summaryrefslogtreecommitdiffstats
path: root/src/spdk/lib/nvme/nvme_pcie.c
blob: 132e34cdc405ac63de87cd4516b525cfea29f8e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
/*-
 *   BSD LICENSE
 *
 *   Copyright (c) Intel Corporation. All rights reserved.
 *   Copyright (c) 2017, IBM Corporation. All rights reserved.
 *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * NVMe over PCIe transport
 */

#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/likely.h"
#include "spdk/string.h"
#include "nvme_internal.h"
#include "nvme_uevent.h"

/*
 * Number of completion queue entries to process before ringing the
 *  completion queue doorbell.
 */
#define NVME_MIN_COMPLETIONS	(1)
#define NVME_MAX_COMPLETIONS	(128)

/*
 * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
 *  segment.
 */
#define NVME_MAX_SGL_DESCRIPTORS	(250)

#define NVME_MAX_PRP_LIST_ENTRIES	(503)

struct nvme_pcie_enum_ctx {
	struct spdk_nvme_probe_ctx *probe_ctx;
	struct spdk_pci_addr pci_addr;
	bool has_pci_addr;
};

/* PCIe transport extensions for spdk_nvme_ctrlr */
struct nvme_pcie_ctrlr {
	struct spdk_nvme_ctrlr ctrlr;

	/** NVMe MMIO register space */
	volatile struct spdk_nvme_registers *regs;

	/** NVMe MMIO register size */
	uint64_t regs_size;

	struct {
		/* BAR mapping address which contains controller memory buffer */
		void *bar_va;

		/* BAR physical address which contains controller memory buffer */
		uint64_t bar_pa;

		/* Controller memory buffer size in Bytes */
		uint64_t size;

		/* Current offset of controller memory buffer, relative to start of BAR virt addr */
		uint64_t current_offset;

		void *mem_register_addr;
		size_t mem_register_size;
	} cmb;

	/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
	uint32_t doorbell_stride_u32;

	/* Opaque handle to associated PCI device. */
	struct spdk_pci_device *devhandle;

	/* Flag to indicate the MMIO register has been remapped */
	bool is_remapped;
};

struct nvme_tracker {
	TAILQ_ENTRY(nvme_tracker)       tq_list;

	struct nvme_request		*req;
	uint16_t			cid;

	uint16_t			rsvd0;
	uint32_t			rsvd1;

	spdk_nvme_cmd_cb		cb_fn;
	void				*cb_arg;

	uint64_t			prp_sgl_bus_addr;

	/* Don't move, metadata SGL is always contiguous with Data Block SGL */
	struct spdk_nvme_sgl_descriptor		meta_sgl;
	union {
		uint64_t			prp[NVME_MAX_PRP_LIST_ENTRIES];
		struct spdk_nvme_sgl_descriptor	sgl[NVME_MAX_SGL_DESCRIPTORS];
	} u;
};
/*
 * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
 * and so that there is no padding required to meet alignment requirements.
 */
SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, meta_sgl) & 7) == 0, "SGL must be Qword aligned");

struct nvme_pcie_poll_group {
	struct spdk_nvme_transport_poll_group group;
};

/* PCIe transport extensions for spdk_nvme_qpair */
struct nvme_pcie_qpair {
	/* Submission queue tail doorbell */
	volatile uint32_t *sq_tdbl;

	/* Completion queue head doorbell */
	volatile uint32_t *cq_hdbl;

	/* Submission queue */
	struct spdk_nvme_cmd *cmd;

	/* Completion queue */
	struct spdk_nvme_cpl *cpl;

	TAILQ_HEAD(, nvme_tracker) free_tr;
	TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;

	/* Array of trackers indexed by command ID. */
	struct nvme_tracker *tr;

	uint16_t num_entries;

	uint8_t retry_count;

	uint16_t max_completions_cap;

	uint16_t last_sq_tail;
	uint16_t sq_tail;
	uint16_t cq_head;
	uint16_t sq_head;

	struct {
		uint8_t phase			: 1;
		uint8_t delay_cmd_submit	: 1;
		uint8_t has_shadow_doorbell	: 1;
	} flags;

	/*
	 * Base qpair structure.
	 * This is located after the hot data in this structure so that the important parts of
	 * nvme_pcie_qpair are in the same cache line.
	 */
	struct spdk_nvme_qpair qpair;

	struct {
		/* Submission queue shadow tail doorbell */
		volatile uint32_t *sq_tdbl;

		/* Completion queue shadow head doorbell */
		volatile uint32_t *cq_hdbl;

		/* Submission queue event index */
		volatile uint32_t *sq_eventidx;

		/* Completion queue event index */
		volatile uint32_t *cq_eventidx;
	} shadow_doorbell;

	/*
	 * Fields below this point should not be touched on the normal I/O path.
	 */

	bool sq_in_cmb;

	uint64_t cmd_bus_addr;
	uint64_t cpl_bus_addr;

	struct spdk_nvme_cmd *sq_vaddr;
	struct spdk_nvme_cpl *cq_vaddr;
};

static int nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx,
				  struct spdk_pci_addr *pci_addr);
static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
				     const struct spdk_nvme_io_qpair_opts *opts);
static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);

__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
static uint16_t g_signal_lock;
static bool g_sigset = false;

static void
nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
{
	void *map_address;
	uint16_t flag = 0;

	if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE,
					 __ATOMIC_RELAXED)) {
		SPDK_DEBUGLOG(SPDK_LOG_NVME, "request g_signal_lock failed\n");
		return;
	}

	assert(g_thread_mmio_ctrlr != NULL);

	if (!g_thread_mmio_ctrlr->is_remapped) {
		map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
				   PROT_READ | PROT_WRITE,
				   MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
		if (map_address == MAP_FAILED) {
			SPDK_ERRLOG("mmap failed\n");
			__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
			return;
		}
		memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
		g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
		g_thread_mmio_ctrlr->is_remapped = true;
	}
	__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
}

static void
nvme_pcie_ctrlr_setup_signal(void)
{
	struct sigaction sa;

	sa.sa_sigaction = nvme_sigbus_fault_sighandler;
	sigemptyset(&sa.sa_mask);
	sa.sa_flags = SA_SIGINFO;
	sigaction(SIGBUS, &sa, NULL);
}

static inline struct nvme_pcie_ctrlr *
nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
	return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr);
}

static int
_nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx)
{
	struct spdk_nvme_ctrlr *ctrlr, *tmp;
	struct spdk_uevent event;
	struct spdk_pci_addr pci_addr;

	if (g_spdk_nvme_driver->hotplug_fd < 0) {
		return 0;
	}

	while (nvme_get_uevent(g_spdk_nvme_driver->hotplug_fd, &event) > 0) {
		if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
		    event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
			if (event.action == SPDK_NVME_UEVENT_ADD) {
				SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n",
					      event.traddr);
				if (spdk_process_is_primary()) {
					if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
						nvme_pcie_ctrlr_attach(probe_ctx, &pci_addr);
					}
				}
			} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
				struct spdk_nvme_transport_id trid;

				memset(&trid, 0, sizeof(trid));
				spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
				snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);

				ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
				if (ctrlr == NULL) {
					return 0;
				}
				SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n",
					      event.traddr);

				nvme_ctrlr_fail(ctrlr, true);

				/* get the user app to clean up and stop I/O */
				if (ctrlr->remove_cb) {
					nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
					ctrlr->remove_cb(probe_ctx->cb_ctx, ctrlr);
					nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
				}
			}
		}
	}

	/* Initiate removal of physically hotremoved PCI controllers. Even after
	 * they're hotremoved from the system, SPDK might still report them via RPC.
	 */
	TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
		bool do_remove = false;
		struct nvme_pcie_ctrlr *pctrlr;

		if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
			continue;
		}

		pctrlr = nvme_pcie_ctrlr(ctrlr);
		if (spdk_pci_device_is_removed(pctrlr->devhandle)) {
			do_remove = true;
		}

		if (do_remove) {
			nvme_ctrlr_fail(ctrlr, true);
			if (ctrlr->remove_cb) {
				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
				ctrlr->remove_cb(probe_ctx->cb_ctx, ctrlr);
				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
			}
		}
	}
	return 0;
}

static inline struct nvme_pcie_qpair *
nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
{
	assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
	return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair);
}

static volatile void *
nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);

	return (volatile void *)((uintptr_t)pctrlr->regs + offset);
}

static int
nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);

	assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
	g_thread_mmio_ctrlr = pctrlr;
	spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
	g_thread_mmio_ctrlr = NULL;
	return 0;
}

static int
nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);

	assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
	g_thread_mmio_ctrlr = pctrlr;
	spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
	g_thread_mmio_ctrlr = NULL;
	return 0;
}

static int
nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);

	assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
	assert(value != NULL);
	g_thread_mmio_ctrlr = pctrlr;
	*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
	g_thread_mmio_ctrlr = NULL;
	if (~(*value) == 0) {
		return -1;
	}

	return 0;
}

static int
nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);

	assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
	assert(value != NULL);
	g_thread_mmio_ctrlr = pctrlr;
	*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
	g_thread_mmio_ctrlr = NULL;
	if (~(*value) == 0) {
		return -1;
	}

	return 0;
}

static int
nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
{
	return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
					 value);
}

static int
nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
{
	return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
					 value);
}

static int
nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
{
	return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
					 aqa->raw);
}

static int
nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
{
	return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
					 &cmbloc->raw);
}

static int
nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
{
	return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
					 &cmbsz->raw);
}

static  uint32_t
nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
	/*
	 * For commands requiring more than 2 PRP entries, one PRP will be
	 *  embedded in the command (prp1), and the rest of the PRP entries
	 *  will be in a list pointed to by the command (prp2).  This means
	 *  that real max number of PRP entries we support is 506+1, which
	 *  results in a max xfer size of 506*ctrlr->page_size.
	 */
	return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
}

static uint16_t
nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
	return NVME_MAX_SGL_DESCRIPTORS;
}

static void
nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
	int rc;
	void *addr = NULL;
	uint32_t bir;
	union spdk_nvme_cmbsz_register cmbsz;
	union spdk_nvme_cmbloc_register cmbloc;
	uint64_t size, unit_size, offset, bar_size = 0, bar_phys_addr = 0;

	if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
	    nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
		SPDK_ERRLOG("get registers failed\n");
		goto exit;
	}

	if (!cmbsz.bits.sz) {
		goto exit;
	}

	bir = cmbloc.bits.bir;
	/* Values 0 2 3 4 5 are valid for BAR */
	if (bir > 5 || bir == 1) {
		goto exit;
	}

	/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
	unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
	/* controller memory buffer size in Bytes */
	size = unit_size * cmbsz.bits.sz;
	/* controller memory buffer offset from BAR in Bytes */
	offset = unit_size * cmbloc.bits.ofst;

	rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
				     &bar_phys_addr, &bar_size);
	if ((rc != 0) || addr == NULL) {
		goto exit;
	}

	if (offset > bar_size) {
		goto exit;
	}

	if (size > bar_size - offset) {
		goto exit;
	}

	pctrlr->cmb.bar_va = addr;
	pctrlr->cmb.bar_pa = bar_phys_addr;
	pctrlr->cmb.size = size;
	pctrlr->cmb.current_offset = offset;

	if (!cmbsz.bits.sqs) {
		pctrlr->ctrlr.opts.use_cmb_sqs = false;
	}

	return;
exit:
	pctrlr->ctrlr.opts.use_cmb_sqs = false;
	return;
}

static int
nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
	int rc = 0;
	union spdk_nvme_cmbloc_register cmbloc;
	void *addr = pctrlr->cmb.bar_va;

	if (addr) {
		if (pctrlr->cmb.mem_register_addr) {
			spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
		}

		if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
			SPDK_ERRLOG("get_cmbloc() failed\n");
			return -EIO;
		}
		rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
	}
	return rc;
}

static int
nvme_pcie_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);

	if (pctrlr->cmb.bar_va == NULL) {
		SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
		return -ENOTSUP;
	}

	if (ctrlr->opts.use_cmb_sqs) {
		SPDK_ERRLOG("CMB is already in use for submission queues.\n");
		return -ENOTSUP;
	}

	return 0;
}

static void *
nvme_pcie_ctrlr_map_io_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
	union spdk_nvme_cmbsz_register cmbsz;
	union spdk_nvme_cmbloc_register cmbloc;
	uint64_t mem_register_start, mem_register_end;
	int rc;

	if (pctrlr->cmb.mem_register_addr != NULL) {
		*size = pctrlr->cmb.mem_register_size;
		return pctrlr->cmb.mem_register_addr;
	}

	*size = 0;

	if (pctrlr->cmb.bar_va == NULL) {
		SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
		return NULL;
	}

	if (ctrlr->opts.use_cmb_sqs) {
		SPDK_ERRLOG("CMB is already in use for submission queues.\n");
		return NULL;
	}

	if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
	    nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
		SPDK_ERRLOG("get registers failed\n");
		return NULL;
	}

	/* If only SQS is supported */
	if (!(cmbsz.bits.wds || cmbsz.bits.rds)) {
		return NULL;
	}

	/* If CMB is less than 4MiB in size then abort CMB mapping */
	if (pctrlr->cmb.size < (1ULL << 22)) {
		return NULL;
	}

	mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
				       VALUE_2MB - 1);
	mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
				     pctrlr->cmb.size);
	pctrlr->cmb.mem_register_addr = (void *)mem_register_start;
	pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start;

	rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start);
	if (rc) {
		SPDK_ERRLOG("spdk_mem_register() failed\n");
		return NULL;
	}

	pctrlr->cmb.mem_register_addr = (void *)mem_register_start;
	pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start;

	*size = pctrlr->cmb.mem_register_size;
	return pctrlr->cmb.mem_register_addr;
}

static int
nvme_pcie_ctrlr_unmap_io_cmb(struct spdk_nvme_ctrlr *ctrlr)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
	int rc;

	if (pctrlr->cmb.mem_register_addr == NULL) {
		return 0;
	}

	rc = spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);

	if (rc == 0) {
		pctrlr->cmb.mem_register_addr = NULL;
		pctrlr->cmb.mem_register_size = 0;
	}

	return rc;
}

static int
nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
{
	int rc;
	void *addr = NULL;
	uint64_t phys_addr = 0, size = 0;

	rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
				     &phys_addr, &size);

	if ((addr == NULL) || (rc != 0)) {
		SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
			    rc, addr);
		return -1;
	}

	pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
	pctrlr->regs_size = size;
	nvme_pcie_ctrlr_map_cmb(pctrlr);

	return 0;
}

static int
nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
{
	int rc = 0;
	void *addr = (void *)pctrlr->regs;

	if (pctrlr->ctrlr.is_removed) {
		return rc;
	}

	rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
	if (rc != 0) {
		SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
		return -1;
	}

	if (addr) {
		/* NOTE: addr may have been remapped here. We're relying on DPDK to call
		 * munmap internally.
		 */
		rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
	}
	return rc;
}

static int
nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries)
{
	struct nvme_pcie_qpair *pqpair;
	int rc;

	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
	if (pqpair == NULL) {
		return -ENOMEM;
	}

	pqpair->num_entries = num_entries;
	pqpair->flags.delay_cmd_submit = 0;

	ctrlr->adminq = &pqpair->qpair;

	rc = nvme_qpair_init(ctrlr->adminq,
			     0, /* qpair ID */
			     ctrlr,
			     SPDK_NVME_QPRIO_URGENT,
			     num_entries);
	if (rc != 0) {
		return rc;
	}

	return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
}

/* This function must only be called while holding g_spdk_nvme_driver->lock */
static int
pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
	struct spdk_nvme_transport_id trid = {};
	struct nvme_pcie_enum_ctx *enum_ctx = ctx;
	struct spdk_nvme_ctrlr *ctrlr;
	struct spdk_pci_addr pci_addr;

	pci_addr = spdk_pci_device_get_addr(pci_dev);

	spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
	spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);

	ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
	if (!spdk_process_is_primary()) {
		if (!ctrlr) {
			SPDK_ERRLOG("Controller must be constructed in the primary process first.\n");
			return -1;
		}

		return nvme_ctrlr_add_process(ctrlr, pci_dev);
	}

	/* check whether user passes the pci_addr */
	if (enum_ctx->has_pci_addr &&
	    (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
		return 1;
	}

	return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev);
}

static int
nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
		     bool direct_connect)
{
	struct nvme_pcie_enum_ctx enum_ctx = {};

	enum_ctx.probe_ctx = probe_ctx;

	if (strlen(probe_ctx->trid.traddr) != 0) {
		if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) {
			return -1;
		}
		enum_ctx.has_pci_addr = true;
	}

	/* Only the primary process can monitor hotplug. */
	if (spdk_process_is_primary()) {
		_nvme_pcie_hotplug_monitor(probe_ctx);
	}

	if (enum_ctx.has_pci_addr == false) {
		return spdk_pci_enumerate(spdk_pci_nvme_get_driver(),
					  pcie_nvme_enum_cb, &enum_ctx);
	} else {
		return spdk_pci_device_attach(spdk_pci_nvme_get_driver(),
					      pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
	}
}

static int
nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx, struct spdk_pci_addr *pci_addr)
{
	struct nvme_pcie_enum_ctx enum_ctx;

	enum_ctx.probe_ctx = probe_ctx;
	enum_ctx.has_pci_addr = true;
	enum_ctx.pci_addr = *pci_addr;

	return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx);
}

static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
		const struct spdk_nvme_ctrlr_opts *opts,
		void *devhandle)
{
	struct spdk_pci_device *pci_dev = devhandle;
	struct nvme_pcie_ctrlr *pctrlr;
	union spdk_nvme_cap_register cap;
	union spdk_nvme_vs_register vs;
	uint16_t cmd_reg;
	int rc;
	struct spdk_pci_id pci_id;

	rc = spdk_pci_device_claim(pci_dev);
	if (rc < 0) {
		SPDK_ERRLOG("could not claim device %s (%s)\n",
			    trid->traddr, spdk_strerror(-rc));
		return NULL;
	}

	pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
	if (pctrlr == NULL) {
		spdk_pci_device_unclaim(pci_dev);
		SPDK_ERRLOG("could not allocate ctrlr\n");
		return NULL;
	}

	pctrlr->is_remapped = false;
	pctrlr->ctrlr.is_removed = false;
	pctrlr->devhandle = devhandle;
	pctrlr->ctrlr.opts = *opts;
	pctrlr->ctrlr.trid = *trid;

	rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
	if (rc != 0) {
		spdk_pci_device_unclaim(pci_dev);
		spdk_free(pctrlr);
		return NULL;
	}

	rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
	if (rc != 0) {
		spdk_pci_device_unclaim(pci_dev);
		spdk_free(pctrlr);
		return NULL;
	}

	/* Enable PCI busmaster and disable INTx */
	spdk_pci_device_cfg_read16(pci_dev, &cmd_reg, 4);
	cmd_reg |= 0x404;
	spdk_pci_device_cfg_write16(pci_dev, cmd_reg, 4);

	if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
		SPDK_ERRLOG("get_cap() failed\n");
		spdk_pci_device_unclaim(pci_dev);
		spdk_free(pctrlr);
		return NULL;
	}

	if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
		SPDK_ERRLOG("get_vs() failed\n");
		spdk_pci_device_unclaim(pci_dev);
		spdk_free(pctrlr);
		return NULL;
	}

	nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);

	/* Doorbell stride is 2 ^ (dstrd + 2),
	 * but we want multiples of 4, so drop the + 2 */
	pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;

	pci_id = spdk_pci_device_get_id(pci_dev);
	pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);

	rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size);
	if (rc != 0) {
		nvme_ctrlr_destruct(&pctrlr->ctrlr);
		return NULL;
	}

	/* Construct the primary process properties */
	rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
	if (rc != 0) {
		nvme_ctrlr_destruct(&pctrlr->ctrlr);
		return NULL;
	}

	if (g_sigset != true) {
		nvme_pcie_ctrlr_setup_signal();
		g_sigset = true;
	}

	return &pctrlr->ctrlr;
}

static int
nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
	struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
	union spdk_nvme_aqa_register aqa;

	if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
		SPDK_ERRLOG("set_asq() failed\n");
		return -EIO;
	}

	if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
		SPDK_ERRLOG("set_acq() failed\n");
		return -EIO;
	}

	aqa.raw = 0;
	/* acqs and asqs are 0-based. */
	aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
	aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;

	if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
		SPDK_ERRLOG("set_aqa() failed\n");
		return -EIO;
	}

	return 0;
}

static int
nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
	struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);

	if (ctrlr->adminq) {
		nvme_pcie_qpair_destroy(ctrlr->adminq);
	}

	nvme_ctrlr_destruct_finish(ctrlr);

	nvme_ctrlr_free_processes(ctrlr);

	nvme_pcie_ctrlr_free_bars(pctrlr);

	if (devhandle) {
		spdk_pci_device_unclaim(devhandle);
		spdk_pci_device_detach(devhandle);
	}

	spdk_free(pctrlr);

	return 0;
}

static void
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
{
	tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
	tr->cid = cid;
	tr->req = NULL;
}

static int
nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
{
	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
	uint32_t i;

	/* all head/tail vals are set to 0 */
	pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;

	/*
	 * First time through the completion queue, HW will set phase
	 *  bit on completions to 1.  So set this to 1 here, indicating
	 *  we're looking for a 1 to know which entries have completed.
	 *  we'll toggle the bit each time when the completion queue
	 *  rolls over.
	 */
	pqpair->flags.phase = 1;
	for (i = 0; i < pqpair->num_entries; i++) {
		pqpair->cpl[i].status.p = 0;
	}

	return 0;
}

static void *
nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment,
			  uint64_t *phys_addr)
{
	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
	uintptr_t addr;

	if (pctrlr->cmb.mem_register_addr != NULL) {
		/* BAR is mapped for data */
		return NULL;
	}

	addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset;
	addr = (addr + (alignment - 1)) & ~(alignment - 1);

	/* CMB may only consume part of the BAR, calculate accordingly */
	if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) {
		SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
		return NULL;
	}
	*phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va;

	pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va;

	return (void *)addr;
}

static int
nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
			  const struct spdk_nvme_io_qpair_opts *opts)
{
	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
	struct nvme_tracker	*tr;
	uint16_t		i;
	volatile uint32_t	*doorbell_base;
	uint16_t		num_trackers;
	size_t			page_align = sysconf(_SC_PAGESIZE);
	size_t			queue_align, queue_len;
	uint32_t                flags = SPDK_MALLOC_DMA;
	uint64_t		sq_paddr = 0;
	uint64_t		cq_paddr = 0;

	if (opts) {
		pqpair->sq_vaddr = opts->sq.vaddr;
		pqpair->cq_vaddr = opts->cq.vaddr;
		sq_paddr = opts->sq.paddr;
		cq_paddr = opts->cq.paddr;
	}

	pqpair->retry_count = ctrlr->opts.transport_retry_count;

	/*
	 * Limit the maximum number of completions to return per call to prevent wraparound,
	 * and calculate how many trackers can be submitted at once without overflowing the
	 * completion queue.
	 */
	pqpair->max_completions_cap = pqpair->num_entries / 4;
	pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
	pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
	num_trackers = pqpair->num_entries - pqpair->max_completions_cap;

	SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
		     pqpair->max_completions_cap, num_trackers);

	assert(num_trackers != 0);

	pqpair->sq_in_cmb = false;

	if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
		flags |= SPDK_MALLOC_SHARE;
	}

	/* cmd and cpl rings must be aligned on page size boundaries. */
	if (ctrlr->opts.use_cmb_sqs) {
		pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
							page_align, &pqpair->cmd_bus_addr);
		if (pqpair->cmd != NULL) {
			pqpair->sq_in_cmb = true;
		}
	}

	if (pqpair->sq_in_cmb == false) {
		if (pqpair->sq_vaddr) {
			pqpair->cmd = pqpair->sq_vaddr;
		} else {
			/* To ensure physical address contiguity we make each ring occupy
			 * a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
			 */
			queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd);
			queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
			pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
			if (pqpair->cmd == NULL) {
				SPDK_ERRLOG("alloc qpair_cmd failed\n");
				return -ENOMEM;
			}
		}
		if (sq_paddr) {
			assert(pqpair->sq_vaddr != NULL);
			pqpair->cmd_bus_addr = sq_paddr;
		} else {
			pqpair->cmd_bus_addr = spdk_vtophys(pqpair->cmd, NULL);
			if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
				SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
				return -EFAULT;
			}
		}
	}

	if (pqpair->cq_vaddr) {
		pqpair->cpl = pqpair->cq_vaddr;
	} else {
		queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl);
		queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
		pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
		if (pqpair->cpl == NULL) {
			SPDK_ERRLOG("alloc qpair_cpl failed\n");
			return -ENOMEM;
		}
	}
	if (cq_paddr) {
		assert(pqpair->cq_vaddr != NULL);
		pqpair->cpl_bus_addr = cq_paddr;
	} else {
		pqpair->cpl_bus_addr = spdk_vtophys(pqpair->cpl, NULL);
		if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
			SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
			return -EFAULT;
		}
	}

	doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
	pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
	pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;

	/*
	 * Reserve space for all of the trackers in a single allocation.
	 *   struct nvme_tracker must be padded so that its size is already a power of 2.
	 *   This ensures the PRP list embedded in the nvme_tracker object will not span a
	 *   4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
	 */
	pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
				  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
	if (pqpair->tr == NULL) {
		SPDK_ERRLOG("nvme_tr failed\n");
		return -ENOMEM;
	}

	TAILQ_INIT(&pqpair->free_tr);
	TAILQ_INIT(&pqpair->outstanding_tr);

	for (i = 0; i < num_trackers; i++) {
		tr = &pqpair->tr[i];
		nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr, NULL));
		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
	}

	nvme_pcie_qpair_reset(qpair);

	return 0;
}

/* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must
 * not use wide instructions because QEMU will not emulate such instructions to MMIO space.
 * So this function ensures we only copy 8 bytes at a time.
 */
static inline void
nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
{
	uint64_t *dst64 = (uint64_t *)dst;
	const uint64_t *src64 = (const uint64_t *)src;
	uint32_t i;

	for (i = 0; i < sizeof(*dst) / 8; i++) {
		dst64[i] = src64[i];
	}
}

static inline void
nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
{
	/* dst and src are known to be non-overlapping and 64-byte aligned. */
#if defined(__SSE2__)
	__m128i *d128 = (__m128i *)dst;
	const __m128i *s128 = (const __m128i *)src;

	_mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
	_mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
	_mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
	_mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
#else
	*dst = *src;
#endif
}

/**
 * Note: the ctrlr_lock must be held when calling this function.
 */
static void
nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
		struct nvme_request *req, struct spdk_nvme_cpl *cpl)
{
	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
	struct nvme_request		*active_req = req;
	struct spdk_nvme_ctrlr_process	*active_proc;

	/*
	 * The admin request is from another process. Move to the per
	 *  process list for that process to handle it later.
	 */
	assert(nvme_qpair_is_admin_queue(qpair));
	assert(active_req->pid != getpid());

	active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid);
	if (active_proc) {
		/* Save the original completion information */
		memcpy(&active_req->cpl, cpl, sizeof(*cpl));
		STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
	} else {
		SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
			    active_req->pid);

		nvme_free_request(active_req);
	}
}

/**
 * Note: the ctrlr_lock must be held when calling this function.
 */
static void
nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
{
	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
	struct nvme_request		*req, *tmp_req;
	pid_t				pid = getpid();
	struct spdk_nvme_ctrlr_process	*proc;

	/*
	 * Check whether there is any pending admin request from
	 * other active processes.
	 */
	assert(nvme_qpair_is_admin_queue(qpair));

	proc = nvme_ctrlr_get_current_process(ctrlr);
	if (!proc) {
		SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
		assert(proc);
		return;
	}

	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);

		assert(req->pid == pid);

		nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
		nvme_free_request(req);
	}
}

static inline int
nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
{
	return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
}

static bool
nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
				     volatile uint32_t *shadow_db,
				     volatile uint32_t *eventidx)
{
	uint16_t old;

	if (!shadow_db) {
		return true;
	}

	old = *shadow_db;
	*shadow_db = value;

	/*
	 * Ensure that the doorbell is updated before reading the EventIdx from
	 * memory
	 */
	spdk_mb();

	if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
		return false;
	}

	return true;
}

static inline void
nvme_pcie_qpair_ring_sq_doorbell(struct spdk_nvme_qpair *qpair)
{
	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
	bool need_mmio = true;

	if (qpair->first_fused_submitted) {
		/* This is first cmd of two fused commands - don't ring doorbell */
		qpair->first_fused_submitted = 0;
		return;
	}

	if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
		need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
				pqpair->sq_tail,
				pqpair->shadow_doorbell.sq_tdbl,
				pqpair->shadow_doorbell.sq_eventidx);
	}

	if (spdk_likely(need_mmio)) {
		spdk_wmb();
		g_thread_mmio_ctrlr = pctrlr;
		spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
		g_thread_mmio_ctrlr = NULL;
	}
}

static inline void
nvme_pcie_qpair_ring_cq_doorbell(struct spdk_nvme_qpair *qpair)
{
	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
	bool need_mmio = true;

	if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
		need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
				pqpair->cq_head,
				pqpair->shadow_doorbell.cq_hdbl,
				pqpair->shadow_doorbell.cq_eventidx);
	}

	if (spdk_likely(need_mmio)) {
		g_thread_mmio_ctrlr = pctrlr;
		spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
		g_thread_mmio_ctrlr = NULL;
	}
}

static void
nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
	struct nvme_request	*req;
	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;

	req = tr->req;
	assert(req != NULL);

	if (req->cmd.fuse == SPDK_NVME_IO_FLAGS_FUSE_FIRST) {
		/* This is first cmd of two fused commands - don't ring doorbell */
		qpair->first_fused_submitted = 1;
	}

	/* Don't use wide instructions to copy NVMe command, this is limited by QEMU
	 * virtual NVMe controller, the maximum access width is 8 Bytes for one time.
	 */
	if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) {
		nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
	} else {
		/* Copy the command from the tracker to the submission queue. */
		nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
	}

	if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
		pqpair->sq_tail = 0;
	}

	if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
		SPDK_ERRLOG("sq_tail is passing sq_head!\n");
	}

	if (!pqpair->flags.delay_cmd_submit) {
		nvme_pcie_qpair_ring_sq_doorbell(qpair);
	}
}

static void
nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
				 struct spdk_nvme_cpl *cpl, bool print_on_error)
{
	struct nvme_pcie_qpair		*pqpair = nvme_pcie_qpair(qpair);
	struct nvme_request		*req;
	bool				retry, error;
	bool				req_from_current_proc = true;

	req = tr->req;

	assert(req != NULL);

	error = spdk_nvme_cpl_is_error(cpl);
	retry = error && nvme_completion_is_retry(cpl) &&
		req->retries < pqpair->retry_count;

	if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) {
		spdk_nvme_qpair_print_command(qpair, &req->cmd);
		spdk_nvme_qpair_print_completion(qpair, cpl);
	}

	assert(cpl->cid == req->cmd.cid);

	if (retry) {
		req->retries++;
		nvme_pcie_qpair_submit_tracker(qpair, tr);
	} else {
		TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);

		/* Only check admin requests from different processes. */
		if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
			req_from_current_proc = false;
			nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
		} else {
			nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
		}

		if (req_from_current_proc == true) {
			nvme_qpair_free_request(qpair, req);
		}

		tr->req = NULL;

		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
	}
}

static void
nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
					struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
					bool print_on_error)
{
	struct spdk_nvme_cpl	cpl;

	memset(&cpl, 0, sizeof(cpl));
	cpl.sqid = qpair->id;
	cpl.cid = tr->cid;
	cpl.status.sct = sct;
	cpl.status.sc = sc;
	cpl.status.dnr = dnr;
	nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}

static void
nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
	struct nvme_tracker *tr, *temp, *last;

	last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);

	/* Abort previously submitted (outstanding) trs */
	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
		if (!qpair->ctrlr->opts.disable_error_logging) {
			SPDK_ERRLOG("aborting outstanding command\n");
		}
		nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
							SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);

		if (tr == last) {
			break;
		}
	}
}

static int
nvme_pcie_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
				 int (*iter_fn)(struct nvme_request *req, void *arg),
				 void *arg)
{
	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
	struct nvme_tracker *tr, *tmp;
	int rc;

	assert(iter_fn != NULL);

	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
		assert(tr->req != NULL);

		rc = iter_fn(tr->req, arg);
		if (rc != 0) {
			return rc;
		}
	}

	return 0;
}

static void
nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
	struct nvme_tracker	*tr;

	tr = TAILQ_FIRST(&pqpair->outstanding_tr);
	while (tr != NULL) {
		assert(tr->req != NULL);
		if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
			nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
								SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
								false);
			tr = TAILQ_FIRST(&pqpair->outstanding_tr);
		} else {
			tr = TAILQ_NEXT(tr, tq_list);
		}
	}
}

static void
nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
	nvme_pcie_admin_qpair_abort_aers(qpair);
}

static int
nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);

	if (nvme_qpair_is_admin_queue(qpair)) {
		nvme_pcie_admin_qpair_destroy(qpair);
	}
	/*
	 * We check sq_vaddr and cq_vaddr to see if the user specified the memory
	 * buffers when creating the I/O queue.
	 * If the user specified them, we cannot free that memory.
	 * Nor do we free it if it's in the CMB.
	 */
	if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
		spdk_free(pqpair->cmd);
	}
	if (!pqpair->cq_vaddr && pqpair->cpl) {
		spdk_free(pqpair->cpl);
	}
	if (pqpair->tr) {
		spdk_free(pqpair->tr);
	}

	nvme_qpair_deinit(qpair);

	spdk_free(pqpair);

	return 0;
}

static void
nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
	nvme_pcie_qpair_abort_trackers(qpair, dnr);
}

static int
nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
				 void *cb_arg)
{
	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
	struct nvme_request *req;
	struct spdk_nvme_cmd *cmd;

	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
	if (req == NULL) {
		return -ENOMEM;
	}

	cmd = &req->cmd;
	cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;

	cmd->cdw10_bits.create_io_q.qid = io_que->id;
	cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;

	cmd->cdw11_bits.create_io_cq.pc = 1;
	cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;

	return nvme_ctrlr_submit_admin_request(ctrlr, req);
}

static int
nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
	struct nvme_request *req;
	struct spdk_nvme_cmd *cmd;

	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
	if (req == NULL) {
		return -ENOMEM;
	}

	cmd = &req->cmd;
	cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;

	cmd->cdw10_bits.create_io_q.qid = io_que->id;
	cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
	cmd->cdw11_bits.create_io_sq.pc = 1;
	cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio;
	cmd->cdw11_bits.create_io_sq.cqid = io_que->id;
	cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;

	return nvme_ctrlr_submit_admin_request(ctrlr, req);
}

static int
nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
	struct nvme_request *req;
	struct spdk_nvme_cmd *cmd;

	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
	if (req == NULL) {
		return -ENOMEM;
	}

	cmd = &req->cmd;
	cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
	cmd->cdw10_bits.delete_io_q.qid = qpair->id;

	return nvme_ctrlr_submit_admin_request(ctrlr, req);
}

static int
nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
	struct nvme_request *req;
	struct spdk_nvme_cmd *cmd;

	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
	if (req == NULL) {
		return -ENOMEM;
	}

	cmd = &req->cmd;
	cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
	cmd->cdw10_bits.delete_io_q.qid = qpair->id;

	return nvme_ctrlr_submit_admin_request(ctrlr, req);
}

static int
_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
				 uint16_t qid)
{
	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
	struct nvme_completion_poll_status	*status;
	int					rc;

	status = calloc(1, sizeof(*status));
	if (!status) {
		SPDK_ERRLOG("Failed to allocate status tracker\n");
		return -ENOMEM;
	}

	rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
	if (rc != 0) {
		free(status);
		return rc;
	}

	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
		SPDK_ERRLOG("nvme_create_io_cq failed!\n");
		if (!status->timed_out) {
			free(status);
		}
		return -1;
	}

	memset(status, 0, sizeof(*status));
	rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status);
	if (rc != 0) {
		free(status);
		return rc;
	}

	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
		SPDK_ERRLOG("nvme_create_io_sq failed!\n");
		if (status->timed_out) {
			/* Request is still queued, the memory will be freed in a completion callback.
			   allocate a new request */
			status = calloc(1, sizeof(*status));
			if (!status) {
				SPDK_ERRLOG("Failed to allocate status tracker\n");
				return -ENOMEM;
			}
		}

		memset(status, 0, sizeof(*status));
		/* Attempt to delete the completion queue */
		rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status);
		if (rc != 0) {
			/* The originall or newly allocated status structure can be freed since
			 * the corresponding request has been completed of failed to submit */
			free(status);
			return -1;
		}
		nvme_wait_for_completion(ctrlr->adminq, status);
		if (!status->timed_out) {
			/* status can be freed regardless of nvme_wait_for_completion return value */
			free(status);
		}
		return -1;
	}

	if (ctrlr->shadow_doorbell) {
		pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
						  pctrlr->doorbell_stride_u32;
		pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
						  pctrlr->doorbell_stride_u32;
		pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
						      pctrlr->doorbell_stride_u32;
		pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
						      pctrlr->doorbell_stride_u32;
		pqpair->flags.has_shadow_doorbell = 1;
	} else {
		pqpair->flags.has_shadow_doorbell = 0;
	}
	nvme_pcie_qpair_reset(qpair);
	free(status);

	return 0;
}

static struct spdk_nvme_qpair *
nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
				const struct spdk_nvme_io_qpair_opts *opts)
{
	struct nvme_pcie_qpair *pqpair;
	struct spdk_nvme_qpair *qpair;
	int rc;

	assert(ctrlr != NULL);

	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
	if (pqpair == NULL) {
		return NULL;
	}

	pqpair->num_entries = opts->io_queue_size;
	pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit;

	qpair = &pqpair->qpair;

	rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
	if (rc != 0) {
		nvme_pcie_qpair_destroy(qpair);
		return NULL;
	}

	rc = nvme_pcie_qpair_construct(qpair, opts);

	if (rc != 0) {
		nvme_pcie_qpair_destroy(qpair);
		return NULL;
	}

	return qpair;
}

static int
nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
	if (nvme_qpair_is_admin_queue(qpair)) {
		return 0;
	} else {
		return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
	}
}

static void
nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
}

static int
nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
	struct nvme_completion_poll_status *status;
	int rc;

	assert(ctrlr != NULL);

	if (ctrlr->is_removed) {
		goto free;
	}

	status = calloc(1, sizeof(*status));
	if (!status) {
		SPDK_ERRLOG("Failed to allocate status tracker\n");
		return -ENOMEM;
	}

	/* Delete the I/O submission queue */
	rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status);
	if (rc != 0) {
		SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
		free(status);
		return rc;
	}
	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
		if (!status->timed_out) {
			free(status);
		}
		return -1;
	}

	memset(status, 0, sizeof(*status));
	/* Delete the completion queue */
	rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
	if (rc != 0) {
		SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
		free(status);
		return rc;
	}
	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
		if (!status->timed_out) {
			free(status);
		}
		return -1;
	}
	free(status);

free:
	if (qpair->no_deletion_notification_needed == 0) {
		/* Abort the rest of the I/O */
		nvme_pcie_qpair_abort_trackers(qpair, 1);
	}

	nvme_pcie_qpair_destroy(qpair);
	return 0;
}

static void
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
	/*
	 * Bad vtophys translation, so abort this request and return
	 *  immediately.
	 */
	nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
						SPDK_NVME_SC_INVALID_FIELD,
						1 /* do not retry */, true);
}

/*
 * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
 *
 * *prp_index will be updated to account for the number of PRP entries used.
 */
static inline int
nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
			  uint32_t page_size)
{
	struct spdk_nvme_cmd *cmd = &tr->req->cmd;
	uintptr_t page_mask = page_size - 1;
	uint64_t phys_addr;
	uint32_t i;

	SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n",
		      *prp_index, virt_addr, (uint32_t)len);

	if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
		SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
		return -EFAULT;
	}

	i = *prp_index;
	while (len) {
		uint32_t seg_len;

		/*
		 * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
		 * so prp_index == count is valid.
		 */
		if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
			SPDK_ERRLOG("out of PRP entries\n");
			return -EFAULT;
		}

		phys_addr = spdk_vtophys(virt_addr, NULL);
		if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
			SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
			return -EFAULT;
		}

		if (i == 0) {
			SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr);
			cmd->dptr.prp.prp1 = phys_addr;
			seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
		} else {
			if ((phys_addr & page_mask) != 0) {
				SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
				return -EFAULT;
			}

			SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
			tr->u.prp[i - 1] = phys_addr;
			seg_len = page_size;
		}

		seg_len = spdk_min(seg_len, len);
		virt_addr += seg_len;
		len -= seg_len;
		i++;
	}

	cmd->psdt = SPDK_NVME_PSDT_PRP;
	if (i <= 1) {
		cmd->dptr.prp.prp2 = 0;
	} else if (i == 2) {
		cmd->dptr.prp.prp2 = tr->u.prp[0];
		SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
	} else {
		cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
		SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
	}

	*prp_index = i;
	return 0;
}

static int
nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair,
				      struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned)
{
	assert(0);
	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
	return -EINVAL;
}

/**
 * Build PRP list describing physically contiguous payload buffer.
 */
static int
nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
				     struct nvme_tracker *tr, bool dword_aligned)
{
	uint32_t prp_index = 0;
	int rc;

	rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
				       req->payload_size, qpair->ctrlr->page_size);
	if (rc) {
		nvme_pcie_fail_request_bad_vtophys(qpair, tr);
	}

	return rc;
}

/**
 * Build an SGL describing a physically contiguous payload buffer.
 *
 * This is more efficient than using PRP because large buffers can be
 * described this way.
 */
static int
nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
		struct nvme_tracker *tr, bool dword_aligned)
{
	void *virt_addr;
	uint64_t phys_addr, mapping_length;
	uint32_t length;
	struct spdk_nvme_sgl_descriptor *sgl;
	uint32_t nseg = 0;

	assert(req->payload_size != 0);
	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);

	sgl = tr->u.sgl;
	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
	req->cmd.dptr.sgl1.unkeyed.subtype = 0;

	length = req->payload_size;
	virt_addr = req->payload.contig_or_cb_arg + req->payload_offset;
	mapping_length = length;

	while (length > 0) {
		if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
			return -EFAULT;
		}

		if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
			SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
			return -EFAULT;
		}

		phys_addr = spdk_vtophys(virt_addr, &mapping_length);
		if (phys_addr == SPDK_VTOPHYS_ERROR) {
			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
			return -EFAULT;
		}

		mapping_length = spdk_min(length, mapping_length);

		length -= mapping_length;
		virt_addr += mapping_length;

		sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
		sgl->unkeyed.length = mapping_length;
		sgl->address = phys_addr;
		sgl->unkeyed.subtype = 0;

		sgl++;
		nseg++;
	}

	if (nseg == 1) {
		/*
		 * The whole transfer can be described by a single SGL descriptor.
		 *  Use the special case described by the spec where SGL1's type is Data Block.
		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
		 *  SGL element into SGL1.
		 */
		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
	} else {
		/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
		 *  NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
		 */
		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
	}

	return 0;
}

/**
 * Build SGL list describing scattered payload buffer.
 */
static int
nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
				     struct nvme_tracker *tr, bool dword_aligned)
{
	int rc;
	void *virt_addr;
	uint64_t phys_addr;
	uint32_t remaining_transfer_len, remaining_user_sge_len, length;
	struct spdk_nvme_sgl_descriptor *sgl;
	uint32_t nseg = 0;

	/*
	 * Build scattered payloads.
	 */
	assert(req->payload_size != 0);
	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
	assert(req->payload.reset_sgl_fn != NULL);
	assert(req->payload.next_sge_fn != NULL);
	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);

	sgl = tr->u.sgl;
	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
	req->cmd.dptr.sgl1.unkeyed.subtype = 0;

	remaining_transfer_len = req->payload_size;

	while (remaining_transfer_len > 0) {
		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
					      &virt_addr, &remaining_user_sge_len);
		if (rc) {
			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
			return -EFAULT;
		}

		/* Bit Bucket SGL descriptor */
		if ((uint64_t)virt_addr == UINT64_MAX) {
			/* TODO: enable WRITE and COMPARE when necessary */
			if (req->cmd.opc != SPDK_NVME_OPC_READ) {
				SPDK_ERRLOG("Only READ command can be supported\n");
				goto exit;
			}
			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
				SPDK_ERRLOG("Too many SGL entries\n");
				goto exit;
			}

			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET;
			/* If the SGL describes a destination data buffer, the length of data
			 * buffer shall be discarded by controller, and the length is included
			 * in Number of Logical Blocks (NLB) parameter. Otherwise, the length
			 * is not included in the NLB parameter.
			 */
			remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
			remaining_transfer_len -= remaining_user_sge_len;

			sgl->unkeyed.length = remaining_user_sge_len;
			sgl->address = 0;
			sgl->unkeyed.subtype = 0;

			sgl++;
			nseg++;

			continue;
		}

		remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
		remaining_transfer_len -= remaining_user_sge_len;
		while (remaining_user_sge_len > 0) {
			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
				SPDK_ERRLOG("Too many SGL entries\n");
				goto exit;
			}

			if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
				SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
				goto exit;
			}

			phys_addr = spdk_vtophys(virt_addr, NULL);
			if (phys_addr == SPDK_VTOPHYS_ERROR) {
				goto exit;
			}

			length = spdk_min(remaining_user_sge_len, VALUE_2MB - _2MB_OFFSET(virt_addr));
			remaining_user_sge_len -= length;
			virt_addr += length;

			if (nseg > 0 && phys_addr ==
			    (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
				/* extend previous entry */
				(*(sgl - 1)).unkeyed.length += length;
				continue;
			}

			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
			sgl->unkeyed.length = length;
			sgl->address = phys_addr;
			sgl->unkeyed.subtype = 0;

			sgl++;
			nseg++;
		}
	}

	if (nseg == 1) {
		/*
		 * The whole transfer can be described by a single SGL descriptor.
		 *  Use the special case described by the spec where SGL1's type is Data Block.
		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
		 *  SGL element into SGL1.
		 */
		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
	} else {
		/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
		 *  NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
		 */
		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
	}

	return 0;

exit:
	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
	return -EFAULT;
}

/**
 * Build PRP list describing scattered payload buffer.
 */
static int
nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
				       struct nvme_tracker *tr, bool dword_aligned)
{
	int rc;
	void *virt_addr;
	uint32_t remaining_transfer_len, length;
	uint32_t prp_index = 0;
	uint32_t page_size = qpair->ctrlr->page_size;

	/*
	 * Build scattered payloads.
	 */
	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
	assert(req->payload.reset_sgl_fn != NULL);
	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);

	remaining_transfer_len = req->payload_size;
	while (remaining_transfer_len > 0) {
		assert(req->payload.next_sge_fn != NULL);
		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
		if (rc) {
			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
			return -EFAULT;
		}

		length = spdk_min(remaining_transfer_len, length);

		/*
		 * Any incompatible sges should have been handled up in the splitting routine,
		 *  but assert here as an additional check.
		 *
		 * All SGEs except last must end on a page boundary.
		 */
		assert((length == remaining_transfer_len) ||
		       _is_page_aligned((uintptr_t)virt_addr + length, page_size));

		rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
		if (rc) {
			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
			return rc;
		}

		remaining_transfer_len -= length;
	}

	return 0;
}

typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *,
			   bool);

static build_req_fn const g_nvme_pcie_build_req_table[][2] = {
	[NVME_PAYLOAD_TYPE_INVALID] = {
		nvme_pcie_qpair_build_request_invalid,			/* PRP */
		nvme_pcie_qpair_build_request_invalid			/* SGL */
	},
	[NVME_PAYLOAD_TYPE_CONTIG] = {
		nvme_pcie_qpair_build_contig_request,			/* PRP */
		nvme_pcie_qpair_build_contig_hw_sgl_request		/* SGL */
	},
	[NVME_PAYLOAD_TYPE_SGL] = {
		nvme_pcie_qpair_build_prps_sgl_request,			/* PRP */
		nvme_pcie_qpair_build_hw_sgl_request			/* SGL */
	}
};

static int
nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
			       bool sgl_supported, bool dword_aligned)
{
	void *md_payload;
	struct nvme_request *req = tr->req;

	if (req->payload.md) {
		md_payload = req->payload.md + req->md_offset;
		if (dword_aligned && ((uintptr_t)md_payload & 3)) {
			SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload);
			goto exit;
		}

		if (sgl_supported && dword_aligned) {
			assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
			req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
			tr->meta_sgl.address = spdk_vtophys(md_payload, NULL);
			if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR) {
				goto exit;
			}
			tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
			tr->meta_sgl.unkeyed.length = req->md_size;
			tr->meta_sgl.unkeyed.subtype = 0;
			req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor);
		} else {
			req->cmd.mptr = spdk_vtophys(md_payload, NULL);
			if (req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
				goto exit;
			}
		}
	}

	return 0;

exit:
	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
	return -EINVAL;
}

static int
nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
	struct nvme_tracker	*tr;
	int			rc = 0;
	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
	enum nvme_payload_type	payload_type;
	bool			sgl_supported;
	bool			dword_aligned = true;

	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
	}

	tr = TAILQ_FIRST(&pqpair->free_tr);

	if (tr == NULL) {
		/* Inform the upper layer to try again later. */
		rc = -EAGAIN;
		goto exit;
	}

	TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
	TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
	tr->req = req;
	tr->cb_fn = req->cb_fn;
	tr->cb_arg = req->cb_arg;
	req->cmd.cid = tr->cid;

	if (req->payload_size != 0) {
		payload_type = nvme_payload_type(&req->payload);
		/* According to the specification, PRPs shall be used for all
		 *  Admin commands for NVMe over PCIe implementations.
		 */
		sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 &&
				!nvme_qpair_is_admin_queue(qpair);

		if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) {
			dword_aligned = false;
		}
		rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned);
		if (rc < 0) {
			goto exit;
		}

		rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, dword_aligned);
		if (rc < 0) {
			goto exit;
		}
	}

	nvme_pcie_qpair_submit_tracker(qpair, tr);

exit:
	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
	}

	return rc;
}

static void
nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
	uint64_t t02;
	struct nvme_tracker *tr, *tmp;
	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
	struct spdk_nvme_ctrlr_process *active_proc;

	/* Don't check timeouts during controller initialization. */
	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
		return;
	}

	if (nvme_qpair_is_admin_queue(qpair)) {
		active_proc = nvme_ctrlr_get_current_process(ctrlr);
	} else {
		active_proc = qpair->active_proc;
	}

	/* Only check timeouts if the current process has a timeout callback. */
	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
		return;
	}

	t02 = spdk_get_ticks();
	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
		assert(tr->req != NULL);

		if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
			/*
			 * The requests are in order, so as soon as one has not timed out,
			 * stop iterating.
			 */
			break;
		}
	}
}

static int32_t
nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
	struct nvme_tracker	*tr;
	struct spdk_nvme_cpl	*cpl, *next_cpl;
	uint32_t		 num_completions = 0;
	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
	uint16_t		 next_cq_head;
	uint8_t			 next_phase;
	bool			 next_is_valid = false;

	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
	}

	if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
		/*
		 * max_completions == 0 means unlimited, but complete at most
		 * max_completions_cap batch of I/O at a time so that the completion
		 * queue doorbells don't wrap around.
		 */
		max_completions = pqpair->max_completions_cap;
	}

	while (1) {
		cpl = &pqpair->cpl[pqpair->cq_head];

		if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
			break;
		}

		if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
			next_cq_head = pqpair->cq_head + 1;
			next_phase = pqpair->flags.phase;
		} else {
			next_cq_head = 0;
			next_phase = !pqpair->flags.phase;
		}
		next_cpl = &pqpair->cpl[next_cq_head];
		next_is_valid = (next_cpl->status.p == next_phase);
		if (next_is_valid) {
			__builtin_prefetch(&pqpair->tr[next_cpl->cid]);
		}

#ifdef __PPC64__
		/*
		 * This memory barrier prevents reordering of:
		 * - load after store from/to tr
		 * - load after load cpl phase and cpl cid
		 */
		spdk_mb();
#elif defined(__aarch64__)
		__asm volatile("dmb oshld" ::: "memory");
#endif

		if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
			pqpair->cq_head = 0;
			pqpair->flags.phase = !pqpair->flags.phase;
		}

		tr = &pqpair->tr[cpl->cid];
		/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
		 * as part of putting the req back on the qpair's free list.
		 */
		__builtin_prefetch(&tr->req->stailq);
		pqpair->sq_head = cpl->sqhd;

		if (tr->req) {
			nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
		} else {
			SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
			spdk_nvme_qpair_print_completion(qpair, cpl);
			assert(0);
		}

		if (++num_completions == max_completions) {
			break;
		}
	}

	if (num_completions > 0) {
		nvme_pcie_qpair_ring_cq_doorbell(qpair);
	}

	if (pqpair->flags.delay_cmd_submit) {
		if (pqpair->last_sq_tail != pqpair->sq_tail) {
			nvme_pcie_qpair_ring_sq_doorbell(qpair);
			pqpair->last_sq_tail = pqpair->sq_tail;
		}
	}

	if (spdk_unlikely(ctrlr->timeout_enabled)) {
		/*
		 * User registered for timeout callback
		 */
		nvme_pcie_qpair_check_timeout(qpair);
	}

	/* Before returning, complete any pending admin request. */
	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
		nvme_pcie_qpair_complete_pending_admin_request(qpair);

		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
	}

	return num_completions;
}

static struct spdk_nvme_transport_poll_group *
nvme_pcie_poll_group_create(void)
{
	struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group));

	if (group == NULL) {
		SPDK_ERRLOG("Unable to allocate poll group.\n");
		return NULL;
	}

	return &group->group;
}

static int
nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
{
	return 0;
}

static int
nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
{
	return 0;
}

static int
nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
			 struct spdk_nvme_qpair *qpair)
{
	return 0;
}

static int
nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
			    struct spdk_nvme_qpair *qpair)
{
	return 0;
}

static int64_t
nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
{
	struct spdk_nvme_qpair *qpair, *tmp_qpair;
	int32_t local_completions = 0;
	int64_t total_completions = 0;

	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
		disconnected_qpair_cb(qpair, tgroup->group->ctx);
	}

	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
		local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair);
		if (local_completions < 0) {
			disconnected_qpair_cb(qpair, tgroup->group->ctx);
			local_completions = 0;
		}
		total_completions += local_completions;
	}

	return total_completions;
}

static int
nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
{
	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
		return -EBUSY;
	}

	free(tgroup);

	return 0;
}

static struct spdk_pci_id nvme_pci_driver_id[] = {
	{
		.class_id = SPDK_PCI_CLASS_NVME,
		.vendor_id = SPDK_PCI_ANY_ID,
		.device_id = SPDK_PCI_ANY_ID,
		.subvendor_id = SPDK_PCI_ANY_ID,
		.subdevice_id = SPDK_PCI_ANY_ID,
	},
	{ .vendor_id = 0, /* sentinel */ },
};

SPDK_PCI_DRIVER_REGISTER("nvme", nvme_pci_driver_id,
			 SPDK_PCI_DRIVER_NEED_MAPPING | SPDK_PCI_DRIVER_WC_ACTIVATE);

const struct spdk_nvme_transport_ops pcie_ops = {
	.name = "PCIE",
	.type = SPDK_NVME_TRANSPORT_PCIE,
	.ctrlr_construct = nvme_pcie_ctrlr_construct,
	.ctrlr_scan = nvme_pcie_ctrlr_scan,
	.ctrlr_destruct = nvme_pcie_ctrlr_destruct,
	.ctrlr_enable = nvme_pcie_ctrlr_enable,

	.ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4,
	.ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8,
	.ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4,
	.ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8,

	.ctrlr_get_max_xfer_size = nvme_pcie_ctrlr_get_max_xfer_size,
	.ctrlr_get_max_sges = nvme_pcie_ctrlr_get_max_sges,

	.ctrlr_reserve_cmb = nvme_pcie_ctrlr_reserve_cmb,
	.ctrlr_map_cmb = nvme_pcie_ctrlr_map_io_cmb,
	.ctrlr_unmap_cmb = nvme_pcie_ctrlr_unmap_io_cmb,

	.ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair,
	.ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair,
	.ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair,
	.ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair,

	.qpair_abort_reqs = nvme_pcie_qpair_abort_reqs,
	.qpair_reset = nvme_pcie_qpair_reset,
	.qpair_submit_request = nvme_pcie_qpair_submit_request,
	.qpair_process_completions = nvme_pcie_qpair_process_completions,
	.qpair_iterate_requests = nvme_pcie_qpair_iterate_requests,
	.admin_qpair_abort_aers = nvme_pcie_admin_qpair_abort_aers,

	.poll_group_create = nvme_pcie_poll_group_create,
	.poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair,
	.poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair,
	.poll_group_add = nvme_pcie_poll_group_add,
	.poll_group_remove = nvme_pcie_poll_group_remove,
	.poll_group_process_completions = nvme_pcie_poll_group_process_completions,
	.poll_group_destroy = nvme_pcie_poll_group_destroy,
};

SPDK_NVME_TRANSPORT_REGISTER(pcie, &pcie_ops);