summaryrefslogtreecommitdiffstats
path: root/lib/support/dict.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--lib/support/dict.c1542
1 files changed, 1542 insertions, 0 deletions
diff --git a/lib/support/dict.c b/lib/support/dict.c
new file mode 100644
index 0000000..93fdd0b
--- /dev/null
+++ b/lib/support/dict.c
@@ -0,0 +1,1542 @@
+/*
+ * Dictionary Abstract Data Type
+ * Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
+ *
+ * Free Software License:
+ *
+ * All rights are reserved by the author, with the following exceptions:
+ * Permission is granted to freely reproduce and distribute this software,
+ * possibly in exchange for a fee, provided that this copyright notice appears
+ * intact. Permission is also granted to adapt this software to produce
+ * derivative works, as long as the modified versions carry this copyright
+ * notice and additional notices stating that the work has been modified.
+ * This source code may be translated into executable form and incorporated
+ * into proprietary software; there is no requirement for such software to
+ * contain a copyright notice related to this source.
+ *
+ * $Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz Exp $
+ * $Name: kazlib_1_20 $
+ * The work has been modified.
+ */
+
+#define DICT_NODEBUG
+
+#ifdef __GNUC__
+#define EXT2FS_ATTR(x) __attribute__(x)
+#else
+#define EXT2FS_ATTR(x)
+#endif
+
+#include "config.h"
+#include <stdlib.h>
+#include <stddef.h>
+#ifdef DICT_NODEBUG
+#define dict_assert(x)
+#else
+#include <assert.h>
+#define dict_assert(x) assert(x)
+#endif
+#define DICT_IMPLEMENTATION
+#include "dict.h"
+
+#ifdef KAZLIB_RCSID
+static const char rcsid[] = "$Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz Exp $";
+#endif
+
+/*
+ * These macros provide short convenient names for structure members,
+ * which are embellished with dict_ prefixes so that they are
+ * properly confined to the documented namespace. It's legal for a
+ * program which uses dict to define, for instance, a macro called ``parent''.
+ * Such a macro would interfere with the dnode_t struct definition.
+ * In general, highly portable and reusable C modules which expose their
+ * structures need to confine structure member names to well-defined spaces.
+ * The resulting identifiers aren't necessarily convenient to use, nor
+ * readable, in the implementation, however!
+ */
+
+#define left dict_left
+#define right dict_right
+#define parent dict_parent
+#define color dict_color
+#define key dict_key
+#define data dict_data
+
+#define nilnode dict_nilnode
+#define nodecount dict_nodecount
+#define maxcount dict_maxcount
+#define compare dict_compare
+#define allocnode dict_allocnode
+#define freenode dict_freenode
+#define context dict_context
+#define dupes dict_dupes
+
+#define dictptr dict_dictptr
+
+#define dict_root(D) ((D)->nilnode.left)
+#define dict_nil(D) (&(D)->nilnode)
+#define DICT_DEPTH_MAX 64
+
+static dnode_t *dnode_alloc(void *context);
+static void dnode_free(dnode_t *node, void *context);
+
+/*
+ * Perform a ``left rotation'' adjustment on the tree. The given node P and
+ * its right child C are rearranged so that the P instead becomes the left
+ * child of C. The left subtree of C is inherited as the new right subtree
+ * for P. The ordering of the keys within the tree is thus preserved.
+ */
+
+static void rotate_left(dnode_t *upper)
+{
+ dnode_t *lower, *lowleft, *upparent;
+
+ lower = upper->right;
+ upper->right = lowleft = lower->left;
+ lowleft->parent = upper;
+
+ lower->parent = upparent = upper->parent;
+
+ /* don't need to check for root node here because root->parent is
+ the sentinel nil node, and root->parent->left points back to root */
+
+ if (upper == upparent->left) {
+ upparent->left = lower;
+ } else {
+ dict_assert (upper == upparent->right);
+ upparent->right = lower;
+ }
+
+ lower->left = upper;
+ upper->parent = lower;
+}
+
+/*
+ * This operation is the ``mirror'' image of rotate_left. It is
+ * the same procedure, but with left and right interchanged.
+ */
+
+static void rotate_right(dnode_t *upper)
+{
+ dnode_t *lower, *lowright, *upparent;
+
+ lower = upper->left;
+ upper->left = lowright = lower->right;
+ lowright->parent = upper;
+
+ lower->parent = upparent = upper->parent;
+
+ if (upper == upparent->right) {
+ upparent->right = lower;
+ } else {
+ dict_assert (upper == upparent->left);
+ upparent->left = lower;
+ }
+
+ lower->right = upper;
+ upper->parent = lower;
+}
+
+/*
+ * Do a postorder traversal of the tree rooted at the specified
+ * node and free everything under it. Used by dict_free().
+ */
+
+static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
+{
+ if (node == nil)
+ return;
+ free_nodes(dict, node->left, nil);
+ free_nodes(dict, node->right, nil);
+ dict->freenode(node, dict->context);
+}
+
+/*
+ * This procedure performs a verification that the given subtree is a binary
+ * search tree. It performs an inorder traversal of the tree using the
+ * dict_next() successor function, verifying that the key of each node is
+ * strictly lower than that of its successor, if duplicates are not allowed,
+ * or lower or equal if duplicates are allowed. This function is used for
+ * debugging purposes.
+ */
+#ifndef DICT_NODEBUG
+static int verify_bintree(dict_t *dict)
+{
+ dnode_t *first, *next;
+
+ first = dict_first(dict);
+
+ if (dict->dupes) {
+ while (first && (next = dict_next(dict, first))) {
+ if (dict->compare(first->key, next->key) > 0)
+ return 0;
+ first = next;
+ }
+ } else {
+ while (first && (next = dict_next(dict, first))) {
+ if (dict->compare(first->key, next->key) >= 0)
+ return 0;
+ first = next;
+ }
+ }
+ return 1;
+}
+
+/*
+ * This function recursively verifies that the given binary subtree satisfies
+ * three of the red black properties. It checks that every red node has only
+ * black children. It makes sure that each node is either red or black. And it
+ * checks that every path has the same count of black nodes from root to leaf.
+ * It returns the blackheight of the given subtree; this allows blackheights to
+ * be computed recursively and compared for left and right siblings for
+ * mismatches. It does not check for every nil node being black, because there
+ * is only one sentinel nil node. The return value of this function is the
+ * black height of the subtree rooted at the node ``root'', or zero if the
+ * subtree is not red-black.
+ */
+
+static unsigned int verify_redblack(dnode_t *nil, dnode_t *root)
+{
+ unsigned height_left, height_right;
+
+ if (root != nil) {
+ height_left = verify_redblack(nil, root->left);
+ height_right = verify_redblack(nil, root->right);
+ if (height_left == 0 || height_right == 0)
+ return 0;
+ if (height_left != height_right)
+ return 0;
+ if (root->color == dnode_red) {
+ if (root->left->color != dnode_black)
+ return 0;
+ if (root->right->color != dnode_black)
+ return 0;
+ return height_left;
+ }
+ if (root->color != dnode_black)
+ return 0;
+ return height_left + 1;
+ }
+ return 1;
+}
+
+/*
+ * Compute the actual count of nodes by traversing the tree and
+ * return it. This could be compared against the stored count to
+ * detect a mismatch.
+ */
+
+static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root)
+{
+ if (root == nil)
+ return 0;
+ else
+ return 1 + verify_node_count(nil, root->left)
+ + verify_node_count(nil, root->right);
+}
+#endif
+
+/*
+ * Verify that the tree contains the given node. This is done by
+ * traversing all of the nodes and comparing their pointers to the
+ * given pointer. Returns 1 if the node is found, otherwise
+ * returns zero. It is intended for debugging purposes.
+ */
+
+static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
+{
+ if (root != nil) {
+ return root == node
+ || verify_dict_has_node(nil, root->left, node)
+ || verify_dict_has_node(nil, root->right, node);
+ }
+ return 0;
+}
+
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Dynamically allocate and initialize a dictionary object.
+ */
+
+dict_t *dict_create(dictcount_t maxcount, dict_comp_t comp)
+{
+ dict_t *new = malloc(sizeof *new);
+
+ if (new) {
+ new->compare = comp;
+ new->allocnode = dnode_alloc;
+ new->freenode = dnode_free;
+ new->context = NULL;
+ new->cmp_ctx = NULL;
+ new->nodecount = 0;
+ new->maxcount = maxcount;
+ new->nilnode.left = &new->nilnode;
+ new->nilnode.right = &new->nilnode;
+ new->nilnode.parent = &new->nilnode;
+ new->nilnode.color = dnode_black;
+ new->dupes = 0;
+ }
+ return new;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Select a different set of node allocator routines.
+ */
+
+void dict_set_allocator(dict_t *dict, dnode_alloc_t al,
+ dnode_free_t fr, void *context)
+{
+ dict_assert (dict_count(dict) == 0);
+ dict_assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL));
+
+ dict->allocnode = al ? al : dnode_alloc;
+ dict->freenode = fr ? fr : dnode_free;
+ dict->context = context;
+}
+
+void dict_set_cmp_context(dict_t *dict, const void *cmp_ctx)
+{
+ dict_assert (!dict->cmp_ctx);
+ dict_assert (dict_count(dict) == 0);
+
+ dict->cmp_ctx = cmp_ctx;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Free a dynamically allocated dictionary object. Removing the nodes
+ * from the tree before deleting it is required.
+ */
+
+void dict_destroy(dict_t *dict)
+{
+ dict_assert (dict_isempty(dict));
+ free(dict);
+}
+#endif
+
+/*
+ * Free all the nodes in the dictionary by using the dictionary's
+ * installed free routine. The dictionary is emptied.
+ */
+
+void dict_free_nodes(dict_t *dict)
+{
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
+ free_nodes(dict, root, nil);
+ dict->nodecount = 0;
+ dict->nilnode.left = &dict->nilnode;
+ dict->nilnode.right = &dict->nilnode;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Obsolescent function, equivalent to dict_free_nodes
+ */
+void dict_free(dict_t *dict)
+{
+#ifdef KAZLIB_OBSOLESCENT_DEBUG
+ dict_assert ("call to obsolescent function dict_free()" && 0);
+#endif
+ dict_free_nodes(dict);
+}
+#endif
+
+/*
+ * Initialize a user-supplied dictionary object.
+ */
+
+dict_t *dict_init(dict_t *dict, dictcount_t maxcount, dict_comp_t comp)
+{
+ dict->compare = comp;
+ dict->allocnode = dnode_alloc;
+ dict->freenode = dnode_free;
+ dict->context = NULL;
+ dict->nodecount = 0;
+ dict->maxcount = maxcount;
+ dict->nilnode.left = &dict->nilnode;
+ dict->nilnode.right = &dict->nilnode;
+ dict->nilnode.parent = &dict->nilnode;
+ dict->nilnode.color = dnode_black;
+ dict->dupes = 0;
+ return dict;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Initialize a dictionary in the likeness of another dictionary
+ */
+
+void dict_init_like(dict_t *dict, const dict_t *template)
+{
+ dict->compare = template->compare;
+ dict->allocnode = template->allocnode;
+ dict->freenode = template->freenode;
+ dict->context = template->context;
+ dict->nodecount = 0;
+ dict->maxcount = template->maxcount;
+ dict->nilnode.left = &dict->nilnode;
+ dict->nilnode.right = &dict->nilnode;
+ dict->nilnode.parent = &dict->nilnode;
+ dict->nilnode.color = dnode_black;
+ dict->dupes = template->dupes;
+
+ dict_assert (dict_similar(dict, template));
+}
+
+/*
+ * Remove all nodes from the dictionary (without freeing them in any way).
+ */
+
+static void dict_clear(dict_t *dict)
+{
+ dict->nodecount = 0;
+ dict->nilnode.left = &dict->nilnode;
+ dict->nilnode.right = &dict->nilnode;
+ dict->nilnode.parent = &dict->nilnode;
+ dict_assert (dict->nilnode.color == dnode_black);
+}
+#endif /* E2FSCK_NOTUSED */
+
+
+/*
+ * Verify the integrity of the dictionary structure. This is provided for
+ * debugging purposes, and should be placed in assert statements. Just because
+ * this function succeeds doesn't mean that the tree is not corrupt. Certain
+ * corruptions in the tree may simply cause undefined behavior.
+ */
+#ifndef DICT_NODEBUG
+int dict_verify(dict_t *dict)
+{
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
+
+ /* check that the sentinel node and root node are black */
+ if (root->color != dnode_black)
+ return 0;
+ if (nil->color != dnode_black)
+ return 0;
+ if (nil->right != nil)
+ return 0;
+ /* nil->left is the root node; check that its parent pointer is nil */
+ if (nil->left->parent != nil)
+ return 0;
+ /* perform a weak test that the tree is a binary search tree */
+ if (!verify_bintree(dict))
+ return 0;
+ /* verify that the tree is a red-black tree */
+ if (!verify_redblack(nil, root))
+ return 0;
+ if (verify_node_count(nil, root) != dict_count(dict))
+ return 0;
+ return 1;
+}
+#endif /* DICT_NODEBUG */
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Determine whether two dictionaries are similar: have the same comparison and
+ * allocator functions, and same status as to whether duplicates are allowed.
+ */
+int dict_similar(const dict_t *left, const dict_t *right)
+{
+ if (left->compare != right->compare)
+ return 0;
+
+ if (left->allocnode != right->allocnode)
+ return 0;
+
+ if (left->freenode != right->freenode)
+ return 0;
+
+ if (left->context != right->context)
+ return 0;
+
+ if (left->dupes != right->dupes)
+ return 0;
+
+ return 1;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Locate a node in the dictionary having the given key.
+ * If the node is not found, a null a pointer is returned (rather than
+ * a pointer that dictionary's nil sentinel node), otherwise a pointer to the
+ * located node is returned.
+ */
+
+dnode_t *dict_lookup(dict_t *dict, const void *key)
+{
+ dnode_t *root = dict_root(dict);
+ dnode_t *nil = dict_nil(dict);
+ dnode_t *saved;
+ int result;
+
+ /* simple binary search adapted for trees that contain duplicate keys */
+
+ while (root != nil) {
+ result = dict->compare(dict->cmp_ctx, key, root->key);
+ if (result < 0)
+ root = root->left;
+ else if (result > 0)
+ root = root->right;
+ else {
+ if (!dict->dupes) { /* no duplicates, return match */
+ return root;
+ } else { /* could be dupes, find leftmost one */
+ do {
+ saved = root;
+ root = root->left;
+ while (root != nil
+ && dict->compare(dict->cmp_ctx, key, root->key))
+ root = root->right;
+ } while (root != nil);
+ return saved;
+ }
+ }
+ }
+
+ return NULL;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Look for the node corresponding to the lowest key that is equal to or
+ * greater than the given key. If there is no such node, return null.
+ */
+
+dnode_t *dict_lower_bound(dict_t *dict, const void *key)
+{
+ dnode_t *root = dict_root(dict);
+ dnode_t *nil = dict_nil(dict);
+ dnode_t *tentative = 0;
+
+ while (root != nil) {
+ int result = dict->compare(dict->cmp_ctx, key, root->key);
+
+ if (result > 0) {
+ root = root->right;
+ } else if (result < 0) {
+ tentative = root;
+ root = root->left;
+ } else {
+ if (!dict->dupes) {
+ return root;
+ } else {
+ tentative = root;
+ root = root->left;
+ }
+ }
+ }
+
+ return tentative;
+}
+
+/*
+ * Look for the node corresponding to the greatest key that is equal to or
+ * lower than the given key. If there is no such node, return null.
+ */
+
+dnode_t *dict_upper_bound(dict_t *dict, const void *key)
+{
+ dnode_t *root = dict_root(dict);
+ dnode_t *nil = dict_nil(dict);
+ dnode_t *tentative = 0;
+
+ while (root != nil) {
+ int result = dict->compare(dict->cmp_ctx, key, root->key);
+
+ if (result < 0) {
+ root = root->left;
+ } else if (result > 0) {
+ tentative = root;
+ root = root->right;
+ } else {
+ if (!dict->dupes) {
+ return root;
+ } else {
+ tentative = root;
+ root = root->right;
+ }
+ }
+ }
+
+ return tentative;
+}
+#endif
+
+/*
+ * Insert a node into the dictionary. The node should have been
+ * initialized with a data field. All other fields are ignored.
+ * The behavior is undefined if the user attempts to insert into
+ * a dictionary that is already full (for which the dict_isfull()
+ * function returns true).
+ */
+
+void dict_insert(dict_t *dict, dnode_t *node, const void *key)
+{
+ dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
+ dnode_t *parent = nil, *uncle, *grandpa;
+ int result = -1;
+
+ node->key = key;
+
+ dict_assert (!dict_isfull(dict));
+ dict_assert (!dict_contains(dict, node));
+ dict_assert (!dnode_is_in_a_dict(node));
+
+ /* basic binary tree insert */
+
+ while (where != nil) {
+ parent = where;
+ result = dict->compare(dict->cmp_ctx, key, where->key);
+ /* trap attempts at duplicate key insertion unless it's explicitly allowed */
+ dict_assert (dict->dupes || result != 0);
+ if (result < 0)
+ where = where->left;
+ else
+ where = where->right;
+ }
+
+ dict_assert (where == nil);
+
+ if (result < 0)
+ parent->left = node;
+ else
+ parent->right = node;
+
+ node->parent = parent;
+ node->left = nil;
+ node->right = nil;
+
+ dict->nodecount++;
+
+ /* red black adjustments */
+
+ node->color = dnode_red;
+
+ while (parent->color == dnode_red) {
+ grandpa = parent->parent;
+ if (parent == grandpa->left) {
+ uncle = grandpa->right;
+ if (uncle->color == dnode_red) { /* red parent, red uncle */
+ parent->color = dnode_black;
+ uncle->color = dnode_black;
+ grandpa->color = dnode_red;
+ node = grandpa;
+ parent = grandpa->parent;
+ } else { /* red parent, black uncle */
+ if (node == parent->right) {
+ rotate_left(parent);
+ parent = node;
+ dict_assert (grandpa == parent->parent);
+ /* rotation between parent and child preserves grandpa */
+ }
+ parent->color = dnode_black;
+ grandpa->color = dnode_red;
+ rotate_right(grandpa);
+ break;
+ }
+ } else { /* symmetric cases: parent == parent->parent->right */
+ uncle = grandpa->left;
+ if (uncle->color == dnode_red) {
+ parent->color = dnode_black;
+ uncle->color = dnode_black;
+ grandpa->color = dnode_red;
+ node = grandpa;
+ parent = grandpa->parent;
+ } else {
+ if (node == parent->left) {
+ rotate_right(parent);
+ parent = node;
+ dict_assert (grandpa == parent->parent);
+ }
+ parent->color = dnode_black;
+ grandpa->color = dnode_red;
+ rotate_left(grandpa);
+ break;
+ }
+ }
+ }
+
+ dict_root(dict)->color = dnode_black;
+
+ dict_assert (dict_verify(dict));
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Delete the given node from the dictionary. If the given node does not belong
+ * to the given dictionary, undefined behavior results. A pointer to the
+ * deleted node is returned.
+ */
+
+dnode_t *dict_delete(dict_t *dict, dnode_t *delete)
+{
+ dnode_t *nil = dict_nil(dict), *child, *delparent = delete->parent;
+
+ /* basic deletion */
+
+ dict_assert (!dict_isempty(dict));
+ dict_assert (dict_contains(dict, delete));
+
+ /*
+ * If the node being deleted has two children, then we replace it with its
+ * successor (i.e. the leftmost node in the right subtree.) By doing this,
+ * we avoid the traditional algorithm under which the successor's key and
+ * value *only* move to the deleted node and the successor is spliced out
+ * from the tree. We cannot use this approach because the user may hold
+ * pointers to the successor, or nodes may be inextricably tied to some
+ * other structures by way of embedding, etc. So we must splice out the
+ * node we are given, not some other node, and must not move contents from
+ * one node to another behind the user's back.
+ */
+
+ if (delete->left != nil && delete->right != nil) {
+ dnode_t *next = dict_next(dict, delete);
+ dnode_t *nextparent = next->parent;
+ dnode_color_t nextcolor = next->color;
+
+ dict_assert (next != nil);
+ dict_assert (next->parent != nil);
+ dict_assert (next->left == nil);
+
+ /*
+ * First, splice out the successor from the tree completely, by
+ * moving up its right child into its place.
+ */
+
+ child = next->right;
+ child->parent = nextparent;
+
+ if (nextparent->left == next) {
+ nextparent->left = child;
+ } else {
+ dict_assert (nextparent->right == next);
+ nextparent->right = child;
+ }
+
+ /*
+ * Now that the successor has been extricated from the tree, install it
+ * in place of the node that we want deleted.
+ */
+
+ next->parent = delparent;
+ next->left = delete->left;
+ next->right = delete->right;
+ next->left->parent = next;
+ next->right->parent = next;
+ next->color = delete->color;
+ delete->color = nextcolor;
+
+ if (delparent->left == delete) {
+ delparent->left = next;
+ } else {
+ dict_assert (delparent->right == delete);
+ delparent->right = next;
+ }
+
+ } else {
+ dict_assert (delete != nil);
+ dict_assert (delete->left == nil || delete->right == nil);
+
+ child = (delete->left != nil) ? delete->left : delete->right;
+
+ child->parent = delparent = delete->parent;
+
+ if (delete == delparent->left) {
+ delparent->left = child;
+ } else {
+ dict_assert (delete == delparent->right);
+ delparent->right = child;
+ }
+ }
+
+ delete->parent = NULL;
+ delete->right = NULL;
+ delete->left = NULL;
+
+ dict->nodecount--;
+
+ dict_assert (verify_bintree(dict));
+
+ /* red-black adjustments */
+
+ if (delete->color == dnode_black) {
+ dnode_t *parent, *sister;
+
+ dict_root(dict)->color = dnode_red;
+
+ while (child->color == dnode_black) {
+ parent = child->parent;
+ if (child == parent->left) {
+ sister = parent->right;
+ dict_assert (sister != nil);
+ if (sister->color == dnode_red) {
+ sister->color = dnode_black;
+ parent->color = dnode_red;
+ rotate_left(parent);
+ sister = parent->right;
+ dict_assert (sister != nil);
+ }
+ if (sister->left->color == dnode_black
+ && sister->right->color == dnode_black) {
+ sister->color = dnode_red;
+ child = parent;
+ } else {
+ if (sister->right->color == dnode_black) {
+ dict_assert (sister->left->color == dnode_red);
+ sister->left->color = dnode_black;
+ sister->color = dnode_red;
+ rotate_right(sister);
+ sister = parent->right;
+ dict_assert (sister != nil);
+ }
+ sister->color = parent->color;
+ sister->right->color = dnode_black;
+ parent->color = dnode_black;
+ rotate_left(parent);
+ break;
+ }
+ } else { /* symmetric case: child == child->parent->right */
+ dict_assert (child == parent->right);
+ sister = parent->left;
+ dict_assert (sister != nil);
+ if (sister->color == dnode_red) {
+ sister->color = dnode_black;
+ parent->color = dnode_red;
+ rotate_right(parent);
+ sister = parent->left;
+ dict_assert (sister != nil);
+ }
+ if (sister->right->color == dnode_black
+ && sister->left->color == dnode_black) {
+ sister->color = dnode_red;
+ child = parent;
+ } else {
+ if (sister->left->color == dnode_black) {
+ dict_assert (sister->right->color == dnode_red);
+ sister->right->color = dnode_black;
+ sister->color = dnode_red;
+ rotate_left(sister);
+ sister = parent->left;
+ dict_assert (sister != nil);
+ }
+ sister->color = parent->color;
+ sister->left->color = dnode_black;
+ parent->color = dnode_black;
+ rotate_right(parent);
+ break;
+ }
+ }
+ }
+
+ child->color = dnode_black;
+ dict_root(dict)->color = dnode_black;
+ }
+
+ dict_assert (dict_verify(dict));
+
+ return delete;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Allocate a node using the dictionary's allocator routine, give it
+ * the data item.
+ */
+
+int dict_alloc_insert(dict_t *dict, const void *key, void *data)
+{
+ dnode_t *node = dict->allocnode(dict->context);
+
+ if (node) {
+ dnode_init(node, data);
+ dict_insert(dict, node, key);
+ return 1;
+ }
+ return 0;
+}
+
+#ifdef E2FSCK_NOTUSED
+void dict_delete_free(dict_t *dict, dnode_t *node)
+{
+ dict_delete(dict, node);
+ dict->freenode(node, dict->context);
+}
+#endif
+
+/*
+ * Return the node with the lowest (leftmost) key. If the dictionary is empty
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
+ */
+
+dnode_t *dict_first(dict_t *dict)
+{
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
+
+ if (root != nil)
+ while ((left = root->left) != nil)
+ root = left;
+
+ return (root == nil) ? NULL : root;
+}
+
+/*
+ * Return the node with the highest (rightmost) key. If the dictionary is empty
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
+ */
+
+dnode_t *dict_last(dict_t *dict)
+{
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right;
+
+ if (root != nil)
+ while ((right = root->right) != nil)
+ root = right;
+
+ return (root == nil) ? NULL : root;
+}
+
+/*
+ * Return the given node's successor node---the node which has the
+ * next key in the the left to right ordering. If the node has
+ * no successor, a null pointer is returned rather than a pointer to
+ * the nil node.
+ */
+
+dnode_t *dict_next(dict_t *dict, dnode_t *curr)
+{
+ dnode_t *nil = dict_nil(dict), *parent, *left;
+
+ if (curr->right != nil) {
+ curr = curr->right;
+ while ((left = curr->left) != nil)
+ curr = left;
+ return curr;
+ }
+
+ parent = curr->parent;
+
+ while (parent != nil && curr == parent->right) {
+ curr = parent;
+ parent = curr->parent;
+ }
+
+ return (parent == nil) ? NULL : parent;
+}
+
+/*
+ * Return the given node's predecessor, in the key order.
+ * The nil sentinel node is returned if there is no predecessor.
+ */
+
+dnode_t *dict_prev(dict_t *dict, dnode_t *curr)
+{
+ dnode_t *nil = dict_nil(dict), *parent, *right;
+
+ if (curr->left != nil) {
+ curr = curr->left;
+ while ((right = curr->right) != nil)
+ curr = right;
+ return curr;
+ }
+
+ parent = curr->parent;
+
+ while (parent != nil && curr == parent->left) {
+ curr = parent;
+ parent = curr->parent;
+ }
+
+ return (parent == nil) ? NULL : parent;
+}
+
+void dict_allow_dupes(dict_t *dict)
+{
+ dict->dupes = 1;
+}
+
+#undef dict_count
+#undef dict_isempty
+#undef dict_isfull
+#undef dnode_get
+#undef dnode_put
+#undef dnode_getkey
+
+dictcount_t dict_count(dict_t *dict)
+{
+ return dict->nodecount;
+}
+
+int dict_isempty(dict_t *dict)
+{
+ return dict->nodecount == 0;
+}
+
+int dict_isfull(dict_t *dict)
+{
+ return dict->nodecount == dict->maxcount;
+}
+
+int dict_contains(dict_t *dict, dnode_t *node)
+{
+ return verify_dict_has_node(dict_nil(dict), dict_root(dict), node);
+}
+
+static dnode_t *dnode_alloc(void *context EXT2FS_ATTR((unused)))
+{
+ return malloc(sizeof *dnode_alloc(NULL));
+}
+
+static void dnode_free(dnode_t *node, void *context EXT2FS_ATTR((unused)))
+{
+ free(node);
+}
+
+dnode_t *dnode_create(void *data)
+{
+ dnode_t *new = malloc(sizeof *new);
+ if (new) {
+ new->data = data;
+ new->parent = NULL;
+ new->left = NULL;
+ new->right = NULL;
+ }
+ return new;
+}
+
+dnode_t *dnode_init(dnode_t *dnode, void *data)
+{
+ dnode->data = data;
+ dnode->parent = NULL;
+ dnode->left = NULL;
+ dnode->right = NULL;
+ return dnode;
+}
+
+void dnode_destroy(dnode_t *dnode)
+{
+ dict_assert (!dnode_is_in_a_dict(dnode));
+ free(dnode);
+}
+
+void *dnode_get(dnode_t *dnode)
+{
+ return dnode->data;
+}
+
+const void *dnode_getkey(dnode_t *dnode)
+{
+ return dnode->key;
+}
+
+#ifdef E2FSCK_NOTUSED
+void dnode_put(dnode_t *dnode, void *data)
+{
+ dnode->data = data;
+}
+#endif
+
+#ifndef DICT_NODEBUG
+int dnode_is_in_a_dict(dnode_t *dnode)
+{
+ return (dnode->parent && dnode->left && dnode->right);
+}
+#endif
+
+#ifdef E2FSCK_NOTUSED
+void dict_process(dict_t *dict, void *context, dnode_process_t function)
+{
+ dnode_t *node = dict_first(dict), *next;
+
+ while (node != NULL) {
+ /* check for callback function deleting */
+ /* the next node from under us */
+ dict_assert (dict_contains(dict, node));
+ next = dict_next(dict, node);
+ function(dict, node, context);
+ node = next;
+ }
+}
+
+static void load_begin_internal(dict_load_t *load, dict_t *dict)
+{
+ load->dictptr = dict;
+ load->nilnode.left = &load->nilnode;
+ load->nilnode.right = &load->nilnode;
+}
+
+void dict_load_begin(dict_load_t *load, dict_t *dict)
+{
+ dict_assert (dict_isempty(dict));
+ load_begin_internal(load, dict);
+}
+
+void dict_load_next(dict_load_t *load, dnode_t *newnode, const void *key)
+{
+ dict_t *dict = load->dictptr;
+ dnode_t *nil = &load->nilnode;
+
+ dict_assert (!dnode_is_in_a_dict(newnode));
+ dict_assert (dict->nodecount < dict->maxcount);
+
+#ifndef DICT_NODEBUG
+ if (dict->nodecount > 0) {
+ if (dict->dupes)
+ dict_assert (dict->compare(nil->left->key, key) <= 0);
+ else
+ dict_assert (dict->compare(nil->left->key, key) < 0);
+ }
+#endif
+
+ newnode->key = key;
+ nil->right->left = newnode;
+ nil->right = newnode;
+ newnode->left = nil;
+ dict->nodecount++;
+}
+
+void dict_load_end(dict_load_t *load)
+{
+ dict_t *dict = load->dictptr;
+ dnode_t *tree[DICT_DEPTH_MAX] = { 0 };
+ dnode_t *curr, *dictnil = dict_nil(dict), *loadnil = &load->nilnode, *next;
+ dnode_t *complete = 0;
+ dictcount_t fullcount = DICTCOUNT_T_MAX, nodecount = dict->nodecount;
+ dictcount_t botrowcount;
+ unsigned baselevel = 0, level = 0, i;
+
+ dict_assert (dnode_red == 0 && dnode_black == 1);
+
+ while (fullcount >= nodecount && fullcount)
+ fullcount >>= 1;
+
+ botrowcount = nodecount - fullcount;
+
+ for (curr = loadnil->left; curr != loadnil; curr = next) {
+ next = curr->left;
+
+ if (complete == NULL && botrowcount-- == 0) {
+ dict_assert (baselevel == 0);
+ dict_assert (level == 0);
+ baselevel = level = 1;
+ complete = tree[0];
+
+ if (complete != 0) {
+ tree[0] = 0;
+ complete->right = dictnil;
+ while (tree[level] != 0) {
+ tree[level]->right = complete;
+ complete->parent = tree[level];
+ complete = tree[level];
+ tree[level++] = 0;
+ }
+ }
+ }
+
+ if (complete == NULL) {
+ curr->left = dictnil;
+ curr->right = dictnil;
+ curr->color = level % 2;
+ complete = curr;
+
+ dict_assert (level == baselevel);
+ while (tree[level] != 0) {
+ tree[level]->right = complete;
+ complete->parent = tree[level];
+ complete = tree[level];
+ tree[level++] = 0;
+ }
+ } else {
+ curr->left = complete;
+ curr->color = (level + 1) % 2;
+ complete->parent = curr;
+ tree[level] = curr;
+ complete = 0;
+ level = baselevel;
+ }
+ }
+
+ if (complete == NULL)
+ complete = dictnil;
+
+ for (i = 0; i < DICT_DEPTH_MAX; i++) {
+ if (tree[i] != 0) {
+ tree[i]->right = complete;
+ complete->parent = tree[i];
+ complete = tree[i];
+ }
+ }
+
+ dictnil->color = dnode_black;
+ dictnil->right = dictnil;
+ complete->parent = dictnil;
+ complete->color = dnode_black;
+ dict_root(dict) = complete;
+
+ dict_assert (dict_verify(dict));
+}
+
+void dict_merge(dict_t *dest, dict_t *source)
+{
+ dict_load_t load;
+ dnode_t *leftnode = dict_first(dest), *rightnode = dict_first(source);
+
+ dict_assert (dict_similar(dest, source));
+
+ if (source == dest)
+ return;
+
+ dest->nodecount = 0;
+ load_begin_internal(&load, dest);
+
+ for (;;) {
+ if (leftnode != NULL && rightnode != NULL) {
+ if (dest->compare(leftnode->key, rightnode->key) < 0)
+ goto copyleft;
+ else
+ goto copyright;
+ } else if (leftnode != NULL) {
+ goto copyleft;
+ } else if (rightnode != NULL) {
+ goto copyright;
+ } else {
+ dict_assert (leftnode == NULL && rightnode == NULL);
+ break;
+ }
+
+ copyleft:
+ {
+ dnode_t *next = dict_next(dest, leftnode);
+#ifndef DICT_NODEBUG
+ leftnode->left = NULL; /* suppress assertion in dict_load_next */
+#endif
+ dict_load_next(&load, leftnode, leftnode->key);
+ leftnode = next;
+ continue;
+ }
+
+ copyright:
+ {
+ dnode_t *next = dict_next(source, rightnode);
+#ifndef DICT_NODEBUG
+ rightnode->left = NULL;
+#endif
+ dict_load_next(&load, rightnode, rightnode->key);
+ rightnode = next;
+ continue;
+ }
+ }
+
+ dict_clear(source);
+ dict_load_end(&load);
+}
+#endif /* E2FSCK_NOTUSED */
+
+#ifdef KAZLIB_TEST_MAIN
+
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+#include <stdarg.h>
+
+typedef char input_t[256];
+
+static int tokenize(char *string, ...)
+{
+ char **tokptr;
+ va_list arglist;
+ int tokcount = 0;
+
+ va_start(arglist, string);
+ tokptr = va_arg(arglist, char **);
+ while (tokptr) {
+ while (*string && isspace((unsigned char) *string))
+ string++;
+ if (!*string)
+ break;
+ *tokptr = string;
+ while (*string && !isspace((unsigned char) *string))
+ string++;
+ tokptr = va_arg(arglist, char **);
+ tokcount++;
+ if (!*string)
+ break;
+ *string++ = 0;
+ }
+ va_end(arglist);
+
+ return tokcount;
+}
+
+static int comparef(const void *cmp_ctx, const void *key1, const void *key2)
+{
+ return strcmp(key1, key2);
+}
+
+static char *dupstring(char *str)
+{
+ int sz = strlen(str) + 1;
+ char *new = malloc(sz);
+ if (new)
+ memcpy(new, str, sz);
+ return new;
+}
+
+static dnode_t *new_node(void *c)
+{
+ static dnode_t few[5];
+ static int count;
+
+ if (count < 5)
+ return few + count++;
+
+ return NULL;
+}
+
+static void del_node(dnode_t *n, void *c)
+{
+}
+
+static int prompt = 0;
+
+static void construct(dict_t *d)
+{
+ input_t in;
+ int done = 0;
+ dict_load_t dl;
+ dnode_t *dn;
+ char *tok1, *tok2, *val;
+ const char *key;
+ char *help =
+ "p turn prompt on\n"
+ "q finish construction\n"
+ "a <key> <val> add new entry\n";
+
+ if (!dict_isempty(d))
+ puts("warning: dictionary not empty!");
+
+ dict_load_begin(&dl, d);
+
+ while (!done) {
+ if (prompt)
+ putchar('>');
+ fflush(stdout);
+
+ if (!fgets(in, sizeof(input_t), stdin))
+ break;
+
+ switch (in[0]) {
+ case '?':
+ puts(help);
+ break;
+ case 'p':
+ prompt = 1;
+ break;
+ case 'q':
+ done = 1;
+ break;
+ case 'a':
+ if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+ puts("what?");
+ break;
+ }
+ key = dupstring(tok1);
+ val = dupstring(tok2);
+ dn = dnode_create(val);
+
+ if (!key || !val || !dn) {
+ puts("out of memory");
+ free((void *) key);
+ free(val);
+ if (dn)
+ dnode_destroy(dn);
+ }
+
+ dict_load_next(&dl, dn, key);
+ break;
+ default:
+ putchar('?');
+ putchar('\n');
+ break;
+ }
+ }
+
+ dict_load_end(&dl);
+}
+
+int main(void)
+{
+ input_t in;
+ dict_t darray[10];
+ dict_t *d = &darray[0];
+ dnode_t *dn;
+ int i;
+ char *tok1, *tok2, *val;
+ const char *key;
+
+ char *help =
+ "a <key> <val> add value to dictionary\n"
+ "d <key> delete value from dictionary\n"
+ "l <key> lookup value in dictionary\n"
+ "( <key> lookup lower bound\n"
+ ") <key> lookup upper bound\n"
+ "# <num> switch to alternate dictionary (0-9)\n"
+ "j <num> <num> merge two dictionaries\n"
+ "f free the whole dictionary\n"
+ "k allow duplicate keys\n"
+ "c show number of entries\n"
+ "t dump whole dictionary in sort order\n"
+ "m make dictionary out of sorted items\n"
+ "p turn prompt on\n"
+ "s switch to non-functioning allocator\n"
+ "q quit";
+
+ for (i = 0; i < sizeof darray / sizeof *darray; i++)
+ dict_init(&darray[i], DICTCOUNT_T_MAX, comparef);
+
+ for (;;) {
+ if (prompt)
+ putchar('>');
+ fflush(stdout);
+
+ if (!fgets(in, sizeof(input_t), stdin))
+ break;
+
+ switch(in[0]) {
+ case '?':
+ puts(help);
+ break;
+ case 'a':
+ if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+ puts("what?");
+ break;
+ }
+ key = dupstring(tok1);
+ val = dupstring(tok2);
+
+ if (!key || !val) {
+ puts("out of memory");
+ free((void *) key);
+ free(val);
+ }
+
+ if (!dict_alloc_insert(d, key, val)) {
+ puts("dict_alloc_insert failed");
+ free((void *) key);
+ free(val);
+ break;
+ }
+ break;
+ case 'd':
+ if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+ puts("what?");
+ break;
+ }
+ dn = dict_lookup(d, tok1);
+ if (!dn) {
+ puts("dict_lookup failed");
+ break;
+ }
+ val = dnode_get(dn);
+ key = dnode_getkey(dn);
+ dict_delete_free(d, dn);
+
+ free(val);
+ free((void *) key);
+ break;
+ case 'f':
+ dict_free(d);
+ break;
+ case 'l':
+ case '(':
+ case ')':
+ if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+ puts("what?");
+ break;
+ }
+ dn = 0;
+ switch (in[0]) {
+ case 'l':
+ dn = dict_lookup(d, tok1);
+ break;
+ case '(':
+ dn = dict_lower_bound(d, tok1);
+ break;
+ case ')':
+ dn = dict_upper_bound(d, tok1);
+ break;
+ }
+ if (!dn) {
+ puts("lookup failed");
+ break;
+ }
+ val = dnode_get(dn);
+ puts(val);
+ break;
+ case 'm':
+ construct(d);
+ break;
+ case 'k':
+ dict_allow_dupes(d);
+ break;
+ case 'c':
+ printf("%lu\n", (unsigned long) dict_count(d));
+ break;
+ case 't':
+ for (dn = dict_first(d); dn; dn = dict_next(d, dn)) {
+ printf("%s\t%s\n", (char *) dnode_getkey(dn),
+ (char *) dnode_get(dn));
+ }
+ break;
+ case 'q':
+ exit(0);
+ break;
+ case '\0':
+ break;
+ case 'p':
+ prompt = 1;
+ break;
+ case 's':
+ dict_set_allocator(d, new_node, del_node, NULL);
+ break;
+ case '#':
+ if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+ puts("what?");
+ break;
+ } else {
+ int dictnum = atoi(tok1);
+ if (dictnum < 0 || dictnum > 9) {
+ puts("invalid number");
+ break;
+ }
+ d = &darray[dictnum];
+ }
+ break;
+ case 'j':
+ if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+ puts("what?");
+ break;
+ } else {
+ int dict1 = atoi(tok1), dict2 = atoi(tok2);
+ if (dict1 < 0 || dict1 > 9 || dict2 < 0 || dict2 > 9) {
+ puts("invalid number");
+ break;
+ }
+ dict_merge(&darray[dict1], &darray[dict2]);
+ }
+ break;
+ default:
+ putchar('?');
+ putchar('\n');
+ break;
+ }
+ }
+
+ return 0;
+}
+
+#endif