINT64_MAX;
	} else {
		bmask = ((1ULL << m->size_idx) - 1ULL) <<
				(m->block_off % RUN_BITS_PER_VALUE);
	}

	/*
	 * The run bitmap is composed of several 8 byte values, so a proper
	 * element of the bitmap array must be selected.
	 */
	unsigned bpos = m->block_off / RUN_BITS_PER_VALUE;

	struct run_bitmap b;
	run_get_bitmap(m, &b);

	/* the bit mask is applied immediately by the add entry operations */
	if (op == MEMBLOCK_ALLOCATED) {
		operation_add_entry(ctx, &b.values[bpos],
			bmask, ULOG_OPERATION_OR);
	} else if (op == MEMBLOCK_FREE) {
		operation_add_entry(ctx, &b.values[bpos],
			~bmask, ULOG_OPERATION_AND);
	} else {
		ASSERT(0);
	}
}

/*
 * huge_get_lock -- because huge memory blocks are always allocated from a
 *	single bucket there's no reason to lock them - the bucket itself is
 *	protected.
 */
static os_mutex_t *
huge_get_lock(const struct memory_block *m)
{
	return NULL;
}

/*
 * run_get_lock -- gets the runtime mutex from the heap.
 */
static os_mutex_t *
run_get_lock(const struct memory_block *m)
{
	return heap_get_run_lock(m->heap, m->chunk_id);
}

/*
 * huge_get_state -- returns whether a huge block is allocated or not
 */
static enum memblock_state
huge_get_state(const struct memory_block *m)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);

	if (hdr->type == CHUNK_TYPE_USED)
		return MEMBLOCK_ALLOCATED;

	if (hdr->type == CHUNK_TYPE_FREE)
		return MEMBLOCK_FREE;

	return MEMBLOCK_STATE_UNKNOWN;
}

/*
 * huge_get_state -- returns whether a block from a run is allocated or not
 */
static enum memblock_state
run_get_state(const struct memory_block *m)
{
	struct run_bitmap b;
	run_get_bitmap(m, &b);

	unsigned v = m->block_off / RUN_BITS_PER_VALUE;
	uint64_t bitmap = b.values[v];
	unsigned bit = m->block_off % RUN_BITS_PER_VALUE;

	unsigned bit_last = bit + m->size_idx;
	ASSERT(bit_last <= RUN_BITS_PER_VALUE);

	for (unsigned i = bit; i < bit_last; ++i) {
		if (!BIT_IS_CLR(bitmap, i)) {
			return MEMBLOCK_ALLOCATED;
		}
	}

	return MEMBLOCK_FREE;
}

/*
 * huge_ensure_header_type -- checks the header type of a chunk and modifies
 *	it if necessary. This is fail-safe atomic.
 */
static void
huge_ensure_header_type(const struct memory_block *m,
	enum header_type t)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);
	ASSERTeq(hdr->type, CHUNK_TYPE_FREE);

	if ((hdr->flags & header_type_to_flag[t]) == 0) {
		VALGRIND_ADD_TO_TX(hdr, sizeof(*hdr));
		uint16_t f = ((uint16_t)header_type_to_flag[t]);
		hdr->flags |= f;
		pmemops_persist(&m->heap->p_ops, hdr, sizeof(*hdr));
		VALGRIND_REMOVE_FROM_TX(hdr, sizeof(*hdr));
	}
}

/*
 * run_ensure_header_type -- runs must be created with appropriate header type.
 */
static void
run_ensure_header_type(const struct memory_block *m,
	enum header_type t)
{
#ifdef DEBUG
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);
	ASSERTeq(hdr->type, CHUNK_TYPE_RUN);
	ASSERT((hdr->flags & header_type_to_flag[t]) == header_type_to_flag[t]);
#endif
}

/*
 * block_get_real_size -- returns the size of a memory block that includes all
 *	of the overhead (headers)
 */
static size_t
block_get_real_size(const struct memory_block *m)
{
	/*
	 * There are two valid ways to get a size. If the memory block
	 * initialized properly and the size index is set, the chunk unit size
	 * can be simply multiplied by that index, otherwise we need to look at
	 * the allocation header.
	 */
	if (m->size_idx != 0) {
		return m->m_ops->block_size(m) * m->size_idx;
	} else {
		return memblock_header_ops[m->header_type].get_size(m);
	}
}

/*
 * block_get_user_size -- returns the size of a memory block without overheads,
 *	this is the size of a data block that can be used.
 */
static size_t
block_get_user_size(const struct memory_block *m)
{
	return block_get_real_size(m) - header_type_to_size[m->header_type];
}

/*
 * block_write_header -- writes a header of an allocation
 */
static void
block_write_header(const struct memory_block *m,
	uint64_t extra_field, uint16_t flags)
{
	memblock_header_ops[m->header_type].write(m,
		block_get_real_size(m), extra_field, flags);
}

/*
 * block_invalidate -- invalidates allocation data and header
 */
static void
block_invalidate(const struct memory_block *m)
{
	void *data = m->m_ops->get_user_data(m);
	size_t size = m->m_ops->get_user_size(m);
	VALGRIND_SET_CLEAN(data, size);

	memblock_header_ops[m->header_type].invalidate(m);
}

/*
 * block_reinit_header -- reinitializes a block after a heap restart
 */
static void
block_reinit_header(const struct memory_block *m)
{
	memblock_header_ops[m->header_type].reinit(m);
}

/*
 * block_get_extra -- returns the extra field of an allocation
 */
static uint64_t
block_get_extra(const struct memory_block *m)
{
	return memblock_header_ops[m->header_type].get_extra(m);
}

/*
 * block_get_flags -- returns the flags of an allocation
 */
static uint16_t
block_get_flags(const struct memory_block *m)
{
	return memblock_header_ops[m->header_type].get_flags(m);
}

/*
 * heap_run_process_bitmap_value -- (internal) looks for unset bits in the
 * value, creates a valid memory block out of them and inserts that
 * block into the given bucket.
 */
static int
run_process_bitmap_value(const struct memory_block *m,
	uint64_t value, uint32_t base_offset, object_callback cb, void *arg)
{
	int ret = 0;

	uint64_t shift = 0; /* already processed bits */
	struct memory_block s = *m;
	do {
		/*
		 * Shift the value so that the next memory block starts on the
		 * least significant position:
		 *	..............0 (free block)
		 * or	..............1 (used block)
		 */
		uint64_t shifted = value >> shift;

		/* all clear or set bits indicate the end of traversal */
		if (shifted == 0) {
			/*
			 * Insert the remaining blocks as free. Remember that
			 * unsigned values are always zero-filled, so we must
			 * take the current shift into account.
			 */
			s.block_off = (uint32_t)(base_offset + shift);
			s.size_idx = (uint32_t)(RUN_BITS_PER_VALUE - shift);

			if ((ret = cb(&s, arg)) != 0)
				return ret;

			break;
		} else if (shifted == UINT64_MAX) {
			break;
		}

		/*
		 * Offset and size of the next free block, either of these
		 * can be zero depending on where the free block is located
		 * in the value.
		 */
		unsigned off = (unsigned)util_lssb_index64(~shifted);
		unsigned size = (unsigned)util_lssb_index64(shifted);

		shift += off + size;

		if (size != 0) { /* zero size means skip to the next value */
			s.block_off = (uint32_t)(base_offset + (shift - size));
			s.size_idx = (uint32_t)(size);

			memblock_rebuild_state(m->heap, &s);
			if ((ret = cb(&s, arg)) != 0)
				return ret;
		}
	} while (shift != RUN_BITS_PER_VALUE);

	return 0;
}

/*
 * run_iterate_free -- iterates over free blocks in a run
 */
static int
run_iterate_free(const struct memory_block *m, object_callback cb, void *arg)
{
	int ret = 0;
	uint32_t block_off = 0;

	struct run_bitmap b;
	run_get_bitmap(m, &b);

	struct memory_block nm = *m;
	for (unsigned i = 0; i < b.nvalues; ++i) {
		uint64_t v = b.values[i];
		ASSERT((uint64_t)RUN_BITS_PER_VALUE * (uint64_t)i
			<= UINT32_MAX);
		block_off = RUN_BITS_PER_VALUE * i;
		ret = run_process_bitmap_value(&nm, v, block_off, cb, arg);
		if (ret != 0)
			return ret;
	}

	return 0;
}

/*
 * run_iterate_used -- iterates over used blocks in a run
 */
static int
run_iterate_used(const struct memory_block *m, object_callback cb, void *arg)
{
	uint32_t i = m->block_off / RUN_BITS_PER_VALUE;
	uint32_t block_start = m->block_off % RUN_BITS_PER_VALUE;
	uint32_t block_off;

	struct chunk_run *run = heap_get_chunk_run(m->heap, m);

	struct memory_block iter = *m;

	struct run_bitmap b;
	run_get_bitmap(m, &b);

	for (; i < b.nvalues; ++i) {
		uint64_t v = b.values[i];
		block_off = (uint32_t)(RUN_BITS_PER_VALUE * i);

		for (uint32_t j = block_start; j < RUN_BITS_PER_VALUE; ) {
			if (block_off + j >= (uint32_t)b.nbits)
				break;

			if (!BIT_IS_CLR(v, j)) {
				iter.block_off = (uint32_t)(block_off + j);

				/*
				 * The size index of this memory block cannot be
				 * retrieved at this time because the header
				 * might not be initialized in valgrind yet.
				 */
				iter.size_idx = 0;

				if (cb(&iter, arg) != 0)
					return 1;

				iter.size_idx = CALC_SIZE_IDX(
					run->hdr.block_size,
					iter.m_ops->get_real_size(&iter));
				j = (uint32_t)(j + iter.size_idx);
			} else {
				++j;
			}
		}
		block_start = 0;
	}

	return 0;
}

/*
 * huge_iterate_free -- calls cb on memory block if it's free
 */
static int
huge_iterate_free(const struct memory_block *m, object_callback cb, void *arg)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);

	return hdr->type == CHUNK_TYPE_FREE ? cb(m, arg) : 0;
}

/*
 * huge_iterate_free -- calls cb on memory block if it's used
 */
static int
huge_iterate_used(const struct memory_block *m, object_callback cb, void *arg)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);

	return hdr->type == CHUNK_TYPE_USED ? cb(m, arg) : 0;
}

/*
 * huge_vg_init -- initializes chunk metadata in memcheck state
 */
static void
huge_vg_init(const struct memory_block *m, int objects,
	object_callback cb, void *arg)
{
	struct zone *z = ZID_TO_ZONE(m->heap->layout, m->zone_id);
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);
	struct chunk *chunk = heap_get_chunk(m->heap, m);
	VALGRIND_DO_MAKE_MEM_DEFINED(hdr, sizeof(*hdr));

	/*
	 * Mark unused chunk headers as not accessible.
	 */
	VALGRIND_DO_MAKE_MEM_NOACCESS(
		&z->chunk_headers[m->chunk_id + 1],
		(m->size_idx - 1) *
		sizeof(struct chunk_header));

	size_t size = block_get_real_size(m);
	VALGRIND_DO_MAKE_MEM_NOACCESS(chunk, size);

	if (objects && huge_get_state(m) == MEMBLOCK_ALLOCATED) {
		if (cb(m, arg) != 0)
			FATAL("failed to initialize valgrind state");
	}
}

/*
 * run_vg_init -- initializes run metadata in memcheck state
 */
static void
run_vg_init(const struct memory_block *m, int objects,
	object_callback cb, void *arg)
{
	struct zone *z = ZID_TO_ZONE(m->heap->layout, m->zone_id);
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);
	struct chunk_run *run = heap_get_chunk_run(m->heap, m);
	VALGRIND_DO_MAKE_MEM_DEFINED(hdr, sizeof(*hdr));

	/* set the run metadata as defined */
	VALGRIND_DO_MAKE_MEM_DEFINED(run, RUN_BASE_METADATA_SIZE);

	struct run_bitmap b;
	run_get_bitmap(m, &b);

	/*
	 * Mark run data headers as defined.
	 */
	for (unsigned j = 1; j < m->size_idx; ++j) {
		struct chunk_header *data_hdr =
			&z->chunk_headers[m->chunk_id + j];
		VALGRIND_DO_MAKE_MEM_DEFINED(data_hdr,
			sizeof(struct chunk_header));
		ASSERTeq(data_hdr->type, CHUNK_TYPE_RUN_DATA);
	}

	VALGRIND_DO_MAKE_MEM_NOACCESS(run, SIZEOF_RUN(run, m->size_idx));

	/* set the run bitmap as defined */
	VALGRIND_DO_MAKE_MEM_DEFINED(run, b.size + RUN_BASE_METADATA_SIZE);

	if (objects) {
		if (run_iterate_used(m, cb, arg) != 0)
			FATAL("failed to initialize valgrind state");
	}
}

/*
 * run_reinit_chunk -- run reinitialization on first zone traversal
 */
static void
run_reinit_chunk(const struct memory_block *m)
{
	/* noop */
}

/*
 * huge_write_footer -- (internal) writes a chunk footer
 */
static void
huge_write_footer(struct chunk_header *hdr, uint32_t size_idx)
{
	if (size_idx == 1) /* that would overwrite the header */
		return;

	VALGRIND_DO_MAKE_MEM_UNDEFINED(hdr + size_idx - 1, sizeof(*hdr));

	struct chunk_header f = *hdr;
	f.type = CHUNK_TYPE_FOOTER;
	f.size_idx = size_idx;
	*(hdr + size_idx - 1) = f;
	/* no need to persist, footers are recreated in heap_populate_buckets */
	VALGRIND_SET_CLEAN(hdr + size_idx - 1, sizeof(f));
}

/*
 * huge_reinit_chunk -- chunk reinitialization on first zone traversal
 */
static void
huge_reinit_chunk(const struct memory_block *m)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);
	if (hdr->type == CHUNK_TYPE_USED)
		huge_write_footer(hdr, hdr->size_idx);
}

/*
 * run_calc_free -- calculates the number of free units in a run
 */
static void
run_calc_free(const struct memory_block *m,
	uint32_t *free_space, uint32_t *max_free_block)
{
	struct run_bitmap b;
	run_get_bitmap(m, &b);
	for (unsigned i = 0; i < b.nvalues; ++i) {
		uint64_t value = ~b.values[i];
		if (value == 0)
			continue;

		uint32_t free_in_value = util_popcount64(value);
		*free_space = *free_space + free_in_value;

		/*
		 * If this value has less free blocks than already found max,
		 * there's no point in calculating.
		 */
		if (free_in_value < *max_free_block)
			continue;

		/* if the entire value is empty, no point in calculating */
		if (free_in_value == RUN_BITS_PER_VALUE) {
			*max_free_block = RUN_BITS_PER_VALUE;
			continue;
		}

		/* if already at max, no point in calculating */
		if (*max_free_block == RUN_BITS_PER_VALUE)
			continue;

		/*
		 * Calculate the biggest free block in the bitmap.
		 * This algorithm is not the most clever imaginable, but it's
		 * easy to implement and fast enough.
		 */
		uint16_t n = 0;
		while (value != 0) {
			value &= (value << 1ULL);
			n++;
		}

		if (n > *max_free_block)
			*max_free_block = n;
	}
}

/*
 * huge_fill_pct -- huge blocks by definition use the entirety of a chunk
 */
static unsigned
huge_fill_pct(const struct memory_block *m)
{
	return 100;
}

/*
 * run_fill_pct -- calculates the percentage of allocated units inside of a run
 */
static unsigned
run_fill_pct(const struct memory_block *m)
{
	struct run_bitmap b;
	run_get_bitmap(m, &b);
	unsigned clearbits = 0;
	for (unsigned i = 0; i < b.nvalues; ++i) {
		uint64_t value = ~b.values[i];
		if (value == 0)
			continue;

		clearbits += util_popcount64(value);
	}
	ASSERT(b.nbits >= clearbits);
	unsigned setbits = b.nbits - clearbits;

	return (100 * setbits) / b.nbits;
}

static const struct memory_block_ops mb_ops[MAX_MEMORY_BLOCK] = {
	[MEMORY_BLOCK_HUGE] = {
		.block_size = huge_block_size,
		.prep_hdr = huge_prep_operation_hdr,
		.get_lock = huge_get_lock,
		.get_state = huge_get_state,
		.get_user_data = block_get_user_data,
		.get_real_data = huge_get_real_data,
		.get_user_size = block_get_user_size,
		.get_real_size = block_get_real_size,
		.write_header = block_write_header,
		.invalidate = block_invalidate,
		.ensure_header_type = huge_ensure_header_type,
		.reinit_header = block_reinit_header,
		.vg_init = huge_vg_init,
		.get_extra = block_get_extra,
		.get_flags = block_get_flags,
		.iterate_free = huge_iterate_free,
		.iterate_used = huge_iterate_used,
		.reinit_chunk = huge_reinit_chunk,
		.calc_free = NULL,
		.get_bitmap = NULL,
		.fill_pct = huge_fill_pct,
	},
	[MEMORY_BLOCK_RUN] = {
		.block_size = run_block_size,
		.prep_hdr = run_prep_operation_hdr,
		.get_lock = run_get_lock,
		.get_state = run_get_state,
		.get_user_data = block_get_user_data,
		.get_real_data = run_get_real_data,
		.get_user_size = block_get_user_size,
		.get_real_size = block_get_real_size,
		.write_header = block_write_header,
		.invalidate = block_invalidate,
		.ensure_header_type = run_ensure_header_type,
		.reinit_header = block_reinit_header,
		.vg_init = run_vg_init,
		.get_extra = block_get_extra,
		.get_flags = block_get_flags,
		.iterate_free = run_iterate_free,
		.iterate_used = run_iterate_used,
		.reinit_chunk = run_reinit_chunk,
		.calc_free = run_calc_free,
		.get_bitmap = run_get_bitmap,
		.fill_pct = run_fill_pct,
	}
};

/*
 * memblock_huge_init -- initializes a new huge memory block
 */
struct memory_block
memblock_huge_init(struct palloc_heap *heap,
	uint32_t chunk_id, uint32_t zone_id, uint32_t size_idx)
{
	struct memory_block m = MEMORY_BLOCK_NONE;
	m.chunk_id = chunk_id;
	m.zone_id = zone_id;
	m.size_idx = size_idx;
	m.heap = heap;

	struct chunk_header nhdr = {
		.type = CHUNK_TYPE_FREE,
		.flags = 0,
		.size_idx = size_idx
	};

	struct chunk_header *hdr = heap_get_chunk_hdr(heap, &m);

	VALGRIND_DO_MAKE_MEM_UNDEFINED(hdr, sizeof(*hdr));
	VALGRIND_ANNOTATE_NEW_MEMORY(hdr, sizeof(*hdr));

	*hdr = nhdr; /* write the entire header (8 bytes) at once */

	pmemops_persist(&heap->p_ops, hdr, sizeof(*hdr));

	huge_write_footer(hdr, size_idx);

	memblock_rebuild_state(heap, &m);

	return m;
}

/*
 * memblock_run_init -- initializes a new run memory block
 */
struct memory_block
memblock_run_init(struct palloc_heap *heap,
	uint32_t chunk_id, uint32_t zone_id, struct run_descriptor *rdsc)
{
	uint32_t size_idx = rdsc->size_idx;
	ASSERTne(size_idx, 0);

	struct memory_block m = MEMORY_BLOCK_NONE;
	m.chunk_id = chunk_id;
	m.zone_id = zone_id;
	m.size_idx = size_idx;
	m.heap = heap;

	struct zone *z = ZID_TO_ZONE(heap->layout, zone_id);

	struct chunk_run *run = heap_get_chunk_run(heap, &m);
	size_t runsize = SIZEOF_RUN(run, size_idx);

	VALGRIND_DO_MAKE_MEM_UNDEFINED(run, runsize);

	/* add/remove chunk_run and chunk_header to valgrind transaction */
	VALGRIND_ADD_TO_TX(run, runsize);
	run->hdr.block_size = rdsc->unit_size;
	run->hdr.alignment = rdsc->alignment;

	struct run_bitmap b = rdsc->bitmap;
	b.values = (uint64_t *)run->content;

	size_t bitmap_size = b.size;

	/* set all the bits */
	memset(b.values, 0xFF, bitmap_size);

	/* clear only the bits available for allocations from this bucket */
	memset(b.values, 0, sizeof(*b.values) * (b.nvalues - 1));

	unsigned trailing_bits = b.nbits % RUN_BITS_PER_VALUE;
	uint64_t last_value = UINT64_MAX << trailing_bits;
	b.values[b.nvalues - 1] = last_value;

	VALGRIND_REMOVE_FROM_TX(run, runsize);

	pmemops_flush(&heap->p_ops, run,
		sizeof(struct chunk_run_header) +
		bitmap_size);

	struct chunk_header run_data_hdr;
	run_data_hdr.type = CHUNK_TYPE_RUN_DATA;
	run_data_hdr.flags = 0;

	VALGRIND_ADD_TO_TX(&z->chunk_headers[chunk_id],
		sizeof(struct chunk_header) * size_idx);

	struct chunk_header *data_hdr;
	for (unsigned i = 1; i < size_idx; ++i) {
		data_hdr = &z->chunk_headers[chunk_id + i];
		VALGRIND_DO_MAKE_MEM_UNDEFINED(data_hdr, sizeof(*data_hdr));
		VALGRIND_ANNOTATE_NEW_MEMORY(data_hdr, sizeof(*data_hdr));
		run_data_hdr.size_idx = i;
		*data_hdr = run_data_hdr;
	}
	pmemops_persist(&heap->p_ops,
		&z->chunk_headers[chunk_id + 1],
		sizeof(struct chunk_header) * (size_idx - 1));

	struct chunk_header *hdr = &z->chunk_headers[chunk_id];
	ASSERT(hdr->type == CHUNK_TYPE_FREE);

	VALGRIND_ANNOTATE_NEW_MEMORY(hdr, sizeof(*hdr));

	struct chunk_header run_hdr;
	run_hdr.size_idx = hdr->size_idx;
	run_hdr.type = CHUNK_TYPE_RUN;
	run_hdr.flags = rdsc->flags;
	*hdr = run_hdr;
	pmemops_persist(&heap->p_ops, hdr, sizeof(*hdr));

	VALGRIND_REMOVE_FROM_TX(&z->chunk_headers[chunk_id],
		sizeof(struct chunk_header) * size_idx);

	memblock_rebuild_state(heap, &m);
	m.cached_bitmap = &rdsc->bitmap;

	return m;
}

/*
 * memblock_detect_type -- looks for the corresponding chunk header and
 *	depending on the chunks type returns the right memory block type
 */
static enum memory_block_type
memblock_detect_type(struct palloc_heap *heap, const struct memory_block *m)
{
	enum memory_block_type ret;

	switch (heap_get_chunk_hdr(heap, m)->type) {
		case CHUNK_TYPE_RUN:
		case CHUNK_TYPE_RUN_DATA:
			ret = MEMORY_BLOCK_RUN;
			break;
		case CHUNK_TYPE_FREE:
		case CHUNK_TYPE_USED:
		case CHUNK_TYPE_FOOTER:
			ret = MEMORY_BLOCK_HUGE;
			break;
		default:
			/* unreachable */
			FATAL("possible zone chunks metadata corruption");
	}
	return ret;
}

/*
 * memblock_from_offset -- resolves a memory block data from an offset that
 *	originates from the heap
 */
struct memory_block
memblock_from_offset_opt(struct palloc_heap *heap, uint64_t off, int size)
{
	struct memory_block m = MEMORY_BLOCK_NONE;
	m.heap = heap;

	off -= HEAP_PTR_TO_OFF(heap, &heap->layout->zone0);
	m.zone_id = (uint32_t)(off / ZONE_MAX_SIZE);

	off -= (ZONE_MAX_SIZE * m.zone_id) + sizeof(struct zone);
	m.chunk_id = (uint32_t)(off / CHUNKSIZE);

	struct chunk_header *hdr = heap_get_chunk_hdr(heap, &m);

	if (hdr->type == CHUNK_TYPE_RUN_DATA)
		m.chunk_id -= hdr->size_idx;

	off -= CHUNKSIZE * m.chunk_id;

	m.header_type = memblock_header_type(&m);

	off -= header_type_to_size[m.header_type];

	m.type = off != 0 ? MEMORY_BLOCK_RUN : MEMORY_BLOCK_HUGE;
	ASSERTeq(memblock_detect_type(heap, &m), m.type);

	m.m_ops = &mb_ops[m.type];

	uint64_t unit_size = m.m_ops->block_size(&m);

	if (off != 0) { /* run */
		off -= run_get_data_offset(&m);
		off -= RUN_BASE_METADATA_SIZE;
		m.block_off = (uint16_t)(off / unit_size);
		off -= m.block_off * unit_size;
	}

	struct alloc_class_collection *acc = heap_alloc_classes(heap);
	if (acc != NULL) {
		struct alloc_class *ac = alloc_class_by_run(acc,
			unit_size, hdr->flags, hdr->size_idx);
		if (ac != NULL)
			m.cached_bitmap = &ac->rdsc.bitmap;
	}

	m.size_idx = !size ? 0 : CALC_SIZE_IDX(unit_size,
		memblock_header_ops[m.header_type].get_size(&m));

	ASSERTeq(off, 0);

	return m;
}

/*
 * memblock_from_offset -- returns memory block with size
 */
struct memory_block
memblock_from_offset(struct palloc_heap *heap, uint64_t off)
{
	return memblock_from_offset_opt(heap, off, 1);
}

/*
 * memblock_rebuild_state -- fills in the runtime-state related fields of a
 *	memory block structure
 *
 * This function must be called on all memory blocks that were created by hand
 * (as opposed to retrieved from memblock_from_offset function).
 */
void
memblock_rebuild_state(struct palloc_heap *heap, struct memory_block *m)
{
	m->heap = heap;
	m->header_type = memblock_header_type(m);
	m->type = memblock_detect_type(heap, m);
	m->m_ops = &mb_ops[m->type];
	m->cached_bitmap = NULL;
}