summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/utilities/persistent_cache/persistent_cache_bench.cc
blob: 359fcdd1d83e362fc5861b0109db6896357dfeea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
//  Copyright (c) 2013, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
#ifndef ROCKSDB_LITE

#ifndef GFLAGS
#include <cstdio>
int main() { fprintf(stderr, "Please install gflags to run tools\n"); }
#else
#include <atomic>
#include <functional>
#include <memory>
#include <sstream>
#include <unordered_map>

#include "rocksdb/env.h"

#include "utilities/persistent_cache/block_cache_tier.h"
#include "utilities/persistent_cache/persistent_cache_tier.h"
#include "utilities/persistent_cache/volatile_tier_impl.h"

#include "monitoring/histogram.h"
#include "port/port.h"
#include "table/block_based/block_builder.h"
#include "util/gflags_compat.h"
#include "util/mutexlock.h"
#include "util/stop_watch.h"

DEFINE_int32(nsec, 10, "nsec");
DEFINE_int32(nthread_write, 1, "Insert threads");
DEFINE_int32(nthread_read, 1, "Lookup threads");
DEFINE_string(path, "/tmp/microbench/blkcache", "Path for cachefile");
DEFINE_string(log_path, "/tmp/log", "Path for the log file");
DEFINE_uint64(cache_size, std::numeric_limits<uint64_t>::max(), "Cache size");
DEFINE_int32(iosize, 4 * 1024, "Read IO size");
DEFINE_int32(writer_iosize, 4 * 1024, "File writer IO size");
DEFINE_int32(writer_qdepth, 1, "File writer qdepth");
DEFINE_bool(enable_pipelined_writes, false, "Enable async writes");
DEFINE_string(cache_type, "block_cache",
              "Cache type. (block_cache, volatile, tiered)");
DEFINE_bool(benchmark, false, "Benchmark mode");
DEFINE_int32(volatile_cache_pct, 10, "Percentage of cache in memory tier.");

namespace ROCKSDB_NAMESPACE {

std::unique_ptr<PersistentCacheTier> NewVolatileCache() {
  assert(FLAGS_cache_size != std::numeric_limits<uint64_t>::max());
  std::unique_ptr<PersistentCacheTier> pcache(
      new VolatileCacheTier(FLAGS_cache_size));
  return pcache;
}

std::unique_ptr<PersistentCacheTier> NewBlockCache() {
  std::shared_ptr<Logger> log;
  if (!Env::Default()->NewLogger(FLAGS_log_path, &log).ok()) {
    fprintf(stderr, "Error creating log %s \n", FLAGS_log_path.c_str());
    return nullptr;
  }

  PersistentCacheConfig opt(Env::Default(), FLAGS_path, FLAGS_cache_size, log);
  opt.writer_dispatch_size = FLAGS_writer_iosize;
  opt.writer_qdepth = FLAGS_writer_qdepth;
  opt.pipeline_writes = FLAGS_enable_pipelined_writes;
  opt.max_write_pipeline_backlog_size = std::numeric_limits<uint64_t>::max();
  std::unique_ptr<PersistentCacheTier> cache(new BlockCacheTier(opt));
  Status status = cache->Open();
  return cache;
}

// create a new cache tier
// construct a tiered RAM+Block cache
std::unique_ptr<PersistentTieredCache> NewTieredCache(
    const size_t mem_size, const PersistentCacheConfig& opt) {
  std::unique_ptr<PersistentTieredCache> tcache(new PersistentTieredCache());
  // create primary tier
  assert(mem_size);
  auto pcache =
      std::shared_ptr<PersistentCacheTier>(new VolatileCacheTier(mem_size));
  tcache->AddTier(pcache);
  // create secondary tier
  auto scache = std::shared_ptr<PersistentCacheTier>(new BlockCacheTier(opt));
  tcache->AddTier(scache);

  Status s = tcache->Open();
  assert(s.ok());
  return tcache;
}

std::unique_ptr<PersistentTieredCache> NewTieredCache() {
  std::shared_ptr<Logger> log;
  if (!Env::Default()->NewLogger(FLAGS_log_path, &log).ok()) {
    fprintf(stderr, "Error creating log %s \n", FLAGS_log_path.c_str());
    abort();
  }

  auto pct = FLAGS_volatile_cache_pct / static_cast<double>(100);
  PersistentCacheConfig opt(Env::Default(), FLAGS_path,
                            (1 - pct) * FLAGS_cache_size, log);
  opt.writer_dispatch_size = FLAGS_writer_iosize;
  opt.writer_qdepth = FLAGS_writer_qdepth;
  opt.pipeline_writes = FLAGS_enable_pipelined_writes;
  opt.max_write_pipeline_backlog_size = std::numeric_limits<uint64_t>::max();
  return NewTieredCache(FLAGS_cache_size * pct, opt);
}

//
// Benchmark driver
//
class CacheTierBenchmark {
 public:
  explicit CacheTierBenchmark(std::shared_ptr<PersistentCacheTier>&& cache)
      : cache_(cache) {
    if (FLAGS_nthread_read) {
      fprintf(stdout, "Pre-populating\n");
      Prepop();
      fprintf(stdout, "Pre-population completed\n");
    }

    stats_.Clear();

    // Start IO threads
    std::list<port::Thread> threads;
    Spawn(FLAGS_nthread_write, &threads,
          std::bind(&CacheTierBenchmark::Write, this));
    Spawn(FLAGS_nthread_read, &threads,
          std::bind(&CacheTierBenchmark::Read, this));

    // Wait till FLAGS_nsec and then signal to quit
    StopWatchNano t(Env::Default(), /*auto_start=*/true);
    size_t sec = t.ElapsedNanos() / 1000000000ULL;
    while (!quit_) {
      sec = t.ElapsedNanos() / 1000000000ULL;
      quit_ = sec > size_t(FLAGS_nsec);
      /* sleep override */ sleep(1);
    }

    // Wait for threads to exit
    Join(&threads);
    // Print stats
    PrintStats(sec);
    // Close the cache
    cache_->TEST_Flush();
    cache_->Close();
  }

 private:
  void PrintStats(const size_t sec) {
    std::ostringstream msg;
    msg << "Test stats" << std::endl
        << "* Elapsed: " << sec << " s" << std::endl
        << "* Write Latency:" << std::endl
        << stats_.write_latency_.ToString() << std::endl
        << "* Read Latency:" << std::endl
        << stats_.read_latency_.ToString() << std::endl
        << "* Bytes written:" << std::endl
        << stats_.bytes_written_.ToString() << std::endl
        << "* Bytes read:" << std::endl
        << stats_.bytes_read_.ToString() << std::endl
        << "Cache stats:" << std::endl
        << cache_->PrintStats() << std::endl;
    fprintf(stderr, "%s\n", msg.str().c_str());
  }

  //
  // Insert implementation and corresponding helper functions
  //
  void Prepop() {
    for (uint64_t i = 0; i < 1024 * 1024; ++i) {
      InsertKey(i);
      insert_key_limit_++;
      read_key_limit_++;
    }

    // Wait until data is flushed
    cache_->TEST_Flush();
    // warmup the cache
    for (uint64_t i = 0; i < 1024 * 1024; ReadKey(i++)) {
    }
  }

  void Write() {
    while (!quit_) {
      InsertKey(insert_key_limit_++);
    }
  }

  void InsertKey(const uint64_t key) {
    // construct key
    uint64_t k[3];
    Slice block_key = FillKey(k, key);

    // construct value
    auto block = NewBlock(key);

    // insert
    StopWatchNano timer(Env::Default(), /*auto_start=*/true);
    while (true) {
      Status status = cache_->Insert(block_key, block.get(), FLAGS_iosize);
      if (status.ok()) {
        break;
      }

      // transient error is possible if we run without pipelining
      assert(!FLAGS_enable_pipelined_writes);
    }

    // adjust stats
    const size_t elapsed_micro = timer.ElapsedNanos() / 1000;
    stats_.write_latency_.Add(elapsed_micro);
    stats_.bytes_written_.Add(FLAGS_iosize);
  }

  //
  // Read implementation
  //
  void Read() {
    while (!quit_) {
      ReadKey(random() % read_key_limit_);
    }
  }

  void ReadKey(const uint64_t val) {
    // construct key
    uint64_t k[3];
    Slice key = FillKey(k, val);

    // Lookup in cache
    StopWatchNano timer(Env::Default(), /*auto_start=*/true);
    std::unique_ptr<char[]> block;
    size_t size;
    Status status = cache_->Lookup(key, &block, &size);
    if (!status.ok()) {
      fprintf(stderr, "%s\n", status.ToString().c_str());
    }
    assert(status.ok());
    assert(size == (size_t) FLAGS_iosize);

    // adjust stats
    const size_t elapsed_micro = timer.ElapsedNanos() / 1000;
    stats_.read_latency_.Add(elapsed_micro);
    stats_.bytes_read_.Add(FLAGS_iosize);

    // verify content
    if (!FLAGS_benchmark) {
      auto expected_block = NewBlock(val);
      assert(memcmp(block.get(), expected_block.get(), FLAGS_iosize) == 0);
    }
  }

  // create data for a key by filling with a certain pattern
  std::unique_ptr<char[]> NewBlock(const uint64_t val) {
    std::unique_ptr<char[]> data(new char[FLAGS_iosize]);
    memset(data.get(), val % 255, FLAGS_iosize);
    return data;
  }

  // spawn threads
  void Spawn(const size_t n, std::list<port::Thread>* threads,
             const std::function<void()>& fn) {
    for (size_t i = 0; i < n; ++i) {
      threads->emplace_back(fn);
    }
  }

  // join threads
  void Join(std::list<port::Thread>* threads) {
    for (auto& th : *threads) {
      th.join();
    }
  }

  // construct key
  Slice FillKey(uint64_t (&k)[3], const uint64_t val) {
    k[0] = k[1] = 0;
    k[2] = val;
    void* p = static_cast<void*>(&k);
    return Slice(static_cast<char*>(p), sizeof(k));
  }

  // benchmark stats
  struct Stats {
    void Clear() {
      bytes_written_.Clear();
      bytes_read_.Clear();
      read_latency_.Clear();
      write_latency_.Clear();
    }

    HistogramImpl bytes_written_;
    HistogramImpl bytes_read_;
    HistogramImpl read_latency_;
    HistogramImpl write_latency_;
  };

  std::shared_ptr<PersistentCacheTier> cache_;  // cache implementation
  std::atomic<uint64_t> insert_key_limit_{0};   // data inserted upto
  std::atomic<uint64_t> read_key_limit_{0};     // data can be read safely upto
  bool quit_ = false;                           // Quit thread ?
  mutable Stats stats_;                         // Stats
};

}  // namespace ROCKSDB_NAMESPACE

//
// main
//
int main(int argc, char** argv) {
  GFLAGS_NAMESPACE::SetUsageMessage(std::string("\nUSAGE:\n") +
                                    std::string(argv[0]) + " [OPTIONS]...");
  GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, false);

  std::ostringstream msg;
  msg << "Config" << std::endl
      << "======" << std::endl
      << "* nsec=" << FLAGS_nsec << std::endl
      << "* nthread_write=" << FLAGS_nthread_write << std::endl
      << "* path=" << FLAGS_path << std::endl
      << "* cache_size=" << FLAGS_cache_size << std::endl
      << "* iosize=" << FLAGS_iosize << std::endl
      << "* writer_iosize=" << FLAGS_writer_iosize << std::endl
      << "* writer_qdepth=" << FLAGS_writer_qdepth << std::endl
      << "* enable_pipelined_writes=" << FLAGS_enable_pipelined_writes
      << std::endl
      << "* cache_type=" << FLAGS_cache_type << std::endl
      << "* benchmark=" << FLAGS_benchmark << std::endl
      << "* volatile_cache_pct=" << FLAGS_volatile_cache_pct << std::endl;

  fprintf(stderr, "%s\n", msg.str().c_str());

  std::shared_ptr<ROCKSDB_NAMESPACE::PersistentCacheTier> cache;
  if (FLAGS_cache_type == "block_cache") {
    fprintf(stderr, "Using block cache implementation\n");
    cache = ROCKSDB_NAMESPACE::NewBlockCache();
  } else if (FLAGS_cache_type == "volatile") {
    fprintf(stderr, "Using volatile cache implementation\n");
    cache = ROCKSDB_NAMESPACE::NewVolatileCache();
  } else if (FLAGS_cache_type == "tiered") {
    fprintf(stderr, "Using tiered cache implementation\n");
    cache = ROCKSDB_NAMESPACE::NewTieredCache();
  } else {
    fprintf(stderr, "Unknown option for cache\n");
  }

  assert(cache);
  if (!cache) {
    fprintf(stderr, "Error creating cache\n");
    abort();
  }

  std::unique_ptr<ROCKSDB_NAMESPACE::CacheTierBenchmark> benchmark(
      new ROCKSDB_NAMESPACE::CacheTierBenchmark(std::move(cache)));

  return 0;
}
#endif  // #ifndef GFLAGS
#else
int main(int, char**) { return 0; }
#endif