/* Copyright (C) 1991-1992, 1997, 1999, 2003, 2006, 2008-2022 Free Software
Foundation, Inc.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see . */
#if ! defined USE_LONG_DOUBLE
# include
#endif
/* Specification. */
#include
#include /* isspace() */
#include
#include /* {DBL,LDBL}_{MIN,MAX} */
#include /* LONG_{MIN,MAX} */
#include /* localeconv() */
#include /* NAN */
#include
#include /* sprintf() */
#include /* strdup() */
#if HAVE_NL_LANGINFO
# include
#endif
#include "c-ctype.h"
#undef MIN
#undef MAX
#ifdef USE_LONG_DOUBLE
# define STRTOD strtold
# define LDEXP ldexpl
# if defined __hpux && defined __hppa
/* We cannot call strtold on HP-UX/hppa, because its return type is a struct,
not a 'long double'. */
# define HAVE_UNDERLYING_STRTOD 0
# elif STRTOLD_HAS_UNDERFLOW_BUG
/* strtold would not set errno=ERANGE upon underflow. */
# define HAVE_UNDERLYING_STRTOD 0
# else
# define HAVE_UNDERLYING_STRTOD HAVE_STRTOLD
# endif
# define DOUBLE long double
# define MIN LDBL_MIN
# define MAX LDBL_MAX
# define L_(literal) literal##L
#else
# define STRTOD strtod
# define LDEXP ldexp
# define HAVE_UNDERLYING_STRTOD 1
# define DOUBLE double
# define MIN DBL_MIN
# define MAX DBL_MAX
# define L_(literal) literal
#endif
#if (defined USE_LONG_DOUBLE ? HAVE_LDEXPM_IN_LIBC : HAVE_LDEXP_IN_LIBC)
# define USE_LDEXP 1
#else
# define USE_LDEXP 0
#endif
/* Return true if C is a space in the current locale, avoiding
problems with signed char and isspace. */
static bool
locale_isspace (char c)
{
unsigned char uc = c;
return isspace (uc) != 0;
}
/* Determine the decimal-point character according to the current locale. */
static char
decimal_point_char (void)
{
const char *point;
/* Determine it in a multithread-safe way. We know nl_langinfo is
multithread-safe on glibc systems and Mac OS X systems, but is not required
to be multithread-safe by POSIX. sprintf(), however, is multithread-safe.
localeconv() is rarely multithread-safe. */
#if HAVE_NL_LANGINFO && (__GLIBC__ || defined __UCLIBC__ || (defined __APPLE__ && defined __MACH__))
point = nl_langinfo (RADIXCHAR);
#elif 1
char pointbuf[5];
sprintf (pointbuf, "%#.0f", 1.0);
point = &pointbuf[1];
#else
point = localeconv () -> decimal_point;
#endif
/* The decimal point is always a single byte: either '.' or ','. */
return (point[0] != '\0' ? point[0] : '.');
}
#if !USE_LDEXP
#undef LDEXP
#define LDEXP dummy_ldexp
/* A dummy definition that will never be invoked. */
static DOUBLE LDEXP (_GL_UNUSED DOUBLE x, _GL_UNUSED int exponent)
{
abort ();
return L_(0.0);
}
#endif
/* Return X * BASE**EXPONENT. Return an extreme value and set errno
to ERANGE if underflow or overflow occurs. */
static DOUBLE
scale_radix_exp (DOUBLE x, int radix, long int exponent)
{
/* If RADIX == 10, this code is neither precise nor fast; it is
merely a straightforward and relatively portable approximation.
If N == 2, this code is precise on a radix-2 implementation,
albeit perhaps not fast if ldexp is not in libc. */
long int e = exponent;
if (USE_LDEXP && radix == 2)
return LDEXP (x, e < INT_MIN ? INT_MIN : INT_MAX < e ? INT_MAX : e);
else
{
DOUBLE r = x;
if (r != 0)
{
if (e < 0)
{
while (e++ != 0)
{
r /= radix;
if (r == 0 && x != 0)
{
errno = ERANGE;
break;
}
}
}
else
{
while (e-- != 0)
{
if (r < -MAX / radix)
{
errno = ERANGE;
return -HUGE_VAL;
}
else if (MAX / radix < r)
{
errno = ERANGE;
return HUGE_VAL;
}
else
r *= radix;
}
}
}
return r;
}
}
/* Parse a number at NPTR; this is a bit like strtol (NPTR, ENDPTR)
except there are no leading spaces or signs or "0x", and ENDPTR is
nonnull. The number uses a base BASE (either 10 or 16) fraction, a
radix RADIX (either 10 or 2) exponent, and exponent character
EXPCHAR. BASE is RADIX**RADIX_MULTIPLIER. */
static DOUBLE
parse_number (const char *nptr,
int base, int radix, int radix_multiplier, char radixchar,
char expchar,
char **endptr)
{
const char *s = nptr;
const char *digits_start;
const char *digits_end;
const char *radixchar_ptr;
long int exponent;
DOUBLE num;
/* First, determine the start and end of the digit sequence. */
digits_start = s;
radixchar_ptr = NULL;
for (;; ++s)
{
if (base == 16 ? c_isxdigit (*s) : c_isdigit (*s))
;
else if (radixchar_ptr == NULL && *s == radixchar)
{
/* Record that we have found the decimal point. */
radixchar_ptr = s;
}
else
/* Any other character terminates the digit sequence. */
break;
}
digits_end = s;
/* Now radixchar_ptr == NULL or
digits_start <= radixchar_ptr < digits_end. */
if (false)
{ /* Unoptimized. */
exponent =
(radixchar_ptr != NULL
? - (long int) (digits_end - radixchar_ptr - 1)
: 0);
}
else
{ /* Remove trailing zero digits. This reduces rounding errors for
inputs such as 1.0000000000 or 10000000000e-10. */
while (digits_end > digits_start)
{
if (digits_end - 1 == radixchar_ptr || *(digits_end - 1) == '0')
digits_end--;
else
break;
}
exponent =
(radixchar_ptr != NULL
? (digits_end > radixchar_ptr
? - (long int) (digits_end - radixchar_ptr - 1)
: (long int) (radixchar_ptr - digits_end))
: (long int) (s - digits_end));
}
/* Then, convert the digit sequence to a number. */
{
const char *dp;
num = 0;
for (dp = digits_start; dp < digits_end; dp++)
if (dp != radixchar_ptr)
{
int digit;
/* Make sure that multiplication by BASE will not overflow. */
if (!(num <= MAX / base))
{
/* The value of the digit and all subsequent digits don't matter,
since we have already gotten as many digits as can be
represented in a 'DOUBLE'. This doesn't necessarily mean that
the result will overflow: The exponent may reduce it to within
range. */
exponent +=
(digits_end - dp)
- (radixchar_ptr >= dp && radixchar_ptr < digits_end ? 1 : 0);
break;
}
/* Eat the next digit. */
if (c_isdigit (*dp))
digit = *dp - '0';
else if (base == 16 && c_isxdigit (*dp))
digit = c_tolower (*dp) - ('a' - 10);
else
abort ();
num = num * base + digit;
}
}
exponent = exponent * radix_multiplier;
/* Finally, parse the exponent. */
if (c_tolower (*s) == expchar && ! locale_isspace (s[1]))
{
/* Add any given exponent to the implicit one. */
int saved_errno = errno;
char *end;
long int value = strtol (s + 1, &end, 10);
errno = saved_errno;
if (s + 1 != end)
{
/* Skip past the exponent, and add in the implicit exponent,
resulting in an extreme value on overflow. */
s = end;
exponent =
(exponent < 0
? (value < LONG_MIN - exponent ? LONG_MIN : exponent + value)
: (LONG_MAX - exponent < value ? LONG_MAX : exponent + value));
}
}
*endptr = (char *) s;
return scale_radix_exp (num, radix, exponent);
}
/* HP cc on HP-UX 10.20 has a bug with the constant expression -0.0.
ICC 10.0 has a bug when optimizing the expression -zero.
The expression -MIN * MIN does not work when cross-compiling
to PowerPC on Mac OS X 10.5. */
static DOUBLE
minus_zero (void)
{
#if defined __hpux || defined __sgi || defined __ICC
return -MIN * MIN;
#else
return -0.0;
#endif
}
/* Convert NPTR to a DOUBLE. If ENDPTR is not NULL, a pointer to the
character after the last one used in the number is put in *ENDPTR. */
DOUBLE
STRTOD (const char *nptr, char **endptr)
#if HAVE_UNDERLYING_STRTOD
# ifdef USE_LONG_DOUBLE
# undef strtold
# else
# undef strtod
# endif
#else
# undef STRTOD
# define STRTOD(NPTR,ENDPTR) \
parse_number (NPTR, 10, 10, 1, radixchar, 'e', ENDPTR)
#endif
/* From here on, STRTOD refers to the underlying implementation. It needs
to handle only finite unsigned decimal numbers with non-null ENDPTR. */
{
char radixchar;
bool negative = false;
/* The number so far. */
DOUBLE num;
const char *s = nptr;
const char *end;
char *endbuf;
int saved_errno = errno;
radixchar = decimal_point_char ();
/* Eat whitespace. */
while (locale_isspace (*s))
++s;
/* Get the sign. */
negative = *s == '-';
if (*s == '-' || *s == '+')
++s;
num = STRTOD (s, &endbuf);
end = endbuf;
if (c_isdigit (s[*s == radixchar]))
{
/* If a hex float was converted incorrectly, do it ourselves.
If the string starts with "0x" but does not contain digits,
consume the "0" ourselves. If a hex float is followed by a
'p' but no exponent, then adjust the end pointer. */
if (*s == '0' && c_tolower (s[1]) == 'x')
{
if (! c_isxdigit (s[2 + (s[2] == radixchar)]))
{
end = s + 1;
/* strtod() on z/OS returns ERANGE for "0x". */
errno = saved_errno;
}
else if (end <= s + 2)
{
num = parse_number (s + 2, 16, 2, 4, radixchar, 'p', &endbuf);
end = endbuf;
}
else
{
const char *p = s + 2;
while (p < end && c_tolower (*p) != 'p')
p++;
if (p < end && ! c_isdigit (p[1 + (p[1] == '-' || p[1] == '+')]))
{
char *dup = strdup (s);
errno = saved_errno;
if (!dup)
{
/* Not really our day, is it. Rounding errors are
better than outright failure. */
num =
parse_number (s + 2, 16, 2, 4, radixchar, 'p', &endbuf);
}
else
{
dup[p - s] = '\0';
num = STRTOD (dup, &endbuf);
saved_errno = errno;
free (dup);
errno = saved_errno;
}
end = p;
}
}
}
else
{
/* If "1e 1" was misparsed as 10.0 instead of 1.0, re-do the
underlying STRTOD on a copy of the original string
truncated to avoid the bug. */
const char *e = s + 1;
while (e < end && c_tolower (*e) != 'e')
e++;
if (e < end && ! c_isdigit (e[1 + (e[1] == '-' || e[1] == '+')]))
{
char *dup = strdup (s);
errno = saved_errno;
if (!dup)
{
/* Not really our day, is it. Rounding errors are
better than outright failure. */
num = parse_number (s, 10, 10, 1, radixchar, 'e', &endbuf);
}
else
{
dup[e - s] = '\0';
num = STRTOD (dup, &endbuf);
saved_errno = errno;
free (dup);
errno = saved_errno;
}
end = e;
}
}
s = end;
}
/* Check for infinities and NaNs. */
else if (c_tolower (*s) == 'i'
&& c_tolower (s[1]) == 'n'
&& c_tolower (s[2]) == 'f')
{
s += 3;
if (c_tolower (*s) == 'i'
&& c_tolower (s[1]) == 'n'
&& c_tolower (s[2]) == 'i'
&& c_tolower (s[3]) == 't'
&& c_tolower (s[4]) == 'y')
s += 5;
num = HUGE_VAL;
errno = saved_errno;
}
else if (c_tolower (*s) == 'n'
&& c_tolower (s[1]) == 'a'
&& c_tolower (s[2]) == 'n')
{
s += 3;
if (*s == '(')
{
const char *p = s + 1;
while (c_isalnum (*p))
p++;
if (*p == ')')
s = p + 1;
}
/* If the underlying implementation misparsed the NaN, assume
its result is incorrect, and return a NaN. Normally it's
better to use the underlying implementation's result, since a
nice implementation populates the bits of the NaN according
to interpreting n-char-sequence as a hexadecimal number. */
if (s != end || num == num)
num = NAN;
errno = saved_errno;
}
else
{
/* No conversion could be performed. */
errno = EINVAL;
s = nptr;
}
if (endptr != NULL)
*endptr = (char *) s;
/* Special case -0.0, since at least ICC miscompiles negation. We
can't use copysign(), as that drags in -lm on some platforms. */
if (!num && negative)
return minus_zero ();
return negative ? -num : num;
}