summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/utilities/transactions/write_prepared_txn_db.h
blob: 964b72689f81010cfdc8e8198ad327b833f7b5e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#pragma once
#ifndef ROCKSDB_LITE

#include <cinttypes>
#include <mutex>
#include <queue>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>

#include "db/db_iter.h"
#include "db/pre_release_callback.h"
#include "db/read_callback.h"
#include "db/snapshot_checker.h"
#include "rocksdb/db.h"
#include "rocksdb/options.h"
#include "rocksdb/utilities/transaction_db.h"
#include "util/cast_util.h"
#include "util/set_comparator.h"
#include "util/string_util.h"
#include "utilities/transactions/pessimistic_transaction.h"
#include "utilities/transactions/pessimistic_transaction_db.h"
#include "utilities/transactions/transaction_lock_mgr.h"
#include "utilities/transactions/write_prepared_txn.h"

namespace ROCKSDB_NAMESPACE {
enum SnapshotBackup : bool { kUnbackedByDBSnapshot, kBackedByDBSnapshot };

// A PessimisticTransactionDB that writes data to DB after prepare phase of 2PC.
// In this way some data in the DB might not be committed. The DB provides
// mechanisms to tell such data apart from committed data.
class WritePreparedTxnDB : public PessimisticTransactionDB {
 public:
  explicit WritePreparedTxnDB(DB* db,
                              const TransactionDBOptions& txn_db_options)
      : PessimisticTransactionDB(db, txn_db_options),
        SNAPSHOT_CACHE_BITS(txn_db_options.wp_snapshot_cache_bits),
        SNAPSHOT_CACHE_SIZE(static_cast<size_t>(1ull << SNAPSHOT_CACHE_BITS)),
        COMMIT_CACHE_BITS(txn_db_options.wp_commit_cache_bits),
        COMMIT_CACHE_SIZE(static_cast<size_t>(1ull << COMMIT_CACHE_BITS)),
        FORMAT(COMMIT_CACHE_BITS) {
    Init(txn_db_options);
  }

  explicit WritePreparedTxnDB(StackableDB* db,
                              const TransactionDBOptions& txn_db_options)
      : PessimisticTransactionDB(db, txn_db_options),
        SNAPSHOT_CACHE_BITS(txn_db_options.wp_snapshot_cache_bits),
        SNAPSHOT_CACHE_SIZE(static_cast<size_t>(1ull << SNAPSHOT_CACHE_BITS)),
        COMMIT_CACHE_BITS(txn_db_options.wp_commit_cache_bits),
        COMMIT_CACHE_SIZE(static_cast<size_t>(1ull << COMMIT_CACHE_BITS)),
        FORMAT(COMMIT_CACHE_BITS) {
    Init(txn_db_options);
  }

  virtual ~WritePreparedTxnDB();

  virtual Status Initialize(
      const std::vector<size_t>& compaction_enabled_cf_indices,
      const std::vector<ColumnFamilyHandle*>& handles) override;

  Transaction* BeginTransaction(const WriteOptions& write_options,
                                const TransactionOptions& txn_options,
                                Transaction* old_txn) override;

  using TransactionDB::Write;
  Status Write(const WriteOptions& opts, WriteBatch* updates) override;

  // Optimized version of ::Write that receives more optimization request such
  // as skip_concurrency_control.
  using PessimisticTransactionDB::Write;
  Status Write(const WriteOptions& opts, const TransactionDBWriteOptimizations&,
               WriteBatch* updates) override;

  // Write the batch to the underlying DB and mark it as committed. Could be
  // used by both directly from TxnDB or through a transaction.
  Status WriteInternal(const WriteOptions& write_options, WriteBatch* batch,
                       size_t batch_cnt, WritePreparedTxn* txn);

  using DB::Get;
  virtual Status Get(const ReadOptions& options,
                     ColumnFamilyHandle* column_family, const Slice& key,
                     PinnableSlice* value) override;

  using DB::MultiGet;
  virtual std::vector<Status> MultiGet(
      const ReadOptions& options,
      const std::vector<ColumnFamilyHandle*>& column_family,
      const std::vector<Slice>& keys,
      std::vector<std::string>* values) override;

  using DB::NewIterator;
  virtual Iterator* NewIterator(const ReadOptions& options,
                                ColumnFamilyHandle* column_family) override;

  using DB::NewIterators;
  virtual Status NewIterators(
      const ReadOptions& options,
      const std::vector<ColumnFamilyHandle*>& column_families,
      std::vector<Iterator*>* iterators) override;

  // Check whether the transaction that wrote the value with sequence number seq
  // is visible to the snapshot with sequence number snapshot_seq.
  // Returns true if commit_seq <= snapshot_seq
  // If the snapshot_seq is already released and snapshot_seq <= max, sets
  // *snap_released to true and returns true as well.
  inline bool IsInSnapshot(uint64_t prep_seq, uint64_t snapshot_seq,
                           uint64_t min_uncommitted = kMinUnCommittedSeq,
                           bool* snap_released = nullptr) const {
    ROCKS_LOG_DETAILS(info_log_,
                      "IsInSnapshot %" PRIu64 " in %" PRIu64
                      " min_uncommitted %" PRIu64,
                      prep_seq, snapshot_seq, min_uncommitted);
    assert(min_uncommitted >= kMinUnCommittedSeq);
    // Caller is responsible to initialize snap_released.
    assert(snap_released == nullptr || *snap_released == false);
    // Here we try to infer the return value without looking into prepare list.
    // This would help avoiding synchronization over a shared map.
    // TODO(myabandeh): optimize this. This sequence of checks must be correct
    // but not necessary efficient
    if (prep_seq == 0) {
      // Compaction will output keys to bottom-level with sequence number 0 if
      // it is visible to the earliest snapshot.
      ROCKS_LOG_DETAILS(
          info_log_, "IsInSnapshot %" PRIu64 " in %" PRIu64 " returns %" PRId32,
          prep_seq, snapshot_seq, 1);
      return true;
    }
    if (snapshot_seq < prep_seq) {
      // snapshot_seq < prep_seq <= commit_seq => snapshot_seq < commit_seq
      ROCKS_LOG_DETAILS(
          info_log_, "IsInSnapshot %" PRIu64 " in %" PRIu64 " returns %" PRId32,
          prep_seq, snapshot_seq, 0);
      return false;
    }
    if (prep_seq < min_uncommitted) {
      ROCKS_LOG_DETAILS(info_log_,
                        "IsInSnapshot %" PRIu64 " in %" PRIu64
                        " returns %" PRId32
                        " because of min_uncommitted %" PRIu64,
                        prep_seq, snapshot_seq, 1, min_uncommitted);
      return true;
    }
    // Commit of delayed prepared has two non-atomic steps: add to commit cache,
    // remove from delayed prepared. Our reads from these two is also
    // non-atomic. By looking into commit cache first thus we might not find the
    // prep_seq neither in commit cache not in delayed_prepared_. To fix that i)
    // we check if there was any delayed prepared BEFORE looking into commit
    // cache, ii) if there was, we complete the search steps to be these: i)
    // commit cache, ii) delayed prepared, commit cache again. In this way if
    // the first query to commit cache missed the commit, the 2nd will catch it.
    bool was_empty;
    SequenceNumber max_evicted_seq_lb, max_evicted_seq_ub;
    CommitEntry64b dont_care;
    auto indexed_seq = prep_seq % COMMIT_CACHE_SIZE;
    size_t repeats = 0;
    do {
      repeats++;
      assert(repeats < 100);
      if (UNLIKELY(repeats >= 100)) {
        throw std::runtime_error(
            "The read was intrupted 100 times by update to max_evicted_seq_. "
            "This is unexpected in all setups");
      }
      max_evicted_seq_lb = max_evicted_seq_.load(std::memory_order_acquire);
      TEST_SYNC_POINT(
          "WritePreparedTxnDB::IsInSnapshot:max_evicted_seq_:pause");
      TEST_SYNC_POINT(
          "WritePreparedTxnDB::IsInSnapshot:max_evicted_seq_:resume");
      was_empty = delayed_prepared_empty_.load(std::memory_order_acquire);
      TEST_SYNC_POINT(
          "WritePreparedTxnDB::IsInSnapshot:delayed_prepared_empty_:pause");
      TEST_SYNC_POINT(
          "WritePreparedTxnDB::IsInSnapshot:delayed_prepared_empty_:resume");
      CommitEntry cached;
      bool exist = GetCommitEntry(indexed_seq, &dont_care, &cached);
      TEST_SYNC_POINT("WritePreparedTxnDB::IsInSnapshot:GetCommitEntry:pause");
      TEST_SYNC_POINT("WritePreparedTxnDB::IsInSnapshot:GetCommitEntry:resume");
      if (exist && prep_seq == cached.prep_seq) {
        // It is committed and also not evicted from commit cache
        ROCKS_LOG_DETAILS(
            info_log_,
            "IsInSnapshot %" PRIu64 " in %" PRIu64 " returns %" PRId32,
            prep_seq, snapshot_seq, cached.commit_seq <= snapshot_seq);
        return cached.commit_seq <= snapshot_seq;
      }
      // else it could be committed but not inserted in the map which could
      // happen after recovery, or it could be committed and evicted by another
      // commit, or never committed.

      // At this point we dont know if it was committed or it is still prepared
      max_evicted_seq_ub = max_evicted_seq_.load(std::memory_order_acquire);
      if (UNLIKELY(max_evicted_seq_lb != max_evicted_seq_ub)) {
        continue;
      }
      // Note: max_evicted_seq_ when we did GetCommitEntry <= max_evicted_seq_ub
      if (max_evicted_seq_ub < prep_seq) {
        // Not evicted from cache and also not present, so must be still
        // prepared
        ROCKS_LOG_DETAILS(info_log_,
                          "IsInSnapshot %" PRIu64 " in %" PRIu64
                          " returns %" PRId32,
                          prep_seq, snapshot_seq, 0);
        return false;
      }
      TEST_SYNC_POINT("WritePreparedTxnDB::IsInSnapshot:prepared_mutex_:pause");
      TEST_SYNC_POINT(
          "WritePreparedTxnDB::IsInSnapshot:prepared_mutex_:resume");
      if (!was_empty) {
        // We should not normally reach here
        WPRecordTick(TXN_PREPARE_MUTEX_OVERHEAD);
        ReadLock rl(&prepared_mutex_);
        ROCKS_LOG_WARN(
            info_log_, "prepared_mutex_ overhead %" PRIu64 " for %" PRIu64,
            static_cast<uint64_t>(delayed_prepared_.size()), prep_seq);
        if (delayed_prepared_.find(prep_seq) != delayed_prepared_.end()) {
          // This is the order: 1) delayed_prepared_commits_ update, 2) publish
          // 3) delayed_prepared_ clean up. So check if it is the case of a late
          // clenaup.
          auto it = delayed_prepared_commits_.find(prep_seq);
          if (it == delayed_prepared_commits_.end()) {
            // Then it is not committed yet
            ROCKS_LOG_DETAILS(info_log_,
                              "IsInSnapshot %" PRIu64 " in %" PRIu64
                              " returns %" PRId32,
                              prep_seq, snapshot_seq, 0);
            return false;
          } else {
            ROCKS_LOG_DETAILS(info_log_,
                              "IsInSnapshot %" PRIu64 " in %" PRIu64
                              " commit: %" PRIu64 " returns %" PRId32,
                              prep_seq, snapshot_seq, it->second,
                              snapshot_seq <= it->second);
            return it->second <= snapshot_seq;
          }
        } else {
          // 2nd query to commit cache. Refer to was_empty comment above.
          exist = GetCommitEntry(indexed_seq, &dont_care, &cached);
          if (exist && prep_seq == cached.prep_seq) {
            ROCKS_LOG_DETAILS(
                info_log_,
                "IsInSnapshot %" PRIu64 " in %" PRIu64 " returns %" PRId32,
                prep_seq, snapshot_seq, cached.commit_seq <= snapshot_seq);
            return cached.commit_seq <= snapshot_seq;
          }
          max_evicted_seq_ub = max_evicted_seq_.load(std::memory_order_acquire);
        }
      }
    } while (UNLIKELY(max_evicted_seq_lb != max_evicted_seq_ub));
    // When advancing max_evicted_seq_, we move older entires from prepared to
    // delayed_prepared_. Also we move evicted entries from commit cache to
    // old_commit_map_ if it overlaps with any snapshot. Since prep_seq <=
    // max_evicted_seq_, we have three cases: i) in delayed_prepared_, ii) in
    // old_commit_map_, iii) committed with no conflict with any snapshot. Case
    // (i) delayed_prepared_ is checked above
    if (max_evicted_seq_ub < snapshot_seq) {  // then (ii) cannot be the case
      // only (iii) is the case: committed
      // commit_seq <= max_evicted_seq_ < snapshot_seq => commit_seq <
      // snapshot_seq
      ROCKS_LOG_DETAILS(
          info_log_, "IsInSnapshot %" PRIu64 " in %" PRIu64 " returns %" PRId32,
          prep_seq, snapshot_seq, 1);
      return true;
    }
    // else (ii) might be the case: check the commit data saved for this
    // snapshot. If there was no overlapping commit entry, then it is committed
    // with a commit_seq lower than any live snapshot, including snapshot_seq.
    if (old_commit_map_empty_.load(std::memory_order_acquire)) {
      ROCKS_LOG_DETAILS(info_log_,
                        "IsInSnapshot %" PRIu64 " in %" PRIu64
                        " returns %" PRId32 " released=1",
                        prep_seq, snapshot_seq, 0);
      assert(snap_released);
      // This snapshot is not valid anymore. We cannot tell if prep_seq is
      // committed before or after the snapshot. Return true but also set
      // snap_released to true.
      *snap_released = true;
      return true;
    }
    {
      // We should not normally reach here unless sapshot_seq is old. This is a
      // rare case and it is ok to pay the cost of mutex ReadLock for such old,
      // reading transactions.
      WPRecordTick(TXN_OLD_COMMIT_MAP_MUTEX_OVERHEAD);
      ReadLock rl(&old_commit_map_mutex_);
      auto prep_set_entry = old_commit_map_.find(snapshot_seq);
      bool found = prep_set_entry != old_commit_map_.end();
      if (found) {
        auto& vec = prep_set_entry->second;
        found = std::binary_search(vec.begin(), vec.end(), prep_seq);
      } else {
        // coming from compaction
        ROCKS_LOG_DETAILS(info_log_,
                          "IsInSnapshot %" PRIu64 " in %" PRIu64
                          " returns %" PRId32 " released=1",
                          prep_seq, snapshot_seq, 0);
        // This snapshot is not valid anymore. We cannot tell if prep_seq is
        // committed before or after the snapshot. Return true but also set
        // snap_released to true.
        assert(snap_released);
        *snap_released = true;
        return true;
      }

      if (!found) {
        ROCKS_LOG_DETAILS(info_log_,
                          "IsInSnapshot %" PRIu64 " in %" PRIu64
                          " returns %" PRId32,
                          prep_seq, snapshot_seq, 1);
        return true;
      }
    }
    // (ii) it the case: it is committed but after the snapshot_seq
    ROCKS_LOG_DETAILS(
        info_log_, "IsInSnapshot %" PRIu64 " in %" PRIu64 " returns %" PRId32,
        prep_seq, snapshot_seq, 0);
    return false;
  }

  // Add the transaction with prepare sequence seq to the prepared list.
  // Note: must be called serially with increasing seq on each call.
  // locked is true if prepared_mutex_ is already locked.
  void AddPrepared(uint64_t seq, bool locked = false);
  // Check if any of the prepared txns are less than new max_evicted_seq_. Must
  // be called with prepared_mutex_ write locked.
  void CheckPreparedAgainstMax(SequenceNumber new_max, bool locked);
  // Remove the transaction with prepare sequence seq from the prepared list
  void RemovePrepared(const uint64_t seq, const size_t batch_cnt = 1);
  // Add the transaction with prepare sequence prepare_seq and commit sequence
  // commit_seq to the commit map. loop_cnt is to detect infinite loops.
  // Note: must be called serially.
  void AddCommitted(uint64_t prepare_seq, uint64_t commit_seq,
                    uint8_t loop_cnt = 0);

  struct CommitEntry {
    uint64_t prep_seq;
    uint64_t commit_seq;
    CommitEntry() : prep_seq(0), commit_seq(0) {}
    CommitEntry(uint64_t ps, uint64_t cs) : prep_seq(ps), commit_seq(cs) {}
    bool operator==(const CommitEntry& rhs) const {
      return prep_seq == rhs.prep_seq && commit_seq == rhs.commit_seq;
    }
  };

  struct CommitEntry64bFormat {
    explicit CommitEntry64bFormat(size_t index_bits)
        : INDEX_BITS(index_bits),
          PREP_BITS(static_cast<size_t>(64 - PAD_BITS - INDEX_BITS)),
          COMMIT_BITS(static_cast<size_t>(64 - PREP_BITS)),
          COMMIT_FILTER(static_cast<uint64_t>((1ull << COMMIT_BITS) - 1)),
          DELTA_UPPERBOUND(static_cast<uint64_t>((1ull << COMMIT_BITS))) {}
    // Number of higher bits of a sequence number that is not used. They are
    // used to encode the value type, ...
    const size_t PAD_BITS = static_cast<size_t>(8);
    // Number of lower bits from prepare seq that can be skipped as they are
    // implied by the index of the entry in the array
    const size_t INDEX_BITS;
    // Number of bits we use to encode the prepare seq
    const size_t PREP_BITS;
    // Number of bits we use to encode the commit seq.
    const size_t COMMIT_BITS;
    // Filter to encode/decode commit seq
    const uint64_t COMMIT_FILTER;
    // The value of commit_seq - prepare_seq + 1 must be less than this bound
    const uint64_t DELTA_UPPERBOUND;
  };

  // Prepare Seq (64 bits) = PAD ... PAD PREP PREP ... PREP INDEX INDEX ...
  // INDEX Delta Seq (64 bits)   = 0 0 0 0 0 0 0 0 0  0 0 0 DELTA DELTA ...
  // DELTA DELTA Encoded Value         = PREP PREP .... PREP PREP DELTA DELTA
  // ... DELTA DELTA PAD: first bits of a seq that is reserved for tagging and
  // hence ignored PREP/INDEX: the used bits in a prepare seq number INDEX: the
  // bits that do not have to be encoded (will be provided externally) DELTA:
  // prep seq - commit seq + 1 Number of DELTA bits should be equal to number of
  // index bits + PADs
  struct CommitEntry64b {
    constexpr CommitEntry64b() noexcept : rep_(0) {}

    CommitEntry64b(const CommitEntry& entry, const CommitEntry64bFormat& format)
        : CommitEntry64b(entry.prep_seq, entry.commit_seq, format) {}

    CommitEntry64b(const uint64_t ps, const uint64_t cs,
                   const CommitEntry64bFormat& format) {
      assert(ps < static_cast<uint64_t>(
                      (1ull << (format.PREP_BITS + format.INDEX_BITS))));
      assert(ps <= cs);
      uint64_t delta = cs - ps + 1;  // make initialized delta always >= 1
      // zero is reserved for uninitialized entries
      assert(0 < delta);
      assert(delta < format.DELTA_UPPERBOUND);
      if (delta >= format.DELTA_UPPERBOUND) {
        throw std::runtime_error(
            "commit_seq >> prepare_seq. The allowed distance is " +
            ToString(format.DELTA_UPPERBOUND) + " commit_seq is " +
            ToString(cs) + " prepare_seq is " + ToString(ps));
      }
      rep_ = (ps << format.PAD_BITS) & ~format.COMMIT_FILTER;
      rep_ = rep_ | delta;
    }

    // Return false if the entry is empty
    bool Parse(const uint64_t indexed_seq, CommitEntry* entry,
               const CommitEntry64bFormat& format) {
      uint64_t delta = rep_ & format.COMMIT_FILTER;
      // zero is reserved for uninitialized entries
      assert(delta < static_cast<uint64_t>((1ull << format.COMMIT_BITS)));
      if (delta == 0) {
        return false;  // initialized entry would have non-zero delta
      }

      assert(indexed_seq < static_cast<uint64_t>((1ull << format.INDEX_BITS)));
      uint64_t prep_up = rep_ & ~format.COMMIT_FILTER;
      prep_up >>= format.PAD_BITS;
      const uint64_t& prep_low = indexed_seq;
      entry->prep_seq = prep_up | prep_low;

      entry->commit_seq = entry->prep_seq + delta - 1;
      return true;
    }

   private:
    uint64_t rep_;
  };

  // Struct to hold ownership of snapshot and read callback for cleanup.
  struct IteratorState;

  std::shared_ptr<std::map<uint32_t, const Comparator*>> GetCFComparatorMap() {
    return cf_map_;
  }
  std::shared_ptr<std::map<uint32_t, ColumnFamilyHandle*>> GetCFHandleMap() {
    return handle_map_;
  }
  void UpdateCFComparatorMap(
      const std::vector<ColumnFamilyHandle*>& handles) override;
  void UpdateCFComparatorMap(ColumnFamilyHandle* handle) override;

  virtual const Snapshot* GetSnapshot() override;
  SnapshotImpl* GetSnapshotInternal(bool for_ww_conflict_check);

 protected:
  virtual Status VerifyCFOptions(
      const ColumnFamilyOptions& cf_options) override;
  // Assign the min and max sequence numbers for reading from the db. A seq >
  // max is not valid, and a seq < min is valid, and a min <= seq < max requires
  // further checking. Normally max is defined by the snapshot and min is by
  // minimum uncommitted seq.
  inline SnapshotBackup AssignMinMaxSeqs(const Snapshot* snapshot,
                                         SequenceNumber* min,
                                         SequenceNumber* max);
  // Validate is a snapshot sequence number is still valid based on the latest
  // db status. backed_by_snapshot specifies if the number is baked by an actual
  // snapshot object. order specified the memory order with which we load the
  // atomic variables: relax is enough for the default since we care about last
  // value seen by same thread.
  inline bool ValidateSnapshot(
      const SequenceNumber snap_seq, const SnapshotBackup backed_by_snapshot,
      std::memory_order order = std::memory_order_relaxed);
  // Get a dummy snapshot that refers to kMaxSequenceNumber
  Snapshot* GetMaxSnapshot() { return &dummy_max_snapshot_; }

 private:
  friend class AddPreparedCallback;
  friend class PreparedHeap_BasicsTest_Test;
  friend class PreparedHeap_Concurrent_Test;
  friend class PreparedHeap_EmptyAtTheEnd_Test;
  friend class SnapshotConcurrentAccessTest_SnapshotConcurrentAccess_Test;
  friend class WritePreparedCommitEntryPreReleaseCallback;
  friend class WritePreparedTransactionTestBase;
  friend class WritePreparedTxn;
  friend class WritePreparedTxnDBMock;
  friend class WritePreparedTransactionTest_AddPreparedBeforeMax_Test;
  friend class WritePreparedTransactionTest_AdvanceMaxEvictedSeqBasic_Test;
  friend class
      WritePreparedTransactionTest_AdvanceMaxEvictedSeqWithDuplicates_Test;
  friend class WritePreparedTransactionTest_AdvanceSeqByOne_Test;
  friend class WritePreparedTransactionTest_BasicRecovery_Test;
  friend class WritePreparedTransactionTest_CheckAgainstSnapshots_Test;
  friend class WritePreparedTransactionTest_CleanupSnapshotEqualToMax_Test;
  friend class WritePreparedTransactionTest_ConflictDetectionAfterRecovery_Test;
  friend class WritePreparedTransactionTest_CommitMap_Test;
  friend class WritePreparedTransactionTest_DoubleSnapshot_Test;
  friend class WritePreparedTransactionTest_IsInSnapshotEmptyMap_Test;
  friend class WritePreparedTransactionTest_IsInSnapshotReleased_Test;
  friend class WritePreparedTransactionTest_IsInSnapshot_Test;
  friend class WritePreparedTransactionTest_NewSnapshotLargerThanMax_Test;
  friend class WritePreparedTransactionTest_MaxCatchupWithNewSnapshot_Test;
  friend class WritePreparedTransactionTest_MaxCatchupWithUnbackedSnapshot_Test;
  friend class
      WritePreparedTransactionTest_NonAtomicCommitOfDelayedPrepared_Test;
  friend class
      WritePreparedTransactionTest_NonAtomicUpdateOfDelayedPrepared_Test;
  friend class WritePreparedTransactionTest_NonAtomicUpdateOfMaxEvictedSeq_Test;
  friend class WritePreparedTransactionTest_OldCommitMapGC_Test;
  friend class WritePreparedTransactionTest_Rollback_Test;
  friend class WritePreparedTransactionTest_SmallestUnCommittedSeq_Test;
  friend class WriteUnpreparedTxn;
  friend class WriteUnpreparedTxnDB;
  friend class WriteUnpreparedTransactionTest_RecoveryTest_Test;

  void Init(const TransactionDBOptions& /* unused */);

  void WPRecordTick(uint32_t ticker_type) const {
    RecordTick(db_impl_->immutable_db_options_.statistics.get(), ticker_type);
  }

  // A heap with the amortized O(1) complexity for erase. It uses one extra heap
  // to keep track of erased entries that are not yet on top of the main heap.
  class PreparedHeap {
    // The mutex is required for push and pop from PreparedHeap. ::erase will
    // use external synchronization via prepared_mutex_.
    port::Mutex push_pop_mutex_;
    std::deque<uint64_t> heap_;
    std::priority_queue<uint64_t, std::vector<uint64_t>, std::greater<uint64_t>>
        erased_heap_;
    std::atomic<uint64_t> heap_top_ = {kMaxSequenceNumber};
    // True when testing crash recovery
    bool TEST_CRASH_ = false;
    friend class WritePreparedTxnDB;

   public:
    ~PreparedHeap() {
      if (!TEST_CRASH_) {
        assert(heap_.empty());
        assert(erased_heap_.empty());
      }
    }
    port::Mutex* push_pop_mutex() { return &push_pop_mutex_; }

    inline bool empty() { return top() == kMaxSequenceNumber; }
    // Returns kMaxSequenceNumber if empty() and the smallest otherwise.
    inline uint64_t top() { return heap_top_.load(std::memory_order_acquire); }
    inline void push(uint64_t v) {
      push_pop_mutex_.AssertHeld();
      if (heap_.empty()) {
        heap_top_.store(v, std::memory_order_release);
      } else {
        assert(heap_top_.load() < v);
      }
      heap_.push_back(v);
    }
    void pop(bool locked = false) {
      if (!locked) {
        push_pop_mutex()->Lock();
      }
      push_pop_mutex_.AssertHeld();
      heap_.pop_front();
      while (!heap_.empty() && !erased_heap_.empty() &&
             // heap_.top() > erased_heap_.top() could happen if we have erased
             // a non-existent entry. Ideally the user should not do that but we
             // should be resilient against it.
             heap_.front() >= erased_heap_.top()) {
        if (heap_.front() == erased_heap_.top()) {
          heap_.pop_front();
        }
        uint64_t erased __attribute__((__unused__));
        erased = erased_heap_.top();
        erased_heap_.pop();
        // No duplicate prepare sequence numbers
        assert(erased_heap_.empty() || erased_heap_.top() != erased);
      }
      while (heap_.empty() && !erased_heap_.empty()) {
        erased_heap_.pop();
      }
      heap_top_.store(!heap_.empty() ? heap_.front() : kMaxSequenceNumber,
                      std::memory_order_release);
      if (!locked) {
        push_pop_mutex()->Unlock();
      }
    }
    // Concurrrent calls needs external synchronization. It is safe to be called
    // concurrent to push and pop though.
    void erase(uint64_t seq) {
      if (!empty()) {
        auto top_seq = top();
        if (seq < top_seq) {
          // Already popped, ignore it.
        } else if (top_seq == seq) {
          pop();
#ifndef NDEBUG
          MutexLock ml(push_pop_mutex());
          assert(heap_.empty() || heap_.front() != seq);
#endif
        } else {  // top() > seq
          // Down the heap, remember to pop it later
          erased_heap_.push(seq);
        }
      }
    }
  };

  void TEST_Crash() override { prepared_txns_.TEST_CRASH_ = true; }

  // Get the commit entry with index indexed_seq from the commit table. It
  // returns true if such entry exists.
  bool GetCommitEntry(const uint64_t indexed_seq, CommitEntry64b* entry_64b,
                      CommitEntry* entry) const;

  // Rewrite the entry with the index indexed_seq in the commit table with the
  // commit entry <prep_seq, commit_seq>. If the rewrite results into eviction,
  // sets the evicted_entry and returns true.
  bool AddCommitEntry(const uint64_t indexed_seq, const CommitEntry& new_entry,
                      CommitEntry* evicted_entry);

  // Rewrite the entry with the index indexed_seq in the commit table with the
  // commit entry new_entry only if the existing entry matches the
  // expected_entry. Returns false otherwise.
  bool ExchangeCommitEntry(const uint64_t indexed_seq,
                           CommitEntry64b& expected_entry,
                           const CommitEntry& new_entry);

  // Increase max_evicted_seq_ from the previous value prev_max to the new
  // value. This also involves taking care of prepared txns that are not
  // committed before new_max, as well as updating the list of live snapshots at
  // the time of updating the max. Thread-safety: this function can be called
  // concurrently. The concurrent invocations of this function is equivalent to
  // a serial invocation in which the last invocation is the one with the
  // largest new_max value.
  void AdvanceMaxEvictedSeq(const SequenceNumber& prev_max,
                            const SequenceNumber& new_max);

  inline SequenceNumber SmallestUnCommittedSeq() {
    // Note: We have two lists to look into, but for performance reasons they
    // are not read atomically. Since CheckPreparedAgainstMax copies the entry
    // to delayed_prepared_ before removing it from prepared_txns_, to ensure
    // that a prepared entry will not go unmissed, we look into them in opposite
    // order: first read prepared_txns_ and then delayed_prepared_.

    // This must be called before calling ::top. This is because the concurrent
    // thread would call ::RemovePrepared before updating
    // GetLatestSequenceNumber(). Reading then in opposite order here guarantees
    // that the ::top that we read would be lower the ::top if we had otherwise
    // update/read them atomically.
    auto next_prepare = db_impl_->GetLatestSequenceNumber() + 1;
    auto min_prepare = prepared_txns_.top();
    // Since we update the prepare_heap always from the main write queue via
    // PreReleaseCallback, the prepared_txns_.top() indicates the smallest
    // prepared data in 2pc transactions. For non-2pc transactions that are
    // written in two steps, we also update prepared_txns_ at the first step
    // (via the same mechanism) so that their uncommitted data is reflected in
    // SmallestUnCommittedSeq.
    if (!delayed_prepared_empty_.load()) {
      ReadLock rl(&prepared_mutex_);
      if (!delayed_prepared_.empty()) {
        return *delayed_prepared_.begin();
      }
    }
    bool empty = min_prepare == kMaxSequenceNumber;
    if (empty) {
      // Since GetLatestSequenceNumber is updated
      // after prepared_txns_ are, the value of GetLatestSequenceNumber would
      // reflect any uncommitted data that is not added to prepared_txns_ yet.
      // Otherwise, if there is no concurrent txn, this value simply reflects
      // that latest value in the memtable.
      return next_prepare;
    } else {
      return std::min(min_prepare, next_prepare);
    }
  }

  // Enhance the snapshot object by recording in it the smallest uncommitted seq
  inline void EnhanceSnapshot(SnapshotImpl* snapshot,
                              SequenceNumber min_uncommitted) {
    assert(snapshot);
    assert(min_uncommitted <= snapshot->number_ + 1);
    snapshot->min_uncommitted_ = min_uncommitted;
  }

  virtual const std::vector<SequenceNumber> GetSnapshotListFromDB(
      SequenceNumber max);

  // Will be called by the public ReleaseSnapshot method. Does the maintenance
  // internal to WritePreparedTxnDB
  void ReleaseSnapshotInternal(const SequenceNumber snap_seq);

  // Update the list of snapshots corresponding to the soon-to-be-updated
  // max_evicted_seq_. Thread-safety: this function can be called concurrently.
  // The concurrent invocations of this function is equivalent to a serial
  // invocation in which the last invocation is the one with the largest
  // version value.
  void UpdateSnapshots(const std::vector<SequenceNumber>& snapshots,
                       const SequenceNumber& version);
  // Check the new list of new snapshots against the old one to see  if any of
  // the snapshots are released and to do the cleanup for the released snapshot.
  void CleanupReleasedSnapshots(
      const std::vector<SequenceNumber>& new_snapshots,
      const std::vector<SequenceNumber>& old_snapshots);

  // Check an evicted entry against live snapshots to see if it should be kept
  // around or it can be safely discarded (and hence assume committed for all
  // snapshots). Thread-safety: this function can be called concurrently. If it
  // is called concurrently with multiple UpdateSnapshots, the result is the
  // same as checking the intersection of the snapshot list before updates with
  // the snapshot list of all the concurrent updates.
  void CheckAgainstSnapshots(const CommitEntry& evicted);

  // Add a new entry to old_commit_map_ if prep_seq <= snapshot_seq <
  // commit_seq. Return false if checking the next snapshot(s) is not needed.
  // This is the case if none of the next snapshots could satisfy the condition.
  // next_is_larger: the next snapshot will be a larger value
  bool MaybeUpdateOldCommitMap(const uint64_t& prep_seq,
                               const uint64_t& commit_seq,
                               const uint64_t& snapshot_seq,
                               const bool next_is_larger);

  // A trick to increase the last visible sequence number by one and also wait
  // for the in-flight commits to be visible.
  void AdvanceSeqByOne();

  // The list of live snapshots at the last time that max_evicted_seq_ advanced.
  // The list stored into two data structures: in snapshot_cache_ that is
  // efficient for concurrent reads, and in snapshots_ if the data does not fit
  // into snapshot_cache_. The total number of snapshots in the two lists
  std::atomic<size_t> snapshots_total_ = {};
  // The list sorted in ascending order. Thread-safety for writes is provided
  // with snapshots_mutex_ and concurrent reads are safe due to std::atomic for
  // each entry. In x86_64 architecture such reads are compiled to simple read
  // instructions.
  const size_t SNAPSHOT_CACHE_BITS;
  const size_t SNAPSHOT_CACHE_SIZE;
  std::unique_ptr<std::atomic<SequenceNumber>[]> snapshot_cache_;
  // 2nd list for storing snapshots. The list sorted in ascending order.
  // Thread-safety is provided with snapshots_mutex_.
  std::vector<SequenceNumber> snapshots_;
  // The list of all snapshots: snapshots_ + snapshot_cache_. This list although
  // redundant but simplifies CleanupOldSnapshots implementation.
  // Thread-safety is provided with snapshots_mutex_.
  std::vector<SequenceNumber> snapshots_all_;
  // The version of the latest list of snapshots. This can be used to avoid
  // rewriting a list that is concurrently updated with a more recent version.
  SequenceNumber snapshots_version_ = 0;

  // A heap of prepared transactions. Thread-safety is provided with
  // prepared_mutex_.
  PreparedHeap prepared_txns_;
  const size_t COMMIT_CACHE_BITS;
  const size_t COMMIT_CACHE_SIZE;
  const CommitEntry64bFormat FORMAT;
  // commit_cache_ must be initialized to zero to tell apart an empty index from
  // a filled one. Thread-safety is provided with commit_cache_mutex_.
  std::unique_ptr<std::atomic<CommitEntry64b>[]> commit_cache_;
  // The largest evicted *commit* sequence number from the commit_cache_. If a
  // seq is smaller than max_evicted_seq_ is might or might not be present in
  // commit_cache_. So commit_cache_ must first be checked before consulting
  // with max_evicted_seq_.
  std::atomic<uint64_t> max_evicted_seq_ = {};
  // Order: 1) update future_max_evicted_seq_ = new_max, 2)
  // GetSnapshotListFromDB(new_max), max_evicted_seq_ = new_max. Since
  // GetSnapshotInternal guarantess that the snapshot seq is larger than
  // future_max_evicted_seq_, this guarantes that if a snapshot is not larger
  // than max has already being looked at via a GetSnapshotListFromDB(new_max).
  std::atomic<uint64_t> future_max_evicted_seq_ = {};
  // Advance max_evicted_seq_ by this value each time it needs an update. The
  // larger the value, the less frequent advances we would have. We do not want
  // it to be too large either as it would cause stalls by doing too much
  // maintenance work under the lock.
  size_t INC_STEP_FOR_MAX_EVICTED = 1;
  // A map from old snapshots (expected to be used by a few read-only txns) to
  // prepared sequence number of the evicted entries from commit_cache_ that
  // overlaps with such snapshot. These are the prepared sequence numbers that
  // the snapshot, to which they are mapped, cannot assume to be committed just
  // because it is no longer in the commit_cache_. The vector must be sorted
  // after each update.
  // Thread-safety is provided with old_commit_map_mutex_.
  std::map<SequenceNumber, std::vector<SequenceNumber>> old_commit_map_;
  // A set of long-running prepared transactions that are not finished by the
  // time max_evicted_seq_ advances their sequence number. This is expected to
  // be empty normally. Thread-safety is provided with prepared_mutex_.
  std::set<uint64_t> delayed_prepared_;
  // Commit of a delayed prepared: 1) update commit cache, 2) update
  // delayed_prepared_commits_, 3) publish seq, 3) clean up delayed_prepared_.
  // delayed_prepared_commits_ will help us tell apart the unprepared txns from
  // the ones that are committed but not cleaned up yet.
  std::unordered_map<SequenceNumber, SequenceNumber> delayed_prepared_commits_;
  // Update when delayed_prepared_.empty() changes. Expected to be true
  // normally.
  std::atomic<bool> delayed_prepared_empty_ = {true};
  // Update when old_commit_map_.empty() changes. Expected to be true normally.
  std::atomic<bool> old_commit_map_empty_ = {true};
  mutable port::RWMutex prepared_mutex_;
  mutable port::RWMutex old_commit_map_mutex_;
  mutable port::RWMutex commit_cache_mutex_;
  mutable port::RWMutex snapshots_mutex_;
  // A cache of the cf comparators
  // Thread safety: since it is a const it is safe to read it concurrently
  std::shared_ptr<std::map<uint32_t, const Comparator*>> cf_map_;
  // A cache of the cf handles
  // Thread safety: since the handle is read-only object it is a const it is
  // safe to read it concurrently
  std::shared_ptr<std::map<uint32_t, ColumnFamilyHandle*>> handle_map_;
  // A dummy snapshot object that refers to kMaxSequenceNumber
  SnapshotImpl dummy_max_snapshot_;
};

class WritePreparedTxnReadCallback : public ReadCallback {
 public:
  WritePreparedTxnReadCallback(WritePreparedTxnDB* db, SequenceNumber snapshot)
      : ReadCallback(snapshot),
        db_(db),
        backed_by_snapshot_(kBackedByDBSnapshot) {}
  WritePreparedTxnReadCallback(WritePreparedTxnDB* db, SequenceNumber snapshot,
                               SequenceNumber min_uncommitted,
                               SnapshotBackup backed_by_snapshot)
      : ReadCallback(snapshot, min_uncommitted),
        db_(db),
        backed_by_snapshot_(backed_by_snapshot) {
    (void)backed_by_snapshot_;  // to silence unused private field warning
  }

  virtual ~WritePreparedTxnReadCallback() {
    // If it is not backed by snapshot, the caller must check validity
    assert(valid_checked_ || backed_by_snapshot_ == kBackedByDBSnapshot);
  }

  // Will be called to see if the seq number visible; if not it moves on to
  // the next seq number.
  inline virtual bool IsVisibleFullCheck(SequenceNumber seq) override {
    auto snapshot = max_visible_seq_;
    bool snap_released = false;
    auto ret =
        db_->IsInSnapshot(seq, snapshot, min_uncommitted_, &snap_released);
    assert(!snap_released || backed_by_snapshot_ == kUnbackedByDBSnapshot);
    snap_released_ |= snap_released;
    return ret;
  }

  inline bool valid() {
    valid_checked_ = true;
    return snap_released_ == false;
  }

  // TODO(myabandeh): override Refresh when Iterator::Refresh is supported
 private:
  WritePreparedTxnDB* db_;
  // Whether max_visible_seq_ is backed by a snapshot
  const SnapshotBackup backed_by_snapshot_;
  bool snap_released_ = false;
  // Safety check to ensure that the caller has checked invalid statuses
  bool valid_checked_ = false;
};

class AddPreparedCallback : public PreReleaseCallback {
 public:
  AddPreparedCallback(WritePreparedTxnDB* db, DBImpl* db_impl,
                      size_t sub_batch_cnt, bool two_write_queues,
                      bool first_prepare_batch)
      : db_(db),
        db_impl_(db_impl),
        sub_batch_cnt_(sub_batch_cnt),
        two_write_queues_(two_write_queues),
        first_prepare_batch_(first_prepare_batch) {
    (void)two_write_queues_;  // to silence unused private field warning
  }
  virtual Status Callback(SequenceNumber prepare_seq,
                          bool is_mem_disabled __attribute__((__unused__)),
                          uint64_t log_number, size_t index,
                          size_t total) override {
    assert(index < total);
    // To reduce the cost of lock acquisition competing with the concurrent
    // prepare requests, lock on the first callback and unlock on the last.
    const bool do_lock = !two_write_queues_ || index == 0;
    const bool do_unlock = !two_write_queues_ || index + 1 == total;
    // Always Prepare from the main queue
    assert(!two_write_queues_ || !is_mem_disabled);  // implies the 1st queue
    TEST_SYNC_POINT("AddPreparedCallback::AddPrepared::begin:pause");
    TEST_SYNC_POINT("AddPreparedCallback::AddPrepared::begin:resume");
    if (do_lock) {
      db_->prepared_txns_.push_pop_mutex()->Lock();
    }
    const bool kLocked = true;
    for (size_t i = 0; i < sub_batch_cnt_; i++) {
      db_->AddPrepared(prepare_seq + i, kLocked);
    }
    if (do_unlock) {
      db_->prepared_txns_.push_pop_mutex()->Unlock();
    }
    TEST_SYNC_POINT("AddPreparedCallback::AddPrepared::end");
    if (first_prepare_batch_) {
      assert(log_number != 0);
      db_impl_->logs_with_prep_tracker()->MarkLogAsContainingPrepSection(
          log_number);
    }
    return Status::OK();
  }

 private:
  WritePreparedTxnDB* db_;
  DBImpl* db_impl_;
  size_t sub_batch_cnt_;
  bool two_write_queues_;
  // It is 2PC and this is the first prepare batch. Always the case in 2PC
  // unless it is WriteUnPrepared.
  bool first_prepare_batch_;
};

class WritePreparedCommitEntryPreReleaseCallback : public PreReleaseCallback {
 public:
  // includes_data indicates that the commit also writes non-empty
  // CommitTimeWriteBatch to memtable, which needs to be committed separately.
  WritePreparedCommitEntryPreReleaseCallback(
      WritePreparedTxnDB* db, DBImpl* db_impl, SequenceNumber prep_seq,
      size_t prep_batch_cnt, size_t data_batch_cnt = 0,
      SequenceNumber aux_seq = kMaxSequenceNumber, size_t aux_batch_cnt = 0)
      : db_(db),
        db_impl_(db_impl),
        prep_seq_(prep_seq),
        prep_batch_cnt_(prep_batch_cnt),
        data_batch_cnt_(data_batch_cnt),
        includes_data_(data_batch_cnt_ > 0),
        aux_seq_(aux_seq),
        aux_batch_cnt_(aux_batch_cnt),
        includes_aux_batch_(aux_batch_cnt > 0) {
    assert((prep_batch_cnt_ > 0) != (prep_seq == kMaxSequenceNumber));  // xor
    assert(prep_batch_cnt_ > 0 || data_batch_cnt_ > 0);
    assert((aux_batch_cnt_ > 0) != (aux_seq == kMaxSequenceNumber));  // xor
  }

  virtual Status Callback(SequenceNumber commit_seq,
                          bool is_mem_disabled __attribute__((__unused__)),
                          uint64_t, size_t /*index*/,
                          size_t /*total*/) override {
    // Always commit from the 2nd queue
    assert(!db_impl_->immutable_db_options().two_write_queues ||
           is_mem_disabled);
    assert(includes_data_ || prep_seq_ != kMaxSequenceNumber);
    // Data batch is what accompanied with the commit marker and affects the
    // last seq in the commit batch.
    const uint64_t last_commit_seq = LIKELY(data_batch_cnt_ <= 1)
                                         ? commit_seq
                                         : commit_seq + data_batch_cnt_ - 1;
    if (prep_seq_ != kMaxSequenceNumber) {
      for (size_t i = 0; i < prep_batch_cnt_; i++) {
        db_->AddCommitted(prep_seq_ + i, last_commit_seq);
      }
    }  // else there was no prepare phase
    if (includes_aux_batch_) {
      for (size_t i = 0; i < aux_batch_cnt_; i++) {
        db_->AddCommitted(aux_seq_ + i, last_commit_seq);
      }
    }
    if (includes_data_) {
      assert(data_batch_cnt_);
      // Commit the data that is accompanied with the commit request
      for (size_t i = 0; i < data_batch_cnt_; i++) {
        // For commit seq of each batch use the commit seq of the last batch.
        // This would make debugging easier by having all the batches having
        // the same sequence number.
        db_->AddCommitted(commit_seq + i, last_commit_seq);
      }
    }
    if (db_impl_->immutable_db_options().two_write_queues) {
      assert(is_mem_disabled);  // implies the 2nd queue
      // Publish the sequence number. We can do that here assuming the callback
      // is invoked only from one write queue, which would guarantee that the
      // publish sequence numbers will be in order, i.e., once a seq is
      // published all the seq prior to that are also publishable.
      db_impl_->SetLastPublishedSequence(last_commit_seq);
      // Note RemovePrepared should be called after publishing the seq.
      // Otherwise SmallestUnCommittedSeq optimization breaks.
      if (prep_seq_ != kMaxSequenceNumber) {
        db_->RemovePrepared(prep_seq_, prep_batch_cnt_);
      }  // else there was no prepare phase
      if (includes_aux_batch_) {
        db_->RemovePrepared(aux_seq_, aux_batch_cnt_);
      }
    }
    // else SequenceNumber that is updated as part of the write already does the
    // publishing
    return Status::OK();
  }

 private:
  WritePreparedTxnDB* db_;
  DBImpl* db_impl_;
  // kMaxSequenceNumber if there was no prepare phase
  SequenceNumber prep_seq_;
  size_t prep_batch_cnt_;
  size_t data_batch_cnt_;
  // Data here is the batch that is written with the commit marker, either
  // because it is commit without prepare or commit has a CommitTimeWriteBatch.
  bool includes_data_;
  // Auxiliary batch (if there is any) is a batch that is written before, but
  // gets the same commit seq as prepare batch or data batch. This is used in
  // two write queues where the CommitTimeWriteBatch becomes the aux batch and
  // we do a separate write to actually commit everything.
  SequenceNumber aux_seq_;
  size_t aux_batch_cnt_;
  bool includes_aux_batch_;
};

// For two_write_queues commit both the aborted batch and the cleanup batch and
// then published the seq
class WritePreparedRollbackPreReleaseCallback : public PreReleaseCallback {
 public:
  WritePreparedRollbackPreReleaseCallback(WritePreparedTxnDB* db,
                                          DBImpl* db_impl,
                                          SequenceNumber prep_seq,
                                          SequenceNumber rollback_seq,
                                          size_t prep_batch_cnt)
      : db_(db),
        db_impl_(db_impl),
        prep_seq_(prep_seq),
        rollback_seq_(rollback_seq),
        prep_batch_cnt_(prep_batch_cnt) {
    assert(prep_seq != kMaxSequenceNumber);
    assert(rollback_seq != kMaxSequenceNumber);
    assert(prep_batch_cnt_ > 0);
  }

  Status Callback(SequenceNumber commit_seq, bool is_mem_disabled, uint64_t,
                  size_t /*index*/, size_t /*total*/) override {
    // Always commit from the 2nd queue
    assert(is_mem_disabled);  // implies the 2nd queue
    assert(db_impl_->immutable_db_options().two_write_queues);
#ifdef NDEBUG
    (void)is_mem_disabled;
#endif
    const uint64_t last_commit_seq = commit_seq;
    db_->AddCommitted(rollback_seq_, last_commit_seq);
    for (size_t i = 0; i < prep_batch_cnt_; i++) {
      db_->AddCommitted(prep_seq_ + i, last_commit_seq);
    }
    db_impl_->SetLastPublishedSequence(last_commit_seq);
    return Status::OK();
  }

 private:
  WritePreparedTxnDB* db_;
  DBImpl* db_impl_;
  SequenceNumber prep_seq_;
  SequenceNumber rollback_seq_;
  size_t prep_batch_cnt_;
};

// Count the number of sub-batches inside a batch. A sub-batch does not have
// duplicate keys.
struct SubBatchCounter : public WriteBatch::Handler {
  explicit SubBatchCounter(std::map<uint32_t, const Comparator*>& comparators)
      : comparators_(comparators), batches_(1) {}
  std::map<uint32_t, const Comparator*>& comparators_;
  using CFKeys = std::set<Slice, SetComparator>;
  std::map<uint32_t, CFKeys> keys_;
  size_t batches_;
  size_t BatchCount() { return batches_; }
  void AddKey(const uint32_t cf, const Slice& key);
  void InitWithComp(const uint32_t cf);
  Status MarkNoop(bool) override { return Status::OK(); }
  Status MarkEndPrepare(const Slice&) override { return Status::OK(); }
  Status MarkCommit(const Slice&) override { return Status::OK(); }
  Status PutCF(uint32_t cf, const Slice& key, const Slice&) override {
    AddKey(cf, key);
    return Status::OK();
  }
  Status DeleteCF(uint32_t cf, const Slice& key) override {
    AddKey(cf, key);
    return Status::OK();
  }
  Status SingleDeleteCF(uint32_t cf, const Slice& key) override {
    AddKey(cf, key);
    return Status::OK();
  }
  Status MergeCF(uint32_t cf, const Slice& key, const Slice&) override {
    AddKey(cf, key);
    return Status::OK();
  }
  Status MarkBeginPrepare(bool) override { return Status::OK(); }
  Status MarkRollback(const Slice&) override { return Status::OK(); }
  bool WriteAfterCommit() const override { return false; }
};

SnapshotBackup WritePreparedTxnDB::AssignMinMaxSeqs(const Snapshot* snapshot,
                                                    SequenceNumber* min,
                                                    SequenceNumber* max) {
  if (snapshot != nullptr) {
    *min = static_cast_with_check<const SnapshotImpl, const Snapshot>(snapshot)
               ->min_uncommitted_;
    *max = static_cast_with_check<const SnapshotImpl, const Snapshot>(snapshot)
               ->number_;
    return kBackedByDBSnapshot;
  } else {
    *min = SmallestUnCommittedSeq();
    *max = 0;  // to be assigned later after sv is referenced.
    return kUnbackedByDBSnapshot;
  }
}

bool WritePreparedTxnDB::ValidateSnapshot(
    const SequenceNumber snap_seq, const SnapshotBackup backed_by_snapshot,
    std::memory_order order) {
  if (backed_by_snapshot == kBackedByDBSnapshot) {
    return true;
  } else {
    SequenceNumber max = max_evicted_seq_.load(order);
    // Validate that max has not advanced the snapshot seq that is not backed
    // by a real snapshot. This is a very rare case that should not happen in
    // real workloads.
    if (UNLIKELY(snap_seq <= max && snap_seq != 0)) {
      return false;
    }
  }
  return true;
}

}  // namespace ROCKSDB_NAMESPACE
#endif  // ROCKSDB_LITE