1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
/*
* LUKS - Linux Unified Key Setup v2, LUKS2 header format code
*
* Copyright (C) 2015-2023 Red Hat, Inc. All rights reserved.
* Copyright (C) 2015-2023 Milan Broz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "luks2_internal.h"
#include <uuid/uuid.h>
struct area {
uint64_t offset;
uint64_t length;
};
static size_t get_area_size(size_t keylength)
{
/* for now it is AF_split_sectors */
return size_round_up(keylength * 4000, 4096);
}
static size_t get_min_offset(struct luks2_hdr *hdr)
{
return 2 * hdr->hdr_size;
}
static size_t get_max_offset(struct luks2_hdr *hdr)
{
return LUKS2_hdr_and_areas_size(hdr);
}
int LUKS2_find_area_max_gap(struct crypt_device *cd, struct luks2_hdr *hdr,
uint64_t *area_offset, uint64_t *area_length)
{
struct area areas[LUKS2_KEYSLOTS_MAX], sorted_areas[LUKS2_KEYSLOTS_MAX+1] = {};
int i, j, k, area_i;
size_t valid_offset, offset, length;
/* fill area offset + length table */
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) {
if (!LUKS2_keyslot_area(hdr, i, &areas[i].offset, &areas[i].length))
continue;
areas[i].length = 0;
areas[i].offset = 0;
}
/* sort table */
k = 0; /* index in sorted table */
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) {
offset = get_max_offset(hdr) ?: UINT64_MAX;
area_i = -1;
/* search for the smallest offset in table */
for (j = 0; j < LUKS2_KEYSLOTS_MAX; j++)
if (areas[j].offset && areas[j].offset <= offset) {
area_i = j;
offset = areas[j].offset;
}
if (area_i >= 0) {
sorted_areas[k].length = areas[area_i].length;
sorted_areas[k].offset = areas[area_i].offset;
areas[area_i].length = 0;
areas[area_i].offset = 0;
k++;
}
}
sorted_areas[LUKS2_KEYSLOTS_MAX].offset = get_max_offset(hdr);
sorted_areas[LUKS2_KEYSLOTS_MAX].length = 1;
/* search for the gap we can use */
length = valid_offset = 0;
offset = get_min_offset(hdr);
for (i = 0; i < LUKS2_KEYSLOTS_MAX+1; i++) {
/* skip empty */
if (sorted_areas[i].offset == 0 || sorted_areas[i].length == 0)
continue;
/* found bigger gap than the last one */
if ((offset < sorted_areas[i].offset) && (sorted_areas[i].offset - offset) > length) {
length = sorted_areas[i].offset - offset;
valid_offset = offset;
}
/* move beyond allocated area */
offset = sorted_areas[i].offset + sorted_areas[i].length;
}
/* this search 'algorithm' does not work with unaligned areas */
assert(length == size_round_up(length, 4096));
assert(valid_offset == size_round_up(valid_offset, 4096));
if (!length) {
log_dbg(cd, "Not enough space in header keyslot area.");
return -EINVAL;
}
log_dbg(cd, "Found largest free area %zu -> %zu", valid_offset, length + valid_offset);
*area_offset = valid_offset;
*area_length = length;
return 0;
}
int LUKS2_find_area_gap(struct crypt_device *cd, struct luks2_hdr *hdr,
size_t keylength, uint64_t *area_offset, uint64_t *area_length)
{
struct area areas[LUKS2_KEYSLOTS_MAX], sorted_areas[LUKS2_KEYSLOTS_MAX] = {};
int i, j, k, area_i;
size_t offset, length;
/* fill area offset + length table */
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) {
if (!LUKS2_keyslot_area(hdr, i, &areas[i].offset, &areas[i].length))
continue;
areas[i].length = 0;
areas[i].offset = 0;
}
/* sort table */
k = 0; /* index in sorted table */
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) {
offset = get_max_offset(hdr) ?: UINT64_MAX;
area_i = -1;
/* search for the smallest offset in table */
for (j = 0; j < LUKS2_KEYSLOTS_MAX; j++)
if (areas[j].offset && areas[j].offset <= offset) {
area_i = j;
offset = areas[j].offset;
}
if (area_i >= 0) {
sorted_areas[k].length = areas[area_i].length;
sorted_areas[k].offset = areas[area_i].offset;
areas[area_i].length = 0;
areas[area_i].offset = 0;
k++;
}
}
/* search for the gap we can use */
offset = get_min_offset(hdr);
length = get_area_size(keylength);
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) {
/* skip empty */
if (sorted_areas[i].offset == 0 || sorted_areas[i].length == 0)
continue;
/* enough space before the used area */
if ((offset < sorted_areas[i].offset) && ((offset + length) <= sorted_areas[i].offset))
break;
/* both offset and length are already aligned to 4096 bytes */
offset = sorted_areas[i].offset + sorted_areas[i].length;
}
if ((offset + length) > get_max_offset(hdr)) {
log_dbg(cd, "Not enough space in header keyslot area.");
return -EINVAL;
}
log_dbg(cd, "Found area %zu -> %zu", offset, length + offset);
if (area_offset)
*area_offset = offset;
if (area_length)
*area_length = length;
return 0;
}
int LUKS2_check_metadata_area_size(uint64_t metadata_size)
{
/* see LUKS2_HDR2_OFFSETS */
return (metadata_size != 0x004000 &&
metadata_size != 0x008000 && metadata_size != 0x010000 &&
metadata_size != 0x020000 && metadata_size != 0x040000 &&
metadata_size != 0x080000 && metadata_size != 0x100000 &&
metadata_size != 0x200000 && metadata_size != 0x400000);
}
int LUKS2_check_keyslots_area_size(uint64_t keyslots_size)
{
return (MISALIGNED_4K(keyslots_size) ||
keyslots_size > LUKS2_MAX_KEYSLOTS_SIZE);
}
int LUKS2_generate_hdr(
struct crypt_device *cd,
struct luks2_hdr *hdr,
const struct volume_key *vk,
const char *cipherName,
const char *cipherMode,
const char *integrity,
const char *uuid,
unsigned int sector_size, /* in bytes */
uint64_t data_offset, /* in bytes */
uint64_t align_offset, /* in bytes */
uint64_t required_alignment,
uint64_t metadata_size,
uint64_t keyslots_size)
{
struct json_object *jobj_segment, *jobj_integrity, *jobj_keyslots, *jobj_segments, *jobj_config;
char cipher[128];
uuid_t partitionUuid;
int r, digest;
uint64_t mdev_size;
if (!metadata_size)
metadata_size = LUKS2_HDR_16K_LEN;
hdr->hdr_size = metadata_size;
if (data_offset && data_offset < get_min_offset(hdr)) {
log_err(cd, _("Requested data offset is too small."));
return -EINVAL;
}
/* Increase keyslot size according to data offset */
if (!keyslots_size && data_offset)
keyslots_size = data_offset - get_min_offset(hdr);
/* keyslots size has to be 4 KiB aligned */
keyslots_size -= (keyslots_size % 4096);
if (keyslots_size > LUKS2_MAX_KEYSLOTS_SIZE)
keyslots_size = LUKS2_MAX_KEYSLOTS_SIZE;
if (!keyslots_size) {
assert(LUKS2_DEFAULT_HDR_SIZE > 2 * LUKS2_HDR_OFFSET_MAX);
keyslots_size = LUKS2_DEFAULT_HDR_SIZE - get_min_offset(hdr);
/* Decrease keyslots_size due to metadata device being too small */
if (!device_size(crypt_metadata_device(cd), &mdev_size) &&
((keyslots_size + get_min_offset(hdr)) > mdev_size) &&
device_fallocate(crypt_metadata_device(cd), keyslots_size + get_min_offset(hdr)) &&
(get_min_offset(hdr) <= mdev_size))
keyslots_size = mdev_size - get_min_offset(hdr);
}
/* Decrease keyslots_size if we have smaller data_offset */
if (data_offset && (keyslots_size + get_min_offset(hdr)) > data_offset) {
keyslots_size = data_offset - get_min_offset(hdr);
log_dbg(cd, "Decreasing keyslot area size to %" PRIu64
" bytes due to the requested data offset %"
PRIu64 " bytes.", keyslots_size, data_offset);
}
/* Data offset has priority */
if (!data_offset && required_alignment) {
data_offset = size_round_up(get_min_offset(hdr) + keyslots_size,
(size_t)required_alignment);
data_offset += align_offset;
}
log_dbg(cd, "Formatting LUKS2 with JSON metadata area %" PRIu64
" bytes and keyslots area %" PRIu64 " bytes.",
metadata_size - LUKS2_HDR_BIN_LEN, keyslots_size);
if (keyslots_size < (LUKS2_HDR_OFFSET_MAX - 2*LUKS2_HDR_16K_LEN))
log_std(cd, _("WARNING: keyslots area (%" PRIu64 " bytes) is very small,"
" available LUKS2 keyslot count is very limited.\n"),
keyslots_size);
hdr->seqid = 1;
hdr->version = 2;
memset(hdr->label, 0, LUKS2_LABEL_L);
strcpy(hdr->checksum_alg, "sha256");
crypt_random_get(cd, (char*)hdr->salt1, LUKS2_SALT_L, CRYPT_RND_SALT);
crypt_random_get(cd, (char*)hdr->salt2, LUKS2_SALT_L, CRYPT_RND_SALT);
if (uuid && uuid_parse(uuid, partitionUuid) == -1) {
log_err(cd, _("Wrong LUKS UUID format provided."));
return -EINVAL;
}
if (!uuid)
uuid_generate(partitionUuid);
uuid_unparse(partitionUuid, hdr->uuid);
if (*cipherMode != '\0')
r = snprintf(cipher, sizeof(cipher), "%s-%s", cipherName, cipherMode);
else
r = snprintf(cipher, sizeof(cipher), "%s", cipherName);
if (r < 0 || (size_t)r >= sizeof(cipher))
return -EINVAL;
hdr->jobj = json_object_new_object();
jobj_keyslots = json_object_new_object();
json_object_object_add(hdr->jobj, "keyslots", jobj_keyslots);
json_object_object_add(hdr->jobj, "tokens", json_object_new_object());
jobj_segments = json_object_new_object();
json_object_object_add(hdr->jobj, "segments", jobj_segments);
json_object_object_add(hdr->jobj, "digests", json_object_new_object());
jobj_config = json_object_new_object();
json_object_object_add(hdr->jobj, "config", jobj_config);
digest = LUKS2_digest_create(cd, "pbkdf2", hdr, vk);
if (digest < 0)
goto err;
if (LUKS2_digest_segment_assign(cd, hdr, 0, digest, 1, 0) < 0)
goto err;
jobj_segment = json_segment_create_crypt(data_offset, 0, NULL, cipher, sector_size, 0);
if (!jobj_segment)
goto err;
if (integrity) {
jobj_integrity = json_object_new_object();
json_object_object_add(jobj_integrity, "type", json_object_new_string(integrity));
json_object_object_add(jobj_integrity, "journal_encryption", json_object_new_string("none"));
json_object_object_add(jobj_integrity, "journal_integrity", json_object_new_string("none"));
json_object_object_add(jobj_segment, "integrity", jobj_integrity);
}
json_object_object_add_by_uint(jobj_segments, 0, jobj_segment);
json_object_object_add(jobj_config, "json_size", crypt_jobj_new_uint64(metadata_size - LUKS2_HDR_BIN_LEN));
json_object_object_add(jobj_config, "keyslots_size", crypt_jobj_new_uint64(keyslots_size));
JSON_DBG(cd, hdr->jobj, "Header JSON:");
return 0;
err:
json_object_put(hdr->jobj);
hdr->jobj = NULL;
return -EINVAL;
}
int LUKS2_wipe_header_areas(struct crypt_device *cd,
struct luks2_hdr *hdr, bool detached_header)
{
int r;
uint64_t offset, length;
size_t wipe_block;
/* Wipe complete header, keyslots and padding areas with zeroes. */
offset = 0;
length = LUKS2_get_data_offset(hdr) * SECTOR_SIZE;
wipe_block = 1024 * 1024;
if (LUKS2_hdr_validate(cd, hdr->jobj, hdr->hdr_size - LUKS2_HDR_BIN_LEN))
return -EINVAL;
/* On detached header wipe at least the first 4k */
if (detached_header) {
length = 4096;
wipe_block = 4096;
}
r = device_check_size(cd, crypt_metadata_device(cd), length, 1);
if (r)
return r;
log_dbg(cd, "Wiping LUKS areas (0x%06" PRIx64 " - 0x%06" PRIx64") with zeroes.",
offset, length + offset);
r = crypt_wipe_device(cd, crypt_metadata_device(cd), CRYPT_WIPE_ZERO,
offset, length, wipe_block, NULL, NULL);
if (r < 0)
return r;
/* Wipe keyslot area */
wipe_block = 1024 * 1024;
offset = get_min_offset(hdr);
length = LUKS2_keyslots_size(hdr);
log_dbg(cd, "Wiping keyslots area (0x%06" PRIx64 " - 0x%06" PRIx64") with random data.",
offset, length + offset);
return crypt_wipe_device(cd, crypt_metadata_device(cd), CRYPT_WIPE_RANDOM,
offset, length, wipe_block, NULL, NULL);
}
int LUKS2_set_keyslots_size(struct luks2_hdr *hdr, uint64_t data_offset)
{
json_object *jobj_config;
uint64_t keyslots_size;
if (data_offset < get_min_offset(hdr))
return 1;
keyslots_size = data_offset - get_min_offset(hdr);
/* keep keyslots_size reasonable for custom data alignments */
if (keyslots_size > LUKS2_MAX_KEYSLOTS_SIZE)
keyslots_size = LUKS2_MAX_KEYSLOTS_SIZE;
/* keyslots size has to be 4 KiB aligned */
keyslots_size -= (keyslots_size % 4096);
if (!json_object_object_get_ex(hdr->jobj, "config", &jobj_config))
return 1;
json_object_object_add(jobj_config, "keyslots_size", crypt_jobj_new_uint64(keyslots_size));
return 0;
}
|