/* * journal.c --- code for handling the "ext3" journal * * Copyright (C) 2000 Andreas Dilger * Copyright (C) 2000 Theodore Ts'o * * Parts of the code are based on fs/jfs/journal.c by Stephen C. Tweedie * Copyright (C) 1999 Red Hat Software * * This file may be redistributed under the terms of the * GNU General Public License version 2 or at your discretion * any later version. */ #include "config.h" #ifdef HAVE_SYS_MOUNT_H #include #include #define MNT_FL (MS_MGC_VAL | MS_RDONLY) #endif #ifdef HAVE_SYS_STAT_H #include #endif #define E2FSCK_INCLUDE_INLINE_FUNCS #include "jfs_user.h" #include "problem.h" #include "uuid/uuid.h" static int bh_count = 0; /* * Define USE_INODE_IO to use the inode_io.c / fileio.c codepaths. * This creates a larger static binary, and a smaller binary using * shared libraries. It's also probably slightly less CPU-efficient, * which is why it's not on by default. But, it's a good way of * testing the functions in inode_io.c and fileio.c. */ #undef USE_INODE_IO /* Checksumming functions */ static int e2fsck_journal_verify_csum_type(journal_t *j, journal_superblock_t *jsb) { if (!jbd2_journal_has_csum_v2or3(j)) return 1; return jsb->s_checksum_type == JBD2_CRC32C_CHKSUM; } static __u32 e2fsck_journal_sb_csum(journal_superblock_t *jsb) { __u32 crc, old_crc; old_crc = jsb->s_checksum; jsb->s_checksum = 0; crc = ext2fs_crc32c_le(~0, (unsigned char *)jsb, sizeof(journal_superblock_t)); jsb->s_checksum = old_crc; return crc; } static int e2fsck_journal_sb_csum_verify(journal_t *j, journal_superblock_t *jsb) { __u32 provided, calculated; if (!jbd2_journal_has_csum_v2or3(j)) return 1; provided = ext2fs_be32_to_cpu(jsb->s_checksum); calculated = e2fsck_journal_sb_csum(jsb); return provided == calculated; } static errcode_t e2fsck_journal_sb_csum_set(journal_t *j, journal_superblock_t *jsb) { __u32 crc; if (!jbd2_journal_has_csum_v2or3(j)) return 0; crc = e2fsck_journal_sb_csum(jsb); jsb->s_checksum = ext2fs_cpu_to_be32(crc); return 0; } /* Kernel compatibility functions for handling the journal. These allow us * to use the recovery.c file virtually unchanged from the kernel, so we * don't have to do much to keep kernel and user recovery in sync. */ int jbd2_journal_bmap(journal_t *journal, unsigned long block, unsigned long long *phys) { #ifdef USE_INODE_IO *phys = block; return 0; #else struct inode *inode = journal->j_inode; errcode_t retval; blk64_t pblk; if (!inode) { *phys = block; return 0; } retval= ext2fs_bmap2(inode->i_ctx->fs, inode->i_ino, &inode->i_ext2, NULL, 0, (blk64_t) block, 0, &pblk); *phys = pblk; return -1 * ((int) retval); #endif } struct buffer_head *getblk(kdev_t kdev, unsigned long long blocknr, int blocksize) { struct buffer_head *bh; int bufsize = sizeof(*bh) + kdev->k_ctx->fs->blocksize - sizeof(bh->b_data); bh = e2fsck_allocate_memory(kdev->k_ctx, bufsize, "block buffer"); if (!bh) return NULL; if (journal_enable_debug >= 3) bh_count++; jfs_debug(4, "getblk for block %llu (%d bytes)(total %d)\n", blocknr, blocksize, bh_count); bh->b_ctx = kdev->k_ctx; if (kdev->k_dev == K_DEV_FS) bh->b_io = kdev->k_ctx->fs->io; else bh->b_io = kdev->k_ctx->journal_io; bh->b_size = blocksize; bh->b_blocknr = blocknr; return bh; } int sync_blockdev(kdev_t kdev) { io_channel io; if (kdev->k_dev == K_DEV_FS) io = kdev->k_ctx->fs->io; else io = kdev->k_ctx->journal_io; return io_channel_flush(io) ? -EIO : 0; } void ll_rw_block(int rw, int op_flags EXT2FS_ATTR((unused)), int nr, struct buffer_head *bhp[]) { errcode_t retval; struct buffer_head *bh; for (; nr > 0; --nr) { bh = *bhp++; if (rw == REQ_OP_READ && !bh->b_uptodate) { jfs_debug(3, "reading block %llu/%p\n", bh->b_blocknr, (void *) bh); retval = io_channel_read_blk64(bh->b_io, bh->b_blocknr, 1, bh->b_data); if (retval) { com_err(bh->b_ctx->device_name, retval, "while reading block %llu\n", bh->b_blocknr); bh->b_err = (int) retval; continue; } bh->b_uptodate = 1; } else if (rw == REQ_OP_WRITE && bh->b_dirty) { jfs_debug(3, "writing block %llu/%p\n", bh->b_blocknr, (void *) bh); retval = io_channel_write_blk64(bh->b_io, bh->b_blocknr, 1, bh->b_data); if (retval) { com_err(bh->b_ctx->device_name, retval, "while writing block %llu\n", bh->b_blocknr); bh->b_err = (int) retval; continue; } bh->b_dirty = 0; bh->b_uptodate = 1; } else { jfs_debug(3, "no-op %s for block %llu\n", rw == REQ_OP_READ ? "read" : "write", bh->b_blocknr); } } } void mark_buffer_dirty(struct buffer_head *bh) { bh->b_dirty = 1; } static void mark_buffer_clean(struct buffer_head * bh) { bh->b_dirty = 0; } void brelse(struct buffer_head *bh) { if (bh->b_dirty) ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); jfs_debug(3, "freeing block %llu/%p (total %d)\n", bh->b_blocknr, (void *) bh, --bh_count); ext2fs_free_mem(&bh); } int buffer_uptodate(struct buffer_head *bh) { return bh->b_uptodate; } void mark_buffer_uptodate(struct buffer_head *bh, int val) { bh->b_uptodate = val; } void wait_on_buffer(struct buffer_head *bh) { if (!bh->b_uptodate) ll_rw_block(REQ_OP_READ, 0, 1, &bh); } static void e2fsck_clear_recover(e2fsck_t ctx, int error) { ext2fs_clear_feature_journal_needs_recovery(ctx->fs->super); /* if we had an error doing journal recovery, we need a full fsck */ if (error) ctx->fs->super->s_state &= ~EXT2_VALID_FS; ext2fs_mark_super_dirty(ctx->fs); } /* * This is a helper function to check the validity of the journal. */ struct process_block_struct { e2_blkcnt_t last_block; }; static int process_journal_block(ext2_filsys fs, blk64_t *block_nr, e2_blkcnt_t blockcnt, blk64_t ref_block EXT2FS_ATTR((unused)), int ref_offset EXT2FS_ATTR((unused)), void *priv_data) { struct process_block_struct *p; blk64_t blk = *block_nr; p = (struct process_block_struct *) priv_data; if (!blk || blk < fs->super->s_first_data_block || blk >= ext2fs_blocks_count(fs->super)) return BLOCK_ABORT; if (blockcnt >= 0) p->last_block = blockcnt; return 0; } static int ext4_fc_replay_scan(journal_t *j, struct buffer_head *bh, int off, tid_t expected_tid) { e2fsck_t ctx = j->j_fs_dev->k_ctx; struct e2fsck_fc_replay_state *state; int ret = JBD2_FC_REPLAY_CONTINUE; struct ext4_fc_add_range ext; struct ext4_fc_tl tl; struct ext4_fc_tail tail; __u8 *start, *cur, *end, *val; struct ext4_fc_head head; struct ext2fs_extent ext2fs_ex = {0}; state = &ctx->fc_replay_state; start = (__u8 *)bh->b_data; end = (__u8 *)bh->b_data + j->j_blocksize - 1; jbd_debug(1, "Scan phase starting, expected %d", expected_tid); if (state->fc_replay_expected_off == 0) { memset(state, 0, sizeof(*state)); /* Check if we can stop early */ if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) != EXT4_FC_TAG_HEAD) { jbd_debug(1, "Ending early!, not a head tag"); return 0; } } if (off != state->fc_replay_expected_off) { ret = -EFSCORRUPTED; goto out_err; } state->fc_replay_expected_off++; for (cur = start; cur < end; cur = cur + le16_to_cpu(tl.fc_len) + sizeof(tl)) { memcpy(&tl, cur, sizeof(tl)); val = cur + sizeof(tl); jbd_debug(3, "Scan phase, tag:%s, blk %lld\n", tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr); switch (le16_to_cpu(tl.fc_tag)) { case EXT4_FC_TAG_ADD_RANGE: memcpy(&ext, val, sizeof(ext)); ret = ext2fs_decode_extent(&ext2fs_ex, (void *)&ext.fc_ex, sizeof(ext.fc_ex)); if (ret) ret = JBD2_FC_REPLAY_STOP; else ret = JBD2_FC_REPLAY_CONTINUE; /* fallthrough */ case EXT4_FC_TAG_DEL_RANGE: case EXT4_FC_TAG_LINK: case EXT4_FC_TAG_UNLINK: case EXT4_FC_TAG_CREAT: case EXT4_FC_TAG_INODE: case EXT4_FC_TAG_PAD: state->fc_cur_tag++; state->fc_crc = jbd2_chksum(j, state->fc_crc, cur, sizeof(tl) + ext4_fc_tag_len(&tl)); break; case EXT4_FC_TAG_TAIL: state->fc_cur_tag++; memcpy(&tail, val, sizeof(tail)); state->fc_crc = jbd2_chksum(j, state->fc_crc, cur, sizeof(tl) + offsetof(struct ext4_fc_tail, fc_crc)); jbd_debug(1, "tail tid %d, expected %d\n", le32_to_cpu(tail.fc_tid), expected_tid); if (le32_to_cpu(tail.fc_tid) == expected_tid && le32_to_cpu(tail.fc_crc) == state->fc_crc) { state->fc_replay_num_tags = state->fc_cur_tag; } else { ret = state->fc_replay_num_tags ? JBD2_FC_REPLAY_STOP : -EFSBADCRC; } state->fc_crc = 0; break; case EXT4_FC_TAG_HEAD: memcpy(&head, val, sizeof(head)); if (le32_to_cpu(head.fc_features) & ~EXT4_FC_SUPPORTED_FEATURES) { ret = -EOPNOTSUPP; break; } if (le32_to_cpu(head.fc_tid) != expected_tid) { ret = -EINVAL; break; } state->fc_cur_tag++; state->fc_crc = jbd2_chksum(j, state->fc_crc, cur, sizeof(tl) + ext4_fc_tag_len(&tl)); break; default: ret = state->fc_replay_num_tags ? JBD2_FC_REPLAY_STOP : -ECANCELED; } if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) break; } out_err: return ret; } static int __errcode_to_errno(errcode_t err, const char *func, int line) { if (err == 0) return 0; fprintf(stderr, "Error \"%s\" encountered in function %s at line %d\n", error_message(err), func, line); if (err <= 256) return -err; return -EFAULT; } #define errcode_to_errno(err) __errcode_to_errno(err, __func__, __LINE__) #define ex_end(__ex) ((__ex)->e_lblk + (__ex)->e_len - 1) #define ex_pend(__ex) ((__ex)->e_pblk + (__ex)->e_len - 1) static int make_room(struct extent_list *list, int i) { int ret; if (list->count == list->size) { unsigned int new_size = (list->size + 341) * sizeof(struct ext2fs_extent); ret = errcode_to_errno(ext2fs_resize_mem(0, new_size, &list->extents)); if (ret) return ret; list->size += 341; } memmove(&list->extents[i + 1], &list->extents[i], sizeof(list->extents[0]) * (list->count - i)); list->count++; return 0; } static int ex_compar(const void *arg1, const void *arg2) { const struct ext2fs_extent *ex1 = (const struct ext2fs_extent *)arg1; const struct ext2fs_extent *ex2 = (const struct ext2fs_extent *)arg2; if (ex1->e_lblk < ex2->e_lblk) return -1; if (ex1->e_lblk > ex2->e_lblk) return 1; return ex1->e_len - ex2->e_len; } static int ex_len_compar(const void *arg1, const void *arg2) { const struct ext2fs_extent *ex1 = (const struct ext2fs_extent *)arg1; const struct ext2fs_extent *ex2 = (const struct ext2fs_extent *)arg2; if (ex1->e_len < ex2->e_len) return 1; if (ex1->e_lblk > ex2->e_lblk) return -1; return 0; } static void ex_sort_and_merge(struct extent_list *list) { unsigned int i, j; if (list->count < 2) return; /* * Reverse sort by length, that way we strip off all the 0 length * extents */ qsort(list->extents, list->count, sizeof(struct ext2fs_extent), ex_len_compar); for (i = 0; i < list->count; i++) { if (list->extents[i].e_len == 0) { list->count = i; break; } } if (list->count == 0) return; /* Now sort by logical offset */ qsort(list->extents, list->count, sizeof(list->extents[0]), ex_compar); /* Merge adjacent extents if they are logically and physically contiguous */ i = 0; while (i < list->count - 1) { if (ex_end(&list->extents[i]) + 1 != list->extents[i + 1].e_lblk || ex_pend(&list->extents[i]) + 1 != list->extents[i + 1].e_pblk || (list->extents[i].e_flags & EXT2_EXTENT_FLAGS_UNINIT) != (list->extents[i + 1].e_flags & EXT2_EXTENT_FLAGS_UNINIT)) { i++; continue; } list->extents[i].e_len += list->extents[i + 1].e_len; for (j = i + 1; j < list->count - 1; j++) list->extents[j] = list->extents[j + 1]; list->count--; } } /* must free blocks that are released */ static int ext4_modify_extent_list(e2fsck_t ctx, struct extent_list *list, struct ext2fs_extent *ex, int del) { int ret, offset; unsigned int i; struct ext2fs_extent add_ex = *ex; /* First let's create a hole from ex->e_lblk of length ex->e_len */ for (i = 0; i < list->count; i++) { if (ex_end(&list->extents[i]) < add_ex.e_lblk) continue; /* Case 1: No overlap */ if (list->extents[i].e_lblk > ex_end(&add_ex)) break; /* * Unmark all the blocks in bb now. All the blocks get marked * before we exit this function. */ ext2fs_unmark_block_bitmap_range2(ctx->fs->block_map, list->extents[i].e_pblk, list->extents[i].e_len); /* Case 2: Split */ if (list->extents[i].e_lblk < add_ex.e_lblk && ex_end(&list->extents[i]) > ex_end(&add_ex)) { ret = make_room(list, i + 1); if (ret) return ret; list->extents[i + 1] = list->extents[i]; offset = ex_end(&add_ex) + 1 - list->extents[i].e_lblk; list->extents[i + 1].e_lblk += offset; list->extents[i + 1].e_pblk += offset; list->extents[i + 1].e_len -= offset; list->extents[i].e_len = add_ex.e_lblk - list->extents[i].e_lblk; break; } /* Case 3: Exact overlap */ if (add_ex.e_lblk <= list->extents[i].e_lblk && ex_end(&list->extents[i]) <= ex_end(&add_ex)) { list->extents[i].e_len = 0; continue; } /* Case 4: Partial overlap */ if (ex_end(&list->extents[i]) > ex_end(&add_ex)) { offset = ex_end(&add_ex) + 1 - list->extents[i].e_lblk; list->extents[i].e_lblk += offset; list->extents[i].e_pblk += offset; list->extents[i].e_len -= offset; break; } if (ex_end(&add_ex) >= ex_end(&list->extents[i])) list->extents[i].e_len = add_ex.e_lblk > list->extents[i].e_lblk ? add_ex.e_lblk - list->extents[i].e_lblk : 0; } if (add_ex.e_len && !del) { make_room(list, list->count); list->extents[list->count - 1] = add_ex; } ex_sort_and_merge(list); /* Mark all occupied blocks allocated */ for (i = 0; i < list->count; i++) ext2fs_mark_block_bitmap_range2(ctx->fs->block_map, list->extents[i].e_pblk, list->extents[i].e_len); ext2fs_mark_bb_dirty(ctx->fs); return 0; } static int ext4_add_extent_to_list(e2fsck_t ctx, struct extent_list *list, struct ext2fs_extent *ex) { return ext4_modify_extent_list(ctx, list, ex, 0 /* add */); } static int ext4_del_extent_from_list(e2fsck_t ctx, struct extent_list *list, struct ext2fs_extent *ex) { return ext4_modify_extent_list(ctx, list, ex, 1 /* delete */); } static int ext4_fc_read_extents(e2fsck_t ctx, ext2_ino_t ino) { struct extent_list *extent_list = &ctx->fc_replay_state.fc_extent_list; if (extent_list->ino == ino) return 0; extent_list->ino = ino; return errcode_to_errno(e2fsck_read_extents(ctx, extent_list)); } /* * Flush extents in replay state on disk. @ino is the inode that is going * to be processed next. So, we hold back flushing of the extent list * if the next inode that's going to be processed is same as the one with * cached extents in our replay state. That allows us to gather multiple extents * for the inode so that we can flush all of them at once and it also saves us * from continuously growing and shrinking the extent tree. */ static void ext4_fc_flush_extents(e2fsck_t ctx, ext2_ino_t ino) { struct extent_list *extent_list = &ctx->fc_replay_state.fc_extent_list; if (extent_list->ino == ino || extent_list->ino == 0) return; e2fsck_rewrite_extent_tree(ctx, extent_list); ext2fs_free_mem(&extent_list->extents); memset(extent_list, 0, sizeof(*extent_list)); } /* Helper struct for dentry replay routines */ struct dentry_info_args { ext2_ino_t parent_ino; ext2_ino_t ino; int dname_len; char *dname; }; static inline int tl_to_darg(struct dentry_info_args *darg, struct ext4_fc_tl *tl, __u8 *val) { struct ext4_fc_dentry_info fcd; memcpy(&fcd, val, sizeof(fcd)); darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); darg->ino = le32_to_cpu(fcd.fc_ino); darg->dname_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_dentry_info); darg->dname = malloc(darg->dname_len + 1); if (!darg->dname) return -ENOMEM; memcpy(darg->dname, val + sizeof(struct ext4_fc_dentry_info), darg->dname_len); darg->dname[darg->dname_len] = 0; jbd_debug(1, "%s: %s, ino %u, parent %u\n", le16_to_cpu(tl->fc_tag) == EXT4_FC_TAG_CREAT ? "create" : (le16_to_cpu(tl->fc_tag) == EXT4_FC_TAG_LINK ? "link" : (le16_to_cpu(tl->fc_tag) == EXT4_FC_TAG_UNLINK ? "unlink" : "error")), darg->dname, darg->ino, darg->parent_ino); return 0; } static int ext4_fc_handle_unlink(e2fsck_t ctx, struct ext4_fc_tl *tl, __u8 *val) { struct dentry_info_args darg; int ret; ret = tl_to_darg(&darg, tl, val); if (ret) return ret; ext4_fc_flush_extents(ctx, darg.ino); ret = errcode_to_errno(ext2fs_unlink(ctx->fs, darg.parent_ino, darg.dname, darg.ino, 0)); /* It's okay if the above call fails */ free(darg.dname); return ret; } static int ext4_fc_handle_link_and_create(e2fsck_t ctx, struct ext4_fc_tl *tl, __u8 *val) { struct dentry_info_args darg; ext2_filsys fs = ctx->fs; struct ext2_inode_large inode_large; int ret, filetype, mode; ret = tl_to_darg(&darg, tl, val); if (ret) return ret; ext4_fc_flush_extents(ctx, 0); ret = errcode_to_errno(ext2fs_read_inode(fs, darg.ino, (struct ext2_inode *)&inode_large)); if (ret) goto out; mode = inode_large.i_mode; if (LINUX_S_ISREG(mode)) filetype = EXT2_FT_REG_FILE; else if (LINUX_S_ISDIR(mode)) filetype = EXT2_FT_DIR; else if (LINUX_S_ISCHR(mode)) filetype = EXT2_FT_CHRDEV; else if (LINUX_S_ISBLK(mode)) filetype = EXT2_FT_BLKDEV; else if (LINUX_S_ISLNK(mode)) return EXT2_FT_SYMLINK; else if (LINUX_S_ISFIFO(mode)) filetype = EXT2_FT_FIFO; else if (LINUX_S_ISSOCK(mode)) filetype = EXT2_FT_SOCK; else { ret = -EINVAL; goto out; } /* * Forcefully unlink if the same name is present and ignore the error * if any, since this dirent might not exist */ ext2fs_unlink(fs, darg.parent_ino, darg.dname, darg.ino, EXT2FS_UNLINK_FORCE); ret = errcode_to_errno( ext2fs_link(fs, darg.parent_ino, darg.dname, darg.ino, filetype)); out: free(darg.dname); return ret; } /* This function fixes the i_blocks field in the replayed indoe */ static void ext4_fc_replay_fixup_iblocks(struct ext2_inode_large *ondisk_inode, struct ext2_inode_large *fc_inode) { if (ondisk_inode->i_flags & EXT4_EXTENTS_FL) { struct ext3_extent_header *eh; eh = (struct ext3_extent_header *)(&ondisk_inode->i_block[0]); if (le16_to_cpu(eh->eh_magic) != EXT3_EXT_MAGIC) { memset(eh, 0, sizeof(*eh)); eh->eh_magic = cpu_to_le16(EXT3_EXT_MAGIC); eh->eh_max = cpu_to_le16( (sizeof(ondisk_inode->i_block) - sizeof(struct ext3_extent_header)) / sizeof(struct ext3_extent)); } } else if (ondisk_inode->i_flags & EXT4_INLINE_DATA_FL) { memcpy(ondisk_inode->i_block, fc_inode->i_block, sizeof(fc_inode->i_block)); } } static int ext4_fc_handle_inode(e2fsck_t ctx, __u8 *val) { int ino, inode_len = EXT2_GOOD_OLD_INODE_SIZE; struct ext2_inode_large *inode = NULL, *fc_inode = NULL; __le32 fc_ino; __u8 *fc_raw_inode; errcode_t err; blk64_t blks; memcpy(&fc_ino, val, sizeof(fc_ino)); fc_raw_inode = val + sizeof(fc_ino); ino = le32_to_cpu(fc_ino); if (EXT2_INODE_SIZE(ctx->fs->super) > EXT2_GOOD_OLD_INODE_SIZE) { __u16 extra_isize = ext2fs_le16_to_cpu( ((struct ext2_inode_large *)fc_raw_inode)->i_extra_isize); if ((extra_isize < (sizeof(inode->i_extra_isize) + sizeof(inode->i_checksum_hi))) || (extra_isize > (EXT2_INODE_SIZE(ctx->fs->super) - EXT2_GOOD_OLD_INODE_SIZE))) { err = EFSCORRUPTED; goto out; } inode_len += extra_isize; } err = ext2fs_get_mem(inode_len, &inode); if (err) goto out; err = ext2fs_get_mem(inode_len, &fc_inode); if (err) goto out; ext4_fc_flush_extents(ctx, ino); err = ext2fs_read_inode_full(ctx->fs, ino, (struct ext2_inode *)inode, inode_len); if (err) goto out; memcpy(fc_inode, fc_raw_inode, inode_len); #ifdef WORDS_BIGENDIAN ext2fs_swap_inode_full(ctx->fs, fc_inode, fc_inode, 0, inode_len); #endif memcpy(inode, fc_inode, offsetof(struct ext2_inode_large, i_block)); memcpy(&inode->i_generation, &fc_inode->i_generation, inode_len - offsetof(struct ext2_inode_large, i_generation)); ext4_fc_replay_fixup_iblocks(inode, fc_inode); err = ext2fs_count_blocks(ctx->fs, ino, EXT2_INODE(inode), &blks); if (err) goto out; ext2fs_iblk_set(ctx->fs, EXT2_INODE(inode), blks); ext2fs_inode_csum_set(ctx->fs, ino, inode); err = ext2fs_write_inode_full(ctx->fs, ino, (struct ext2_inode *)inode, inode_len); if (err) goto out; if (inode->i_links_count) ext2fs_mark_inode_bitmap2(ctx->fs->inode_map, ino); else ext2fs_unmark_inode_bitmap2(ctx->fs->inode_map, ino); ext2fs_mark_ib_dirty(ctx->fs); out: ext2fs_free_mem(&inode); ext2fs_free_mem(&fc_inode); return errcode_to_errno(err); } /* * Handle add extent replay tag. */ static int ext4_fc_handle_add_extent(e2fsck_t ctx, __u8 *val) { struct ext2fs_extent extent; struct ext4_fc_add_range add_range; ext2_ino_t ino; int ret = 0; memcpy(&add_range, val, sizeof(add_range)); ino = le32_to_cpu(add_range.fc_ino); ext4_fc_flush_extents(ctx, ino); ret = ext4_fc_read_extents(ctx, ino); if (ret) return ret; memset(&extent, 0, sizeof(extent)); ret = errcode_to_errno(ext2fs_decode_extent( &extent, (void *)add_range.fc_ex, sizeof(add_range.fc_ex))); if (ret) return ret; return ext4_add_extent_to_list(ctx, &ctx->fc_replay_state.fc_extent_list, &extent); } /* * Handle delete logical range replay tag. */ static int ext4_fc_handle_del_range(e2fsck_t ctx, __u8 *val) { struct ext2fs_extent extent; struct ext4_fc_del_range del_range; int ret, ino; memcpy(&del_range, val, sizeof(del_range)); ino = le32_to_cpu(del_range.fc_ino); ext4_fc_flush_extents(ctx, ino); memset(&extent, 0, sizeof(extent)); extent.e_lblk = le32_to_cpu(del_range.fc_lblk); extent.e_len = le32_to_cpu(del_range.fc_len); ret = ext4_fc_read_extents(ctx, ino); if (ret) return ret; return ext4_del_extent_from_list(ctx, &ctx->fc_replay_state.fc_extent_list, &extent); } /* * Main recovery path entry point. This function returns JBD2_FC_REPLAY_CONTINUE * to indicate that it is expecting more fast commit blocks. It returns * JBD2_FC_REPLAY_STOP to indicate that replay is done. */ static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, enum passtype pass, int off, tid_t expected_tid) { e2fsck_t ctx = journal->j_fs_dev->k_ctx; struct e2fsck_fc_replay_state *state = &ctx->fc_replay_state; int ret = JBD2_FC_REPLAY_CONTINUE; struct ext4_fc_tl tl; __u8 *start, *end, *cur, *val; if (pass == PASS_SCAN) { state->fc_current_pass = PASS_SCAN; return ext4_fc_replay_scan(journal, bh, off, expected_tid); } if (state->fc_replay_num_tags == 0) goto replay_done; if (state->fc_current_pass != pass) { /* Starting replay phase */ state->fc_current_pass = pass; /* We will reset checksums */ ctx->fs->flags |= EXT2_FLAG_IGNORE_CSUM_ERRORS; ret = errcode_to_errno(ext2fs_read_bitmaps(ctx->fs)); if (ret) { jbd_debug(1, "Error %d while reading bitmaps\n", ret); return ret; } state->fc_super_state = ctx->fs->super->s_state; /* * Mark the file system to indicate it contains errors. That's * because the updates performed by fast commit replay code are * not atomic and may result in inconsistent file system if it * crashes before the replay is complete. */ ctx->fs->super->s_state |= EXT2_ERROR_FS; ctx->fs->super->s_state |= EXT4_FC_REPLAY; ext2fs_mark_super_dirty(ctx->fs); ext2fs_flush(ctx->fs); } start = (__u8 *)bh->b_data; end = (__u8 *)bh->b_data + journal->j_blocksize - 1; for (cur = start; cur < end; cur = cur + le16_to_cpu(tl.fc_len) + sizeof(tl)) { memcpy(&tl, cur, sizeof(tl)); val = cur + sizeof(tl); if (state->fc_replay_num_tags == 0) goto replay_done; jbd_debug(3, "Replay phase processing %s tag\n", tag2str(le16_to_cpu(tl.fc_tag))); state->fc_replay_num_tags--; switch (le16_to_cpu(tl.fc_tag)) { case EXT4_FC_TAG_CREAT: case EXT4_FC_TAG_LINK: ret = ext4_fc_handle_link_and_create(ctx, &tl, val); break; case EXT4_FC_TAG_UNLINK: ret = ext4_fc_handle_unlink(ctx, &tl, val); break; case EXT4_FC_TAG_ADD_RANGE: ret = ext4_fc_handle_add_extent(ctx, val); break; case EXT4_FC_TAG_DEL_RANGE: ret = ext4_fc_handle_del_range(ctx, val); break; case EXT4_FC_TAG_INODE: ret = ext4_fc_handle_inode(ctx, val); break; case EXT4_FC_TAG_TAIL: ext4_fc_flush_extents(ctx, 0); case EXT4_FC_TAG_PAD: case EXT4_FC_TAG_HEAD: break; default: ret = -ECANCELED; break; } if (ret < 0) break; ret = JBD2_FC_REPLAY_CONTINUE; } return ret; replay_done: jbd_debug(1, "End of fast commit replay\n"); if (state->fc_current_pass != pass) return JBD2_FC_REPLAY_STOP; ext2fs_calculate_summary_stats(ctx->fs, 0 /* update bg also */); ext2fs_write_block_bitmap(ctx->fs); ext2fs_write_inode_bitmap(ctx->fs); ext2fs_mark_super_dirty(ctx->fs); ext2fs_set_gdt_csum(ctx->fs); ctx->fs->super->s_state = state->fc_super_state; ext2fs_flush(ctx->fs); return JBD2_FC_REPLAY_STOP; } static errcode_t e2fsck_get_journal(e2fsck_t ctx, journal_t **ret_journal) { struct process_block_struct pb; struct ext2_super_block *sb = ctx->fs->super; struct ext2_super_block jsuper; struct problem_context pctx; struct buffer_head *bh; struct inode *j_inode = NULL; struct kdev_s *dev_fs = NULL, *dev_journal; const char *journal_name = 0; journal_t *journal = NULL; errcode_t retval = 0; io_manager io_ptr = 0; unsigned long long start = 0; int ret; int ext_journal = 0; int tried_backup_jnl = 0; clear_problem_context(&pctx); journal = e2fsck_allocate_memory(ctx, sizeof(journal_t), "journal"); if (!journal) { return EXT2_ET_NO_MEMORY; } dev_fs = e2fsck_allocate_memory(ctx, 2*sizeof(struct kdev_s), "kdev"); if (!dev_fs) { retval = EXT2_ET_NO_MEMORY; goto errout; } dev_journal = dev_fs+1; dev_fs->k_ctx = dev_journal->k_ctx = ctx; dev_fs->k_dev = K_DEV_FS; dev_journal->k_dev = K_DEV_JOURNAL; journal->j_dev = dev_journal; journal->j_fs_dev = dev_fs; journal->j_inode = NULL; journal->j_blocksize = ctx->fs->blocksize; if (uuid_is_null(sb->s_journal_uuid)) { /* * The full set of superblock sanity checks haven't * been performed yet, so we need to do some basic * checks here to avoid potential array overruns. */ if (!sb->s_journal_inum || (sb->s_journal_inum > (ctx->fs->group_desc_count * sb->s_inodes_per_group))) { retval = EXT2_ET_BAD_INODE_NUM; goto errout; } j_inode = e2fsck_allocate_memory(ctx, sizeof(*j_inode), "journal inode"); if (!j_inode) { retval = EXT2_ET_NO_MEMORY; goto errout; } j_inode->i_ctx = ctx; j_inode->i_ino = sb->s_journal_inum; if ((retval = ext2fs_read_inode(ctx->fs, sb->s_journal_inum, &j_inode->i_ext2))) { try_backup_journal: if (sb->s_jnl_backup_type != EXT3_JNL_BACKUP_BLOCKS || tried_backup_jnl) goto errout; memset(&j_inode->i_ext2, 0, sizeof(struct ext2_inode)); memcpy(&j_inode->i_ext2.i_block[0], sb->s_jnl_blocks, EXT2_N_BLOCKS*4); j_inode->i_ext2.i_size_high = sb->s_jnl_blocks[15]; j_inode->i_ext2.i_size = sb->s_jnl_blocks[16]; j_inode->i_ext2.i_links_count = 1; j_inode->i_ext2.i_mode = LINUX_S_IFREG | 0600; e2fsck_use_inode_shortcuts(ctx, 1); ctx->stashed_ino = j_inode->i_ino; ctx->stashed_inode = &j_inode->i_ext2; tried_backup_jnl++; } if (!j_inode->i_ext2.i_links_count || !LINUX_S_ISREG(j_inode->i_ext2.i_mode) || (j_inode->i_ext2.i_flags & EXT4_ENCRYPT_FL)) { retval = EXT2_ET_NO_JOURNAL; goto try_backup_journal; } if (EXT2_I_SIZE(&j_inode->i_ext2) / journal->j_blocksize < JBD2_MIN_JOURNAL_BLOCKS) { retval = EXT2_ET_JOURNAL_TOO_SMALL; goto try_backup_journal; } pb.last_block = -1; retval = ext2fs_block_iterate3(ctx->fs, j_inode->i_ino, BLOCK_FLAG_HOLE, 0, process_journal_block, &pb); if ((pb.last_block + 1) * ctx->fs->blocksize < (int) EXT2_I_SIZE(&j_inode->i_ext2)) { retval = EXT2_ET_JOURNAL_TOO_SMALL; goto try_backup_journal; } if (tried_backup_jnl && !(ctx->options & E2F_OPT_READONLY)) { retval = ext2fs_write_inode(ctx->fs, sb->s_journal_inum, &j_inode->i_ext2); if (retval) goto errout; } journal->j_total_len = EXT2_I_SIZE(&j_inode->i_ext2) / journal->j_blocksize; #ifdef USE_INODE_IO retval = ext2fs_inode_io_intern2(ctx->fs, sb->s_journal_inum, &j_inode->i_ext2, &journal_name); if (retval) goto errout; io_ptr = inode_io_manager; #else journal->j_inode = j_inode; ctx->journal_io = ctx->fs->io; if ((ret = jbd2_journal_bmap(journal, 0, &start)) != 0) { retval = (errcode_t) (-1 * ret); goto errout; } #endif } else { ext_journal = 1; if (!ctx->journal_name) { char uuid[37]; uuid_unparse(sb->s_journal_uuid, uuid); ctx->journal_name = blkid_get_devname(ctx->blkid, "UUID", uuid); if (!ctx->journal_name) ctx->journal_name = blkid_devno_to_devname(sb->s_journal_dev); } journal_name = ctx->journal_name; if (!journal_name) { fix_problem(ctx, PR_0_CANT_FIND_JOURNAL, &pctx); retval = EXT2_ET_LOAD_EXT_JOURNAL; goto errout; } jfs_debug(1, "Using journal file %s\n", journal_name); io_ptr = unix_io_manager; } #if 0 test_io_backing_manager = io_ptr; io_ptr = test_io_manager; #endif #ifndef USE_INODE_IO if (ext_journal) #endif { int flags = IO_FLAG_RW; if (!(ctx->mount_flags & EXT2_MF_ISROOT && ctx->mount_flags & EXT2_MF_READONLY)) flags |= IO_FLAG_EXCLUSIVE; if ((ctx->mount_flags & EXT2_MF_READONLY) && (ctx->options & E2F_OPT_FORCE)) flags &= ~IO_FLAG_EXCLUSIVE; retval = io_ptr->open(journal_name, flags, &ctx->journal_io); } if (retval) goto errout; io_channel_set_blksize(ctx->journal_io, ctx->fs->blocksize); if (ext_journal) { blk64_t maxlen; start = ext2fs_journal_sb_start(ctx->fs->blocksize) - 1; bh = getblk(dev_journal, start, ctx->fs->blocksize); if (!bh) { retval = EXT2_ET_NO_MEMORY; goto errout; } ll_rw_block(REQ_OP_READ, 0, 1, &bh); if ((retval = bh->b_err) != 0) { brelse(bh); goto errout; } memcpy(&jsuper, start ? bh->b_data : bh->b_data + SUPERBLOCK_OFFSET, sizeof(jsuper)); #ifdef WORDS_BIGENDIAN if (jsuper.s_magic == ext2fs_swab16(EXT2_SUPER_MAGIC)) ext2fs_swap_super(&jsuper); #endif if (jsuper.s_magic != EXT2_SUPER_MAGIC || !ext2fs_has_feature_journal_dev(&jsuper)) { fix_problem(ctx, PR_0_EXT_JOURNAL_BAD_SUPER, &pctx); retval = EXT2_ET_LOAD_EXT_JOURNAL; brelse(bh); goto errout; } /* Make sure the journal UUID is correct */ if (memcmp(jsuper.s_uuid, ctx->fs->super->s_journal_uuid, sizeof(jsuper.s_uuid))) { fix_problem(ctx, PR_0_JOURNAL_BAD_UUID, &pctx); retval = EXT2_ET_LOAD_EXT_JOURNAL; brelse(bh); goto errout; } /* Check the superblock checksum */ if (ext2fs_has_feature_metadata_csum(&jsuper)) { struct struct_ext2_filsys fsx; struct ext2_super_block superx; void *p; p = start ? bh->b_data : bh->b_data + SUPERBLOCK_OFFSET; memcpy(&fsx, ctx->fs, sizeof(fsx)); memcpy(&superx, ctx->fs->super, sizeof(superx)); fsx.super = &superx; ext2fs_set_feature_metadata_csum(fsx.super); if (!ext2fs_superblock_csum_verify(&fsx, p) && fix_problem(ctx, PR_0_EXT_JOURNAL_SUPER_CSUM_INVALID, &pctx)) { ext2fs_superblock_csum_set(&fsx, p); mark_buffer_dirty(bh); } } brelse(bh); maxlen = ext2fs_blocks_count(&jsuper); journal->j_total_len = (maxlen < 1ULL << 32) ? maxlen : (1ULL << 32) - 1; start++; } if (!(bh = getblk(dev_journal, start, journal->j_blocksize))) { retval = EXT2_ET_NO_MEMORY; goto errout; } journal->j_sb_buffer = bh; journal->j_superblock = (journal_superblock_t *)bh->b_data; if (ext2fs_has_feature_fast_commit(ctx->fs->super)) journal->j_fc_replay_callback = ext4_fc_replay; else journal->j_fc_replay_callback = NULL; #ifdef USE_INODE_IO if (j_inode) ext2fs_free_mem(&j_inode); #endif *ret_journal = journal; e2fsck_use_inode_shortcuts(ctx, 0); return 0; errout: e2fsck_use_inode_shortcuts(ctx, 0); if (dev_fs) ext2fs_free_mem(&dev_fs); if (j_inode) ext2fs_free_mem(&j_inode); if (journal) ext2fs_free_mem(&journal); return retval; } static errcode_t e2fsck_journal_fix_bad_inode(e2fsck_t ctx, struct problem_context *pctx) { struct ext2_super_block *sb = ctx->fs->super; int recover = ext2fs_has_feature_journal_needs_recovery(ctx->fs->super); int has_journal = ext2fs_has_feature_journal(ctx->fs->super); if (has_journal || sb->s_journal_inum) { /* The journal inode is bogus, remove and force full fsck */ pctx->ino = sb->s_journal_inum; if (fix_problem(ctx, PR_0_JOURNAL_BAD_INODE, pctx)) { if (has_journal && sb->s_journal_inum) printf("*** journal has been deleted ***\n\n"); ext2fs_clear_feature_journal(sb); sb->s_journal_inum = 0; memset(sb->s_jnl_blocks, 0, sizeof(sb->s_jnl_blocks)); ctx->flags |= E2F_FLAG_JOURNAL_INODE; ctx->fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY; e2fsck_clear_recover(ctx, 1); return 0; } return EXT2_ET_CORRUPT_JOURNAL_SB; } else if (recover) { if (fix_problem(ctx, PR_0_JOURNAL_RECOVER_SET, pctx)) { e2fsck_clear_recover(ctx, 1); return 0; } return EXT2_ET_UNSUPP_FEATURE; } return 0; } #define V1_SB_SIZE 0x0024 static void clear_v2_journal_fields(journal_t *journal) { e2fsck_t ctx = journal->j_dev->k_ctx; struct problem_context pctx; clear_problem_context(&pctx); if (!fix_problem(ctx, PR_0_CLEAR_V2_JOURNAL, &pctx)) return; ctx->flags |= E2F_FLAG_PROBLEMS_FIXED; memset(((char *) journal->j_superblock) + V1_SB_SIZE, 0, ctx->fs->blocksize-V1_SB_SIZE); mark_buffer_dirty(journal->j_sb_buffer); } static errcode_t e2fsck_journal_load(journal_t *journal) { e2fsck_t ctx = journal->j_dev->k_ctx; journal_superblock_t *jsb; struct buffer_head *jbh = journal->j_sb_buffer; struct problem_context pctx; clear_problem_context(&pctx); ll_rw_block(REQ_OP_READ, 0, 1, &jbh); if (jbh->b_err) { com_err(ctx->device_name, jbh->b_err, "%s", _("reading journal superblock\n")); return jbh->b_err; } jsb = journal->j_superblock; /* If we don't even have JBD2_MAGIC, we probably have a wrong inode */ if (jsb->s_header.h_magic != htonl(JBD2_MAGIC_NUMBER)) return e2fsck_journal_fix_bad_inode(ctx, &pctx); switch (ntohl(jsb->s_header.h_blocktype)) { case JBD2_SUPERBLOCK_V1: journal->j_format_version = 1; if (jsb->s_feature_compat || jsb->s_feature_incompat || jsb->s_feature_ro_compat || jsb->s_nr_users) clear_v2_journal_fields(journal); break; case JBD2_SUPERBLOCK_V2: journal->j_format_version = 2; if (ntohl(jsb->s_nr_users) > 1 && uuid_is_null(ctx->fs->super->s_journal_uuid)) clear_v2_journal_fields(journal); if (ntohl(jsb->s_nr_users) > 1) { fix_problem(ctx, PR_0_JOURNAL_UNSUPP_MULTIFS, &pctx); return EXT2_ET_JOURNAL_UNSUPP_VERSION; } break; /* * These should never appear in a journal super block, so if * they do, the journal is badly corrupted. */ case JBD2_DESCRIPTOR_BLOCK: case JBD2_COMMIT_BLOCK: case JBD2_REVOKE_BLOCK: return EXT2_ET_CORRUPT_JOURNAL_SB; /* If we don't understand the superblock major type, but there * is a magic number, then it is likely to be a new format we * just don't understand, so leave it alone. */ default: return EXT2_ET_JOURNAL_UNSUPP_VERSION; } if (JBD2_HAS_INCOMPAT_FEATURE(journal, ~JBD2_KNOWN_INCOMPAT_FEATURES)) return EXT2_ET_UNSUPP_FEATURE; if (JBD2_HAS_RO_COMPAT_FEATURE(journal, ~JBD2_KNOWN_ROCOMPAT_FEATURES)) return EXT2_ET_RO_UNSUPP_FEATURE; /* Checksum v1-3 are mutually exclusive features. */ if (jbd2_has_feature_csum2(journal) && jbd2_has_feature_csum3(journal)) return EXT2_ET_CORRUPT_JOURNAL_SB; if (jbd2_journal_has_csum_v2or3(journal) && jbd2_has_feature_checksum(journal)) return EXT2_ET_CORRUPT_JOURNAL_SB; if (!e2fsck_journal_verify_csum_type(journal, jsb) || !e2fsck_journal_sb_csum_verify(journal, jsb)) return EXT2_ET_CORRUPT_JOURNAL_SB; if (jbd2_journal_has_csum_v2or3(journal)) journal->j_csum_seed = jbd2_chksum(journal, ~0, jsb->s_uuid, sizeof(jsb->s_uuid)); /* We have now checked whether we know enough about the journal * format to be able to proceed safely, so any other checks that * fail we should attempt to recover from. */ if (jsb->s_blocksize != htonl(journal->j_blocksize)) { com_err(ctx->program_name, EXT2_ET_CORRUPT_JOURNAL_SB, _("%s: no valid journal superblock found\n"), ctx->device_name); return EXT2_ET_CORRUPT_JOURNAL_SB; } if (ntohl(jsb->s_maxlen) < journal->j_total_len) journal->j_total_len = ntohl(jsb->s_maxlen); else if (ntohl(jsb->s_maxlen) > journal->j_total_len) { com_err(ctx->program_name, EXT2_ET_CORRUPT_JOURNAL_SB, _("%s: journal too short\n"), ctx->device_name); return EXT2_ET_CORRUPT_JOURNAL_SB; } journal->j_tail_sequence = ntohl(jsb->s_sequence); journal->j_transaction_sequence = journal->j_tail_sequence; journal->j_tail = ntohl(jsb->s_start); journal->j_first = ntohl(jsb->s_first); if (jbd2_has_feature_fast_commit(journal)) { if (ntohl(jsb->s_maxlen) - jbd2_journal_get_num_fc_blks(jsb) < JBD2_MIN_JOURNAL_BLOCKS) { com_err(ctx->program_name, EXT2_ET_CORRUPT_JOURNAL_SB, _("%s: incorrect fast commit blocks\n"), ctx->device_name); return EXT2_ET_CORRUPT_JOURNAL_SB; } journal->j_fc_last = ntohl(jsb->s_maxlen); journal->j_last = journal->j_fc_last - jbd2_journal_get_num_fc_blks(jsb); journal->j_fc_first = journal->j_last + 1; } else { journal->j_last = ntohl(jsb->s_maxlen); } return 0; } static void e2fsck_journal_reset_super(e2fsck_t ctx, journal_superblock_t *jsb, journal_t *journal) { char *p; union { uuid_t uuid; __u32 val[4]; } u; __u32 new_seq = 0; int i; /* Leave a valid existing V1 superblock signature alone. * Anything unrecognisable we overwrite with a new V2 * signature. */ if (jsb->s_header.h_magic != htonl(JBD2_MAGIC_NUMBER) || jsb->s_header.h_blocktype != htonl(JBD2_SUPERBLOCK_V1)) { jsb->s_header.h_magic = htonl(JBD2_MAGIC_NUMBER); jsb->s_header.h_blocktype = htonl(JBD2_SUPERBLOCK_V2); } /* Zero out everything else beyond the superblock header */ p = ((char *) jsb) + sizeof(journal_header_t); memset (p, 0, ctx->fs->blocksize-sizeof(journal_header_t)); jsb->s_blocksize = htonl(ctx->fs->blocksize); jsb->s_maxlen = htonl(journal->j_total_len); jsb->s_first = htonl(1); /* Initialize the journal sequence number so that there is "no" * chance we will find old "valid" transactions in the journal. * This avoids the need to zero the whole journal (slow to do, * and risky when we are just recovering the filesystem). */ uuid_generate(u.uuid); for (i = 0; i < 4; i ++) new_seq ^= u.val[i]; jsb->s_sequence = htonl(new_seq); e2fsck_journal_sb_csum_set(journal, jsb); mark_buffer_dirty(journal->j_sb_buffer); ll_rw_block(REQ_OP_WRITE, 0, 1, &journal->j_sb_buffer); } static errcode_t e2fsck_journal_fix_corrupt_super(e2fsck_t ctx, journal_t *journal, struct problem_context *pctx) { struct ext2_super_block *sb = ctx->fs->super; int recover = ext2fs_has_feature_journal_needs_recovery(ctx->fs->super); if (ext2fs_has_feature_journal(sb)) { if (fix_problem(ctx, PR_0_JOURNAL_BAD_SUPER, pctx)) { e2fsck_journal_reset_super(ctx, journal->j_superblock, journal); journal->j_transaction_sequence = 1; e2fsck_clear_recover(ctx, recover); return 0; } return EXT2_ET_CORRUPT_JOURNAL_SB; } else if (e2fsck_journal_fix_bad_inode(ctx, pctx)) return EXT2_ET_CORRUPT_JOURNAL_SB; return 0; } static void e2fsck_journal_release(e2fsck_t ctx, journal_t *journal, int reset, int drop) { journal_superblock_t *jsb; if (drop) mark_buffer_clean(journal->j_sb_buffer); else if (!(ctx->options & E2F_OPT_READONLY)) { jsb = journal->j_superblock; jsb->s_sequence = htonl(journal->j_tail_sequence); if (reset) jsb->s_start = 0; /* this marks the journal as empty */ e2fsck_journal_sb_csum_set(journal, jsb); mark_buffer_dirty(journal->j_sb_buffer); } brelse(journal->j_sb_buffer); if (ctx->journal_io) { if (ctx->fs && ctx->fs->io != ctx->journal_io) io_channel_close(ctx->journal_io); ctx->journal_io = 0; } #ifndef USE_INODE_IO if (journal->j_inode) ext2fs_free_mem(&journal->j_inode); #endif if (journal->j_fs_dev) ext2fs_free_mem(&journal->j_fs_dev); ext2fs_free_mem(&journal); } /* * This function makes sure that the superblock fields regarding the * journal are consistent. */ errcode_t e2fsck_check_ext3_journal(e2fsck_t ctx) { struct ext2_super_block *sb = ctx->fs->super; journal_t *journal; int recover = ext2fs_has_feature_journal_needs_recovery(ctx->fs->super); struct problem_context pctx; problem_t problem; int reset = 0, force_fsck = 0; errcode_t retval; /* If we don't have any journal features, don't do anything more */ if (!ext2fs_has_feature_journal(sb) && !recover && sb->s_journal_inum == 0 && sb->s_journal_dev == 0 && uuid_is_null(sb->s_journal_uuid)) return 0; clear_problem_context(&pctx); pctx.num = sb->s_journal_inum; retval = e2fsck_get_journal(ctx, &journal); if (retval) { if ((retval == EXT2_ET_BAD_INODE_NUM) || (retval == EXT2_ET_BAD_BLOCK_NUM) || (retval == EXT2_ET_JOURNAL_TOO_SMALL) || (retval == EXT2_ET_NO_JOURNAL)) return e2fsck_journal_fix_bad_inode(ctx, &pctx); return retval; } retval = e2fsck_journal_load(journal); if (retval) { if ((retval == EXT2_ET_CORRUPT_JOURNAL_SB) || ((retval == EXT2_ET_UNSUPP_FEATURE) && (!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_INCOMPAT, &pctx))) || ((retval == EXT2_ET_RO_UNSUPP_FEATURE) && (!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_ROCOMPAT, &pctx))) || ((retval == EXT2_ET_JOURNAL_UNSUPP_VERSION) && (!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_VERSION, &pctx)))) retval = e2fsck_journal_fix_corrupt_super(ctx, journal, &pctx); e2fsck_journal_release(ctx, journal, 0, 1); return retval; } /* * We want to make the flags consistent here. We will not leave with * needs_recovery set but has_journal clear. We can't get in a loop * with -y, -n, or -p, only if a user isn't making up their mind. */ no_has_journal: if (!ext2fs_has_feature_journal(sb)) { recover = ext2fs_has_feature_journal_needs_recovery(sb); if (fix_problem(ctx, PR_0_JOURNAL_HAS_JOURNAL, &pctx)) { if (recover && !fix_problem(ctx, PR_0_JOURNAL_RECOVER_SET, &pctx)) goto no_has_journal; /* * Need a full fsck if we are releasing a * journal stored on a reserved inode. */ force_fsck = recover || (sb->s_journal_inum < EXT2_FIRST_INODE(sb)); /* Clear all of the journal fields */ sb->s_journal_inum = 0; sb->s_journal_dev = 0; memset(sb->s_journal_uuid, 0, sizeof(sb->s_journal_uuid)); e2fsck_clear_recover(ctx, force_fsck); } else if (!(ctx->options & E2F_OPT_READONLY)) { ext2fs_set_feature_journal(sb); ctx->fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY; ext2fs_mark_super_dirty(ctx->fs); } } if (ext2fs_has_feature_journal(sb) && !ext2fs_has_feature_journal_needs_recovery(sb) && journal->j_superblock->s_start != 0) { /* Print status information */ fix_problem(ctx, PR_0_JOURNAL_RECOVERY_CLEAR, &pctx); if (ctx->superblock) problem = PR_0_JOURNAL_RUN_DEFAULT; else problem = PR_0_JOURNAL_RUN; if (fix_problem(ctx, problem, &pctx)) { ctx->options |= E2F_OPT_FORCE; ext2fs_set_feature_journal_needs_recovery(sb); ext2fs_mark_super_dirty(ctx->fs); } else if (fix_problem(ctx, PR_0_JOURNAL_RESET_JOURNAL, &pctx)) { reset = 1; sb->s_state &= ~EXT2_VALID_FS; ext2fs_mark_super_dirty(ctx->fs); } /* * If the user answers no to the above question, we * ignore the fact that journal apparently has data; * accidentally replaying over valid data would be far * worse than skipping a questionable recovery. * * XXX should we abort with a fatal error here? What * will the ext3 kernel code do if a filesystem with * !NEEDS_RECOVERY but with a non-zero * journal->j_superblock->s_start is mounted? */ } /* * If we don't need to do replay the journal, check to see if * the journal's errno is set; if so, we need to mark the file * system as being corrupt and clear the journal's s_errno. */ if (!ext2fs_has_feature_journal_needs_recovery(sb) && journal->j_superblock->s_errno) { ctx->fs->super->s_state |= EXT2_ERROR_FS; ext2fs_mark_super_dirty(ctx->fs); journal->j_superblock->s_errno = 0; e2fsck_journal_sb_csum_set(journal, journal->j_superblock); mark_buffer_dirty(journal->j_sb_buffer); } e2fsck_journal_release(ctx, journal, reset, 0); return retval; } static errcode_t recover_ext3_journal(e2fsck_t ctx) { struct problem_context pctx; journal_t *journal; errcode_t retval; clear_problem_context(&pctx); retval = jbd2_journal_init_revoke_record_cache(); if (retval) return retval; retval = jbd2_journal_init_revoke_table_cache(); if (retval) return retval; retval = e2fsck_get_journal(ctx, &journal); if (retval) return retval; retval = e2fsck_journal_load(journal); if (retval) goto errout; retval = jbd2_journal_init_revoke(journal, 1024); if (retval) goto errout; retval = -jbd2_journal_recover(journal); if (retval) goto errout; if (journal->j_failed_commit) { pctx.ino = journal->j_failed_commit; fix_problem(ctx, PR_0_JNL_TXN_CORRUPT, &pctx); journal->j_superblock->s_errno = -EINVAL; mark_buffer_dirty(journal->j_sb_buffer); } journal->j_tail_sequence = journal->j_transaction_sequence; errout: jbd2_journal_destroy_revoke(journal); jbd2_journal_destroy_revoke_record_cache(); jbd2_journal_destroy_revoke_table_cache(); e2fsck_journal_release(ctx, journal, 1, 0); return retval; } errcode_t e2fsck_run_ext3_journal(e2fsck_t ctx) { io_manager io_ptr = ctx->fs->io->manager; int blocksize = ctx->fs->blocksize; errcode_t retval, recover_retval; io_stats stats = 0; unsigned long long kbytes_written = 0; printf(_("%s: recovering journal\n"), ctx->device_name); if (ctx->options & E2F_OPT_READONLY) { printf(_("%s: won't do journal recovery while read-only\n"), ctx->device_name); return EXT2_ET_FILE_RO; } if (ctx->fs->flags & EXT2_FLAG_DIRTY) ext2fs_flush(ctx->fs); /* Force out any modifications */ recover_retval = recover_ext3_journal(ctx); /* * Reload the filesystem context to get up-to-date data from disk * because journal recovery will change the filesystem under us. */ if (ctx->fs->super->s_kbytes_written && ctx->fs->io->manager->get_stats) ctx->fs->io->manager->get_stats(ctx->fs->io, &stats); if (stats && stats->bytes_written) kbytes_written = stats->bytes_written >> 10; ext2fs_mmp_stop(ctx->fs); ext2fs_free(ctx->fs); retval = ext2fs_open(ctx->filesystem_name, ctx->openfs_flags, ctx->superblock, blocksize, io_ptr, &ctx->fs); if (retval) { com_err(ctx->program_name, retval, _("while trying to re-open %s"), ctx->device_name); fatal_error(ctx, 0); } ctx->fs->priv_data = ctx; ctx->fs->now = ctx->now; ctx->fs->flags |= EXT2_FLAG_MASTER_SB_ONLY; ctx->fs->super->s_kbytes_written += kbytes_written; /* Set the superblock flags */ e2fsck_clear_recover(ctx, recover_retval != 0); /* * Do one last sanity check, and propagate journal->s_errno to * the EXT2_ERROR_FS flag in the fs superblock if needed. */ retval = e2fsck_check_ext3_journal(ctx); return retval ? retval : recover_retval; } /* * This function will move the journal inode from a visible file in * the filesystem directory hierarchy to the reserved inode if necessary. */ static const char * const journal_names[] = { ".journal", "journal", ".journal.dat", "journal.dat", 0 }; void e2fsck_move_ext3_journal(e2fsck_t ctx) { struct ext2_super_block *sb = ctx->fs->super; struct problem_context pctx; struct ext2_inode inode; ext2_filsys fs = ctx->fs; ext2_ino_t ino; errcode_t retval; const char * const * cpp; dgrp_t group; int mount_flags; clear_problem_context(&pctx); /* * If the filesystem is opened read-only, or there is no * journal, then do nothing. */ if ((ctx->options & E2F_OPT_READONLY) || (sb->s_journal_inum == 0) || !ext2fs_has_feature_journal(sb)) return; /* * Read in the journal inode */ if (ext2fs_read_inode(fs, sb->s_journal_inum, &inode) != 0) return; /* * If it's necessary to backup the journal inode, do so. */ if ((sb->s_jnl_backup_type == 0) || ((sb->s_jnl_backup_type == EXT3_JNL_BACKUP_BLOCKS) && memcmp(inode.i_block, sb->s_jnl_blocks, EXT2_N_BLOCKS*4))) { if (fix_problem(ctx, PR_0_BACKUP_JNL, &pctx)) { memcpy(sb->s_jnl_blocks, inode.i_block, EXT2_N_BLOCKS*4); sb->s_jnl_blocks[15] = inode.i_size_high; sb->s_jnl_blocks[16] = inode.i_size; sb->s_jnl_backup_type = EXT3_JNL_BACKUP_BLOCKS; ext2fs_mark_super_dirty(fs); fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY; } } /* * If the journal is already the hidden inode, then do nothing */ if (sb->s_journal_inum == EXT2_JOURNAL_INO) return; /* * The journal inode had better have only one link and not be readable. */ if (inode.i_links_count != 1) return; /* * If the filesystem is mounted, or we can't tell whether * or not it's mounted, do nothing. */ retval = ext2fs_check_if_mounted(ctx->filesystem_name, &mount_flags); if (retval || (mount_flags & EXT2_MF_MOUNTED)) return; /* * If we can't find the name of the journal inode, then do * nothing. */ for (cpp = journal_names; *cpp; cpp++) { retval = ext2fs_lookup(fs, EXT2_ROOT_INO, *cpp, strlen(*cpp), 0, &ino); if ((retval == 0) && (ino == sb->s_journal_inum)) break; } if (*cpp == 0) return; /* We need the inode bitmap to be loaded */ retval = ext2fs_read_bitmaps(fs); if (retval) return; pctx.str = *cpp; if (!fix_problem(ctx, PR_0_MOVE_JOURNAL, &pctx)) return; /* * OK, we've done all the checks, let's actually move the * journal inode. Errors at this point mean we need to force * an ext2 filesystem check. */ if ((retval = ext2fs_unlink(fs, EXT2_ROOT_INO, *cpp, ino, 0)) != 0) goto err_out; if ((retval = ext2fs_write_inode(fs, EXT2_JOURNAL_INO, &inode)) != 0) goto err_out; sb->s_journal_inum = EXT2_JOURNAL_INO; ext2fs_mark_super_dirty(fs); fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY; inode.i_links_count = 0; inode.i_dtime = ctx->now; if ((retval = ext2fs_write_inode(fs, ino, &inode)) != 0) goto err_out; group = ext2fs_group_of_ino(fs, ino); ext2fs_unmark_inode_bitmap2(fs->inode_map, ino); ext2fs_mark_ib_dirty(fs); ext2fs_bg_free_inodes_count_set(fs, group, ext2fs_bg_free_inodes_count(fs, group) + 1); ext2fs_group_desc_csum_set(fs, group); fs->super->s_free_inodes_count++; return; err_out: pctx.errcode = retval; fix_problem(ctx, PR_0_ERR_MOVE_JOURNAL, &pctx); fs->super->s_state &= ~EXT2_VALID_FS; ext2fs_mark_super_dirty(fs); return; } /* * This function makes sure the superblock hint for the external * journal is correct. */ int e2fsck_fix_ext3_journal_hint(e2fsck_t ctx) { struct ext2_super_block *sb = ctx->fs->super; struct problem_context pctx; char uuid[37], *journal_name; struct stat st; if (!ext2fs_has_feature_journal(sb) || uuid_is_null(sb->s_journal_uuid)) return 0; uuid_unparse(sb->s_journal_uuid, uuid); journal_name = blkid_get_devname(ctx->blkid, "UUID", uuid); if (!journal_name) return 0; if (stat(journal_name, &st) < 0) { free(journal_name); return 0; } if (st.st_rdev != sb->s_journal_dev) { clear_problem_context(&pctx); pctx.num = st.st_rdev; if (fix_problem(ctx, PR_0_EXTERNAL_JOURNAL_HINT, &pctx)) { sb->s_journal_dev = st.st_rdev; ext2fs_mark_super_dirty(ctx->fs); } } free(journal_name); return 0; }