1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
/*
**********************************************************************
* Copyright (C) Miroslav Lichvar 2016-2018, 2022
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
*/
#include <config.h>
#include "test.h"
#if defined(FEAT_PHC) || defined(HAVE_LINUX_TIMESTAMPING)
#include <hwclock.c>
#define MAX_READINGS 20
void
test_unit(void)
{
struct timespec start_hw_ts, start_local_ts, hw_ts, local_ts, ts;
struct timespec readings[MAX_READINGS][3];
HCL_Instance clock;
double freq, jitter, interval, dj, err, sum;
int i, j, k, l, new_sample, n_readings, count;
LCL_Initialise();
TST_RegisterDummyDrivers();
for (i = 1; i <= 8; i++) {
clock = HCL_CreateInstance(random() % (1 << i), 1 << i, 1.0, 1e-9);
for (j = 0, count = 0, sum = 0.0; j < 100; j++) {
UTI_ZeroTimespec(&start_hw_ts);
UTI_ZeroTimespec(&start_local_ts);
UTI_AddDoubleToTimespec(&start_hw_ts, TST_GetRandomDouble(0.0, 1e9), &start_hw_ts);
UTI_AddDoubleToTimespec(&start_local_ts, TST_GetRandomDouble(0.0, 1e9), &start_local_ts);
DEBUG_LOG("iteration %d", j);
freq = TST_GetRandomDouble(0.9, 1.1);
jitter = TST_GetRandomDouble(10.0e-9, 1000.0e-9);
interval = TST_GetRandomDouble(0.1, 10.0);
clock->n_samples = 0;
clock->valid_coefs = 0;
QNT_Reset(clock->delay_quants);
new_sample = 0;
for (k = 0; k < 100; k++) {
UTI_AddDoubleToTimespec(&start_hw_ts, k * interval * freq, &hw_ts);
UTI_AddDoubleToTimespec(&start_local_ts, k * interval, &local_ts);
if (HCL_CookTime(clock, &hw_ts, &ts, NULL) && new_sample) {
dj = fabs(UTI_DiffTimespecsToDouble(&ts, &local_ts) / jitter);
DEBUG_LOG("delta/jitter %f", dj);
if (clock->n_samples >= clock->max_samples / 2)
sum += dj, count++;
TEST_CHECK(clock->n_samples < 4 || dj <= 4.0);
TEST_CHECK(clock->n_samples < 8 || dj <= 3.0);
}
UTI_AddDoubleToTimespec(&start_hw_ts, k * interval * freq + TST_GetRandomDouble(-jitter, jitter), &hw_ts);
if (HCL_NeedsNewSample(clock, &local_ts)) {
n_readings = random() % MAX_READINGS + 1;
for (l = 0; l < n_readings; l++) {
UTI_AddDoubleToTimespec(&local_ts, -TST_GetRandomDouble(0.0, jitter / 10.0), &readings[l][0]);
readings[l][1] = hw_ts;
UTI_AddDoubleToTimespec(&local_ts, TST_GetRandomDouble(0.0, jitter / 10.0), &readings[l][2]);
}
UTI_ZeroTimespec(&hw_ts);
UTI_ZeroTimespec(&local_ts);
if (HCL_ProcessReadings(clock, n_readings, readings, &hw_ts, &local_ts, &err)) {
HCL_AccumulateSample(clock, &hw_ts, &local_ts, 2.0 * jitter);
new_sample = 1;
} else {
new_sample = 0;
}
}
TEST_CHECK(clock->valid_coefs == (clock->n_samples >= 2));
if (!clock->valid_coefs)
continue;
TEST_CHECK(fabs(clock->offset) <= 2.0 * jitter);
}
}
TEST_CHECK(sum / count < 2.4 / sqrt(clock->max_samples));
HCL_DestroyInstance(clock);
}
LCL_Finalise();
}
#else
void
test_unit(void)
{
TEST_REQUIRE(0);
}
#endif
|