/* * cryptsetup - LUKS1 utility for offline re-encryption * * Copyright (C) 2012-2023 Red Hat, Inc. All rights reserved. * Copyright (C) 2012-2023 Milan Broz * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include "cryptsetup.h" #include "cryptsetup_args.h" #include "utils_luks.h" #define NO_UUID "cafecafe-cafe-cafe-cafe-cafecafeeeee" extern int64_t data_shift; #define MAX_SLOT 8 struct reenc_ctx { char *device; char *device_header; char *device_uuid; const char *type; uint64_t device_size; /* overridden by parameter */ uint64_t device_size_new_real; uint64_t device_size_org_real; uint64_t device_offset; uint64_t device_shift; uint64_t data_offset; bool stained; bool in_progress; enum { FORWARD = 0, BACKWARD = 1 } reencrypt_direction; enum { REENCRYPT = 0, ENCRYPT = 1, DECRYPT = 2 } reencrypt_mode; char header_file_org[PATH_MAX]; char header_file_new[PATH_MAX]; char log_file[PATH_MAX]; char crypt_path_org[PATH_MAX]; char crypt_path_new[PATH_MAX]; int log_fd; char log_buf[SECTOR_SIZE]; struct { char *password; size_t passwordLen; } p[MAX_SLOT]; int keyslot; uint64_t resume_bytes; }; char MAGIC[] = {'L','U','K','S', 0xba, 0xbe}; char NOMAGIC[] = {'L','U','K','S', 0xde, 0xad}; int MAGIC_L = 6; typedef enum { MAKE_UNUSABLE, MAKE_USABLE, CHECK_UNUSABLE, CHECK_OPEN, } header_magic; static void _quiet_log(int level, const char *msg, void *usrptr) { if (!ARG_SET(OPT_DEBUG_ID)) return; tool_log(level, msg, usrptr); } static int alignment(int fd) { int alignment; alignment = fpathconf(fd, _PC_REC_XFER_ALIGN); if (alignment < 0) alignment = 4096; return alignment; } static size_t pagesize(void) { long r = sysconf(_SC_PAGESIZE); return r < 0 ? 4096 : (size_t)r; } static const char *hdr_device(const struct reenc_ctx *rc) { return rc->device_header ?: rc->device; } /* Depends on the first two fields of LUKS1 header format, magic and version */ static int device_check(struct reenc_ctx *rc, const char *device, header_magic set_magic, bool exclusive) { char *buf = NULL; int r, devfd; ssize_t s; uint16_t version; size_t buf_size = pagesize(); struct stat st; if (stat(device, &st)) { log_err(_("Cannot open device %s."), device); return -EINVAL; } /* coverity[toctou] */ devfd = open(device, O_RDWR | ((S_ISBLK(st.st_mode) && exclusive) ? O_EXCL : 0)); /* lgtm[cpp/toctou-race-condition] */ if (devfd == -1) { if (errno == EBUSY) { log_err(_("Cannot exclusively open %s, device in use."), device); return -EBUSY; } log_err(_("Cannot open device %s."), device); return -EINVAL; } if (set_magic == CHECK_OPEN) { r = 0; goto out; } if (posix_memalign((void *)&buf, alignment(devfd), buf_size)) { log_err(_("Allocation of aligned memory failed.")); r = -ENOMEM; goto out; } s = read(devfd, buf, buf_size); if (s < 0 || s != (ssize_t)buf_size) { log_err(_("Cannot read device %s."), device); r = -EIO; goto out; } /* Be sure that we do not process new version of header */ memcpy((void*)&version, &buf[MAGIC_L], sizeof(uint16_t)); version = be16_to_cpu(version); if (set_magic == MAKE_UNUSABLE && !memcmp(buf, MAGIC, MAGIC_L) && version == 1) { log_verbose(_("Marking LUKS1 device %s unusable."), device); memcpy(buf, NOMAGIC, MAGIC_L); r = 0; } else if (set_magic == CHECK_UNUSABLE && version == 1) { r = memcmp(buf, NOMAGIC, MAGIC_L) ? -EINVAL : 0; if (rc && !r) rc->device_uuid = strndup(&buf[0xa8], 40); goto out; } else r = -EINVAL; if (!r && version == 1) { if (lseek(devfd, 0, SEEK_SET) == -1) goto out; s = write(devfd, buf, buf_size); if (s < 0 || s != (ssize_t)buf_size || fsync(devfd) < 0) { log_err(_("Cannot write device %s."), device); r = -EIO; } if (rc && s > 0 && set_magic == MAKE_UNUSABLE) rc->stained = true; } if (r) log_dbg("LUKS signature check failed for %s.", device); out: if (buf) memset(buf, 0, buf_size); free(buf); close(devfd); return r; } static int create_empty_header(const char *new_file) { int fd, r = 0; log_dbg("Creating empty file %s of size 4096.", new_file); /* coverity[toctou] */ fd = open(new_file, O_CREAT|O_EXCL|O_WRONLY, S_IRUSR|S_IWUSR); if (fd == -1 || posix_fallocate(fd, 0, 4096)) r = -EINVAL; if (fd >= 0) close(fd); return r; } static int write_log(struct reenc_ctx *rc) { ssize_t r; memset(rc->log_buf, 0, SECTOR_SIZE); if (snprintf(rc->log_buf, SECTOR_SIZE, "# LUKS reencryption log, DO NOT EDIT OR DELETE.\n" "version = %d\nUUID = %s\ndirection = %d\nmode = %d\n" "offset = %" PRIu64 "\nshift = %" PRIu64 "\n# EOF\n", 2, rc->device_uuid, rc->reencrypt_direction, rc->reencrypt_mode, rc->device_offset, rc->device_shift) < 0) return -EINVAL; if (lseek(rc->log_fd, 0, SEEK_SET) == -1) return -EIO; r = write(rc->log_fd, rc->log_buf, SECTOR_SIZE); if (r < 0 || r != SECTOR_SIZE) { log_err(_("Cannot write reencryption log file.")); return -EIO; } return 0; } static int parse_line_log(struct reenc_ctx *rc, const char *line) { uint64_t u64; int i; char s[64]; /* whole line is comment */ if (*line == '#') return 0; if (sscanf(line, "version = %d", &i) == 1) { if (i < 1 || i > 2) { log_dbg("Log: Unexpected version = %i", i); return -EINVAL; } } else if (sscanf(line, "UUID = %40s", s) == 1) { if (!rc->device_uuid || strcmp(rc->device_uuid, s)) { log_dbg("Log: Unexpected UUID %s", s); return -EINVAL; } } else if (sscanf(line, "direction = %d", &i) == 1) { log_dbg("Log: direction = %i", i); rc->reencrypt_direction = i; } else if (sscanf(line, "offset = %" PRIu64, &u64) == 1) { log_dbg("Log: offset = %" PRIu64, u64); rc->device_offset = u64; } else if (sscanf(line, "shift = %" PRIu64, &u64) == 1) { log_dbg("Log: shift = %" PRIu64, u64); rc->device_shift = u64; } else if (sscanf(line, "mode = %d", &i) == 1) { /* added in v2 */ log_dbg("Log: mode = %i", i); rc->reencrypt_mode = i; if (rc->reencrypt_mode != REENCRYPT && rc->reencrypt_mode != ENCRYPT && rc->reencrypt_mode != DECRYPT) return -EINVAL; } else return -EINVAL; return 0; } static int parse_log(struct reenc_ctx *rc) { char *start, *end; ssize_t s; s = read(rc->log_fd, rc->log_buf, SECTOR_SIZE); if (s == -1) { log_err(_("Cannot read reencryption log file.")); return -EIO; } rc->log_buf[SECTOR_SIZE - 1] = '\0'; start = rc->log_buf; do { end = strchr(start, '\n'); if (end) { *end++ = '\0'; if (parse_line_log(rc, start)) { log_err(_("Wrong log format.")); return -EINVAL; } } start = end; } while (start); return 0; } static void close_log(struct reenc_ctx *rc) { log_dbg("Closing LUKS reencryption log file %s.", rc->log_file); if (rc->log_fd != -1) close(rc->log_fd); } static int open_log(struct reenc_ctx *rc) { int flags = ARG_SET(OPT_USE_FSYNC_ID) ? O_SYNC : 0; rc->log_fd = open(rc->log_file, O_RDWR|O_EXCL|O_CREAT|flags, S_IRUSR|S_IWUSR); if (rc->log_fd != -1) { log_dbg("Created LUKS reencryption log file %s.", rc->log_file); rc->stained = 0; } else if (errno == EEXIST) { log_std(_("Log file %s exists, resuming reencryption.\n"), rc->log_file); rc->log_fd = open(rc->log_file, O_RDWR|flags); rc->in_progress = true; } if (rc->log_fd == -1) return -EINVAL; if (!rc->in_progress && write_log(rc) < 0) { close_log(rc); return -EIO; } /* Be sure it is correct format */ return parse_log(rc); } static int activate_luks_headers(struct reenc_ctx *rc) { struct crypt_device *cd = NULL, *cd_new = NULL; const char *pwd_old, *pwd_new, pwd_empty[] = ""; size_t pwd_old_len, pwd_new_len; int r; log_dbg("Activating LUKS devices from headers."); /* Never use real password for empty header processing */ if (rc->reencrypt_mode == REENCRYPT) { pwd_old = rc->p[rc->keyslot].password; pwd_old_len = rc->p[rc->keyslot].passwordLen; pwd_new = pwd_old; pwd_new_len = pwd_old_len; } else if (rc->reencrypt_mode == DECRYPT) { pwd_old = rc->p[rc->keyslot].password; pwd_old_len = rc->p[rc->keyslot].passwordLen; pwd_new = pwd_empty; pwd_new_len = 0; } else if (rc->reencrypt_mode == ENCRYPT) { pwd_old = pwd_empty; pwd_old_len = 0; pwd_new = rc->p[rc->keyslot].password; pwd_new_len = rc->p[rc->keyslot].passwordLen; } else return -EINVAL; if ((r = crypt_init_data_device(&cd, rc->header_file_org, rc->device)) || (r = crypt_load(cd, CRYPT_LUKS1, NULL))) goto out; log_verbose(_("Activating temporary device using old LUKS header.")); if ((r = crypt_activate_by_passphrase(cd, rc->header_file_org, ARG_INT32(OPT_KEY_SLOT_ID), pwd_old, pwd_old_len, CRYPT_ACTIVATE_READONLY|CRYPT_ACTIVATE_PRIVATE)) < 0) goto out; if ((r = crypt_init_data_device(&cd_new, rc->header_file_new, rc->device)) || (r = crypt_load(cd_new, CRYPT_LUKS1, NULL))) goto out; log_verbose(_("Activating temporary device using new LUKS header.")); if ((r = crypt_activate_by_passphrase(cd_new, rc->header_file_new, ARG_INT32(OPT_KEY_SLOT_ID), pwd_new, pwd_new_len, CRYPT_ACTIVATE_SHARED|CRYPT_ACTIVATE_PRIVATE)) < 0) goto out; r = 0; out: crypt_free(cd); crypt_free(cd_new); if (r < 0) log_err(_("Activation of temporary devices failed.")); return r; } static int create_new_keyslot(struct reenc_ctx *rc, int keyslot, struct crypt_device *cd_old, struct crypt_device *cd_new) { int r; char *key = NULL; size_t key_size; if (cd_old && crypt_keyslot_status(cd_old, keyslot) == CRYPT_SLOT_UNBOUND) { key_size = 4096; key = crypt_safe_alloc(key_size); if (!key) return -ENOMEM; r = crypt_volume_key_get(cd_old, keyslot, key, &key_size, rc->p[keyslot].password, rc->p[keyslot].passwordLen); if (r == keyslot) { r = crypt_keyslot_add_by_key(cd_new, keyslot, key, key_size, rc->p[keyslot].password, rc->p[keyslot].passwordLen, CRYPT_VOLUME_KEY_NO_SEGMENT); } else r = -EINVAL; crypt_safe_free(key); } else r = crypt_keyslot_add_by_volume_key(cd_new, keyslot, NULL, 0, rc->p[keyslot].password, rc->p[keyslot].passwordLen); return r; } static int create_new_header(struct reenc_ctx *rc, struct crypt_device *cd_old, const char *cipher, const char *cipher_mode, const char *uuid, const char *key, int key_size, uint64_t metadata_size, uint64_t keyslots_size, void *params) { struct crypt_device *cd_new = NULL; int i, r; if ((r = crypt_init(&cd_new, rc->header_file_new))) goto out; if (ARG_SET(OPT_USE_RANDOM_ID)) crypt_set_rng_type(cd_new, CRYPT_RNG_RANDOM); else if (ARG_SET(OPT_USE_URANDOM_ID)) crypt_set_rng_type(cd_new, CRYPT_RNG_URANDOM); r = set_pbkdf_params(cd_new, CRYPT_LUKS1); if (r) { log_err(_("Failed to set pbkdf parameters.")); goto out; } r = crypt_set_data_offset(cd_new, rc->data_offset); if (r) { log_err(_("Failed to set data offset.")); goto out; } r = crypt_set_metadata_size(cd_new, metadata_size, keyslots_size); if (r) { log_err(_("Failed to set metadata size.")); goto out; } r = crypt_format(cd_new, CRYPT_LUKS1, cipher, cipher_mode, uuid, key, key_size, params); check_signal(&r); if (r < 0) goto out; log_verbose(_("New LUKS header for device %s created."), rc->device); for (i = 0; i < crypt_keyslot_max(CRYPT_LUKS1); i++) { if (!rc->p[i].password) continue; r = create_new_keyslot(rc, i, cd_old, cd_new); check_signal(&r); if (r < 0) goto out; tools_keyslot_msg(r, CREATED); r = 0; } out: crypt_free(cd_new); return r; } static int backup_luks_headers(struct reenc_ctx *rc) { struct crypt_device *cd = NULL; struct crypt_params_luks1 params = {0}; char cipher [MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN]; char *key = NULL; size_t key_size; uint64_t mdata_size = 0, keyslots_size = 0; int r; log_dbg("Creating LUKS header backup for device %s.", hdr_device(rc)); if ((r = crypt_init(&cd, hdr_device(rc))) || (r = crypt_load(cd, CRYPT_LUKS1, NULL))) goto out; if ((r = crypt_header_backup(cd, CRYPT_LUKS1, rc->header_file_org))) goto out; log_verbose(_("%s header backup of device %s created."), "LUKS1", rc->device); /* For decrypt, new header will be fake one, so we are done here. */ if (rc->reencrypt_mode == DECRYPT) goto out; rc->data_offset = crypt_get_data_offset(cd) + ROUND_SECTOR(ARG_UINT64(OPT_REDUCE_DEVICE_SIZE_ID)); if ((r = create_empty_header(rc->header_file_new))) goto out; params.hash = ARG_STR(OPT_HASH_ID) ?: DEFAULT_LUKS1_HASH; params.data_device = rc->device; if (ARG_SET(OPT_CIPHER_ID)) { r = crypt_parse_name_and_mode(ARG_STR(OPT_CIPHER_ID), cipher, NULL, cipher_mode); if (r < 0) { log_err(_("No known cipher specification pattern detected.")); goto out; } } key_size = ARG_SET(OPT_KEY_SIZE_ID) ? ARG_UINT32(OPT_KEY_SIZE_ID) / 8 : (uint32_t)crypt_get_volume_key_size(cd); if (ARG_SET(OPT_KEEP_KEY_ID)) { log_dbg("Keeping key from old header."); key_size = crypt_get_volume_key_size(cd); key = crypt_safe_alloc(key_size); if (!key) { r = -ENOMEM; goto out; } r = crypt_volume_key_get(cd, CRYPT_ANY_SLOT, key, &key_size, rc->p[rc->keyslot].password, rc->p[rc->keyslot].passwordLen); } else if (ARG_SET(OPT_VOLUME_KEY_FILE_ID)) { log_dbg("Loading new key from file."); r = tools_read_vk(ARG_STR(OPT_VOLUME_KEY_FILE_ID), &key, key_size); } if (r < 0) goto out; r = create_new_header(rc, cd, ARG_SET(OPT_CIPHER_ID) ? cipher : crypt_get_cipher(cd), ARG_SET(OPT_CIPHER_ID) ? cipher_mode : crypt_get_cipher_mode(cd), crypt_get_uuid(cd), key, key_size, mdata_size, keyslots_size, (void*)¶ms); out: crypt_free(cd); crypt_safe_free(key); if (r) log_err(_("Creation of LUKS backup headers failed.")); return r; } /* Create fake header for original device */ static int backup_fake_header(struct reenc_ctx *rc) { struct crypt_device *cd_new = NULL; struct crypt_params_luks1 params = {0}; char cipher [MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN]; const char *header_file_fake; int r; log_dbg("Creating fake (cipher_null) header for %s device.", (rc->reencrypt_mode == DECRYPT) ? "new" : "original"); header_file_fake = (rc->reencrypt_mode == DECRYPT) ? rc->header_file_new : rc->header_file_org; if (!ARG_SET(OPT_KEY_SIZE_ID)) ARG_SET_UINT32(OPT_KEY_SIZE_ID, DEFAULT_LUKS1_KEYBITS); if (ARG_SET(OPT_CIPHER_ID)) { r = crypt_parse_name_and_mode(ARG_STR(OPT_CIPHER_ID), cipher, NULL, cipher_mode); if (r < 0) { log_err(_("No known cipher specification pattern detected.")); goto out; } } r = create_empty_header(header_file_fake); if (r < 0) return r; params.hash = ARG_STR(OPT_HASH_ID) ?: DEFAULT_LUKS1_HASH; params.data_alignment = 0; params.data_device = rc->device; r = crypt_init(&cd_new, header_file_fake); if (r < 0) return r; r = crypt_format(cd_new, CRYPT_LUKS1, "cipher_null", "ecb", NO_UUID, NULL, ARG_UINT32(OPT_KEY_SIZE_ID) / 8, ¶ms); check_signal(&r); if (r < 0) goto out; r = crypt_keyslot_add_by_volume_key(cd_new, rc->keyslot, NULL, 0, rc->p[rc->keyslot].password, rc->p[rc->keyslot].passwordLen); check_signal(&r); if (r < 0) goto out; /* The real header is backup header created in backup_luks_headers() */ if (rc->reencrypt_mode == DECRYPT) { r = 0; goto out; } r = create_empty_header(rc->header_file_new); if (r < 0) goto out; params.data_alignment = ROUND_SECTOR(ARG_UINT64(OPT_REDUCE_DEVICE_SIZE_ID)); r = create_new_header(rc, NULL, ARG_SET(OPT_CIPHER_ID) ? cipher : DEFAULT_LUKS1_CIPHER, ARG_SET(OPT_CIPHER_ID) ? cipher_mode : DEFAULT_LUKS1_MODE, NULL, NULL, ARG_UINT32(OPT_KEY_SIZE_ID) / 8, 0, 0, (void*)¶ms); out: crypt_free(cd_new); return r; } static void remove_headers(struct reenc_ctx *rc) { struct crypt_device *cd = NULL; log_dbg("Removing headers."); if (crypt_init(&cd, NULL)) return; crypt_set_log_callback(cd, _quiet_log, NULL); if (*rc->header_file_org) (void)crypt_deactivate(cd, rc->header_file_org); if (*rc->header_file_new) (void)crypt_deactivate(cd, rc->header_file_new); crypt_free(cd); } static int restore_luks_header(struct reenc_ctx *rc) { struct stat st; struct crypt_device *cd = NULL; int fd, r; log_dbg("Restoring header for %s from %s.", hdr_device(rc), rc->header_file_new); /* * For new encryption and new detached header in file just move it. * For existing file try to ensure we have preallocated space for restore. */ if (ARG_SET(OPT_ENCRYPT_ID) && rc->device_header) { r = stat(rc->device_header, &st); if (r == -1) { r = rename(rc->header_file_new, rc->device_header); goto out; } else if ((st.st_mode & S_IFMT) == S_IFREG && stat(rc->header_file_new, &st) != -1) { /* coverity[toctou] */ fd = open(rc->device_header, O_WRONLY); if (fd != -1) { if (posix_fallocate(fd, 0, st.st_size)) {}; close(fd); } } } r = crypt_init(&cd, hdr_device(rc)); if (r == 0) { r = crypt_header_restore(cd, CRYPT_LUKS1, rc->header_file_new); } crypt_free(cd); out: if (r) log_err(_("Cannot restore %s header on device %s."), "LUKS1", hdr_device(rc)); else { log_verbose(_("%s header on device %s restored."), "LUKS1", hdr_device(rc)); rc->stained = false; } return r; } static ssize_t read_buf(int fd, void *buf, size_t count) { size_t read_size = 0; ssize_t s; do { /* This expects that partial read is aligned in buffer */ s = read(fd, buf, count - read_size); if (s == -1 && errno != EINTR) return s; if (s == 0) return (ssize_t)read_size; if (s > 0) { if (s != (ssize_t)count) log_dbg("Partial read %zd / %zu.", s, count); read_size += (size_t)s; buf = (uint8_t*)buf + s; } } while (read_size != count); return (ssize_t)count; } static int copy_data_forward(struct reenc_ctx *rc, int fd_old, int fd_new, size_t block_size, void *buf, uint64_t *bytes) { ssize_t s1, s2; int r = -EIO; char *backing_file = NULL; struct tools_progress_params prog_parms = { .frequency = ARG_UINT32(OPT_PROGRESS_FREQUENCY_ID), .batch_mode = ARG_SET(OPT_BATCH_MODE_ID), .json_output = ARG_SET(OPT_PROGRESS_JSON_ID), .interrupt_message = _("\nReencryption interrupted."), .device = tools_get_device_name(rc->device, &backing_file) }; log_dbg("Reencrypting in forward direction."); if (lseek(fd_old, rc->device_offset, SEEK_SET) < 0 || lseek(fd_new, rc->device_offset, SEEK_SET) < 0) { log_err(_("Cannot seek to device offset.")); goto out; } rc->resume_bytes = *bytes = rc->device_offset; tools_progress(rc->device_size, *bytes, &prog_parms); if (write_log(rc) < 0) goto out; while (!quit && rc->device_offset < rc->device_size) { if ((rc->device_size - rc->device_offset) < (uint64_t)block_size) block_size = rc->device_size - rc->device_offset; s1 = read_buf(fd_old, buf, block_size); if (s1 < 0 || ((size_t)s1 != block_size && (rc->device_offset + s1) != rc->device_size)) { log_dbg("Read error, expecting %zu, got %zd.", block_size, s1); goto out; } /* If device_size is forced, never write more than limit */ if ((s1 + rc->device_offset) > rc->device_size) s1 = rc->device_size - rc->device_offset; s2 = write(fd_new, buf, s1); if (s2 < 0) { log_dbg("Write error, expecting %zu, got %zd.", block_size, s2); goto out; } rc->device_offset += s1; if (ARG_SET(OPT_WRITE_LOG_ID) && write_log(rc) < 0) goto out; if (ARG_SET(OPT_USE_FSYNC_ID) && fsync(fd_new) < 0) { log_dbg("Write error, fsync."); goto out; } *bytes += (uint64_t)s2; tools_progress(rc->device_size, *bytes, &prog_parms); } r = 0; out: free(backing_file); return quit ? -EAGAIN : r; } static int copy_data_backward(struct reenc_ctx *rc, int fd_old, int fd_new, size_t block_size, void *buf, uint64_t *bytes) { ssize_t s1, s2, working_block; off_t working_offset; int r = -EIO; char *backing_file = NULL; struct tools_progress_params prog_parms = { .frequency = ARG_UINT32(OPT_PROGRESS_FREQUENCY_ID), .batch_mode = ARG_SET(OPT_BATCH_MODE_ID), .json_output = ARG_SET(OPT_PROGRESS_JSON_ID), .interrupt_message = _("\nReencryption interrupted."), .device = tools_get_device_name(rc->device, &backing_file) }; log_dbg("Reencrypting in backward direction."); if (!rc->in_progress) { rc->device_offset = rc->device_size; rc->resume_bytes = 0; *bytes = 0; } else { rc->resume_bytes = rc->device_size - rc->device_offset; *bytes = rc->resume_bytes; } tools_progress(rc->device_size, *bytes, &prog_parms); if (write_log(rc) < 0) goto out; /* dirty the device during ENCRYPT mode */ rc->stained = true; while (!quit && rc->device_offset) { if (rc->device_offset < block_size) { working_offset = 0; working_block = rc->device_offset; } else { working_offset = rc->device_offset - block_size; working_block = block_size; } if (lseek(fd_old, working_offset, SEEK_SET) < 0 || lseek(fd_new, working_offset, SEEK_SET) < 0) { log_err(_("Cannot seek to device offset.")); goto out; } s1 = read_buf(fd_old, buf, working_block); if (s1 < 0 || (s1 != working_block)) { log_dbg("Read error, expecting %zu, got %zd.", block_size, s1); goto out; } s2 = write(fd_new, buf, working_block); if (s2 < 0) { log_dbg("Write error, expecting %zu, got %zd.", block_size, s2); goto out; } rc->device_offset -= s1; if (ARG_SET(OPT_WRITE_LOG_ID) && write_log(rc) < 0) goto out; if (ARG_SET(OPT_USE_FSYNC_ID) && fsync(fd_new) < 0) { log_dbg("Write error, fsync."); goto out; } *bytes += (uint64_t)s2; tools_progress(rc->device_size, *bytes, &prog_parms); } r = 0; out: free(backing_file); return quit ? -EAGAIN : r; } static void zero_rest_of_device(int fd, size_t block_size, void *buf, uint64_t *bytes, uint64_t offset) { ssize_t s1, s2; log_dbg("Zeroing rest of device."); if (lseek(fd, offset, SEEK_SET) < 0) { log_dbg("Cannot seek to device offset."); return; } memset(buf, 0, block_size); s1 = block_size; while (!quit && *bytes) { if (*bytes < (uint64_t)s1) s1 = *bytes; s2 = write(fd, buf, s1); if (s2 != s1) { log_dbg("Write error, expecting %zd, got %zd.", s1, s2); return; } if (ARG_SET(OPT_USE_FSYNC_ID) && fsync(fd) < 0) { log_dbg("Write error, fsync."); return; } *bytes -= s2; } } static int copy_data(struct reenc_ctx *rc) { size_t block_size = ARG_UINT32(OPT_BLOCK_SIZE_ID) * 1024 * 1024; int fd_old = -1, fd_new = -1; int r = -EINVAL; void *buf = NULL; uint64_t bytes = 0; log_dbg("Data copy preparation."); fd_old = open(rc->crypt_path_org, O_RDONLY | (ARG_SET(OPT_USE_DIRECTIO_ID) ? O_DIRECT : 0)); if (fd_old == -1) { log_err(_("Cannot open temporary LUKS device.")); goto out; } fd_new = open(rc->crypt_path_new, O_WRONLY | (ARG_SET(OPT_USE_DIRECTIO_ID) ? O_DIRECT : 0)); if (fd_new == -1) { log_err(_("Cannot open temporary LUKS device.")); goto out; } if (ioctl(fd_old, BLKGETSIZE64, &rc->device_size_org_real) < 0) { log_err(_("Cannot get device size.")); goto out; } if (ioctl(fd_new, BLKGETSIZE64, &rc->device_size_new_real) < 0) { log_err(_("Cannot get device size.")); goto out; } if (ARG_SET(OPT_DEVICE_SIZE_ID)) rc->device_size = ARG_UINT64(OPT_DEVICE_SIZE_ID); else if (rc->reencrypt_mode == DECRYPT) rc->device_size = rc->device_size_org_real; else rc->device_size = rc->device_size_new_real; if (posix_memalign((void *)&buf, alignment(fd_new), block_size)) { log_err(_("Allocation of aligned memory failed.")); r = -ENOMEM; goto out; } set_int_handler(0); if (rc->reencrypt_direction == FORWARD) r = copy_data_forward(rc, fd_old, fd_new, block_size, buf, &bytes); else r = copy_data_backward(rc, fd_old, fd_new, block_size, buf, &bytes); /* Zero (wipe) rest of now plain-only device when decrypting. * (To not leave any sign of encryption here.) */ if (!r && rc->reencrypt_mode == DECRYPT && rc->device_size_new_real > rc->device_size_org_real) { bytes = rc->device_size_new_real - rc->device_size_org_real; zero_rest_of_device(fd_new, block_size, buf, &bytes, rc->device_size_org_real); } set_int_block(1); if (r < 0 && r != -EAGAIN) log_err(_("IO error during reencryption.")); (void)write_log(rc); out: if (fd_old != -1) close(fd_old); if (fd_new != -1) close(fd_new); free(buf); return r; } static int initialize_uuid(struct reenc_ctx *rc) { struct crypt_device *cd = NULL; int r; uuid_t device_uuid; log_dbg("Initialising UUID."); if (ARG_SET(OPT_ENCRYPT_ID)) { rc->device_uuid = strdup(NO_UUID); return 0; } if (ARG_SET(OPT_DECRYPT_ID) && ARG_SET(OPT_UUID_ID)) { r = uuid_parse(ARG_STR(OPT_UUID_ID), device_uuid); if (!r) rc->device_uuid = strdup(ARG_STR(OPT_UUID_ID)); else log_err(_("Provided UUID is invalid.")); return r; } /* Try to load LUKS from device */ if ((r = crypt_init(&cd, hdr_device(rc)))) return r; crypt_set_log_callback(cd, _quiet_log, NULL); r = crypt_load(cd, CRYPT_LUKS1, NULL); if (!r) rc->device_uuid = strdup(crypt_get_uuid(cd)); else /* Reencryption already in progress - magic header? */ r = device_check(rc, hdr_device(rc), CHECK_UNUSABLE, true); crypt_free(cd); return r; } static int init_passphrase1(struct reenc_ctx *rc, struct crypt_device *cd, const char *msg, int slot_to_check, int check, int verify) { crypt_keyslot_info ki; char *password; int r = -EINVAL, retry_count; size_t passwordLen; /* mode ENCRYPT call this without header */ if (cd && slot_to_check != CRYPT_ANY_SLOT) { ki = crypt_keyslot_status(cd, slot_to_check); if (ki < CRYPT_SLOT_ACTIVE) return -ENOENT; } else ki = CRYPT_SLOT_ACTIVE; retry_count = ARG_UINT32(OPT_TRIES_ID) ?: 1; while (retry_count--) { r = tools_get_key(msg, &password, &passwordLen, 0, 0, NULL /*opt_key_file*/, 0, verify, 0 /*pwquality*/, cd); if (r < 0) return r; if (quit) { crypt_safe_free(password); password = NULL; passwordLen = 0; return -EAGAIN; } if (check) r = crypt_activate_by_passphrase(cd, NULL, slot_to_check, password, passwordLen, CRYPT_ACTIVATE_ALLOW_UNBOUND_KEY); else r = (slot_to_check == CRYPT_ANY_SLOT) ? 0 : slot_to_check; if (r < 0) { crypt_safe_free(password); password = NULL; passwordLen = 0; } if (r < 0 && r != -EPERM) return r; if (r >= 0) { tools_keyslot_msg(r, UNLOCKED); rc->p[r].password = password; rc->p[r].passwordLen = passwordLen; if (ki != CRYPT_SLOT_UNBOUND) rc->keyslot = r; break; } tools_passphrase_msg(r); } password = NULL; passwordLen = 0; return r; } static int init_keyfile(struct reenc_ctx *rc, struct crypt_device *cd, int slot_check) { char *password; int r; size_t passwordLen; r = tools_get_key(NULL, &password, &passwordLen, ARG_UINT64(OPT_KEYFILE_OFFSET_ID), ARG_UINT32(OPT_KEYFILE_SIZE_ID), ARG_STR(OPT_KEY_FILE_ID), 0, 0, 0, cd); if (r < 0) return r; /* mode ENCRYPT call this without header */ if (cd) { r = crypt_activate_by_passphrase(cd, NULL, slot_check, password, passwordLen, 0); /* * Allow keyslot only if it is last slot or if user explicitly * specify which slot to use (IOW others will be disabled). */ if (r >= 0 && ARG_INT32(OPT_KEY_SLOT_ID) == CRYPT_ANY_SLOT && crypt_keyslot_status(cd, r) != CRYPT_SLOT_ACTIVE_LAST) { log_err(_("Key file can be used only with --key-slot or with " "exactly one key slot active.")); r = -EINVAL; } } else { r = slot_check == CRYPT_ANY_SLOT ? 0 : slot_check; } if (r < 0) { crypt_safe_free(password); tools_passphrase_msg(r); } else { rc->keyslot = r; rc->p[r].password = password; rc->p[r].passwordLen = passwordLen; } password = NULL; passwordLen = 0; return r; } static int initialize_passphrase(struct reenc_ctx *rc, const char *device) { struct crypt_device *cd = NULL; char msg[256]; int i, r; log_dbg("Passphrases initialization."); if (rc->reencrypt_mode == ENCRYPT && !rc->in_progress) { if (ARG_SET(OPT_KEY_FILE_ID)) r = init_keyfile(rc, NULL, ARG_INT32(OPT_KEY_SLOT_ID)); else r = init_passphrase1(rc, NULL, _("Enter new passphrase: "), ARG_INT32(OPT_KEY_SLOT_ID), 0, 1); return r > 0 ? 0 : r; } if ((r = crypt_init_data_device(&cd, device, rc->device)) || (r = crypt_load(cd, CRYPT_LUKS1, NULL))) { crypt_free(cd); return r; } if (ARG_INT32(OPT_KEY_SLOT_ID) != CRYPT_ANY_SLOT) snprintf(msg, sizeof(msg), _("Enter passphrase for key slot %d: "), ARG_INT32(OPT_KEY_SLOT_ID)); else snprintf(msg, sizeof(msg), _("Enter any existing passphrase: ")); if (ARG_SET(OPT_KEY_FILE_ID)) { r = init_keyfile(rc, cd, ARG_INT32(OPT_KEY_SLOT_ID)); } else if (rc->in_progress || ARG_INT32(OPT_KEY_SLOT_ID) != CRYPT_ANY_SLOT || rc->reencrypt_mode == DECRYPT) { r = init_passphrase1(rc, cd, msg, ARG_INT32(OPT_KEY_SLOT_ID), 1, 0); } else for (i = 0; i < crypt_keyslot_max(CRYPT_LUKS1); i++) { snprintf(msg, sizeof(msg), _("Enter passphrase for key slot %d: "), i); r = init_passphrase1(rc, cd, msg, i, 1, 0); if (r == -ENOENT) { r = 0; continue; } if (r < 0) break; } crypt_free(cd); return r > 0 ? 0 : r; } static int initialize_context(struct reenc_ctx *rc, const char *device) { log_dbg("Initialising reencryption context."); memset(rc, 0, sizeof(*rc)); rc->in_progress = false; rc->stained = true; rc->log_fd = -1; if (!(rc->device = strndup(device, PATH_MAX))) return -ENOMEM; if (ARG_SET(OPT_HEADER_ID) && !(rc->device_header = strndup(ARG_STR(OPT_HEADER_ID), PATH_MAX))) return -ENOMEM; if (device_check(rc, rc->device, CHECK_OPEN, true) < 0) return -EINVAL; if (initialize_uuid(rc)) { log_err(_("Device %s is not a valid LUKS device."), device); return -EINVAL; } if (ARG_INT32(OPT_KEY_SLOT_ID) != CRYPT_ANY_SLOT && ARG_INT32(OPT_KEY_SLOT_ID) >= crypt_keyslot_max(CRYPT_LUKS1)) { log_err(_("Key slot is invalid.")); return -EINVAL; } /* Prepare device names */ if (snprintf(rc->log_file, PATH_MAX, "LUKS-%s.log", rc->device_uuid) < 0) return -ENOMEM; if (snprintf(rc->header_file_org, PATH_MAX, "LUKS-%s.org", rc->device_uuid) < 0) return -ENOMEM; if (snprintf(rc->header_file_new, PATH_MAX, "LUKS-%s.new", rc->device_uuid) < 0) return -ENOMEM; /* Paths to encrypted devices */ if (snprintf(rc->crypt_path_org, PATH_MAX, "%s/%s", crypt_get_dir(), rc->header_file_org) < 0) return -ENOMEM; if (snprintf(rc->crypt_path_new, PATH_MAX, "%s/%s", crypt_get_dir(), rc->header_file_new) < 0) return -ENOMEM; remove_headers(rc); if (open_log(rc) < 0) { log_err(_("Cannot open reencryption log file.")); return -EINVAL; } if (!rc->in_progress) { if (ARG_SET(OPT_UUID_ID)) { log_err(_("No decryption in progress, provided UUID can " "be used only to resume suspended decryption process.")); return -EINVAL; } if (!ARG_SET(OPT_REDUCE_DEVICE_SIZE_ID)) rc->reencrypt_direction = FORWARD; else { rc->reencrypt_direction = BACKWARD; rc->device_offset = (uint64_t)~0; } if (ARG_SET(OPT_ENCRYPT_ID)) rc->reencrypt_mode = ENCRYPT; else if (ARG_SET(OPT_DECRYPT_ID)) rc->reencrypt_mode = DECRYPT; else rc->reencrypt_mode = REENCRYPT; } return 0; } static void destroy_context(struct reenc_ctx *rc) { int i; log_dbg("Destroying reencryption context."); close_log(rc); remove_headers(rc); if (!rc->stained) { unlink(rc->log_file); unlink(rc->header_file_org); unlink(rc->header_file_new); } for (i = 0; i < MAX_SLOT; i++) crypt_safe_free(rc->p[i].password); free(rc->device); free(rc->device_header); free(rc->device_uuid); } int reencrypt_luks1(const char *device) { int r = -EINVAL; struct reenc_ctx *rc; rc = malloc(sizeof(*rc)); if (!rc) return -ENOMEM; if (!ARG_SET(OPT_BATCH_MODE_ID)) log_verbose(_("Reencryption will change: %s%s%s%s%s%s."), ARG_SET(OPT_KEEP_KEY_ID) ? "" : _("volume key"), (!ARG_SET(OPT_KEEP_KEY_ID) && ARG_SET(OPT_HASH_ID)) ? ", " : "", ARG_SET(OPT_HASH_ID) ? _("set hash to ") : "", ARG_STR(OPT_HASH_ID) ?: "", ARG_SET(OPT_CIPHER_ID) ? _(", set cipher to "): "", ARG_STR(OPT_CIPHER_ID) ?: ""); /* FIXME: block all non pbkdf2 pkdfs */ set_int_handler(0); if (initialize_context(rc, device)) goto out; log_dbg("Running reencryption."); if (!rc->in_progress) { if ((r = initialize_passphrase(rc, hdr_device(rc)))) goto out; log_dbg("Storing backup of LUKS headers."); if (rc->reencrypt_mode == ENCRYPT) { /* Create fake header for existing device */ if ((r = backup_fake_header(rc))) goto out; } else { if ((r = backup_luks_headers(rc))) goto out; /* Create fake header for decrypted device */ if (rc->reencrypt_mode == DECRYPT && (r = backup_fake_header(rc))) goto out; if ((r = device_check(rc, hdr_device(rc), MAKE_UNUSABLE, true))) goto out; } } else { if ((r = initialize_passphrase(rc, ARG_SET(OPT_DECRYPT_ID) ? rc->header_file_org : rc->header_file_new))) goto out; } if (!ARG_SET(OPT_KEEP_KEY_ID)) { log_dbg("Running data area reencryption."); if ((r = activate_luks_headers(rc))) goto out; if ((r = copy_data(rc))) goto out; } else log_dbg("Keeping existing key, skipping data area reencryption."); // FIXME: fix error path above to not skip this if (rc->reencrypt_mode != DECRYPT) r = restore_luks_header(rc); else rc->stained = false; out: destroy_context(rc); free(rc); return r; } int reencrypt_luks1_in_progress(const char *device) { struct stat st; if (stat(device, &st) || (size_t)st.st_size < pagesize()) return -EINVAL; return device_check(NULL, device, CHECK_UNUSABLE, false); }