diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /intl/icu/source/i18n/nfrs.cpp | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'intl/icu/source/i18n/nfrs.cpp')
-rw-r--r-- | intl/icu/source/i18n/nfrs.cpp | 1035 |
1 files changed, 1035 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/nfrs.cpp b/intl/icu/source/i18n/nfrs.cpp new file mode 100644 index 0000000000..1f4b9b9d29 --- /dev/null +++ b/intl/icu/source/i18n/nfrs.cpp @@ -0,0 +1,1035 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +****************************************************************************** +* Copyright (C) 1997-2015, International Business Machines +* Corporation and others. All Rights Reserved. +****************************************************************************** +* file name: nfrs.cpp +* encoding: UTF-8 +* tab size: 8 (not used) +* indentation:4 +* +* Modification history +* Date Name Comments +* 10/11/2001 Doug Ported from ICU4J +*/ + +#include "nfrs.h" + +#if U_HAVE_RBNF + +#include "unicode/uchar.h" +#include "nfrule.h" +#include "nfrlist.h" +#include "patternprops.h" +#include "putilimp.h" + +#ifdef RBNF_DEBUG +#include "cmemory.h" +#endif + +enum { + /** -x */ + NEGATIVE_RULE_INDEX = 0, + /** x.x */ + IMPROPER_FRACTION_RULE_INDEX = 1, + /** 0.x */ + PROPER_FRACTION_RULE_INDEX = 2, + /** x.0 */ + DEFAULT_RULE_INDEX = 3, + /** Inf */ + INFINITY_RULE_INDEX = 4, + /** NaN */ + NAN_RULE_INDEX = 5, + NON_NUMERICAL_RULE_LENGTH = 6 +}; + +U_NAMESPACE_BEGIN + +#if 0 +// euclid's algorithm works with doubles +// note, doubles only get us up to one quadrillion or so, which +// isn't as much range as we get with longs. We probably still +// want either 64-bit math, or BigInteger. + +static int64_t +util_lcm(int64_t x, int64_t y) +{ + x.abs(); + y.abs(); + + if (x == 0 || y == 0) { + return 0; + } else { + do { + if (x < y) { + int64_t t = x; x = y; y = t; + } + x -= y * (x/y); + } while (x != 0); + + return y; + } +} + +#else +/** + * Calculates the least common multiple of x and y. + */ +static int64_t +util_lcm(int64_t x, int64_t y) +{ + // binary gcd algorithm from Knuth, "The Art of Computer Programming," + // vol. 2, 1st ed., pp. 298-299 + int64_t x1 = x; + int64_t y1 = y; + + int p2 = 0; + while ((x1 & 1) == 0 && (y1 & 1) == 0) { + ++p2; + x1 >>= 1; + y1 >>= 1; + } + + int64_t t; + if ((x1 & 1) == 1) { + t = -y1; + } else { + t = x1; + } + + while (t != 0) { + while ((t & 1) == 0) { + t = t >> 1; + } + if (t > 0) { + x1 = t; + } else { + y1 = -t; + } + t = x1 - y1; + } + + int64_t gcd = x1 << p2; + + // x * y == gcd(x, y) * lcm(x, y) + return x / gcd * y; +} +#endif + +static const char16_t gPercent = 0x0025; +static const char16_t gColon = 0x003a; +static const char16_t gSemicolon = 0x003b; +static const char16_t gLineFeed = 0x000a; + +static const char16_t gPercentPercent[] = +{ + 0x25, 0x25, 0 +}; /* "%%" */ + +static const char16_t gNoparse[] = +{ + 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0 +}; /* "@noparse" */ + +NFRuleSet::NFRuleSet(RuleBasedNumberFormat *_owner, UnicodeString* descriptions, int32_t index, UErrorCode& status) + : name() + , rules(0) + , owner(_owner) + , fractionRules() + , fIsFractionRuleSet(false) + , fIsPublic(false) + , fIsParseable(true) +{ + for (int32_t i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { + nonNumericalRules[i] = nullptr; + } + + if (U_FAILURE(status)) { + return; + } + + UnicodeString& description = descriptions[index]; // !!! make sure index is valid + + if (description.length() == 0) { + // throw new IllegalArgumentException("Empty rule set description"); + status = U_PARSE_ERROR; + return; + } + + // if the description begins with a rule set name (the rule set + // name can be omitted in formatter descriptions that consist + // of only one rule set), copy it out into our "name" member + // and delete it from the description + if (description.charAt(0) == gPercent) { + int32_t pos = description.indexOf(gColon); + if (pos == -1) { + // throw new IllegalArgumentException("Rule set name doesn't end in colon"); + status = U_PARSE_ERROR; + } else { + name.setTo(description, 0, pos); + while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) { + } + description.remove(0, pos); + } + } else { + name.setTo(UNICODE_STRING_SIMPLE("%default")); + } + + if (description.length() == 0) { + // throw new IllegalArgumentException("Empty rule set description"); + status = U_PARSE_ERROR; + } + + fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0; + + if ( name.endsWith(gNoparse,8) ) { + fIsParseable = false; + name.truncate(name.length()-8); // remove the @noparse from the name + } + + // all of the other members of NFRuleSet are initialized + // by parseRules() +} + +void +NFRuleSet::parseRules(UnicodeString& description, UErrorCode& status) +{ + // start by creating a Vector whose elements are Strings containing + // the descriptions of the rules (one rule per element). The rules + // are separated by semicolons (there's no escape facility: ALL + // semicolons are rule delimiters) + + if (U_FAILURE(status)) { + return; + } + + // ensure we are starting with an empty rule list + rules.deleteAll(); + + // dlf - the original code kept a separate description array for no reason, + // so I got rid of it. The loop was too complex so I simplified it. + + UnicodeString currentDescription; + int32_t oldP = 0; + while (oldP < description.length()) { + int32_t p = description.indexOf(gSemicolon, oldP); + if (p == -1) { + p = description.length(); + } + currentDescription.setTo(description, oldP, p - oldP); + NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); + oldP = p + 1; + } + + // for rules that didn't specify a base value, their base values + // were initialized to 0. Make another pass through the list and + // set all those rules' base values. We also remove any special + // rules from the list and put them into their own member variables + int64_t defaultBaseValue = 0; + + // (this isn't a for loop because we might be deleting items from + // the vector-- we want to make sure we only increment i when + // we _didn't_ delete anything from the vector) + int32_t rulesSize = rules.size(); + for (int32_t i = 0; i < rulesSize; i++) { + NFRule* rule = rules[i]; + int64_t baseValue = rule->getBaseValue(); + + if (baseValue == 0) { + // if the rule's base value is 0, fill in a default + // base value (this will be 1 plus the preceding + // rule's base value for regular rule sets, and the + // same as the preceding rule's base value in fraction + // rule sets) + rule->setBaseValue(defaultBaseValue, status); + } + else { + // if it's a regular rule that already knows its base value, + // check to make sure the rules are in order, and update + // the default base value for the next rule + if (baseValue < defaultBaseValue) { + // throw new IllegalArgumentException("Rules are not in order"); + status = U_PARSE_ERROR; + return; + } + defaultBaseValue = baseValue; + } + if (!fIsFractionRuleSet) { + ++defaultBaseValue; + } + } +} + +/** + * Set one of the non-numerical rules. + * @param rule The rule to set. + */ +void NFRuleSet::setNonNumericalRule(NFRule *rule) { + int64_t baseValue = rule->getBaseValue(); + if (baseValue == NFRule::kNegativeNumberRule) { + delete nonNumericalRules[NEGATIVE_RULE_INDEX]; + nonNumericalRules[NEGATIVE_RULE_INDEX] = rule; + } + else if (baseValue == NFRule::kImproperFractionRule) { + setBestFractionRule(IMPROPER_FRACTION_RULE_INDEX, rule, true); + } + else if (baseValue == NFRule::kProperFractionRule) { + setBestFractionRule(PROPER_FRACTION_RULE_INDEX, rule, true); + } + else if (baseValue == NFRule::kDefaultRule) { + setBestFractionRule(DEFAULT_RULE_INDEX, rule, true); + } + else if (baseValue == NFRule::kInfinityRule) { + delete nonNumericalRules[INFINITY_RULE_INDEX]; + nonNumericalRules[INFINITY_RULE_INDEX] = rule; + } + else if (baseValue == NFRule::kNaNRule) { + delete nonNumericalRules[NAN_RULE_INDEX]; + nonNumericalRules[NAN_RULE_INDEX] = rule; + } +} + +/** + * Determine the best fraction rule to use. Rules matching the decimal point from + * DecimalFormatSymbols become the main set of rules to use. + * @param originalIndex The index into nonNumericalRules + * @param newRule The new rule to consider + * @param rememberRule Should the new rule be added to fractionRules. + */ +void NFRuleSet::setBestFractionRule(int32_t originalIndex, NFRule *newRule, UBool rememberRule) { + if (rememberRule) { + fractionRules.add(newRule); + } + NFRule *bestResult = nonNumericalRules[originalIndex]; + if (bestResult == nullptr) { + nonNumericalRules[originalIndex] = newRule; + } + else { + // We have more than one. Which one is better? + const DecimalFormatSymbols *decimalFormatSymbols = owner->getDecimalFormatSymbols(); + if (decimalFormatSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol).charAt(0) + == newRule->getDecimalPoint()) + { + nonNumericalRules[originalIndex] = newRule; + } + // else leave it alone + } +} + +NFRuleSet::~NFRuleSet() +{ + for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { + if (i != IMPROPER_FRACTION_RULE_INDEX + && i != PROPER_FRACTION_RULE_INDEX + && i != DEFAULT_RULE_INDEX) + { + delete nonNumericalRules[i]; + } + // else it will be deleted via NFRuleList fractionRules + } +} + +static UBool +util_equalRules(const NFRule* rule1, const NFRule* rule2) +{ + if (rule1) { + if (rule2) { + return *rule1 == *rule2; + } + } else if (!rule2) { + return true; + } + return false; +} + +bool +NFRuleSet::operator==(const NFRuleSet& rhs) const +{ + if (rules.size() == rhs.rules.size() && + fIsFractionRuleSet == rhs.fIsFractionRuleSet && + name == rhs.name) { + + // ...then compare the non-numerical rule lists... + for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { + if (!util_equalRules(nonNumericalRules[i], rhs.nonNumericalRules[i])) { + return false; + } + } + + // ...then compare the rule lists... + for (uint32_t i = 0; i < rules.size(); ++i) { + if (*rules[i] != *rhs.rules[i]) { + return false; + } + } + return true; + } + return false; +} + +void +NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) { + for (uint32_t i = 0; i < rules.size(); ++i) { + rules[i]->setDecimalFormatSymbols(newSymbols, status); + } + // Switch the fraction rules to mirror the DecimalFormatSymbols. + for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= DEFAULT_RULE_INDEX; nonNumericalIdx++) { + if (nonNumericalRules[nonNumericalIdx]) { + for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { + NFRule *fractionRule = fractionRules[fIdx]; + if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) { + setBestFractionRule(nonNumericalIdx, fractionRule, false); + } + } + } + } + + for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) { + NFRule *rule = nonNumericalRules[nnrIdx]; + if (rule) { + rule->setDecimalFormatSymbols(newSymbols, status); + } + } +} + +#define RECURSION_LIMIT 64 + +void +NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const +{ + if (recursionCount >= RECURSION_LIMIT) { + // stop recursion + status = U_INVALID_STATE_ERROR; + return; + } + const NFRule *rule = findNormalRule(number); + if (rule) { // else error, but can't report it + rule->doFormat(number, toAppendTo, pos, ++recursionCount, status); + } +} + +void +NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const +{ + if (recursionCount >= RECURSION_LIMIT) { + // stop recursion + status = U_INVALID_STATE_ERROR; + return; + } + const NFRule *rule = findDoubleRule(number); + if (rule) { // else error, but can't report it + rule->doFormat(number, toAppendTo, pos, ++recursionCount, status); + } +} + +const NFRule* +NFRuleSet::findDoubleRule(double number) const +{ + // if this is a fraction rule set, use findFractionRuleSetRule() + if (isFractionRuleSet()) { + return findFractionRuleSetRule(number); + } + + if (uprv_isNaN(number)) { + const NFRule *rule = nonNumericalRules[NAN_RULE_INDEX]; + if (!rule) { + rule = owner->getDefaultNaNRule(); + } + return rule; + } + + // if the number is negative, return the negative number rule + // (if there isn't a negative-number rule, we pretend it's a + // positive number) + if (number < 0) { + if (nonNumericalRules[NEGATIVE_RULE_INDEX]) { + return nonNumericalRules[NEGATIVE_RULE_INDEX]; + } else { + number = -number; + } + } + + if (uprv_isInfinite(number)) { + const NFRule *rule = nonNumericalRules[INFINITY_RULE_INDEX]; + if (!rule) { + rule = owner->getDefaultInfinityRule(); + } + return rule; + } + + // if the number isn't an integer, we use one of the fraction rules... + if (number != uprv_floor(number)) { + // if the number is between 0 and 1, return the proper + // fraction rule + if (number < 1 && nonNumericalRules[PROPER_FRACTION_RULE_INDEX]) { + return nonNumericalRules[PROPER_FRACTION_RULE_INDEX]; + } + // otherwise, return the improper fraction rule + else if (nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]) { + return nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]; + } + } + + // if there's a default rule, use it to format the number + if (nonNumericalRules[DEFAULT_RULE_INDEX]) { + return nonNumericalRules[DEFAULT_RULE_INDEX]; + } + + // and if we haven't yet returned a rule, use findNormalRule() + // to find the applicable rule + int64_t r = util64_fromDouble(number + 0.5); + return findNormalRule(r); +} + +const NFRule * +NFRuleSet::findNormalRule(int64_t number) const +{ + // if this is a fraction rule set, use findFractionRuleSetRule() + // to find the rule (we should only go into this clause if the + // value is 0) + if (fIsFractionRuleSet) { + return findFractionRuleSetRule((double)number); + } + + // if the number is negative, return the negative-number rule + // (if there isn't one, pretend the number is positive) + if (number < 0) { + if (nonNumericalRules[NEGATIVE_RULE_INDEX]) { + return nonNumericalRules[NEGATIVE_RULE_INDEX]; + } else { + number = -number; + } + } + + // we have to repeat the preceding two checks, even though we + // do them in findRule(), because the version of format() that + // takes a long bypasses findRule() and goes straight to this + // function. This function does skip the fraction rules since + // we know the value is an integer (it also skips the default + // rule, since it's considered a fraction rule. Skipping the + // default rule in this function is also how we avoid infinite + // recursion) + + // {dlf} unfortunately this fails if there are no rules except + // special rules. If there are no rules, use the default rule. + + // binary-search the rule list for the applicable rule + // (a rule is used for all values from its base value to + // the next rule's base value) + int32_t hi = rules.size(); + if (hi > 0) { + int32_t lo = 0; + + while (lo < hi) { + int32_t mid = (lo + hi) / 2; + if (rules[mid]->getBaseValue() == number) { + return rules[mid]; + } + else if (rules[mid]->getBaseValue() > number) { + hi = mid; + } + else { + lo = mid + 1; + } + } + if (hi == 0) { // bad rule set, minimum base > 0 + return nullptr; // want to throw exception here + } + + NFRule *result = rules[hi - 1]; + + // use shouldRollBack() to see whether we need to invoke the + // rollback rule (see shouldRollBack()'s documentation for + // an explanation of the rollback rule). If we do, roll back + // one rule and return that one instead of the one we'd normally + // return + if (result->shouldRollBack(number)) { + if (hi == 1) { // bad rule set, no prior rule to rollback to from this base + return nullptr; + } + result = rules[hi - 2]; + } + return result; + } + // else use the default rule + return nonNumericalRules[DEFAULT_RULE_INDEX]; +} + +/** + * If this rule is a fraction rule set, this function is used by + * findRule() to select the most appropriate rule for formatting + * the number. Basically, the base value of each rule in the rule + * set is treated as the denominator of a fraction. Whichever + * denominator can produce the fraction closest in value to the + * number passed in is the result. If there's a tie, the earlier + * one in the list wins. (If there are two rules in a row with the + * same base value, the first one is used when the numerator of the + * fraction would be 1, and the second rule is used the rest of the + * time. + * @param number The number being formatted (which will always be + * a number between 0 and 1) + * @return The rule to use to format this number + */ +const NFRule* +NFRuleSet::findFractionRuleSetRule(double number) const +{ + // the obvious way to do this (multiply the value being formatted + // by each rule's base value until you get an integral result) + // doesn't work because of rounding error. This method is more + // accurate + + // find the least common multiple of the rules' base values + // and multiply this by the number being formatted. This is + // all the precision we need, and we can do all of the rest + // of the math using integer arithmetic + int64_t leastCommonMultiple = rules[0]->getBaseValue(); + int64_t numerator; + { + for (uint32_t i = 1; i < rules.size(); ++i) { + leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); + } + numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); + } + // for each rule, do the following... + int64_t tempDifference; + int64_t difference = util64_fromDouble(uprv_maxMantissa()); + int32_t winner = 0; + for (uint32_t i = 0; i < rules.size(); ++i) { + // "numerator" is the numerator of the fraction if the + // denominator is the LCD. The numerator if the rule's + // base value is the denominator is "numerator" times the + // base value divided bythe LCD. Here we check to see if + // that's an integer, and if not, how close it is to being + // an integer. + tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; + + + // normalize the result of the above calculation: we want + // the numerator's distance from the CLOSEST multiple + // of the LCD + if (leastCommonMultiple - tempDifference < tempDifference) { + tempDifference = leastCommonMultiple - tempDifference; + } + + // if this is as close as we've come, keep track of how close + // that is, and the line number of the rule that did it. If + // we've scored a direct hit, we don't have to look at any more + // rules + if (tempDifference < difference) { + difference = tempDifference; + winner = i; + if (difference == 0) { + break; + } + } + } + + // if we have two successive rules that both have the winning base + // value, then the first one (the one we found above) is used if + // the numerator of the fraction is 1 and the second one is used if + // the numerator of the fraction is anything else (this lets us + // do things like "one third"/"two thirds" without having to define + // a whole bunch of extra rule sets) + if ((unsigned)(winner + 1) < rules.size() && + rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { + double n = ((double)rules[winner]->getBaseValue()) * number; + if (n < 0.5 || n >= 2) { + ++winner; + } + } + + // finally, return the winning rule + return rules[winner]; +} + +/** + * Parses a string. Matches the string to be parsed against each + * of its rules (with a base value less than upperBound) and returns + * the value produced by the rule that matched the most characters + * in the source string. + * @param text The string to parse + * @param parsePosition The initial position is ignored and assumed + * to be 0. On exit, this object has been updated to point to the + * first character position this rule set didn't consume. + * @param upperBound Limits the rules that can be allowed to match. + * Only rules whose base values are strictly less than upperBound + * are considered. + * @return The numerical result of parsing this string. This will + * be the matching rule's base value, composed appropriately with + * the results of matching any of its substitutions. The object + * will be an instance of Long if it's an integral value; otherwise, + * it will be an instance of Double. This function always returns + * a valid object: If nothing matched the input string at all, + * this function returns new Long(0), and the parse position is + * left unchanged. + */ +#ifdef RBNF_DEBUG +#include <stdio.h> + +static void dumpUS(FILE* f, const UnicodeString& us) { + int len = us.length(); + char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; + if (buf != nullptr) { + us.extract(0, len, buf); + buf[len] = 0; + fprintf(f, "%s", buf); + uprv_free(buf); //delete[] buf; + } +} +#endif + +UBool +NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const +{ + // try matching each rule in the rule set against the text being + // parsed. Whichever one matches the most characters is the one + // that determines the value we return. + + result.setLong(0); + + // dump out if there's no text to parse + if (text.length() == 0) { + return 0; + } + + ParsePosition highWaterMark; + ParsePosition workingPos = pos; + +#ifdef RBNF_DEBUG + fprintf(stderr, "<nfrs> %x '", this); + dumpUS(stderr, name); + fprintf(stderr, "' text '"); + dumpUS(stderr, text); + fprintf(stderr, "'\n"); + fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); +#endif + // Try each of the negative rules, fraction rules, infinity rules and NaN rules + for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { + if (nonNumericalRules[i] && ((nonNumericalExecutedRuleMask >> i) & 1) == 0) { + // Mark this rule as being executed so that we don't try to execute it again. + nonNumericalExecutedRuleMask |= 1 << i; + + Formattable tempResult; + UBool success = nonNumericalRules[i]->doParse(text, workingPos, 0, upperBound, nonNumericalExecutedRuleMask, tempResult); + if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { + result = tempResult; + highWaterMark = workingPos; + } + workingPos = pos; + } + } +#ifdef RBNF_DEBUG + fprintf(stderr, "<nfrs> continue other with text '"); + dumpUS(stderr, text); + fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); +#endif + + // finally, go through the regular rules one at a time. We start + // at the end of the list because we want to try matching the most + // sigificant rule first (this helps ensure that we parse + // "five thousand three hundred six" as + // "(five thousand) (three hundred) (six)" rather than + // "((five thousand three) hundred) (six)"). Skip rules whose + // base values are higher than the upper bound (again, this helps + // limit ambiguity by making sure the rules that match a rule's + // are less significant than the rule containing the substitutions)/ + { + int64_t ub = util64_fromDouble(upperBound); +#ifdef RBNF_DEBUG + { + char ubstr[64]; + util64_toa(ub, ubstr, 64); + char ubstrhex[64]; + util64_toa(ub, ubstrhex, 64, 16); + fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); + } +#endif + for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { + if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { + continue; + } + Formattable tempResult; + UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, nonNumericalExecutedRuleMask, tempResult); + if (success && workingPos.getIndex() > highWaterMark.getIndex()) { + result = tempResult; + highWaterMark = workingPos; + } + workingPos = pos; + } + } +#ifdef RBNF_DEBUG + fprintf(stderr, "<nfrs> exit\n"); +#endif + // finally, update the parse position we were passed to point to the + // first character we didn't use, and return the result that + // corresponds to that string of characters + pos = highWaterMark; + + return 1; +} + +void +NFRuleSet::appendRules(UnicodeString& result) const +{ + uint32_t i; + + // the rule set name goes first... + result.append(name); + result.append(gColon); + result.append(gLineFeed); + + // followed by the regular rules... + for (i = 0; i < rules.size(); i++) { + rules[i]->_appendRuleText(result); + result.append(gLineFeed); + } + + // followed by the special rules (if they exist) + for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { + NFRule *rule = nonNumericalRules[i]; + if (nonNumericalRules[i]) { + if (rule->getBaseValue() == NFRule::kImproperFractionRule + || rule->getBaseValue() == NFRule::kProperFractionRule + || rule->getBaseValue() == NFRule::kDefaultRule) + { + for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { + NFRule *fractionRule = fractionRules[fIdx]; + if (fractionRule->getBaseValue() == rule->getBaseValue()) { + fractionRule->_appendRuleText(result); + result.append(gLineFeed); + } + } + } + else { + rule->_appendRuleText(result); + result.append(gLineFeed); + } + } + } +} + +// utility functions + +int64_t util64_fromDouble(double d) { + int64_t result = 0; + if (!uprv_isNaN(d)) { + double mant = uprv_maxMantissa(); + if (d < -mant) { + d = -mant; + } else if (d > mant) { + d = mant; + } + UBool neg = d < 0; + if (neg) { + d = -d; + } + result = (int64_t)uprv_floor(d); + if (neg) { + result = -result; + } + } + return result; +} + +uint64_t util64_pow(uint32_t base, uint16_t exponent) { + if (base == 0) { + return 0; + } + uint64_t result = 1; + uint64_t pow = base; + while (true) { + if ((exponent & 1) == 1) { + result *= pow; + } + exponent >>= 1; + if (exponent == 0) { + break; + } + pow *= pow; + } + return result; +} + +static const uint8_t asciiDigits[] = { + 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, + 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, + 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, + 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, + 0x77u, 0x78u, 0x79u, 0x7au, +}; + +static const char16_t kUMinus = (char16_t)0x002d; + +#ifdef RBNF_DEBUG +static const char kMinus = '-'; + +static const uint8_t digitInfo[] = { + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, + 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, + 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, + 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, + 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, + 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, + 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, + 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, + 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, + 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, +}; + +int64_t util64_atoi(const char* str, uint32_t radix) +{ + if (radix > 36) { + radix = 36; + } else if (radix < 2) { + radix = 2; + } + int64_t lradix = radix; + + int neg = 0; + if (*str == kMinus) { + ++str; + neg = 1; + } + int64_t result = 0; + uint8_t b; + while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { + result *= lradix; + result += (int32_t)b; + } + if (neg) { + result = -result; + } + return result; +} + +int64_t util64_utoi(const char16_t* str, uint32_t radix) +{ + if (radix > 36) { + radix = 36; + } else if (radix < 2) { + radix = 2; + } + int64_t lradix = radix; + + int neg = 0; + if (*str == kUMinus) { + ++str; + neg = 1; + } + int64_t result = 0; + char16_t c; + uint8_t b; + while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { + result *= lradix; + result += (int32_t)b; + } + if (neg) { + result = -result; + } + return result; +} + +uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) +{ + if (radix > 36) { + radix = 36; + } else if (radix < 2) { + radix = 2; + } + int64_t base = radix; + + char* p = buf; + if (len && (w < 0) && (radix == 10) && !raw) { + w = -w; + *p++ = kMinus; + --len; + } else if (len && (w == 0)) { + *p++ = (char)raw ? 0 : asciiDigits[0]; + --len; + } + + while (len && w != 0) { + int64_t n = w / base; + int64_t m = n * base; + int32_t d = (int32_t)(w-m); + *p++ = raw ? (char)d : asciiDigits[d]; + w = n; + --len; + } + if (len) { + *p = 0; // null terminate if room for caller convenience + } + + len = p - buf; + if (*buf == kMinus) { + ++buf; + } + while (--p > buf) { + char c = *p; + *p = *buf; + *buf = c; + ++buf; + } + + return len; +} +#endif + +uint32_t util64_tou(int64_t w, char16_t* buf, uint32_t len, uint32_t radix, UBool raw) +{ + if (radix > 36) { + radix = 36; + } else if (radix < 2) { + radix = 2; + } + int64_t base = radix; + + char16_t* p = buf; + if (len && (w < 0) && (radix == 10) && !raw) { + w = -w; + *p++ = kUMinus; + --len; + } else if (len && (w == 0)) { + *p++ = (char16_t)raw ? 0 : asciiDigits[0]; + --len; + } + + while (len && (w != 0)) { + int64_t n = w / base; + int64_t m = n * base; + int32_t d = (int32_t)(w-m); + *p++ = (char16_t)(raw ? d : asciiDigits[d]); + w = n; + --len; + } + if (len) { + *p = 0; // null terminate if room for caller convenience + } + + len = (uint32_t)(p - buf); + if (*buf == kUMinus) { + ++buf; + } + while (--p > buf) { + char16_t c = *p; + *p = *buf; + *buf = c; + ++buf; + } + + return len; +} + + +U_NAMESPACE_END + +/* U_HAVE_RBNF */ +#endif |