summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/compaction/compaction.cc
blob: 5c34fdcaa87ac39f814b428edfd0b10db0dfddf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include <cinttypes>
#include <vector>

#include "db/column_family.h"
#include "db/compaction/compaction.h"
#include "rocksdb/compaction_filter.h"
#include "test_util/sync_point.h"
#include "util/string_util.h"

namespace ROCKSDB_NAMESPACE {

const uint64_t kRangeTombstoneSentinel =
    PackSequenceAndType(kMaxSequenceNumber, kTypeRangeDeletion);

int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
                      const InternalKey& b) {
  auto c = user_cmp->Compare(a.user_key(), b.user_key());
  if (c != 0) {
    return c;
  }
  auto a_footer = ExtractInternalKeyFooter(a.Encode());
  auto b_footer = ExtractInternalKeyFooter(b.Encode());
  if (a_footer == kRangeTombstoneSentinel) {
    if (b_footer != kRangeTombstoneSentinel) {
      return -1;
    }
  } else if (b_footer == kRangeTombstoneSentinel) {
    return 1;
  }
  return 0;
}

int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a,
                      const InternalKey& b) {
  if (a == nullptr) {
    return -1;
  }
  return sstableKeyCompare(user_cmp, *a, b);
}

int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
                      const InternalKey* b) {
  if (b == nullptr) {
    return -1;
  }
  return sstableKeyCompare(user_cmp, a, *b);
}

uint64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
  uint64_t sum = 0;
  for (size_t i = 0; i < files.size() && files[i]; i++) {
    sum += files[i]->fd.GetFileSize();
  }
  return sum;
}

void Compaction::SetInputVersion(Version* _input_version) {
  input_version_ = _input_version;
  cfd_ = input_version_->cfd();

  cfd_->Ref();
  input_version_->Ref();
  edit_.SetColumnFamily(cfd_->GetID());
}

void Compaction::GetBoundaryKeys(
    VersionStorageInfo* vstorage,
    const std::vector<CompactionInputFiles>& inputs, Slice* smallest_user_key,
    Slice* largest_user_key) {
  bool initialized = false;
  const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
  for (size_t i = 0; i < inputs.size(); ++i) {
    if (inputs[i].files.empty()) {
      continue;
    }
    if (inputs[i].level == 0) {
      // we need to consider all files on level 0
      for (const auto* f : inputs[i].files) {
        const Slice& start_user_key = f->smallest.user_key();
        if (!initialized ||
            ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
          *smallest_user_key = start_user_key;
        }
        const Slice& end_user_key = f->largest.user_key();
        if (!initialized ||
            ucmp->Compare(end_user_key, *largest_user_key) > 0) {
          *largest_user_key = end_user_key;
        }
        initialized = true;
      }
    } else {
      // we only need to consider the first and last file
      const Slice& start_user_key = inputs[i].files[0]->smallest.user_key();
      if (!initialized ||
          ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
        *smallest_user_key = start_user_key;
      }
      const Slice& end_user_key = inputs[i].files.back()->largest.user_key();
      if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) {
        *largest_user_key = end_user_key;
      }
      initialized = true;
    }
  }
}

std::vector<CompactionInputFiles> Compaction::PopulateWithAtomicBoundaries(
    VersionStorageInfo* vstorage, std::vector<CompactionInputFiles> inputs) {
  const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
  for (size_t i = 0; i < inputs.size(); i++) {
    if (inputs[i].level == 0 || inputs[i].files.empty()) {
      continue;
    }
    inputs[i].atomic_compaction_unit_boundaries.reserve(inputs[i].files.size());
    AtomicCompactionUnitBoundary cur_boundary;
    size_t first_atomic_idx = 0;
    auto add_unit_boundary = [&](size_t to) {
      if (first_atomic_idx == to) return;
      for (size_t k = first_atomic_idx; k < to; k++) {
        inputs[i].atomic_compaction_unit_boundaries.push_back(cur_boundary);
      }
      first_atomic_idx = to;
    };
    for (size_t j = 0; j < inputs[i].files.size(); j++) {
      const auto* f = inputs[i].files[j];
      if (j == 0) {
        // First file in a level.
        cur_boundary.smallest = &f->smallest;
        cur_boundary.largest = &f->largest;
      } else if (sstableKeyCompare(ucmp, *cur_boundary.largest, f->smallest) ==
                 0) {
        // SSTs overlap but the end key of the previous file was not
        // artificially extended by a range tombstone. Extend the current
        // boundary.
        cur_boundary.largest = &f->largest;
      } else {
        // Atomic compaction unit has ended.
        add_unit_boundary(j);
        cur_boundary.smallest = &f->smallest;
        cur_boundary.largest = &f->largest;
      }
    }
    add_unit_boundary(inputs[i].files.size());
    assert(inputs[i].files.size() ==
           inputs[i].atomic_compaction_unit_boundaries.size());
  }
  return inputs;
}

// helper function to determine if compaction is creating files at the
// bottommost level
bool Compaction::IsBottommostLevel(
    int output_level, VersionStorageInfo* vstorage,
    const std::vector<CompactionInputFiles>& inputs) {
  int output_l0_idx;
  if (output_level == 0) {
    output_l0_idx = 0;
    for (const auto* file : vstorage->LevelFiles(0)) {
      if (inputs[0].files.back() == file) {
        break;
      }
      ++output_l0_idx;
    }
    assert(static_cast<size_t>(output_l0_idx) < vstorage->LevelFiles(0).size());
  } else {
    output_l0_idx = -1;
  }
  Slice smallest_key, largest_key;
  GetBoundaryKeys(vstorage, inputs, &smallest_key, &largest_key);
  return !vstorage->RangeMightExistAfterSortedRun(smallest_key, largest_key,
                                                  output_level, output_l0_idx);
}

// test function to validate the functionality of IsBottommostLevel()
// function -- determines if compaction with inputs and storage is bottommost
bool Compaction::TEST_IsBottommostLevel(
    int output_level, VersionStorageInfo* vstorage,
    const std::vector<CompactionInputFiles>& inputs) {
  return IsBottommostLevel(output_level, vstorage, inputs);
}

bool Compaction::IsFullCompaction(
    VersionStorageInfo* vstorage,
    const std::vector<CompactionInputFiles>& inputs) {
  size_t num_files_in_compaction = 0;
  size_t total_num_files = 0;
  for (int l = 0; l < vstorage->num_levels(); l++) {
    total_num_files += vstorage->NumLevelFiles(l);
  }
  for (size_t i = 0; i < inputs.size(); i++) {
    num_files_in_compaction += inputs[i].size();
  }
  return num_files_in_compaction == total_num_files;
}

Compaction::Compaction(VersionStorageInfo* vstorage,
                       const ImmutableCFOptions& _immutable_cf_options,
                       const MutableCFOptions& _mutable_cf_options,
                       std::vector<CompactionInputFiles> _inputs,
                       int _output_level, uint64_t _target_file_size,
                       uint64_t _max_compaction_bytes, uint32_t _output_path_id,
                       CompressionType _compression,
                       CompressionOptions _compression_opts,
                       uint32_t _max_subcompactions,
                       std::vector<FileMetaData*> _grandparents,
                       bool _manual_compaction, double _score,
                       bool _deletion_compaction,
                       CompactionReason _compaction_reason)
    : input_vstorage_(vstorage),
      start_level_(_inputs[0].level),
      output_level_(_output_level),
      max_output_file_size_(_target_file_size),
      max_compaction_bytes_(_max_compaction_bytes),
      max_subcompactions_(_max_subcompactions),
      immutable_cf_options_(_immutable_cf_options),
      mutable_cf_options_(_mutable_cf_options),
      input_version_(nullptr),
      number_levels_(vstorage->num_levels()),
      cfd_(nullptr),
      output_path_id_(_output_path_id),
      output_compression_(_compression),
      output_compression_opts_(_compression_opts),
      deletion_compaction_(_deletion_compaction),
      inputs_(PopulateWithAtomicBoundaries(vstorage, std::move(_inputs))),
      grandparents_(std::move(_grandparents)),
      score_(_score),
      bottommost_level_(IsBottommostLevel(output_level_, vstorage, inputs_)),
      is_full_compaction_(IsFullCompaction(vstorage, inputs_)),
      is_manual_compaction_(_manual_compaction),
      is_trivial_move_(false),
      compaction_reason_(_compaction_reason) {
  MarkFilesBeingCompacted(true);
  if (is_manual_compaction_) {
    compaction_reason_ = CompactionReason::kManualCompaction;
  }
  if (max_subcompactions_ == 0) {
    max_subcompactions_ = immutable_cf_options_.max_subcompactions;
  }
  if (!bottommost_level_) {
    // Currently we only enable dictionary compression during compaction to the
    // bottommost level.
    output_compression_opts_.max_dict_bytes = 0;
    output_compression_opts_.zstd_max_train_bytes = 0;
  }

#ifndef NDEBUG
  for (size_t i = 1; i < inputs_.size(); ++i) {
    assert(inputs_[i].level > inputs_[i - 1].level);
  }
#endif

  // setup input_levels_
  {
    input_levels_.resize(num_input_levels());
    for (size_t which = 0; which < num_input_levels(); which++) {
      DoGenerateLevelFilesBrief(&input_levels_[which], inputs_[which].files,
                                &arena_);
    }
  }

  GetBoundaryKeys(vstorage, inputs_, &smallest_user_key_, &largest_user_key_);
}

Compaction::~Compaction() {
  if (input_version_ != nullptr) {
    input_version_->Unref();
  }
  if (cfd_ != nullptr) {
    cfd_->UnrefAndTryDelete();
  }
}

bool Compaction::InputCompressionMatchesOutput() const {
  int base_level = input_vstorage_->base_level();
  bool matches = (GetCompressionType(immutable_cf_options_, input_vstorage_,
                                     mutable_cf_options_, start_level_,
                                     base_level) == output_compression_);
  if (matches) {
    TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:Matches");
    return true;
  }
  TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:DidntMatch");
  return matches;
}

bool Compaction::IsTrivialMove() const {
  // Avoid a move if there is lots of overlapping grandparent data.
  // Otherwise, the move could create a parent file that will require
  // a very expensive merge later on.
  // If start_level_== output_level_, the purpose is to force compaction
  // filter to be applied to that level, and thus cannot be a trivial move.

  // Check if start level have files with overlapping ranges
  if (start_level_ == 0 && input_vstorage_->level0_non_overlapping() == false) {
    // We cannot move files from L0 to L1 if the files are overlapping
    return false;
  }

  if (is_manual_compaction_ &&
      (immutable_cf_options_.compaction_filter != nullptr ||
       immutable_cf_options_.compaction_filter_factory != nullptr)) {
    // This is a manual compaction and we have a compaction filter that should
    // be executed, we cannot do a trivial move
    return false;
  }

  // Used in universal compaction, where trivial move can be done if the
  // input files are non overlapping
  if ((mutable_cf_options_.compaction_options_universal.allow_trivial_move) &&
      (output_level_ != 0)) {
    return is_trivial_move_;
  }

  if (!(start_level_ != output_level_ && num_input_levels() == 1 &&
          input(0, 0)->fd.GetPathId() == output_path_id() &&
          InputCompressionMatchesOutput())) {
    return false;
  }

  // assert inputs_.size() == 1

  for (const auto& file : inputs_.front().files) {
    std::vector<FileMetaData*> file_grand_parents;
    if (output_level_ + 1 >= number_levels_) {
      continue;
    }
    input_vstorage_->GetOverlappingInputs(output_level_ + 1, &file->smallest,
                                          &file->largest, &file_grand_parents);
    const auto compaction_size =
        file->fd.GetFileSize() + TotalFileSize(file_grand_parents);
    if (compaction_size > max_compaction_bytes_) {
      return false;
    }
  }

  return true;
}

void Compaction::AddInputDeletions(VersionEdit* out_edit) {
  for (size_t which = 0; which < num_input_levels(); which++) {
    for (size_t i = 0; i < inputs_[which].size(); i++) {
      out_edit->DeleteFile(level(which), inputs_[which][i]->fd.GetNumber());
    }
  }
}

bool Compaction::KeyNotExistsBeyondOutputLevel(
    const Slice& user_key, std::vector<size_t>* level_ptrs) const {
  assert(input_version_ != nullptr);
  assert(level_ptrs != nullptr);
  assert(level_ptrs->size() == static_cast<size_t>(number_levels_));
  if (bottommost_level_) {
    return true;
  } else if (output_level_ != 0 &&
             cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
    // Maybe use binary search to find right entry instead of linear search?
    const Comparator* user_cmp = cfd_->user_comparator();
    for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) {
      const std::vector<FileMetaData*>& files =
          input_vstorage_->LevelFiles(lvl);
      for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) {
        auto* f = files[level_ptrs->at(lvl)];
        if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
          // We've advanced far enough
          if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) {
            // Key falls in this file's range, so it may
            // exist beyond output level
            return false;
          }
          break;
        }
      }
    }
    return true;
  }
  return false;
}

// Mark (or clear) each file that is being compacted
void Compaction::MarkFilesBeingCompacted(bool mark_as_compacted) {
  for (size_t i = 0; i < num_input_levels(); i++) {
    for (size_t j = 0; j < inputs_[i].size(); j++) {
      assert(mark_as_compacted ? !inputs_[i][j]->being_compacted
                               : inputs_[i][j]->being_compacted);
      inputs_[i][j]->being_compacted = mark_as_compacted;
    }
  }
}

// Sample output:
// If compacting 3 L0 files, 2 L3 files and 1 L4 file, and outputting to L5,
// print: "3@0 + 2@3 + 1@4 files to L5"
const char* Compaction::InputLevelSummary(
    InputLevelSummaryBuffer* scratch) const {
  int len = 0;
  bool is_first = true;
  for (auto& input_level : inputs_) {
    if (input_level.empty()) {
      continue;
    }
    if (!is_first) {
      len +=
          snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " + ");
      len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
    } else {
      is_first = false;
    }
    len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
                    "%" ROCKSDB_PRIszt "@%d", input_level.size(),
                    input_level.level);
    len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
  }
  snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
           " files to L%d", output_level());

  return scratch->buffer;
}

uint64_t Compaction::CalculateTotalInputSize() const {
  uint64_t size = 0;
  for (auto& input_level : inputs_) {
    for (auto f : input_level.files) {
      size += f->fd.GetFileSize();
    }
  }
  return size;
}

void Compaction::ReleaseCompactionFiles(Status status) {
  MarkFilesBeingCompacted(false);
  cfd_->compaction_picker()->ReleaseCompactionFiles(this, status);
}

void Compaction::ResetNextCompactionIndex() {
  assert(input_version_ != nullptr);
  input_vstorage_->ResetNextCompactionIndex(start_level_);
}

namespace {
int InputSummary(const std::vector<FileMetaData*>& files, char* output,
                 int len) {
  *output = '\0';
  int write = 0;
  for (size_t i = 0; i < files.size(); i++) {
    int sz = len - write;
    int ret;
    char sztxt[16];
    AppendHumanBytes(files.at(i)->fd.GetFileSize(), sztxt, 16);
    ret = snprintf(output + write, sz, "%" PRIu64 "(%s) ",
                   files.at(i)->fd.GetNumber(), sztxt);
    if (ret < 0 || ret >= sz) break;
    write += ret;
  }
  // if files.size() is non-zero, overwrite the last space
  return write - !!files.size();
}
}  // namespace

void Compaction::Summary(char* output, int len) {
  int write =
      snprintf(output, len, "Base version %" PRIu64 " Base level %d, inputs: [",
               input_version_->GetVersionNumber(), start_level_);
  if (write < 0 || write >= len) {
    return;
  }

  for (size_t level_iter = 0; level_iter < num_input_levels(); ++level_iter) {
    if (level_iter > 0) {
      write += snprintf(output + write, len - write, "], [");
      if (write < 0 || write >= len) {
        return;
      }
    }
    write +=
        InputSummary(inputs_[level_iter].files, output + write, len - write);
    if (write < 0 || write >= len) {
      return;
    }
  }

  snprintf(output + write, len - write, "]");
}

uint64_t Compaction::OutputFilePreallocationSize() const {
  uint64_t preallocation_size = 0;

  for (const auto& level_files : inputs_) {
    for (const auto& file : level_files.files) {
      preallocation_size += file->fd.GetFileSize();
    }
  }

  if (max_output_file_size_ != port::kMaxUint64 &&
      (immutable_cf_options_.compaction_style == kCompactionStyleLevel ||
       output_level() > 0)) {
    preallocation_size = std::min(max_output_file_size_, preallocation_size);
  }

  // Over-estimate slightly so we don't end up just barely crossing
  // the threshold
  // No point to prellocate more than 1GB.
  return std::min(uint64_t{1073741824},
                  preallocation_size + (preallocation_size / 10));
}

std::unique_ptr<CompactionFilter> Compaction::CreateCompactionFilter() const {
  if (!cfd_->ioptions()->compaction_filter_factory) {
    return nullptr;
  }

  CompactionFilter::Context context;
  context.is_full_compaction = is_full_compaction_;
  context.is_manual_compaction = is_manual_compaction_;
  context.column_family_id = cfd_->GetID();
  return cfd_->ioptions()->compaction_filter_factory->CreateCompactionFilter(
      context);
}

bool Compaction::IsOutputLevelEmpty() const {
  return inputs_.back().level != output_level_ || inputs_.back().empty();
}

bool Compaction::ShouldFormSubcompactions() const {
  if (max_subcompactions_ <= 1 || cfd_ == nullptr) {
    return false;
  }
  if (cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
    return (start_level_ == 0 || is_manual_compaction_) && output_level_ > 0 &&
           !IsOutputLevelEmpty();
  } else if (cfd_->ioptions()->compaction_style == kCompactionStyleUniversal) {
    return number_levels_ > 1 && output_level_ > 0;
  } else {
    return false;
  }
}

uint64_t Compaction::MinInputFileOldestAncesterTime() const {
  uint64_t min_oldest_ancester_time = port::kMaxUint64;
  for (const auto& level_files : inputs_) {
    for (const auto& file : level_files.files) {
      uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime();
      if (oldest_ancester_time != 0) {
        min_oldest_ancester_time =
            std::min(min_oldest_ancester_time, oldest_ancester_time);
      }
    }
  }
  return min_oldest_ancester_time;
}

int Compaction::GetInputBaseLevel() const {
  return input_vstorage_->base_level();
}

}  // namespace ROCKSDB_NAMESPACE