summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/column_family.cc
blob: 928a02a1fdab925e3c5c4993d4fd1f22abd6b09f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "db/column_family.h"

#include <algorithm>
#include <cinttypes>
#include <limits>
#include <string>
#include <vector>

#include "db/compaction/compaction_picker.h"
#include "db/compaction/compaction_picker_fifo.h"
#include "db/compaction/compaction_picker_level.h"
#include "db/compaction/compaction_picker_universal.h"
#include "db/db_impl/db_impl.h"
#include "db/internal_stats.h"
#include "db/job_context.h"
#include "db/range_del_aggregator.h"
#include "db/table_properties_collector.h"
#include "db/version_set.h"
#include "db/write_controller.h"
#include "file/sst_file_manager_impl.h"
#include "memtable/hash_skiplist_rep.h"
#include "monitoring/thread_status_util.h"
#include "options/options_helper.h"
#include "port/port.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/merging_iterator.h"
#include "util/autovector.h"
#include "util/compression.h"

namespace ROCKSDB_NAMESPACE {

ColumnFamilyHandleImpl::ColumnFamilyHandleImpl(
    ColumnFamilyData* column_family_data, DBImpl* db, InstrumentedMutex* mutex)
    : cfd_(column_family_data), db_(db), mutex_(mutex) {
  if (cfd_ != nullptr) {
    cfd_->Ref();
  }
}

ColumnFamilyHandleImpl::~ColumnFamilyHandleImpl() {
  if (cfd_ != nullptr) {
#ifndef ROCKSDB_LITE
    for (auto& listener : cfd_->ioptions()->listeners) {
      listener->OnColumnFamilyHandleDeletionStarted(this);
    }
#endif  // ROCKSDB_LITE
    // Job id == 0 means that this is not our background process, but rather
    // user thread
    // Need to hold some shared pointers owned by the initial_cf_options
    // before final cleaning up finishes.
    ColumnFamilyOptions initial_cf_options_copy = cfd_->initial_cf_options();
    JobContext job_context(0);
    mutex_->Lock();
    bool dropped = cfd_->IsDropped();
    if (cfd_->UnrefAndTryDelete()) {
      if (dropped) {
        db_->FindObsoleteFiles(&job_context, false, true);
      }
    }
    mutex_->Unlock();
    if (job_context.HaveSomethingToDelete()) {
      bool defer_purge =
          db_->immutable_db_options().avoid_unnecessary_blocking_io;
      db_->PurgeObsoleteFiles(job_context, defer_purge);
      if (defer_purge) {
        mutex_->Lock();
        db_->SchedulePurge();
        mutex_->Unlock();
      }
    }
    job_context.Clean();
  }
}

uint32_t ColumnFamilyHandleImpl::GetID() const { return cfd()->GetID(); }

const std::string& ColumnFamilyHandleImpl::GetName() const {
  return cfd()->GetName();
}

Status ColumnFamilyHandleImpl::GetDescriptor(ColumnFamilyDescriptor* desc) {
#ifndef ROCKSDB_LITE
  // accessing mutable cf-options requires db mutex.
  InstrumentedMutexLock l(mutex_);
  *desc = ColumnFamilyDescriptor(cfd()->GetName(), cfd()->GetLatestCFOptions());
  return Status::OK();
#else
  (void)desc;
  return Status::NotSupported();
#endif  // !ROCKSDB_LITE
}

const Comparator* ColumnFamilyHandleImpl::GetComparator() const {
  return cfd()->user_comparator();
}

void GetIntTblPropCollectorFactory(
    const ImmutableCFOptions& ioptions,
    std::vector<std::unique_ptr<IntTblPropCollectorFactory>>*
        int_tbl_prop_collector_factories) {
  auto& collector_factories = ioptions.table_properties_collector_factories;
  for (size_t i = 0; i < ioptions.table_properties_collector_factories.size();
       ++i) {
    assert(collector_factories[i]);
    int_tbl_prop_collector_factories->emplace_back(
        new UserKeyTablePropertiesCollectorFactory(collector_factories[i]));
  }
}

Status CheckCompressionSupported(const ColumnFamilyOptions& cf_options) {
  if (!cf_options.compression_per_level.empty()) {
    for (size_t level = 0; level < cf_options.compression_per_level.size();
         ++level) {
      if (!CompressionTypeSupported(cf_options.compression_per_level[level])) {
        return Status::InvalidArgument(
            "Compression type " +
            CompressionTypeToString(cf_options.compression_per_level[level]) +
            " is not linked with the binary.");
      }
    }
  } else {
    if (!CompressionTypeSupported(cf_options.compression)) {
      return Status::InvalidArgument(
          "Compression type " +
          CompressionTypeToString(cf_options.compression) +
          " is not linked with the binary.");
    }
  }
  if (cf_options.compression_opts.zstd_max_train_bytes > 0) {
    if (!ZSTD_TrainDictionarySupported()) {
      return Status::InvalidArgument(
          "zstd dictionary trainer cannot be used because ZSTD 1.1.3+ "
          "is not linked with the binary.");
    }
    if (cf_options.compression_opts.max_dict_bytes == 0) {
      return Status::InvalidArgument(
          "The dictionary size limit (`CompressionOptions::max_dict_bytes`) "
          "should be nonzero if we're using zstd's dictionary generator.");
    }
  }
  return Status::OK();
}

Status CheckConcurrentWritesSupported(const ColumnFamilyOptions& cf_options) {
  if (cf_options.inplace_update_support) {
    return Status::InvalidArgument(
        "In-place memtable updates (inplace_update_support) is not compatible "
        "with concurrent writes (allow_concurrent_memtable_write)");
  }
  if (!cf_options.memtable_factory->IsInsertConcurrentlySupported()) {
    return Status::InvalidArgument(
        "Memtable doesn't concurrent writes (allow_concurrent_memtable_write)");
  }
  return Status::OK();
}

Status CheckCFPathsSupported(const DBOptions& db_options,
                             const ColumnFamilyOptions& cf_options) {
  // More than one cf_paths are supported only in universal
  // and level compaction styles. This function also checks the case
  // in which cf_paths is not specified, which results in db_paths
  // being used.
  if ((cf_options.compaction_style != kCompactionStyleUniversal) &&
      (cf_options.compaction_style != kCompactionStyleLevel)) {
    if (cf_options.cf_paths.size() > 1) {
      return Status::NotSupported(
          "More than one CF paths are only supported in "
          "universal and level compaction styles. ");
    } else if (cf_options.cf_paths.empty() &&
               db_options.db_paths.size() > 1) {
      return Status::NotSupported(
          "More than one DB paths are only supported in "
          "universal and level compaction styles. ");
    }
  }
  return Status::OK();
}

namespace {
const uint64_t kDefaultTtl = 0xfffffffffffffffe;
const uint64_t kDefaultPeriodicCompSecs = 0xfffffffffffffffe;
};  // namespace

ColumnFamilyOptions SanitizeOptions(const ImmutableDBOptions& db_options,
                                    const ColumnFamilyOptions& src) {
  ColumnFamilyOptions result = src;
  size_t clamp_max = std::conditional<
      sizeof(size_t) == 4, std::integral_constant<size_t, 0xffffffff>,
      std::integral_constant<uint64_t, 64ull << 30>>::type::value;
  ClipToRange(&result.write_buffer_size, ((size_t)64) << 10, clamp_max);
  // if user sets arena_block_size, we trust user to use this value. Otherwise,
  // calculate a proper value from writer_buffer_size;
  if (result.arena_block_size <= 0) {
    result.arena_block_size = result.write_buffer_size / 8;

    // Align up to 4k
    const size_t align = 4 * 1024;
    result.arena_block_size =
        ((result.arena_block_size + align - 1) / align) * align;
  }
  result.min_write_buffer_number_to_merge =
      std::min(result.min_write_buffer_number_to_merge,
               result.max_write_buffer_number - 1);
  if (result.min_write_buffer_number_to_merge < 1) {
    result.min_write_buffer_number_to_merge = 1;
  }

  if (result.num_levels < 1) {
    result.num_levels = 1;
  }
  if (result.compaction_style == kCompactionStyleLevel &&
      result.num_levels < 2) {
    result.num_levels = 2;
  }

  if (result.compaction_style == kCompactionStyleUniversal &&
      db_options.allow_ingest_behind && result.num_levels < 3) {
    result.num_levels = 3;
  }

  if (result.max_write_buffer_number < 2) {
    result.max_write_buffer_number = 2;
  }
  // fall back max_write_buffer_number_to_maintain if
  // max_write_buffer_size_to_maintain is not set
  if (result.max_write_buffer_size_to_maintain < 0) {
    result.max_write_buffer_size_to_maintain =
        result.max_write_buffer_number *
        static_cast<int64_t>(result.write_buffer_size);
  } else if (result.max_write_buffer_size_to_maintain == 0 &&
             result.max_write_buffer_number_to_maintain < 0) {
    result.max_write_buffer_number_to_maintain = result.max_write_buffer_number;
  }
  // bloom filter size shouldn't exceed 1/4 of memtable size.
  if (result.memtable_prefix_bloom_size_ratio > 0.25) {
    result.memtable_prefix_bloom_size_ratio = 0.25;
  } else if (result.memtable_prefix_bloom_size_ratio < 0) {
    result.memtable_prefix_bloom_size_ratio = 0;
  }

  if (!result.prefix_extractor) {
    assert(result.memtable_factory);
    Slice name = result.memtable_factory->Name();
    if (name.compare("HashSkipListRepFactory") == 0 ||
        name.compare("HashLinkListRepFactory") == 0) {
      result.memtable_factory = std::make_shared<SkipListFactory>();
    }
  }

  if (result.compaction_style == kCompactionStyleFIFO) {
    result.num_levels = 1;
    // since we delete level0 files in FIFO compaction when there are too many
    // of them, these options don't really mean anything
    result.level0_slowdown_writes_trigger = std::numeric_limits<int>::max();
    result.level0_stop_writes_trigger = std::numeric_limits<int>::max();
  }

  if (result.max_bytes_for_level_multiplier <= 0) {
    result.max_bytes_for_level_multiplier = 1;
  }

  if (result.level0_file_num_compaction_trigger == 0) {
    ROCKS_LOG_WARN(db_options.info_log.get(),
                   "level0_file_num_compaction_trigger cannot be 0");
    result.level0_file_num_compaction_trigger = 1;
  }

  if (result.level0_stop_writes_trigger <
          result.level0_slowdown_writes_trigger ||
      result.level0_slowdown_writes_trigger <
          result.level0_file_num_compaction_trigger) {
    ROCKS_LOG_WARN(db_options.info_log.get(),
                   "This condition must be satisfied: "
                   "level0_stop_writes_trigger(%d) >= "
                   "level0_slowdown_writes_trigger(%d) >= "
                   "level0_file_num_compaction_trigger(%d)",
                   result.level0_stop_writes_trigger,
                   result.level0_slowdown_writes_trigger,
                   result.level0_file_num_compaction_trigger);
    if (result.level0_slowdown_writes_trigger <
        result.level0_file_num_compaction_trigger) {
      result.level0_slowdown_writes_trigger =
          result.level0_file_num_compaction_trigger;
    }
    if (result.level0_stop_writes_trigger <
        result.level0_slowdown_writes_trigger) {
      result.level0_stop_writes_trigger = result.level0_slowdown_writes_trigger;
    }
    ROCKS_LOG_WARN(db_options.info_log.get(),
                   "Adjust the value to "
                   "level0_stop_writes_trigger(%d)"
                   "level0_slowdown_writes_trigger(%d)"
                   "level0_file_num_compaction_trigger(%d)",
                   result.level0_stop_writes_trigger,
                   result.level0_slowdown_writes_trigger,
                   result.level0_file_num_compaction_trigger);
  }

  if (result.soft_pending_compaction_bytes_limit == 0) {
    result.soft_pending_compaction_bytes_limit =
        result.hard_pending_compaction_bytes_limit;
  } else if (result.hard_pending_compaction_bytes_limit > 0 &&
             result.soft_pending_compaction_bytes_limit >
                 result.hard_pending_compaction_bytes_limit) {
    result.soft_pending_compaction_bytes_limit =
        result.hard_pending_compaction_bytes_limit;
  }

#ifndef ROCKSDB_LITE
  // When the DB is stopped, it's possible that there are some .trash files that
  // were not deleted yet, when we open the DB we will find these .trash files
  // and schedule them to be deleted (or delete immediately if SstFileManager
  // was not used)
  auto sfm = static_cast<SstFileManagerImpl*>(db_options.sst_file_manager.get());
  for (size_t i = 0; i < result.cf_paths.size(); i++) {
    DeleteScheduler::CleanupDirectory(db_options.env, sfm, result.cf_paths[i].path);
  }
#endif

  if (result.cf_paths.empty()) {
    result.cf_paths = db_options.db_paths;
  }

  if (result.level_compaction_dynamic_level_bytes) {
    if (result.compaction_style != kCompactionStyleLevel ||
        result.cf_paths.size() > 1U) {
      // 1. level_compaction_dynamic_level_bytes only makes sense for
      //    level-based compaction.
      // 2. we don't yet know how to make both of this feature and multiple
      //    DB path work.
      result.level_compaction_dynamic_level_bytes = false;
    }
  }

  if (result.max_compaction_bytes == 0) {
    result.max_compaction_bytes = result.target_file_size_base * 25;
  }

  bool is_block_based_table =
      (result.table_factory->Name() == BlockBasedTableFactory().Name());

  const uint64_t kAdjustedTtl = 30 * 24 * 60 * 60;
  if (result.ttl == kDefaultTtl) {
    if (is_block_based_table &&
        result.compaction_style != kCompactionStyleFIFO) {
      result.ttl = kAdjustedTtl;
    } else {
      result.ttl = 0;
    }
  }

  const uint64_t kAdjustedPeriodicCompSecs = 30 * 24 * 60 * 60;

  // Turn on periodic compactions and set them to occur once every 30 days if
  // compaction filters are used and periodic_compaction_seconds is set to the
  // default value.
  if (result.compaction_style != kCompactionStyleFIFO) {
    if ((result.compaction_filter != nullptr ||
         result.compaction_filter_factory != nullptr) &&
        result.periodic_compaction_seconds == kDefaultPeriodicCompSecs &&
        is_block_based_table) {
      result.periodic_compaction_seconds = kAdjustedPeriodicCompSecs;
    }
  } else {
    // result.compaction_style == kCompactionStyleFIFO
    if (result.ttl == 0) {
      if (is_block_based_table) {
        if (result.periodic_compaction_seconds == kDefaultPeriodicCompSecs) {
          result.periodic_compaction_seconds = kAdjustedPeriodicCompSecs;
        }
        result.ttl = result.periodic_compaction_seconds;
      }
    } else if (result.periodic_compaction_seconds != 0) {
      result.ttl = std::min(result.ttl, result.periodic_compaction_seconds);
    }
  }

  // TTL compactions would work similar to Periodic Compactions in Universal in
  // most of the cases. So, if ttl is set, execute the periodic compaction
  // codepath.
  if (result.compaction_style == kCompactionStyleUniversal && result.ttl != 0) {
    if (result.periodic_compaction_seconds != 0) {
      result.periodic_compaction_seconds =
          std::min(result.ttl, result.periodic_compaction_seconds);
    } else {
      result.periodic_compaction_seconds = result.ttl;
    }
  }

  if (result.periodic_compaction_seconds == kDefaultPeriodicCompSecs) {
    result.periodic_compaction_seconds = 0;
  }

  return result;
}

int SuperVersion::dummy = 0;
void* const SuperVersion::kSVInUse = &SuperVersion::dummy;
void* const SuperVersion::kSVObsolete = nullptr;

SuperVersion::~SuperVersion() {
  for (auto td : to_delete) {
    delete td;
  }
}

SuperVersion* SuperVersion::Ref() {
  refs.fetch_add(1, std::memory_order_relaxed);
  return this;
}

bool SuperVersion::Unref() {
  // fetch_sub returns the previous value of ref
  uint32_t previous_refs = refs.fetch_sub(1);
  assert(previous_refs > 0);
  return previous_refs == 1;
}

void SuperVersion::Cleanup() {
  assert(refs.load(std::memory_order_relaxed) == 0);
  imm->Unref(&to_delete);
  MemTable* m = mem->Unref();
  if (m != nullptr) {
    auto* memory_usage = current->cfd()->imm()->current_memory_usage();
    assert(*memory_usage >= m->ApproximateMemoryUsage());
    *memory_usage -= m->ApproximateMemoryUsage();
    to_delete.push_back(m);
  }
  current->Unref();
  if (cfd->Unref()) {
    delete cfd;
  }
}

void SuperVersion::Init(ColumnFamilyData* new_cfd, MemTable* new_mem,
                        MemTableListVersion* new_imm, Version* new_current) {
  cfd = new_cfd;
  mem = new_mem;
  imm = new_imm;
  current = new_current;
  cfd->Ref();
  mem->Ref();
  imm->Ref();
  current->Ref();
  refs.store(1, std::memory_order_relaxed);
}

namespace {
void SuperVersionUnrefHandle(void* ptr) {
  // UnrefHandle is called when a thread exists or a ThreadLocalPtr gets
  // destroyed. When former happens, the thread shouldn't see kSVInUse.
  // When latter happens, we are in ~ColumnFamilyData(), no get should happen as
  // well.
  SuperVersion* sv = static_cast<SuperVersion*>(ptr);
  bool was_last_ref __attribute__((__unused__));
  was_last_ref = sv->Unref();
  // Thread-local SuperVersions can't outlive ColumnFamilyData::super_version_.
  // This is important because we can't do SuperVersion cleanup here.
  // That would require locking DB mutex, which would deadlock because
  // SuperVersionUnrefHandle is called with locked ThreadLocalPtr mutex.
  assert(!was_last_ref);
}
}  // anonymous namespace

ColumnFamilyData::ColumnFamilyData(
    uint32_t id, const std::string& name, Version* _dummy_versions,
    Cache* _table_cache, WriteBufferManager* write_buffer_manager,
    const ColumnFamilyOptions& cf_options, const ImmutableDBOptions& db_options,
    const FileOptions& file_options, ColumnFamilySet* column_family_set,
    BlockCacheTracer* const block_cache_tracer)
    : id_(id),
      name_(name),
      dummy_versions_(_dummy_versions),
      current_(nullptr),
      refs_(0),
      initialized_(false),
      dropped_(false),
      internal_comparator_(cf_options.comparator),
      initial_cf_options_(SanitizeOptions(db_options, cf_options)),
      ioptions_(db_options, initial_cf_options_),
      mutable_cf_options_(initial_cf_options_),
      is_delete_range_supported_(
          cf_options.table_factory->IsDeleteRangeSupported()),
      write_buffer_manager_(write_buffer_manager),
      mem_(nullptr),
      imm_(ioptions_.min_write_buffer_number_to_merge,
           ioptions_.max_write_buffer_number_to_maintain,
           ioptions_.max_write_buffer_size_to_maintain),
      super_version_(nullptr),
      super_version_number_(0),
      local_sv_(new ThreadLocalPtr(&SuperVersionUnrefHandle)),
      next_(nullptr),
      prev_(nullptr),
      log_number_(0),
      flush_reason_(FlushReason::kOthers),
      column_family_set_(column_family_set),
      queued_for_flush_(false),
      queued_for_compaction_(false),
      prev_compaction_needed_bytes_(0),
      allow_2pc_(db_options.allow_2pc),
      last_memtable_id_(0) {
  Ref();

  // Convert user defined table properties collector factories to internal ones.
  GetIntTblPropCollectorFactory(ioptions_, &int_tbl_prop_collector_factories_);

  // if _dummy_versions is nullptr, then this is a dummy column family.
  if (_dummy_versions != nullptr) {
    internal_stats_.reset(
        new InternalStats(ioptions_.num_levels, db_options.env, this));
    table_cache_.reset(new TableCache(ioptions_, file_options, _table_cache,
                                      block_cache_tracer));
    if (ioptions_.compaction_style == kCompactionStyleLevel) {
      compaction_picker_.reset(
          new LevelCompactionPicker(ioptions_, &internal_comparator_));
#ifndef ROCKSDB_LITE
    } else if (ioptions_.compaction_style == kCompactionStyleUniversal) {
      compaction_picker_.reset(
          new UniversalCompactionPicker(ioptions_, &internal_comparator_));
    } else if (ioptions_.compaction_style == kCompactionStyleFIFO) {
      compaction_picker_.reset(
          new FIFOCompactionPicker(ioptions_, &internal_comparator_));
    } else if (ioptions_.compaction_style == kCompactionStyleNone) {
      compaction_picker_.reset(new NullCompactionPicker(
          ioptions_, &internal_comparator_));
      ROCKS_LOG_WARN(ioptions_.info_log,
                     "Column family %s does not use any background compaction. "
                     "Compactions can only be done via CompactFiles\n",
                     GetName().c_str());
#endif  // !ROCKSDB_LITE
    } else {
      ROCKS_LOG_ERROR(ioptions_.info_log,
                      "Unable to recognize the specified compaction style %d. "
                      "Column family %s will use kCompactionStyleLevel.\n",
                      ioptions_.compaction_style, GetName().c_str());
      compaction_picker_.reset(
          new LevelCompactionPicker(ioptions_, &internal_comparator_));
    }

    if (column_family_set_->NumberOfColumnFamilies() < 10) {
      ROCKS_LOG_INFO(ioptions_.info_log,
                     "--------------- Options for column family [%s]:\n",
                     name.c_str());
      initial_cf_options_.Dump(ioptions_.info_log);
    } else {
      ROCKS_LOG_INFO(ioptions_.info_log, "\t(skipping printing options)\n");
    }
  }

  RecalculateWriteStallConditions(mutable_cf_options_);
}

// DB mutex held
ColumnFamilyData::~ColumnFamilyData() {
  assert(refs_.load(std::memory_order_relaxed) == 0);
  // remove from linked list
  auto prev = prev_;
  auto next = next_;
  prev->next_ = next;
  next->prev_ = prev;

  if (!dropped_ && column_family_set_ != nullptr) {
    // If it's dropped, it's already removed from column family set
    // If column_family_set_ == nullptr, this is dummy CFD and not in
    // ColumnFamilySet
    column_family_set_->RemoveColumnFamily(this);
  }

  if (current_ != nullptr) {
    current_->Unref();
  }

  // It would be wrong if this ColumnFamilyData is in flush_queue_ or
  // compaction_queue_ and we destroyed it
  assert(!queued_for_flush_);
  assert(!queued_for_compaction_);
  assert(super_version_ == nullptr);

  if (dummy_versions_ != nullptr) {
    // List must be empty
    assert(dummy_versions_->TEST_Next() == dummy_versions_);
    bool deleted __attribute__((__unused__));
    deleted = dummy_versions_->Unref();
    assert(deleted);
  }

  if (mem_ != nullptr) {
    delete mem_->Unref();
  }
  autovector<MemTable*> to_delete;
  imm_.current()->Unref(&to_delete);
  for (MemTable* m : to_delete) {
    delete m;
  }
}

bool ColumnFamilyData::UnrefAndTryDelete() {
  int old_refs = refs_.fetch_sub(1);
  assert(old_refs > 0);

  if (old_refs == 1) {
    assert(super_version_ == nullptr);
    delete this;
    return true;
  }

  if (old_refs == 2 && super_version_ != nullptr) {
    // Only the super_version_ holds me
    SuperVersion* sv = super_version_;
    super_version_ = nullptr;
    // Release SuperVersion reference kept in ThreadLocalPtr.
    // This must be done outside of mutex_ since unref handler can lock mutex.
    sv->db_mutex->Unlock();
    local_sv_.reset();
    sv->db_mutex->Lock();

    if (sv->Unref()) {
      // May delete this ColumnFamilyData after calling Cleanup()
      sv->Cleanup();
      delete sv;
      return true;
    }
  }
  return false;
}

void ColumnFamilyData::SetDropped() {
  // can't drop default CF
  assert(id_ != 0);
  dropped_ = true;
  write_controller_token_.reset();

  // remove from column_family_set
  column_family_set_->RemoveColumnFamily(this);
}

ColumnFamilyOptions ColumnFamilyData::GetLatestCFOptions() const {
  return BuildColumnFamilyOptions(initial_cf_options_, mutable_cf_options_);
}

uint64_t ColumnFamilyData::OldestLogToKeep() {
  auto current_log = GetLogNumber();

  if (allow_2pc_) {
    autovector<MemTable*> empty_list;
    auto imm_prep_log =
        imm()->PrecomputeMinLogContainingPrepSection(empty_list);
    auto mem_prep_log = mem()->GetMinLogContainingPrepSection();

    if (imm_prep_log > 0 && imm_prep_log < current_log) {
      current_log = imm_prep_log;
    }

    if (mem_prep_log > 0 && mem_prep_log < current_log) {
      current_log = mem_prep_log;
    }
  }

  return current_log;
}

const double kIncSlowdownRatio = 0.8;
const double kDecSlowdownRatio = 1 / kIncSlowdownRatio;
const double kNearStopSlowdownRatio = 0.6;
const double kDelayRecoverSlowdownRatio = 1.4;

namespace {
// If penalize_stop is true, we further reduce slowdown rate.
std::unique_ptr<WriteControllerToken> SetupDelay(
    WriteController* write_controller, uint64_t compaction_needed_bytes,
    uint64_t prev_compaction_need_bytes, bool penalize_stop,
    bool auto_comapctions_disabled) {
  const uint64_t kMinWriteRate = 16 * 1024u;  // Minimum write rate 16KB/s.

  uint64_t max_write_rate = write_controller->max_delayed_write_rate();
  uint64_t write_rate = write_controller->delayed_write_rate();

  if (auto_comapctions_disabled) {
    // When auto compaction is disabled, always use the value user gave.
    write_rate = max_write_rate;
  } else if (write_controller->NeedsDelay() && max_write_rate > kMinWriteRate) {
    // If user gives rate less than kMinWriteRate, don't adjust it.
    //
    // If already delayed, need to adjust based on previous compaction debt.
    // When there are two or more column families require delay, we always
    // increase or reduce write rate based on information for one single
    // column family. It is likely to be OK but we can improve if there is a
    // problem.
    // Ignore compaction_needed_bytes = 0 case because compaction_needed_bytes
    // is only available in level-based compaction
    //
    // If the compaction debt stays the same as previously, we also further slow
    // down. It usually means a mem table is full. It's mainly for the case
    // where both of flush and compaction are much slower than the speed we
    // insert to mem tables, so we need to actively slow down before we get
    // feedback signal from compaction and flushes to avoid the full stop
    // because of hitting the max write buffer number.
    //
    // If DB just falled into the stop condition, we need to further reduce
    // the write rate to avoid the stop condition.
    if (penalize_stop) {
      // Penalize the near stop or stop condition by more aggressive slowdown.
      // This is to provide the long term slowdown increase signal.
      // The penalty is more than the reward of recovering to the normal
      // condition.
      write_rate = static_cast<uint64_t>(static_cast<double>(write_rate) *
                                         kNearStopSlowdownRatio);
      if (write_rate < kMinWriteRate) {
        write_rate = kMinWriteRate;
      }
    } else if (prev_compaction_need_bytes > 0 &&
               prev_compaction_need_bytes <= compaction_needed_bytes) {
      write_rate = static_cast<uint64_t>(static_cast<double>(write_rate) *
                                         kIncSlowdownRatio);
      if (write_rate < kMinWriteRate) {
        write_rate = kMinWriteRate;
      }
    } else if (prev_compaction_need_bytes > compaction_needed_bytes) {
      // We are speeding up by ratio of kSlowdownRatio when we have paid
      // compaction debt. But we'll never speed up to faster than the write rate
      // given by users.
      write_rate = static_cast<uint64_t>(static_cast<double>(write_rate) *
                                         kDecSlowdownRatio);
      if (write_rate > max_write_rate) {
        write_rate = max_write_rate;
      }
    }
  }
  return write_controller->GetDelayToken(write_rate);
}

int GetL0ThresholdSpeedupCompaction(int level0_file_num_compaction_trigger,
                                    int level0_slowdown_writes_trigger) {
  // SanitizeOptions() ensures it.
  assert(level0_file_num_compaction_trigger <= level0_slowdown_writes_trigger);

  if (level0_file_num_compaction_trigger < 0) {
    return std::numeric_limits<int>::max();
  }

  const int64_t twice_level0_trigger =
      static_cast<int64_t>(level0_file_num_compaction_trigger) * 2;

  const int64_t one_fourth_trigger_slowdown =
      static_cast<int64_t>(level0_file_num_compaction_trigger) +
      ((level0_slowdown_writes_trigger - level0_file_num_compaction_trigger) /
       4);

  assert(twice_level0_trigger >= 0);
  assert(one_fourth_trigger_slowdown >= 0);

  // 1/4 of the way between L0 compaction trigger threshold and slowdown
  // condition.
  // Or twice as compaction trigger, if it is smaller.
  int64_t res = std::min(twice_level0_trigger, one_fourth_trigger_slowdown);
  if (res >= port::kMaxInt32) {
    return port::kMaxInt32;
  } else {
    // res fits in int
    return static_cast<int>(res);
  }
}
}  // namespace

std::pair<WriteStallCondition, ColumnFamilyData::WriteStallCause>
ColumnFamilyData::GetWriteStallConditionAndCause(
    int num_unflushed_memtables, int num_l0_files,
    uint64_t num_compaction_needed_bytes,
    const MutableCFOptions& mutable_cf_options) {
  if (num_unflushed_memtables >= mutable_cf_options.max_write_buffer_number) {
    return {WriteStallCondition::kStopped, WriteStallCause::kMemtableLimit};
  } else if (!mutable_cf_options.disable_auto_compactions &&
             num_l0_files >= mutable_cf_options.level0_stop_writes_trigger) {
    return {WriteStallCondition::kStopped, WriteStallCause::kL0FileCountLimit};
  } else if (!mutable_cf_options.disable_auto_compactions &&
             mutable_cf_options.hard_pending_compaction_bytes_limit > 0 &&
             num_compaction_needed_bytes >=
                 mutable_cf_options.hard_pending_compaction_bytes_limit) {
    return {WriteStallCondition::kStopped,
            WriteStallCause::kPendingCompactionBytes};
  } else if (mutable_cf_options.max_write_buffer_number > 3 &&
             num_unflushed_memtables >=
                 mutable_cf_options.max_write_buffer_number - 1) {
    return {WriteStallCondition::kDelayed, WriteStallCause::kMemtableLimit};
  } else if (!mutable_cf_options.disable_auto_compactions &&
             mutable_cf_options.level0_slowdown_writes_trigger >= 0 &&
             num_l0_files >=
                 mutable_cf_options.level0_slowdown_writes_trigger) {
    return {WriteStallCondition::kDelayed, WriteStallCause::kL0FileCountLimit};
  } else if (!mutable_cf_options.disable_auto_compactions &&
             mutable_cf_options.soft_pending_compaction_bytes_limit > 0 &&
             num_compaction_needed_bytes >=
                 mutable_cf_options.soft_pending_compaction_bytes_limit) {
    return {WriteStallCondition::kDelayed,
            WriteStallCause::kPendingCompactionBytes};
  }
  return {WriteStallCondition::kNormal, WriteStallCause::kNone};
}

WriteStallCondition ColumnFamilyData::RecalculateWriteStallConditions(
      const MutableCFOptions& mutable_cf_options) {
  auto write_stall_condition = WriteStallCondition::kNormal;
  if (current_ != nullptr) {
    auto* vstorage = current_->storage_info();
    auto write_controller = column_family_set_->write_controller_;
    uint64_t compaction_needed_bytes =
        vstorage->estimated_compaction_needed_bytes();

    auto write_stall_condition_and_cause = GetWriteStallConditionAndCause(
        imm()->NumNotFlushed(), vstorage->l0_delay_trigger_count(),
        vstorage->estimated_compaction_needed_bytes(), mutable_cf_options);
    write_stall_condition = write_stall_condition_and_cause.first;
    auto write_stall_cause = write_stall_condition_and_cause.second;

    bool was_stopped = write_controller->IsStopped();
    bool needed_delay = write_controller->NeedsDelay();

    if (write_stall_condition == WriteStallCondition::kStopped &&
        write_stall_cause == WriteStallCause::kMemtableLimit) {
      write_controller_token_ = write_controller->GetStopToken();
      internal_stats_->AddCFStats(InternalStats::MEMTABLE_LIMIT_STOPS, 1);
      ROCKS_LOG_WARN(
          ioptions_.info_log,
          "[%s] Stopping writes because we have %d immutable memtables "
          "(waiting for flush), max_write_buffer_number is set to %d",
          name_.c_str(), imm()->NumNotFlushed(),
          mutable_cf_options.max_write_buffer_number);
    } else if (write_stall_condition == WriteStallCondition::kStopped &&
               write_stall_cause == WriteStallCause::kL0FileCountLimit) {
      write_controller_token_ = write_controller->GetStopToken();
      internal_stats_->AddCFStats(InternalStats::L0_FILE_COUNT_LIMIT_STOPS, 1);
      if (compaction_picker_->IsLevel0CompactionInProgress()) {
        internal_stats_->AddCFStats(
            InternalStats::LOCKED_L0_FILE_COUNT_LIMIT_STOPS, 1);
      }
      ROCKS_LOG_WARN(ioptions_.info_log,
                     "[%s] Stopping writes because we have %d level-0 files",
                     name_.c_str(), vstorage->l0_delay_trigger_count());
    } else if (write_stall_condition == WriteStallCondition::kStopped &&
               write_stall_cause == WriteStallCause::kPendingCompactionBytes) {
      write_controller_token_ = write_controller->GetStopToken();
      internal_stats_->AddCFStats(
          InternalStats::PENDING_COMPACTION_BYTES_LIMIT_STOPS, 1);
      ROCKS_LOG_WARN(
          ioptions_.info_log,
          "[%s] Stopping writes because of estimated pending compaction "
          "bytes %" PRIu64,
          name_.c_str(), compaction_needed_bytes);
    } else if (write_stall_condition == WriteStallCondition::kDelayed &&
               write_stall_cause == WriteStallCause::kMemtableLimit) {
      write_controller_token_ =
          SetupDelay(write_controller, compaction_needed_bytes,
                     prev_compaction_needed_bytes_, was_stopped,
                     mutable_cf_options.disable_auto_compactions);
      internal_stats_->AddCFStats(InternalStats::MEMTABLE_LIMIT_SLOWDOWNS, 1);
      ROCKS_LOG_WARN(
          ioptions_.info_log,
          "[%s] Stalling writes because we have %d immutable memtables "
          "(waiting for flush), max_write_buffer_number is set to %d "
          "rate %" PRIu64,
          name_.c_str(), imm()->NumNotFlushed(),
          mutable_cf_options.max_write_buffer_number,
          write_controller->delayed_write_rate());
    } else if (write_stall_condition == WriteStallCondition::kDelayed &&
               write_stall_cause == WriteStallCause::kL0FileCountLimit) {
      // L0 is the last two files from stopping.
      bool near_stop = vstorage->l0_delay_trigger_count() >=
                       mutable_cf_options.level0_stop_writes_trigger - 2;
      write_controller_token_ =
          SetupDelay(write_controller, compaction_needed_bytes,
                     prev_compaction_needed_bytes_, was_stopped || near_stop,
                     mutable_cf_options.disable_auto_compactions);
      internal_stats_->AddCFStats(InternalStats::L0_FILE_COUNT_LIMIT_SLOWDOWNS,
                                  1);
      if (compaction_picker_->IsLevel0CompactionInProgress()) {
        internal_stats_->AddCFStats(
            InternalStats::LOCKED_L0_FILE_COUNT_LIMIT_SLOWDOWNS, 1);
      }
      ROCKS_LOG_WARN(ioptions_.info_log,
                     "[%s] Stalling writes because we have %d level-0 files "
                     "rate %" PRIu64,
                     name_.c_str(), vstorage->l0_delay_trigger_count(),
                     write_controller->delayed_write_rate());
    } else if (write_stall_condition == WriteStallCondition::kDelayed &&
               write_stall_cause == WriteStallCause::kPendingCompactionBytes) {
      // If the distance to hard limit is less than 1/4 of the gap between soft
      // and
      // hard bytes limit, we think it is near stop and speed up the slowdown.
      bool near_stop =
          mutable_cf_options.hard_pending_compaction_bytes_limit > 0 &&
          (compaction_needed_bytes -
           mutable_cf_options.soft_pending_compaction_bytes_limit) >
              3 * (mutable_cf_options.hard_pending_compaction_bytes_limit -
                   mutable_cf_options.soft_pending_compaction_bytes_limit) /
                  4;

      write_controller_token_ =
          SetupDelay(write_controller, compaction_needed_bytes,
                     prev_compaction_needed_bytes_, was_stopped || near_stop,
                     mutable_cf_options.disable_auto_compactions);
      internal_stats_->AddCFStats(
          InternalStats::PENDING_COMPACTION_BYTES_LIMIT_SLOWDOWNS, 1);
      ROCKS_LOG_WARN(
          ioptions_.info_log,
          "[%s] Stalling writes because of estimated pending compaction "
          "bytes %" PRIu64 " rate %" PRIu64,
          name_.c_str(), vstorage->estimated_compaction_needed_bytes(),
          write_controller->delayed_write_rate());
    } else {
      assert(write_stall_condition == WriteStallCondition::kNormal);
      if (vstorage->l0_delay_trigger_count() >=
          GetL0ThresholdSpeedupCompaction(
              mutable_cf_options.level0_file_num_compaction_trigger,
              mutable_cf_options.level0_slowdown_writes_trigger)) {
        write_controller_token_ =
            write_controller->GetCompactionPressureToken();
        ROCKS_LOG_INFO(
            ioptions_.info_log,
            "[%s] Increasing compaction threads because we have %d level-0 "
            "files ",
            name_.c_str(), vstorage->l0_delay_trigger_count());
      } else if (vstorage->estimated_compaction_needed_bytes() >=
                 mutable_cf_options.soft_pending_compaction_bytes_limit / 4) {
        // Increase compaction threads if bytes needed for compaction exceeds
        // 1/4 of threshold for slowing down.
        // If soft pending compaction byte limit is not set, always speed up
        // compaction.
        write_controller_token_ =
            write_controller->GetCompactionPressureToken();
        if (mutable_cf_options.soft_pending_compaction_bytes_limit > 0) {
          ROCKS_LOG_INFO(
              ioptions_.info_log,
              "[%s] Increasing compaction threads because of estimated pending "
              "compaction "
              "bytes %" PRIu64,
              name_.c_str(), vstorage->estimated_compaction_needed_bytes());
        }
      } else {
        write_controller_token_.reset();
      }
      // If the DB recovers from delay conditions, we reward with reducing
      // double the slowdown ratio. This is to balance the long term slowdown
      // increase signal.
      if (needed_delay) {
        uint64_t write_rate = write_controller->delayed_write_rate();
        write_controller->set_delayed_write_rate(static_cast<uint64_t>(
            static_cast<double>(write_rate) * kDelayRecoverSlowdownRatio));
        // Set the low pri limit to be 1/4 the delayed write rate.
        // Note we don't reset this value even after delay condition is relased.
        // Low-pri rate will continue to apply if there is a compaction
        // pressure.
        write_controller->low_pri_rate_limiter()->SetBytesPerSecond(write_rate /
                                                                    4);
      }
    }
    prev_compaction_needed_bytes_ = compaction_needed_bytes;
  }
  return write_stall_condition;
}

const FileOptions* ColumnFamilyData::soptions() const {
  return &(column_family_set_->file_options_);
}

void ColumnFamilyData::SetCurrent(Version* current_version) {
  current_ = current_version;
}

uint64_t ColumnFamilyData::GetNumLiveVersions() const {
  return VersionSet::GetNumLiveVersions(dummy_versions_);
}

uint64_t ColumnFamilyData::GetTotalSstFilesSize() const {
  return VersionSet::GetTotalSstFilesSize(dummy_versions_);
}

uint64_t ColumnFamilyData::GetLiveSstFilesSize() const {
  return current_->GetSstFilesSize();
}

MemTable* ColumnFamilyData::ConstructNewMemtable(
    const MutableCFOptions& mutable_cf_options, SequenceNumber earliest_seq) {
  return new MemTable(internal_comparator_, ioptions_, mutable_cf_options,
                      write_buffer_manager_, earliest_seq, id_);
}

void ColumnFamilyData::CreateNewMemtable(
    const MutableCFOptions& mutable_cf_options, SequenceNumber earliest_seq) {
  if (mem_ != nullptr) {
    delete mem_->Unref();
  }
  SetMemtable(ConstructNewMemtable(mutable_cf_options, earliest_seq));
  mem_->Ref();
}

bool ColumnFamilyData::NeedsCompaction() const {
  return compaction_picker_->NeedsCompaction(current_->storage_info());
}

Compaction* ColumnFamilyData::PickCompaction(
    const MutableCFOptions& mutable_options, LogBuffer* log_buffer) {
  SequenceNumber earliest_mem_seqno =
      std::min(mem_->GetEarliestSequenceNumber(),
               imm_.current()->GetEarliestSequenceNumber(false));
  auto* result = compaction_picker_->PickCompaction(
      GetName(), mutable_options, current_->storage_info(), log_buffer,
      earliest_mem_seqno);
  if (result != nullptr) {
    result->SetInputVersion(current_);
  }
  return result;
}

bool ColumnFamilyData::RangeOverlapWithCompaction(
    const Slice& smallest_user_key, const Slice& largest_user_key,
    int level) const {
  return compaction_picker_->RangeOverlapWithCompaction(
      smallest_user_key, largest_user_key, level);
}

Status ColumnFamilyData::RangesOverlapWithMemtables(
    const autovector<Range>& ranges, SuperVersion* super_version,
    bool* overlap) {
  assert(overlap != nullptr);
  *overlap = false;
  // Create an InternalIterator over all unflushed memtables
  Arena arena;
  ReadOptions read_opts;
  read_opts.total_order_seek = true;
  MergeIteratorBuilder merge_iter_builder(&internal_comparator_, &arena);
  merge_iter_builder.AddIterator(
      super_version->mem->NewIterator(read_opts, &arena));
  super_version->imm->AddIterators(read_opts, &merge_iter_builder);
  ScopedArenaIterator memtable_iter(merge_iter_builder.Finish());

  auto read_seq = super_version->current->version_set()->LastSequence();
  ReadRangeDelAggregator range_del_agg(&internal_comparator_, read_seq);
  auto* active_range_del_iter =
      super_version->mem->NewRangeTombstoneIterator(read_opts, read_seq);
  range_del_agg.AddTombstones(
      std::unique_ptr<FragmentedRangeTombstoneIterator>(active_range_del_iter));
  super_version->imm->AddRangeTombstoneIterators(read_opts, nullptr /* arena */,
                                                 &range_del_agg);

  Status status;
  for (size_t i = 0; i < ranges.size() && status.ok() && !*overlap; ++i) {
    auto* vstorage = super_version->current->storage_info();
    auto* ucmp = vstorage->InternalComparator()->user_comparator();
    InternalKey range_start(ranges[i].start, kMaxSequenceNumber,
                            kValueTypeForSeek);
    memtable_iter->Seek(range_start.Encode());
    status = memtable_iter->status();
    ParsedInternalKey seek_result;
    if (status.ok()) {
      if (memtable_iter->Valid() &&
          !ParseInternalKey(memtable_iter->key(), &seek_result)) {
        status = Status::Corruption("DB have corrupted keys");
      }
    }
    if (status.ok()) {
      if (memtable_iter->Valid() &&
          ucmp->Compare(seek_result.user_key, ranges[i].limit) <= 0) {
        *overlap = true;
      } else if (range_del_agg.IsRangeOverlapped(ranges[i].start,
                                                 ranges[i].limit)) {
        *overlap = true;
      }
    }
  }
  return status;
}

const int ColumnFamilyData::kCompactAllLevels = -1;
const int ColumnFamilyData::kCompactToBaseLevel = -2;

Compaction* ColumnFamilyData::CompactRange(
    const MutableCFOptions& mutable_cf_options, int input_level,
    int output_level, const CompactRangeOptions& compact_range_options,
    const InternalKey* begin, const InternalKey* end,
    InternalKey** compaction_end, bool* conflict,
    uint64_t max_file_num_to_ignore) {
  auto* result = compaction_picker_->CompactRange(
      GetName(), mutable_cf_options, current_->storage_info(), input_level,
      output_level, compact_range_options, begin, end, compaction_end, conflict,
      max_file_num_to_ignore);
  if (result != nullptr) {
    result->SetInputVersion(current_);
  }
  return result;
}

SuperVersion* ColumnFamilyData::GetReferencedSuperVersion(DBImpl* db) {
  SuperVersion* sv = GetThreadLocalSuperVersion(db);
  sv->Ref();
  if (!ReturnThreadLocalSuperVersion(sv)) {
    // This Unref() corresponds to the Ref() in GetThreadLocalSuperVersion()
    // when the thread-local pointer was populated. So, the Ref() earlier in
    // this function still prevents the returned SuperVersion* from being
    // deleted out from under the caller.
    sv->Unref();
  }
  return sv;
}

SuperVersion* ColumnFamilyData::GetThreadLocalSuperVersion(DBImpl* db) {
  // The SuperVersion is cached in thread local storage to avoid acquiring
  // mutex when SuperVersion does not change since the last use. When a new
  // SuperVersion is installed, the compaction or flush thread cleans up
  // cached SuperVersion in all existing thread local storage. To avoid
  // acquiring mutex for this operation, we use atomic Swap() on the thread
  // local pointer to guarantee exclusive access. If the thread local pointer
  // is being used while a new SuperVersion is installed, the cached
  // SuperVersion can become stale. In that case, the background thread would
  // have swapped in kSVObsolete. We re-check the value at when returning
  // SuperVersion back to thread local, with an atomic compare and swap.
  // The superversion will need to be released if detected to be stale.
  void* ptr = local_sv_->Swap(SuperVersion::kSVInUse);
  // Invariant:
  // (1) Scrape (always) installs kSVObsolete in ThreadLocal storage
  // (2) the Swap above (always) installs kSVInUse, ThreadLocal storage
  // should only keep kSVInUse before ReturnThreadLocalSuperVersion call
  // (if no Scrape happens).
  assert(ptr != SuperVersion::kSVInUse);
  SuperVersion* sv = static_cast<SuperVersion*>(ptr);
  if (sv == SuperVersion::kSVObsolete ||
      sv->version_number != super_version_number_.load()) {
    RecordTick(ioptions_.statistics, NUMBER_SUPERVERSION_ACQUIRES);
    SuperVersion* sv_to_delete = nullptr;

    if (sv && sv->Unref()) {
      RecordTick(ioptions_.statistics, NUMBER_SUPERVERSION_CLEANUPS);
      db->mutex()->Lock();
      // NOTE: underlying resources held by superversion (sst files) might
      // not be released until the next background job.
      sv->Cleanup();
      if (db->immutable_db_options().avoid_unnecessary_blocking_io) {
        db->AddSuperVersionsToFreeQueue(sv);
        db->SchedulePurge();
      } else {
        sv_to_delete = sv;
      }
    } else {
      db->mutex()->Lock();
    }
    sv = super_version_->Ref();
    db->mutex()->Unlock();

    delete sv_to_delete;
  }
  assert(sv != nullptr);
  return sv;
}

bool ColumnFamilyData::ReturnThreadLocalSuperVersion(SuperVersion* sv) {
  assert(sv != nullptr);
  // Put the SuperVersion back
  void* expected = SuperVersion::kSVInUse;
  if (local_sv_->CompareAndSwap(static_cast<void*>(sv), expected)) {
    // When we see kSVInUse in the ThreadLocal, we are sure ThreadLocal
    // storage has not been altered and no Scrape has happened. The
    // SuperVersion is still current.
    return true;
  } else {
    // ThreadLocal scrape happened in the process of this GetImpl call (after
    // thread local Swap() at the beginning and before CompareAndSwap()).
    // This means the SuperVersion it holds is obsolete.
    assert(expected == SuperVersion::kSVObsolete);
  }
  return false;
}

void ColumnFamilyData::InstallSuperVersion(
    SuperVersionContext* sv_context, InstrumentedMutex* db_mutex) {
  db_mutex->AssertHeld();
  return InstallSuperVersion(sv_context, db_mutex, mutable_cf_options_);
}

void ColumnFamilyData::InstallSuperVersion(
    SuperVersionContext* sv_context, InstrumentedMutex* db_mutex,
    const MutableCFOptions& mutable_cf_options) {
  SuperVersion* new_superversion = sv_context->new_superversion.release();
  new_superversion->db_mutex = db_mutex;
  new_superversion->mutable_cf_options = mutable_cf_options;
  new_superversion->Init(this, mem_, imm_.current(), current_);
  SuperVersion* old_superversion = super_version_;
  super_version_ = new_superversion;
  ++super_version_number_;
  super_version_->version_number = super_version_number_;
  super_version_->write_stall_condition =
      RecalculateWriteStallConditions(mutable_cf_options);

  if (old_superversion != nullptr) {
    // Reset SuperVersions cached in thread local storage.
    // This should be done before old_superversion->Unref(). That's to ensure
    // that local_sv_ never holds the last reference to SuperVersion, since
    // it has no means to safely do SuperVersion cleanup.
    ResetThreadLocalSuperVersions();

    if (old_superversion->mutable_cf_options.write_buffer_size !=
        mutable_cf_options.write_buffer_size) {
      mem_->UpdateWriteBufferSize(mutable_cf_options.write_buffer_size);
    }
    if (old_superversion->write_stall_condition !=
        new_superversion->write_stall_condition) {
      sv_context->PushWriteStallNotification(
          old_superversion->write_stall_condition,
          new_superversion->write_stall_condition, GetName(), ioptions());
    }
    if (old_superversion->Unref()) {
      old_superversion->Cleanup();
      sv_context->superversions_to_free.push_back(old_superversion);
    }
  }
}

void ColumnFamilyData::ResetThreadLocalSuperVersions() {
  autovector<void*> sv_ptrs;
  local_sv_->Scrape(&sv_ptrs, SuperVersion::kSVObsolete);
  for (auto ptr : sv_ptrs) {
    assert(ptr);
    if (ptr == SuperVersion::kSVInUse) {
      continue;
    }
    auto sv = static_cast<SuperVersion*>(ptr);
    bool was_last_ref __attribute__((__unused__));
    was_last_ref = sv->Unref();
    // sv couldn't have been the last reference because
    // ResetThreadLocalSuperVersions() is called before
    // unref'ing super_version_.
    assert(!was_last_ref);
  }
}

Status ColumnFamilyData::ValidateOptions(
    const DBOptions& db_options, const ColumnFamilyOptions& cf_options) {
  Status s;
  s = CheckCompressionSupported(cf_options);
  if (s.ok() && db_options.allow_concurrent_memtable_write) {
    s = CheckConcurrentWritesSupported(cf_options);
  }
  if (s.ok() && db_options.unordered_write &&
      cf_options.max_successive_merges != 0) {
    s = Status::InvalidArgument(
        "max_successive_merges > 0 is incompatible with unordered_write");
  }
  if (s.ok()) {
    s = CheckCFPathsSupported(db_options, cf_options);
  }
  if (!s.ok()) {
    return s;
  }

  if (cf_options.ttl > 0 && cf_options.ttl != kDefaultTtl) {
    if (cf_options.table_factory->Name() != BlockBasedTableFactory().Name()) {
      return Status::NotSupported(
          "TTL is only supported in Block-Based Table format. ");
    }
  }

  if (cf_options.periodic_compaction_seconds > 0 &&
      cf_options.periodic_compaction_seconds != kDefaultPeriodicCompSecs) {
    if (cf_options.table_factory->Name() != BlockBasedTableFactory().Name()) {
      return Status::NotSupported(
          "Periodic Compaction is only supported in "
          "Block-Based Table format. ");
    }
  }
  return s;
}

#ifndef ROCKSDB_LITE
Status ColumnFamilyData::SetOptions(
    const DBOptions& db_options,
    const std::unordered_map<std::string, std::string>& options_map) {
  MutableCFOptions new_mutable_cf_options;
  Status s =
      GetMutableOptionsFromStrings(mutable_cf_options_, options_map,
                                   ioptions_.info_log, &new_mutable_cf_options);
  if (s.ok()) {
    ColumnFamilyOptions cf_options =
        BuildColumnFamilyOptions(initial_cf_options_, new_mutable_cf_options);
    s = ValidateOptions(db_options, cf_options);
  }
  if (s.ok()) {
    mutable_cf_options_ = new_mutable_cf_options;
    mutable_cf_options_.RefreshDerivedOptions(ioptions_);
  }
  return s;
}
#endif  // ROCKSDB_LITE

// REQUIRES: DB mutex held
Env::WriteLifeTimeHint ColumnFamilyData::CalculateSSTWriteHint(int level) {
  if (initial_cf_options_.compaction_style != kCompactionStyleLevel) {
    return Env::WLTH_NOT_SET;
  }
  if (level == 0) {
    return Env::WLTH_MEDIUM;
  }
  int base_level = current_->storage_info()->base_level();

  // L1: medium, L2: long, ...
  if (level - base_level >= 2) {
    return Env::WLTH_EXTREME;
  } else if (level < base_level) {
    // There is no restriction which prevents level passed in to be smaller
    // than base_level.
    return Env::WLTH_MEDIUM;
  }
  return static_cast<Env::WriteLifeTimeHint>(level - base_level +
                            static_cast<int>(Env::WLTH_MEDIUM));
}

Status ColumnFamilyData::AddDirectories(
    std::map<std::string, std::shared_ptr<Directory>>* created_dirs) {
  Status s;
  assert(created_dirs != nullptr);
  assert(data_dirs_.empty());
  for (auto& p : ioptions_.cf_paths) {
    auto existing_dir = created_dirs->find(p.path);

    if (existing_dir == created_dirs->end()) {
      std::unique_ptr<Directory> path_directory;
      s = DBImpl::CreateAndNewDirectory(ioptions_.env, p.path, &path_directory);
      if (!s.ok()) {
        return s;
      }
      assert(path_directory != nullptr);
      data_dirs_.emplace_back(path_directory.release());
      (*created_dirs)[p.path] = data_dirs_.back();
    } else {
      data_dirs_.emplace_back(existing_dir->second);
    }
  }
  assert(data_dirs_.size() == ioptions_.cf_paths.size());
  return s;
}

Directory* ColumnFamilyData::GetDataDir(size_t path_id) const {
  if (data_dirs_.empty()) {
    return nullptr;
  }

  assert(path_id < data_dirs_.size());
  return data_dirs_[path_id].get();
}

ColumnFamilySet::ColumnFamilySet(const std::string& dbname,
                                 const ImmutableDBOptions* db_options,
                                 const FileOptions& file_options,
                                 Cache* table_cache,
                                 WriteBufferManager* write_buffer_manager,
                                 WriteController* write_controller,
                                 BlockCacheTracer* const block_cache_tracer)
    : max_column_family_(0),
      dummy_cfd_(new ColumnFamilyData(
          0, "", nullptr, nullptr, nullptr, ColumnFamilyOptions(), *db_options,
          file_options, nullptr, block_cache_tracer)),
      default_cfd_cache_(nullptr),
      db_name_(dbname),
      db_options_(db_options),
      file_options_(file_options),
      table_cache_(table_cache),
      write_buffer_manager_(write_buffer_manager),
      write_controller_(write_controller),
      block_cache_tracer_(block_cache_tracer) {
  // initialize linked list
  dummy_cfd_->prev_ = dummy_cfd_;
  dummy_cfd_->next_ = dummy_cfd_;
}

ColumnFamilySet::~ColumnFamilySet() {
  while (column_family_data_.size() > 0) {
    // cfd destructor will delete itself from column_family_data_
    auto cfd = column_family_data_.begin()->second;
    bool last_ref __attribute__((__unused__));
    last_ref = cfd->UnrefAndTryDelete();
    assert(last_ref);
  }
  bool dummy_last_ref __attribute__((__unused__));
  dummy_last_ref = dummy_cfd_->UnrefAndTryDelete();
  assert(dummy_last_ref);
}

ColumnFamilyData* ColumnFamilySet::GetDefault() const {
  assert(default_cfd_cache_ != nullptr);
  return default_cfd_cache_;
}

ColumnFamilyData* ColumnFamilySet::GetColumnFamily(uint32_t id) const {
  auto cfd_iter = column_family_data_.find(id);
  if (cfd_iter != column_family_data_.end()) {
    return cfd_iter->second;
  } else {
    return nullptr;
  }
}

ColumnFamilyData* ColumnFamilySet::GetColumnFamily(const std::string& name)
    const {
  auto cfd_iter = column_families_.find(name);
  if (cfd_iter != column_families_.end()) {
    auto cfd = GetColumnFamily(cfd_iter->second);
    assert(cfd != nullptr);
    return cfd;
  } else {
    return nullptr;
  }
}

uint32_t ColumnFamilySet::GetNextColumnFamilyID() {
  return ++max_column_family_;
}

uint32_t ColumnFamilySet::GetMaxColumnFamily() { return max_column_family_; }

void ColumnFamilySet::UpdateMaxColumnFamily(uint32_t new_max_column_family) {
  max_column_family_ = std::max(new_max_column_family, max_column_family_);
}

size_t ColumnFamilySet::NumberOfColumnFamilies() const {
  return column_families_.size();
}

// under a DB mutex AND write thread
ColumnFamilyData* ColumnFamilySet::CreateColumnFamily(
    const std::string& name, uint32_t id, Version* dummy_versions,
    const ColumnFamilyOptions& options) {
  assert(column_families_.find(name) == column_families_.end());
  ColumnFamilyData* new_cfd = new ColumnFamilyData(
      id, name, dummy_versions, table_cache_, write_buffer_manager_, options,
      *db_options_, file_options_, this, block_cache_tracer_);
  column_families_.insert({name, id});
  column_family_data_.insert({id, new_cfd});
  max_column_family_ = std::max(max_column_family_, id);
  // add to linked list
  new_cfd->next_ = dummy_cfd_;
  auto prev = dummy_cfd_->prev_;
  new_cfd->prev_ = prev;
  prev->next_ = new_cfd;
  dummy_cfd_->prev_ = new_cfd;
  if (id == 0) {
    default_cfd_cache_ = new_cfd;
  }
  return new_cfd;
}

// REQUIRES: DB mutex held
void ColumnFamilySet::FreeDeadColumnFamilies() {
  autovector<ColumnFamilyData*> to_delete;
  for (auto cfd = dummy_cfd_->next_; cfd != dummy_cfd_; cfd = cfd->next_) {
    if (cfd->refs_.load(std::memory_order_relaxed) == 0) {
      to_delete.push_back(cfd);
    }
  }
  for (auto cfd : to_delete) {
    // this is very rare, so it's not a problem that we do it under a mutex
    delete cfd;
  }
}

// under a DB mutex AND from a write thread
void ColumnFamilySet::RemoveColumnFamily(ColumnFamilyData* cfd) {
  auto cfd_iter = column_family_data_.find(cfd->GetID());
  assert(cfd_iter != column_family_data_.end());
  column_family_data_.erase(cfd_iter);
  column_families_.erase(cfd->GetName());
}

// under a DB mutex OR from a write thread
bool ColumnFamilyMemTablesImpl::Seek(uint32_t column_family_id) {
  if (column_family_id == 0) {
    // optimization for common case
    current_ = column_family_set_->GetDefault();
  } else {
    current_ = column_family_set_->GetColumnFamily(column_family_id);
  }
  handle_.SetCFD(current_);
  return current_ != nullptr;
}

uint64_t ColumnFamilyMemTablesImpl::GetLogNumber() const {
  assert(current_ != nullptr);
  return current_->GetLogNumber();
}

MemTable* ColumnFamilyMemTablesImpl::GetMemTable() const {
  assert(current_ != nullptr);
  return current_->mem();
}

ColumnFamilyHandle* ColumnFamilyMemTablesImpl::GetColumnFamilyHandle() {
  assert(current_ != nullptr);
  return &handle_;
}

uint32_t GetColumnFamilyID(ColumnFamilyHandle* column_family) {
  uint32_t column_family_id = 0;
  if (column_family != nullptr) {
    auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
    column_family_id = cfh->GetID();
  }
  return column_family_id;
}

const Comparator* GetColumnFamilyUserComparator(
    ColumnFamilyHandle* column_family) {
  if (column_family != nullptr) {
    return column_family->GetComparator();
  }
  return nullptr;
}

}  // namespace ROCKSDB_NAMESPACE