summaryrefslogtreecommitdiffstats
path: root/lib/mbsstr.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mbsstr.c')
-rw-r--r--lib/mbsstr.c385
1 files changed, 385 insertions, 0 deletions
diff --git a/lib/mbsstr.c b/lib/mbsstr.c
new file mode 100644
index 0000000..f9ce4ee
--- /dev/null
+++ b/lib/mbsstr.c
@@ -0,0 +1,385 @@
+/* Searching in a string. -*- coding: utf-8 -*-
+ Copyright (C) 2005-2022 Free Software Foundation, Inc.
+ Written by Bruno Haible <bruno@clisp.org>, 2005.
+
+ This file is free software: you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License as
+ published by the Free Software Foundation, either version 3 of the
+ License, or (at your option) any later version.
+
+ This file is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public License
+ along with this program. If not, see <https://www.gnu.org/licenses/>. */
+
+#include <config.h>
+
+/* Specification. */
+#include <string.h>
+
+#include <stdbool.h>
+#include <stddef.h> /* for NULL, in case a nonstandard string.h lacks it */
+#include <stdlib.h>
+
+#include "malloca.h"
+#include "mbuiter.h"
+
+/* Knuth-Morris-Pratt algorithm. */
+#define UNIT unsigned char
+#define CANON_ELEMENT(c) c
+#include "str-kmp.h"
+
+/* Knuth-Morris-Pratt algorithm.
+ See https://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
+ Return a boolean indicating success:
+ Return true and set *RESULTP if the search was completed.
+ Return false if it was aborted because not enough memory was available. */
+static bool
+knuth_morris_pratt_multibyte (const char *haystack, const char *needle,
+ const char **resultp)
+{
+ size_t m = mbslen (needle);
+ mbchar_t *needle_mbchars;
+ size_t *table;
+
+ /* Allocate room for needle_mbchars and the table. */
+ void *memory = nmalloca (m, sizeof (mbchar_t) + sizeof (size_t));
+ void *table_memory;
+ if (memory == NULL)
+ return false;
+ needle_mbchars = memory;
+ table_memory = needle_mbchars + m;
+ table = table_memory;
+
+ /* Fill needle_mbchars. */
+ {
+ mbui_iterator_t iter;
+ size_t j;
+
+ j = 0;
+ for (mbui_init (iter, needle); mbui_avail (iter); mbui_advance (iter), j++)
+ mb_copy (&needle_mbchars[j], &mbui_cur (iter));
+ }
+
+ /* Fill the table.
+ For 0 < i < m:
+ 0 < table[i] <= i is defined such that
+ forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x],
+ and table[i] is as large as possible with this property.
+ This implies:
+ 1) For 0 < i < m:
+ If table[i] < i,
+ needle[table[i]..i-1] = needle[0..i-1-table[i]].
+ 2) For 0 < i < m:
+ rhaystack[0..i-1] == needle[0..i-1]
+ and exists h, i <= h < m: rhaystack[h] != needle[h]
+ implies
+ forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1].
+ table[0] remains uninitialized. */
+ {
+ size_t i, j;
+
+ /* i = 1: Nothing to verify for x = 0. */
+ table[1] = 1;
+ j = 0;
+
+ for (i = 2; i < m; i++)
+ {
+ /* Here: j = i-1 - table[i-1].
+ The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold
+ for x < table[i-1], by induction.
+ Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
+ mbchar_t *b = &needle_mbchars[i - 1];
+
+ for (;;)
+ {
+ /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x]
+ is known to hold for x < i-1-j.
+ Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
+ if (mb_equal (*b, needle_mbchars[j]))
+ {
+ /* Set table[i] := i-1-j. */
+ table[i] = i - ++j;
+ break;
+ }
+ /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
+ for x = i-1-j, because
+ needle[i-1] != needle[j] = needle[i-1-x]. */
+ if (j == 0)
+ {
+ /* The inequality holds for all possible x. */
+ table[i] = i;
+ break;
+ }
+ /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
+ for i-1-j < x < i-1-j+table[j], because for these x:
+ needle[x..i-2]
+ = needle[x-(i-1-j)..j-1]
+ != needle[0..j-1-(x-(i-1-j))] (by definition of table[j])
+ = needle[0..i-2-x],
+ hence needle[x..i-1] != needle[0..i-1-x].
+ Furthermore
+ needle[i-1-j+table[j]..i-2]
+ = needle[table[j]..j-1]
+ = needle[0..j-1-table[j]] (by definition of table[j]). */
+ j = j - table[j];
+ }
+ /* Here: j = i - table[i]. */
+ }
+ }
+
+ /* Search, using the table to accelerate the processing. */
+ {
+ size_t j;
+ mbui_iterator_t rhaystack;
+ mbui_iterator_t phaystack;
+
+ *resultp = NULL;
+ j = 0;
+ mbui_init (rhaystack, haystack);
+ mbui_init (phaystack, haystack);
+ /* Invariant: phaystack = rhaystack + j. */
+ while (mbui_avail (phaystack))
+ if (mb_equal (needle_mbchars[j], mbui_cur (phaystack)))
+ {
+ j++;
+ mbui_advance (phaystack);
+ if (j == m)
+ {
+ /* The entire needle has been found. */
+ *resultp = mbui_cur_ptr (rhaystack);
+ break;
+ }
+ }
+ else if (j > 0)
+ {
+ /* Found a match of needle[0..j-1], mismatch at needle[j]. */
+ size_t count = table[j];
+ j -= count;
+ for (; count > 0; count--)
+ {
+ if (!mbui_avail (rhaystack))
+ abort ();
+ mbui_advance (rhaystack);
+ }
+ }
+ else
+ {
+ /* Found a mismatch at needle[0] already. */
+ if (!mbui_avail (rhaystack))
+ abort ();
+ mbui_advance (rhaystack);
+ mbui_advance (phaystack);
+ }
+ }
+
+ freea (memory);
+ return true;
+}
+
+/* Find the first occurrence of the character string NEEDLE in the character
+ string HAYSTACK. Return NULL if NEEDLE is not found in HAYSTACK. */
+char *
+mbsstr (const char *haystack, const char *needle)
+{
+ /* Be careful not to look at the entire extent of haystack or needle
+ until needed. This is useful because of these two cases:
+ - haystack may be very long, and a match of needle found early,
+ - needle may be very long, and not even a short initial segment of
+ needle may be found in haystack. */
+ if (MB_CUR_MAX > 1)
+ {
+ mbui_iterator_t iter_needle;
+
+ mbui_init (iter_needle, needle);
+ if (mbui_avail (iter_needle))
+ {
+ /* Minimizing the worst-case complexity:
+ Let n = mbslen(haystack), m = mbslen(needle).
+ The naïve algorithm is O(n*m) worst-case.
+ The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
+ memory allocation.
+ To achieve linear complexity and yet amortize the cost of the
+ memory allocation, we activate the Knuth-Morris-Pratt algorithm
+ only once the naïve algorithm has already run for some time; more
+ precisely, when
+ - the outer loop count is >= 10,
+ - the average number of comparisons per outer loop is >= 5,
+ - the total number of comparisons is >= m.
+ But we try it only once. If the memory allocation attempt failed,
+ we don't retry it. */
+ bool try_kmp = true;
+ size_t outer_loop_count = 0;
+ size_t comparison_count = 0;
+ size_t last_ccount = 0; /* last comparison count */
+ mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */
+
+ mbui_iterator_t iter_haystack;
+
+ mbui_init (iter_needle_last_ccount, needle);
+ mbui_init (iter_haystack, haystack);
+ for (;; mbui_advance (iter_haystack))
+ {
+ if (!mbui_avail (iter_haystack))
+ /* No match. */
+ return NULL;
+
+ /* See whether it's advisable to use an asymptotically faster
+ algorithm. */
+ if (try_kmp
+ && outer_loop_count >= 10
+ && comparison_count >= 5 * outer_loop_count)
+ {
+ /* See if needle + comparison_count now reaches the end of
+ needle. */
+ size_t count = comparison_count - last_ccount;
+ for (;
+ count > 0 && mbui_avail (iter_needle_last_ccount);
+ count--)
+ mbui_advance (iter_needle_last_ccount);
+ last_ccount = comparison_count;
+ if (!mbui_avail (iter_needle_last_ccount))
+ {
+ /* Try the Knuth-Morris-Pratt algorithm. */
+ const char *result;
+ bool success =
+ knuth_morris_pratt_multibyte (haystack, needle,
+ &result);
+ if (success)
+ return (char *) result;
+ try_kmp = false;
+ }
+ }
+
+ outer_loop_count++;
+ comparison_count++;
+ if (mb_equal (mbui_cur (iter_haystack), mbui_cur (iter_needle)))
+ /* The first character matches. */
+ {
+ mbui_iterator_t rhaystack;
+ mbui_iterator_t rneedle;
+
+ memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t));
+ mbui_advance (rhaystack);
+
+ mbui_init (rneedle, needle);
+ if (!mbui_avail (rneedle))
+ abort ();
+ mbui_advance (rneedle);
+
+ for (;; mbui_advance (rhaystack), mbui_advance (rneedle))
+ {
+ if (!mbui_avail (rneedle))
+ /* Found a match. */
+ return (char *) mbui_cur_ptr (iter_haystack);
+ if (!mbui_avail (rhaystack))
+ /* No match. */
+ return NULL;
+ comparison_count++;
+ if (!mb_equal (mbui_cur (rhaystack), mbui_cur (rneedle)))
+ /* Nothing in this round. */
+ break;
+ }
+ }
+ }
+ }
+ else
+ return (char *) haystack;
+ }
+ else
+ {
+ if (*needle != '\0')
+ {
+ /* Minimizing the worst-case complexity:
+ Let n = strlen(haystack), m = strlen(needle).
+ The naïve algorithm is O(n*m) worst-case.
+ The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
+ memory allocation.
+ To achieve linear complexity and yet amortize the cost of the
+ memory allocation, we activate the Knuth-Morris-Pratt algorithm
+ only once the naïve algorithm has already run for some time; more
+ precisely, when
+ - the outer loop count is >= 10,
+ - the average number of comparisons per outer loop is >= 5,
+ - the total number of comparisons is >= m.
+ But we try it only once. If the memory allocation attempt failed,
+ we don't retry it. */
+ bool try_kmp = true;
+ size_t outer_loop_count = 0;
+ size_t comparison_count = 0;
+ size_t last_ccount = 0; /* last comparison count */
+ const char *needle_last_ccount = needle; /* = needle + last_ccount */
+
+ /* Speed up the following searches of needle by caching its first
+ character. */
+ char b = *needle++;
+
+ for (;; haystack++)
+ {
+ if (*haystack == '\0')
+ /* No match. */
+ return NULL;
+
+ /* See whether it's advisable to use an asymptotically faster
+ algorithm. */
+ if (try_kmp
+ && outer_loop_count >= 10
+ && comparison_count >= 5 * outer_loop_count)
+ {
+ /* See if needle + comparison_count now reaches the end of
+ needle. */
+ if (needle_last_ccount != NULL)
+ {
+ needle_last_ccount +=
+ strnlen (needle_last_ccount,
+ comparison_count - last_ccount);
+ if (*needle_last_ccount == '\0')
+ needle_last_ccount = NULL;
+ last_ccount = comparison_count;
+ }
+ if (needle_last_ccount == NULL)
+ {
+ /* Try the Knuth-Morris-Pratt algorithm. */
+ const unsigned char *result;
+ bool success =
+ knuth_morris_pratt ((const unsigned char *) haystack,
+ (const unsigned char *) (needle - 1),
+ strlen (needle - 1),
+ &result);
+ if (success)
+ return (char *) result;
+ try_kmp = false;
+ }
+ }
+
+ outer_loop_count++;
+ comparison_count++;
+ if (*haystack == b)
+ /* The first character matches. */
+ {
+ const char *rhaystack = haystack + 1;
+ const char *rneedle = needle;
+
+ for (;; rhaystack++, rneedle++)
+ {
+ if (*rneedle == '\0')
+ /* Found a match. */
+ return (char *) haystack;
+ if (*rhaystack == '\0')
+ /* No match. */
+ return NULL;
+ comparison_count++;
+ if (*rhaystack != *rneedle)
+ /* Nothing in this round. */
+ break;
+ }
+ }
+ }
+ }
+ else
+ return (char *) haystack;
+ }
+}