summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/rematch.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /intl/icu/source/i18n/rematch.cpp
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'intl/icu/source/i18n/rematch.cpp')
-rw-r--r--intl/icu/source/i18n/rematch.cpp5733
1 files changed, 5733 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/rematch.cpp b/intl/icu/source/i18n/rematch.cpp
new file mode 100644
index 0000000000..7a39afbf7b
--- /dev/null
+++ b/intl/icu/source/i18n/rematch.cpp
@@ -0,0 +1,5733 @@
+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+**************************************************************************
+* Copyright (C) 2002-2016 International Business Machines Corporation
+* and others. All rights reserved.
+**************************************************************************
+*/
+//
+// file: rematch.cpp
+//
+// Contains the implementation of class RegexMatcher,
+// which is one of the main API classes for the ICU regular expression package.
+//
+
+#include "unicode/utypes.h"
+#if !UCONFIG_NO_REGULAR_EXPRESSIONS
+
+#include "unicode/regex.h"
+#include "unicode/uniset.h"
+#include "unicode/uchar.h"
+#include "unicode/ustring.h"
+#include "unicode/rbbi.h"
+#include "unicode/utf.h"
+#include "unicode/utf16.h"
+#include "uassert.h"
+#include "cmemory.h"
+#include "cstr.h"
+#include "uvector.h"
+#include "uvectr32.h"
+#include "uvectr64.h"
+#include "regeximp.h"
+#include "regexst.h"
+#include "regextxt.h"
+#include "ucase.h"
+
+// #include <malloc.h> // Needed for heapcheck testing
+
+
+U_NAMESPACE_BEGIN
+
+// Default limit for the size of the back track stack, to avoid system
+// failures causedby heap exhaustion. Units are in 32 bit words, not bytes.
+// This value puts ICU's limits higher than most other regexp implementations,
+// which use recursion rather than the heap, and take more storage per
+// backtrack point.
+//
+static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000;
+
+// Time limit counter constant.
+// Time limits for expression evaluation are in terms of quanta of work by
+// the engine, each of which is 10,000 state saves.
+// This constant determines that state saves per tick number.
+static const int32_t TIMER_INITIAL_VALUE = 10000;
+
+
+// Test for any of the Unicode line terminating characters.
+static inline UBool isLineTerminator(UChar32 c) {
+ if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) {
+ return false;
+ }
+ return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029;
+}
+
+//-----------------------------------------------------------------------------
+//
+// Constructor and Destructor
+//
+//-----------------------------------------------------------------------------
+RegexMatcher::RegexMatcher(const RegexPattern *pat) {
+ fDeferredStatus = U_ZERO_ERROR;
+ init(fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return;
+ }
+ if (pat==nullptr) {
+ fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ fPattern = pat;
+ init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus);
+}
+
+
+
+RegexMatcher::RegexMatcher(const UnicodeString &regexp, const UnicodeString &input,
+ uint32_t flags, UErrorCode &status) {
+ init(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ UParseError pe;
+ fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
+ fPattern = fPatternOwned;
+
+ UText inputText = UTEXT_INITIALIZER;
+ utext_openConstUnicodeString(&inputText, &input, &status);
+ init2(&inputText, status);
+ utext_close(&inputText);
+
+ fInputUniStrMaybeMutable = true;
+}
+
+
+RegexMatcher::RegexMatcher(UText *regexp, UText *input,
+ uint32_t flags, UErrorCode &status) {
+ init(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ UParseError pe;
+ fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ fPattern = fPatternOwned;
+ init2(input, status);
+}
+
+
+RegexMatcher::RegexMatcher(const UnicodeString &regexp,
+ uint32_t flags, UErrorCode &status) {
+ init(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ UParseError pe;
+ fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ fPattern = fPatternOwned;
+ init2(RegexStaticSets::gStaticSets->fEmptyText, status);
+}
+
+RegexMatcher::RegexMatcher(UText *regexp,
+ uint32_t flags, UErrorCode &status) {
+ init(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ UParseError pe;
+ fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ fPattern = fPatternOwned;
+ init2(RegexStaticSets::gStaticSets->fEmptyText, status);
+}
+
+
+
+
+RegexMatcher::~RegexMatcher() {
+ delete fStack;
+ if (fData != fSmallData) {
+ uprv_free(fData);
+ fData = nullptr;
+ }
+ if (fPatternOwned) {
+ delete fPatternOwned;
+ fPatternOwned = nullptr;
+ fPattern = nullptr;
+ }
+
+ if (fInput) {
+ delete fInput;
+ }
+ if (fInputText) {
+ utext_close(fInputText);
+ }
+ if (fAltInputText) {
+ utext_close(fAltInputText);
+ }
+
+ #if UCONFIG_NO_BREAK_ITERATION==0
+ delete fWordBreakItr;
+ delete fGCBreakItr;
+ #endif
+}
+
+//
+// init() common initialization for use by all constructors.
+// Initialize all fields, get the object into a consistent state.
+// This must be done even when the initial status shows an error,
+// so that the object is initialized sufficiently well for the destructor
+// to run safely.
+//
+void RegexMatcher::init(UErrorCode &status) {
+ fPattern = nullptr;
+ fPatternOwned = nullptr;
+ fFrameSize = 0;
+ fRegionStart = 0;
+ fRegionLimit = 0;
+ fAnchorStart = 0;
+ fAnchorLimit = 0;
+ fLookStart = 0;
+ fLookLimit = 0;
+ fActiveStart = 0;
+ fActiveLimit = 0;
+ fTransparentBounds = false;
+ fAnchoringBounds = true;
+ fMatch = false;
+ fMatchStart = 0;
+ fMatchEnd = 0;
+ fLastMatchEnd = -1;
+ fAppendPosition = 0;
+ fHitEnd = false;
+ fRequireEnd = false;
+ fStack = nullptr;
+ fFrame = nullptr;
+ fTimeLimit = 0;
+ fTime = 0;
+ fTickCounter = 0;
+ fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY;
+ fCallbackFn = nullptr;
+ fCallbackContext = nullptr;
+ fFindProgressCallbackFn = nullptr;
+ fFindProgressCallbackContext = nullptr;
+ fTraceDebug = false;
+ fDeferredStatus = status;
+ fData = fSmallData;
+ fWordBreakItr = nullptr;
+ fGCBreakItr = nullptr;
+
+ fStack = nullptr;
+ fInputText = nullptr;
+ fAltInputText = nullptr;
+ fInput = nullptr;
+ fInputLength = 0;
+ fInputUniStrMaybeMutable = false;
+}
+
+//
+// init2() Common initialization for use by RegexMatcher constructors, part 2.
+// This handles the common setup to be done after the Pattern is available.
+//
+void RegexMatcher::init2(UText *input, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ fDeferredStatus = status;
+ return;
+ }
+
+ if (fPattern->fDataSize > UPRV_LENGTHOF(fSmallData)) {
+ fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t));
+ if (fData == nullptr) {
+ status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ }
+
+ fStack = new UVector64(status);
+ if (fStack == nullptr) {
+ status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+
+ reset(input);
+ setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status);
+ if (U_FAILURE(status)) {
+ fDeferredStatus = status;
+ return;
+ }
+}
+
+
+static const char16_t BACKSLASH = 0x5c;
+static const char16_t DOLLARSIGN = 0x24;
+static const char16_t LEFTBRACKET = 0x7b;
+static const char16_t RIGHTBRACKET = 0x7d;
+
+//--------------------------------------------------------------------------------
+//
+// appendReplacement
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
+ const UnicodeString &replacement,
+ UErrorCode &status) {
+ UText replacementText = UTEXT_INITIALIZER;
+
+ utext_openConstUnicodeString(&replacementText, &replacement, &status);
+ if (U_SUCCESS(status)) {
+ UText resultText = UTEXT_INITIALIZER;
+ utext_openUnicodeString(&resultText, &dest, &status);
+
+ if (U_SUCCESS(status)) {
+ appendReplacement(&resultText, &replacementText, status);
+ utext_close(&resultText);
+ }
+ utext_close(&replacementText);
+ }
+
+ return *this;
+}
+
+//
+// appendReplacement, UText mode
+//
+RegexMatcher &RegexMatcher::appendReplacement(UText *dest,
+ UText *replacement,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return *this;
+ }
+ if (fMatch == false) {
+ status = U_REGEX_INVALID_STATE;
+ return *this;
+ }
+
+ // Copy input string from the end of previous match to start of current match
+ int64_t destLen = utext_nativeLength(dest);
+ if (fMatchStart > fAppendPosition) {
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
+ (int32_t)(fMatchStart-fAppendPosition), &status);
+ } else {
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)(fMatchStart-fAppendPosition);
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, nullptr, 0, &lengthStatus);
+ }
+ char16_t *inputChars = (char16_t *)uprv_malloc(sizeof(char16_t)*(len16+1));
+ if (inputChars == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return *this;
+ }
+ utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status);
+ destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status);
+ uprv_free(inputChars);
+ }
+ }
+ fAppendPosition = fMatchEnd;
+
+
+ // scan the replacement text, looking for substitutions ($n) and \escapes.
+ // TODO: optimize this loop by efficiently scanning for '$' or '\',
+ // move entire ranges not containing substitutions.
+ UTEXT_SETNATIVEINDEX(replacement, 0);
+ for (UChar32 c = UTEXT_NEXT32(replacement); U_SUCCESS(status) && c != U_SENTINEL; c = UTEXT_NEXT32(replacement)) {
+ if (c == BACKSLASH) {
+ // Backslash Escape. Copy the following char out without further checks.
+ // Note: Surrogate pairs don't need any special handling
+ // The second half wont be a '$' or a '\', and
+ // will move to the dest normally on the next
+ // loop iteration.
+ c = UTEXT_CURRENT32(replacement);
+ if (c == U_SENTINEL) {
+ break;
+ }
+
+ if (c==0x55/*U*/ || c==0x75/*u*/) {
+ // We have a \udddd or \Udddddddd escape sequence.
+ int32_t offset = 0;
+ struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement);
+ UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
+ if (escapedChar != (UChar32)0xFFFFFFFF) {
+ if (U_IS_BMP(escapedChar)) {
+ char16_t c16 = (char16_t)escapedChar;
+ destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
+ } else {
+ char16_t surrogate[2];
+ surrogate[0] = U16_LEAD(escapedChar);
+ surrogate[1] = U16_TRAIL(escapedChar);
+ if (U_SUCCESS(status)) {
+ destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
+ }
+ }
+ // TODO: Report errors for mal-formed \u escapes?
+ // As this is, the original sequence is output, which may be OK.
+ if (context.lastOffset == offset) {
+ (void)UTEXT_PREVIOUS32(replacement);
+ } else if (context.lastOffset != offset-1) {
+ utext_moveIndex32(replacement, offset - context.lastOffset - 1);
+ }
+ }
+ } else {
+ (void)UTEXT_NEXT32(replacement);
+ // Plain backslash escape. Just put out the escaped character.
+ if (U_IS_BMP(c)) {
+ char16_t c16 = (char16_t)c;
+ destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
+ } else {
+ char16_t surrogate[2];
+ surrogate[0] = U16_LEAD(c);
+ surrogate[1] = U16_TRAIL(c);
+ if (U_SUCCESS(status)) {
+ destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
+ }
+ }
+ }
+ } else if (c != DOLLARSIGN) {
+ // Normal char, not a $. Copy it out without further checks.
+ if (U_IS_BMP(c)) {
+ char16_t c16 = (char16_t)c;
+ destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
+ } else {
+ char16_t surrogate[2];
+ surrogate[0] = U16_LEAD(c);
+ surrogate[1] = U16_TRAIL(c);
+ if (U_SUCCESS(status)) {
+ destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
+ }
+ }
+ } else {
+ // We've got a $. Pick up a capture group name or number if one follows.
+ // Consume digits so long as the resulting group number <= the number of
+ // number of capture groups in the pattern.
+
+ int32_t groupNum = 0;
+ int32_t numDigits = 0;
+ UChar32 nextChar = utext_current32(replacement);
+ if (nextChar == LEFTBRACKET) {
+ // Scan for a Named Capture Group, ${name}.
+ UnicodeString groupName;
+ utext_next32(replacement);
+ while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) {
+ nextChar = utext_next32(replacement);
+ if (nextChar == U_SENTINEL) {
+ status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
+ } else if ((nextChar >= 0x41 && nextChar <= 0x5a) || // A..Z
+ (nextChar >= 0x61 && nextChar <= 0x7a) || // a..z
+ (nextChar >= 0x31 && nextChar <= 0x39)) { // 0..9
+ groupName.append(nextChar);
+ } else if (nextChar == RIGHTBRACKET) {
+ groupNum = fPattern->fNamedCaptureMap ? uhash_geti(fPattern->fNamedCaptureMap, &groupName) : 0;
+ if (groupNum == 0) {
+ status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
+ }
+ } else {
+ // Character was something other than a name char or a closing '}'
+ status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
+ }
+ }
+
+ } else if (u_isdigit(nextChar)) {
+ // $n Scan for a capture group number
+ int32_t numCaptureGroups = fPattern->fGroupMap->size();
+ for (;;) {
+ nextChar = UTEXT_CURRENT32(replacement);
+ if (nextChar == U_SENTINEL) {
+ break;
+ }
+ if (u_isdigit(nextChar) == false) {
+ break;
+ }
+ int32_t nextDigitVal = u_charDigitValue(nextChar);
+ if (groupNum*10 + nextDigitVal > numCaptureGroups) {
+ // Don't consume the next digit if it makes the capture group number too big.
+ if (numDigits == 0) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+ break;
+ }
+ (void)UTEXT_NEXT32(replacement);
+ groupNum=groupNum*10 + nextDigitVal;
+ ++numDigits;
+ }
+ } else {
+ // $ not followed by capture group name or number.
+ status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
+ }
+
+ if (U_SUCCESS(status)) {
+ destLen += appendGroup(groupNum, dest, status);
+ }
+ } // End of $ capture group handling
+ } // End of per-character loop through the replacement string.
+
+ return *this;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// appendTail Intended to be used in conjunction with appendReplacement()
+// To the destination string, append everything following
+// the last match position from the input string.
+//
+// Note: Match ranges do not affect appendTail or appendReplacement
+//
+//--------------------------------------------------------------------------------
+UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
+ UErrorCode status = U_ZERO_ERROR;
+ UText resultText = UTEXT_INITIALIZER;
+ utext_openUnicodeString(&resultText, &dest, &status);
+
+ if (U_SUCCESS(status)) {
+ appendTail(&resultText, status);
+ utext_close(&resultText);
+ }
+
+ return dest;
+}
+
+//
+// appendTail, UText mode
+//
+UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return dest;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return dest;
+ }
+
+ if (fInputLength > fAppendPosition) {
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ int64_t destLen = utext_nativeLength(dest);
+ utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
+ (int32_t)(fInputLength-fAppendPosition), &status);
+ } else {
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)(fInputLength-fAppendPosition);
+ } else {
+ len16 = utext_extract(fInputText, fAppendPosition, fInputLength, nullptr, 0, &status);
+ status = U_ZERO_ERROR; // buffer overflow
+ }
+
+ char16_t *inputChars = (char16_t *)uprv_malloc(sizeof(char16_t)*(len16));
+ if (inputChars == nullptr) {
+ fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
+ } else {
+ utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated
+ int64_t destLen = utext_nativeLength(dest);
+ utext_replace(dest, destLen, destLen, inputChars, len16, &status);
+ uprv_free(inputChars);
+ }
+ }
+ }
+ return dest;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// end
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::end(UErrorCode &err) const {
+ return end(0, err);
+}
+
+int64_t RegexMatcher::end64(UErrorCode &err) const {
+ return end64(0, err);
+}
+
+int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const {
+ if (U_FAILURE(err)) {
+ return -1;
+ }
+ if (fMatch == false) {
+ err = U_REGEX_INVALID_STATE;
+ return -1;
+ }
+ if (group < 0 || group > fPattern->fGroupMap->size()) {
+ err = U_INDEX_OUTOFBOUNDS_ERROR;
+ return -1;
+ }
+ int64_t e = -1;
+ if (group == 0) {
+ e = fMatchEnd;
+ } else {
+ // Get the position within the stack frame of the variables for
+ // this capture group.
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ e = fFrame->fExtra[groupOffset + 1];
+ }
+
+ return e;
+}
+
+int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const {
+ return (int32_t)end64(group, err);
+}
+
+//--------------------------------------------------------------------------------
+//
+// findProgressInterrupt This function is called once for each advance in the target
+// string from the find() function, and calls the user progress callback
+// function if there is one installed.
+//
+// Return: true if the find operation is to be terminated.
+// false if the find operation is to continue running.
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) {
+ if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) {
+ status = U_REGEX_STOPPED_BY_CALLER;
+ return true;
+ }
+ return false;
+}
+
+//--------------------------------------------------------------------------------
+//
+// find()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::find() {
+ if (U_FAILURE(fDeferredStatus)) {
+ return false;
+ }
+ UErrorCode status = U_ZERO_ERROR;
+ UBool result = find(status);
+ return result;
+}
+
+//--------------------------------------------------------------------------------
+//
+// find()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::find(UErrorCode &status) {
+ // Start at the position of the last match end. (Will be zero if the
+ // matcher has been reset.)
+ //
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return false;
+ }
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ return findUsingChunk(status);
+ }
+
+ int64_t startPos = fMatchEnd;
+ if (startPos==0) {
+ startPos = fActiveStart;
+ }
+
+ if (fMatch) {
+ // Save the position of any previous successful match.
+ fLastMatchEnd = fMatchEnd;
+
+ if (fMatchStart == fMatchEnd) {
+ // Previous match had zero length. Move start position up one position
+ // to avoid sending find() into a loop on zero-length matches.
+ if (startPos >= fActiveLimit) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ (void)UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ } else {
+ if (fLastMatchEnd >= 0) {
+ // A previous find() failed to match. Don't try again.
+ // (without this test, a pattern with a zero-length match
+ // could match again at the end of an input string.)
+ fHitEnd = true;
+ return false;
+ }
+ }
+
+
+ // Compute the position in the input string beyond which a match can not begin, because
+ // the minimum length match would extend past the end of the input.
+ // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
+ // Be aware of possible overflows if making changes here.
+ int64_t testStartLimit;
+ if (UTEXT_USES_U16(fInputText)) {
+ testStartLimit = fActiveLimit - fPattern->fMinMatchLen;
+ if (startPos > testStartLimit) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ } else {
+ // We don't know exactly how long the minimum match length is in native characters.
+ // Treat anything > 0 as 1.
+ testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0);
+ }
+
+ UChar32 c;
+ U_ASSERT(startPos >= 0);
+
+ switch (fPattern->fStartType) {
+ case START_NO_INFO:
+ // No optimization was found.
+ // Try a match at each input position.
+ for (;;) {
+ MatchAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ if (startPos >= testStartLimit) {
+ fHitEnd = true;
+ return false;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ (void)UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testStartLimit the last time through.
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ UPRV_UNREACHABLE_EXIT;
+
+ case START_START:
+ // Matches are only possible at the start of the input string
+ // (pattern begins with ^ or \A)
+ if (startPos > fActiveStart) {
+ fMatch = false;
+ return false;
+ }
+ MatchAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ return fMatch;
+
+
+ case START_SET:
+ {
+ // Match may start on any char from a pre-computed set.
+ U_ASSERT(fPattern->fMinMatchLen > 0);
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ for (;;) {
+ int64_t pos = startPos;
+ c = UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ // c will be -1 (U_SENTINEL) at end of text, in which case we
+ // skip this next block (so we don't have a negative array index)
+ // and handle end of text in the following block.
+ if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) ||
+ (c>=256 && fPattern->fInitialChars->contains(c)))) {
+ MatchAt(pos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, pos);
+ }
+ if (startPos > testStartLimit) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ }
+ UPRV_UNREACHABLE_EXIT;
+
+ case START_STRING:
+ case START_CHAR:
+ {
+ // Match starts on exactly one char.
+ U_ASSERT(fPattern->fMinMatchLen > 0);
+ UChar32 theChar = fPattern->fInitialChar;
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ for (;;) {
+ int64_t pos = startPos;
+ c = UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ if (c == theChar) {
+ MatchAt(pos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ }
+ if (startPos > testStartLimit) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ }
+ UPRV_UNREACHABLE_EXIT;
+
+ case START_LINE:
+ {
+ UChar32 ch;
+ if (startPos == fAnchorStart) {
+ MatchAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ ch = UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ ch = UTEXT_PREVIOUS32(fInputText);
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ }
+
+ if (fPattern->fFlags & UREGEX_UNIX_LINES) {
+ for (;;) {
+ if (ch == 0x0a) {
+ MatchAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ }
+ if (startPos >= testStartLimit) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ ch = UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testStartLimit the last time through.
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ } else {
+ for (;;) {
+ if (isLineTerminator(ch)) {
+ if (ch == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
+ (void)UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ MatchAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ }
+ if (startPos >= testStartLimit) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ ch = UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testStartLimit the last time through.
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ }
+ }
+
+ default:
+ UPRV_UNREACHABLE_ASSERT;
+ // Unknown value in fPattern->fStartType, should be from StartOfMatch enum. But
+ // we have reports of this in production code, don't use UPRV_UNREACHABLE_EXIT.
+ // See ICU-21669.
+ status = U_INTERNAL_PROGRAM_ERROR;
+ return false;
+ }
+
+ UPRV_UNREACHABLE_EXIT;
+}
+
+
+
+UBool RegexMatcher::find(int64_t start, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return false;
+ }
+ this->reset(); // Note: Reset() is specified by Java Matcher documentation.
+ // This will reset the region to be the full input length.
+ if (start < 0) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return false;
+ }
+
+ int64_t nativeStart = start;
+ if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return false;
+ }
+ fMatchEnd = nativeStart;
+ return find(status);
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// findUsingChunk() -- like find(), but with the advance knowledge that the
+// entire string is available in the UText's chunk buffer.
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::findUsingChunk(UErrorCode &status) {
+ // Start at the position of the last match end. (Will be zero if the
+ // matcher has been reset.
+ //
+
+ int32_t startPos = (int32_t)fMatchEnd;
+ if (startPos==0) {
+ startPos = (int32_t)fActiveStart;
+ }
+
+ const char16_t *inputBuf = fInputText->chunkContents;
+
+ if (fMatch) {
+ // Save the position of any previous successful match.
+ fLastMatchEnd = fMatchEnd;
+
+ if (fMatchStart == fMatchEnd) {
+ // Previous match had zero length. Move start position up one position
+ // to avoid sending find() into a loop on zero-length matches.
+ if (startPos >= fActiveLimit) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ U16_FWD_1(inputBuf, startPos, fInputLength);
+ }
+ } else {
+ if (fLastMatchEnd >= 0) {
+ // A previous find() failed to match. Don't try again.
+ // (without this test, a pattern with a zero-length match
+ // could match again at the end of an input string.)
+ fHitEnd = true;
+ return false;
+ }
+ }
+
+
+ // Compute the position in the input string beyond which a match can not begin, because
+ // the minimum length match would extend past the end of the input.
+ // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
+ // Be aware of possible overflows if making changes here.
+ // Note: a match can begin at inputBuf + testLen; it is an inclusive limit.
+ int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen);
+ if (startPos > testLen) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+
+ UChar32 c;
+ U_ASSERT(startPos >= 0);
+
+ switch (fPattern->fStartType) {
+ case START_NO_INFO:
+ // No optimization was found.
+ // Try a match at each input position.
+ for (;;) {
+ MatchChunkAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ if (startPos >= testLen) {
+ fHitEnd = true;
+ return false;
+ }
+ U16_FWD_1(inputBuf, startPos, fActiveLimit);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testLen the last time through.
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ UPRV_UNREACHABLE_EXIT;
+
+ case START_START:
+ // Matches are only possible at the start of the input string
+ // (pattern begins with ^ or \A)
+ if (startPos > fActiveStart) {
+ fMatch = false;
+ return false;
+ }
+ MatchChunkAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ return fMatch;
+
+
+ case START_SET:
+ {
+ // Match may start on any char from a pre-computed set.
+ U_ASSERT(fPattern->fMinMatchLen > 0);
+ for (;;) {
+ int32_t pos = startPos;
+ U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
+ if ((c<256 && fPattern->fInitialChars8->contains(c)) ||
+ (c>=256 && fPattern->fInitialChars->contains(c))) {
+ MatchChunkAt(pos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ }
+ if (startPos > testLen) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ }
+ UPRV_UNREACHABLE_EXIT;
+
+ case START_STRING:
+ case START_CHAR:
+ {
+ // Match starts on exactly one char.
+ U_ASSERT(fPattern->fMinMatchLen > 0);
+ UChar32 theChar = fPattern->fInitialChar;
+ for (;;) {
+ int32_t pos = startPos;
+ U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
+ if (c == theChar) {
+ MatchChunkAt(pos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ }
+ if (startPos > testLen) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ }
+ UPRV_UNREACHABLE_EXIT;
+
+ case START_LINE:
+ {
+ UChar32 ch;
+ if (startPos == fAnchorStart) {
+ MatchChunkAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ U16_FWD_1(inputBuf, startPos, fActiveLimit);
+ }
+
+ if (fPattern->fFlags & UREGEX_UNIX_LINES) {
+ for (;;) {
+ ch = inputBuf[startPos-1];
+ if (ch == 0x0a) {
+ MatchChunkAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ }
+ if (startPos >= testLen) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ U16_FWD_1(inputBuf, startPos, fActiveLimit);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testLen the last time through.
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ } else {
+ for (;;) {
+ ch = inputBuf[startPos-1];
+ if (isLineTerminator(ch)) {
+ if (ch == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) {
+ startPos++;
+ }
+ MatchChunkAt(startPos, false, status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (fMatch) {
+ return true;
+ }
+ }
+ if (startPos >= testLen) {
+ fMatch = false;
+ fHitEnd = true;
+ return false;
+ }
+ U16_FWD_1(inputBuf, startPos, fActiveLimit);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testLen the last time through.
+ if (findProgressInterrupt(startPos, status))
+ return false;
+ }
+ }
+ }
+
+ default:
+ UPRV_UNREACHABLE_ASSERT;
+ // Unknown value in fPattern->fStartType, should be from StartOfMatch enum. But
+ // we have reports of this in production code, don't use UPRV_UNREACHABLE_EXIT.
+ // See ICU-21669.
+ status = U_INTERNAL_PROGRAM_ERROR;
+ return false;
+ }
+
+ UPRV_UNREACHABLE_EXIT;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// group()
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::group(UErrorCode &status) const {
+ return group(0, status);
+}
+
+// Return immutable shallow clone
+UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const {
+ return group(0, dest, group_len, status);
+}
+
+// Return immutable shallow clone
+UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const {
+ group_len = 0;
+ if (U_FAILURE(status)) {
+ return dest;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ } else if (fMatch == false) {
+ status = U_REGEX_INVALID_STATE;
+ } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+
+ if (U_FAILURE(status)) {
+ return dest;
+ }
+
+ int64_t s, e;
+ if (groupNum == 0) {
+ s = fMatchStart;
+ e = fMatchEnd;
+ } else {
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ s = fFrame->fExtra[groupOffset];
+ e = fFrame->fExtra[groupOffset+1];
+ }
+
+ if (s < 0) {
+ // A capture group wasn't part of the match
+ return utext_clone(dest, fInputText, false, true, &status);
+ }
+ U_ASSERT(s <= e);
+ group_len = e - s;
+
+ dest = utext_clone(dest, fInputText, false, true, &status);
+ if (dest)
+ UTEXT_SETNATIVEINDEX(dest, s);
+ return dest;
+}
+
+UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
+ UnicodeString result;
+ int64_t groupStart = start64(groupNum, status);
+ int64_t groupEnd = end64(groupNum, status);
+ if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) {
+ return result;
+ }
+
+ // Get the group length using a utext_extract preflight.
+ // UText is actually pretty efficient at this when underlying encoding is UTF-16.
+ int32_t length = utext_extract(fInputText, groupStart, groupEnd, nullptr, 0, &status);
+ if (status != U_BUFFER_OVERFLOW_ERROR) {
+ return result;
+ }
+
+ status = U_ZERO_ERROR;
+ char16_t *buf = result.getBuffer(length);
+ if (buf == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ } else {
+ int32_t extractLength = utext_extract(fInputText, groupStart, groupEnd, buf, length, &status);
+ result.releaseBuffer(extractLength);
+ U_ASSERT(length == extractLength);
+ }
+ return result;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// appendGroup() -- currently internal only, appends a group to a UText rather
+// than replacing its contents
+//
+//--------------------------------------------------------------------------------
+
+int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const {
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return 0;
+ }
+ int64_t destLen = utext_nativeLength(dest);
+
+ if (fMatch == false) {
+ status = U_REGEX_INVALID_STATE;
+ return utext_replace(dest, destLen, destLen, nullptr, 0, &status);
+ }
+ if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return utext_replace(dest, destLen, destLen, nullptr, 0, &status);
+ }
+
+ int64_t s, e;
+ if (groupNum == 0) {
+ s = fMatchStart;
+ e = fMatchEnd;
+ } else {
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ s = fFrame->fExtra[groupOffset];
+ e = fFrame->fExtra[groupOffset+1];
+ }
+
+ if (s < 0) {
+ // A capture group wasn't part of the match
+ return utext_replace(dest, destLen, destLen, nullptr, 0, &status);
+ }
+ U_ASSERT(s <= e);
+
+ int64_t deltaLen;
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ U_ASSERT(e <= fInputLength);
+ deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status);
+ } else {
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)(e-s);
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ len16 = utext_extract(fInputText, s, e, nullptr, 0, &lengthStatus);
+ }
+ char16_t *groupChars = (char16_t *)uprv_malloc(sizeof(char16_t)*(len16+1));
+ if (groupChars == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+ utext_extract(fInputText, s, e, groupChars, len16+1, &status);
+
+ deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status);
+ uprv_free(groupChars);
+ }
+ return deltaLen;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// groupCount()
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::groupCount() const {
+ return fPattern->fGroupMap->size();
+}
+
+//--------------------------------------------------------------------------------
+//
+// hasAnchoringBounds()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::hasAnchoringBounds() const {
+ return fAnchoringBounds;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// hasTransparentBounds()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::hasTransparentBounds() const {
+ return fTransparentBounds;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// hitEnd()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::hitEnd() const {
+ return fHitEnd;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// input()
+//
+//--------------------------------------------------------------------------------
+const UnicodeString &RegexMatcher::input() const {
+ if (!fInput) {
+ UErrorCode status = U_ZERO_ERROR;
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)fInputLength;
+ } else {
+ len16 = utext_extract(fInputText, 0, fInputLength, nullptr, 0, &status);
+ status = U_ZERO_ERROR; // overflow, length status
+ }
+ UnicodeString *result = new UnicodeString(len16, 0, 0);
+
+ char16_t *inputChars = result->getBuffer(len16);
+ utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning
+ result->releaseBuffer(len16);
+
+ (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator=
+ }
+
+ return *fInput;
+}
+
+//--------------------------------------------------------------------------------
+//
+// inputText()
+//
+//--------------------------------------------------------------------------------
+UText *RegexMatcher::inputText() const {
+ return fInputText;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getInput() -- like inputText(), but makes a clone or copies into another UText
+//
+//--------------------------------------------------------------------------------
+UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const {
+ if (U_FAILURE(status)) {
+ return dest;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return dest;
+ }
+
+ if (dest) {
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status);
+ } else {
+ int32_t input16Len;
+ if (UTEXT_USES_U16(fInputText)) {
+ input16Len = (int32_t)fInputLength;
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ input16Len = utext_extract(fInputText, 0, fInputLength, nullptr, 0, &lengthStatus); // buffer overflow error
+ }
+ char16_t *inputChars = (char16_t *)uprv_malloc(sizeof(char16_t)*(input16Len));
+ if (inputChars == nullptr) {
+ return dest;
+ }
+
+ status = U_ZERO_ERROR;
+ utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning
+ status = U_ZERO_ERROR;
+ utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status);
+
+ uprv_free(inputChars);
+ }
+ return dest;
+ } else {
+ return utext_clone(nullptr, fInputText, false, true, &status);
+ }
+}
+
+
+static UBool compat_SyncMutableUTextContents(UText *ut);
+static UBool compat_SyncMutableUTextContents(UText *ut) {
+ UBool retVal = false;
+
+ // In the following test, we're really only interested in whether the UText should switch
+ // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents
+ // will still point to the correct data.
+ if (utext_nativeLength(ut) != ut->nativeIndexingLimit) {
+ UnicodeString *us=(UnicodeString *)ut->context;
+
+ // Update to the latest length.
+ // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit).
+ int32_t newLength = us->length();
+
+ // Update the chunk description.
+ // The buffer may have switched between stack- and heap-based.
+ ut->chunkContents = us->getBuffer();
+ ut->chunkLength = newLength;
+ ut->chunkNativeLimit = newLength;
+ ut->nativeIndexingLimit = newLength;
+ retVal = true;
+ }
+
+ return retVal;
+}
+
+//--------------------------------------------------------------------------------
+//
+// lookingAt()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::lookingAt(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return false;
+ }
+
+ if (fInputUniStrMaybeMutable) {
+ if (compat_SyncMutableUTextContents(fInputText)) {
+ fInputLength = utext_nativeLength(fInputText);
+ reset();
+ }
+ }
+ else {
+ resetPreserveRegion();
+ }
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ MatchChunkAt((int32_t)fActiveStart, false, status);
+ } else {
+ MatchAt(fActiveStart, false, status);
+ }
+ return fMatch;
+}
+
+
+UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return false;
+ }
+ reset();
+
+ if (start < 0) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return false;
+ }
+
+ if (fInputUniStrMaybeMutable) {
+ if (compat_SyncMutableUTextContents(fInputText)) {
+ fInputLength = utext_nativeLength(fInputText);
+ reset();
+ }
+ }
+
+ int64_t nativeStart;
+ nativeStart = start;
+ if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return false;
+ }
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ MatchChunkAt((int32_t)nativeStart, false, status);
+ } else {
+ MatchAt(nativeStart, false, status);
+ }
+ return fMatch;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// matches()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::matches(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return false;
+ }
+
+ if (fInputUniStrMaybeMutable) {
+ if (compat_SyncMutableUTextContents(fInputText)) {
+ fInputLength = utext_nativeLength(fInputText);
+ reset();
+ }
+ }
+ else {
+ resetPreserveRegion();
+ }
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ MatchChunkAt((int32_t)fActiveStart, true, status);
+ } else {
+ MatchAt(fActiveStart, true, status);
+ }
+ return fMatch;
+}
+
+
+UBool RegexMatcher::matches(int64_t start, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return false;
+ }
+ reset();
+
+ if (start < 0) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return false;
+ }
+
+ if (fInputUniStrMaybeMutable) {
+ if (compat_SyncMutableUTextContents(fInputText)) {
+ fInputLength = utext_nativeLength(fInputText);
+ reset();
+ }
+ }
+
+ int64_t nativeStart;
+ nativeStart = start;
+ if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return false;
+ }
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ MatchChunkAt((int32_t)nativeStart, true, status);
+ } else {
+ MatchAt(nativeStart, true, status);
+ }
+ return fMatch;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// pattern
+//
+//--------------------------------------------------------------------------------
+const RegexPattern &RegexMatcher::pattern() const {
+ return *fPattern;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// region
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+
+ if (regionStart>regionLimit || regionStart<0 || regionLimit<0) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+
+ int64_t nativeStart = regionStart;
+ int64_t nativeLimit = regionLimit;
+ if (nativeStart > fInputLength || nativeLimit > fInputLength) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+
+ if (startIndex == -1)
+ this->reset();
+ else
+ resetPreserveRegion();
+
+ fRegionStart = nativeStart;
+ fRegionLimit = nativeLimit;
+ fActiveStart = nativeStart;
+ fActiveLimit = nativeLimit;
+
+ if (startIndex != -1) {
+ if (startIndex < fActiveStart || startIndex > fActiveLimit) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+ fMatchEnd = startIndex;
+ }
+
+ if (!fTransparentBounds) {
+ fLookStart = nativeStart;
+ fLookLimit = nativeLimit;
+ }
+ if (fAnchoringBounds) {
+ fAnchorStart = nativeStart;
+ fAnchorLimit = nativeLimit;
+ }
+ return *this;
+}
+
+RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) {
+ return region(start, limit, -1, status);
+}
+
+//--------------------------------------------------------------------------------
+//
+// regionEnd
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::regionEnd() const {
+ return (int32_t)fRegionLimit;
+}
+
+int64_t RegexMatcher::regionEnd64() const {
+ return fRegionLimit;
+}
+
+//--------------------------------------------------------------------------------
+//
+// regionStart
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::regionStart() const {
+ return (int32_t)fRegionStart;
+}
+
+int64_t RegexMatcher::regionStart64() const {
+ return fRegionStart;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// replaceAll
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
+ UText replacementText = UTEXT_INITIALIZER;
+ UText resultText = UTEXT_INITIALIZER;
+ UnicodeString resultString;
+ if (U_FAILURE(status)) {
+ return resultString;
+ }
+
+ utext_openConstUnicodeString(&replacementText, &replacement, &status);
+ utext_openUnicodeString(&resultText, &resultString, &status);
+
+ replaceAll(&replacementText, &resultText, status);
+
+ utext_close(&resultText);
+ utext_close(&replacementText);
+
+ return resultString;
+}
+
+
+//
+// replaceAll, UText mode
+//
+UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return dest;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return dest;
+ }
+
+ if (dest == nullptr) {
+ UnicodeString emptyString;
+ UText empty = UTEXT_INITIALIZER;
+
+ utext_openUnicodeString(&empty, &emptyString, &status);
+ dest = utext_clone(nullptr, &empty, true, false, &status);
+ utext_close(&empty);
+ }
+
+ if (U_SUCCESS(status)) {
+ reset();
+ while (find()) {
+ appendReplacement(dest, replacement, status);
+ if (U_FAILURE(status)) {
+ break;
+ }
+ }
+ appendTail(dest, status);
+ }
+
+ return dest;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// replaceFirst
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
+ UText replacementText = UTEXT_INITIALIZER;
+ UText resultText = UTEXT_INITIALIZER;
+ UnicodeString resultString;
+
+ utext_openConstUnicodeString(&replacementText, &replacement, &status);
+ utext_openUnicodeString(&resultText, &resultString, &status);
+
+ replaceFirst(&replacementText, &resultText, status);
+
+ utext_close(&resultText);
+ utext_close(&replacementText);
+
+ return resultString;
+}
+
+//
+// replaceFirst, UText mode
+//
+UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return dest;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return dest;
+ }
+
+ reset();
+ if (!find()) {
+ return getInput(dest, status);
+ }
+
+ if (dest == nullptr) {
+ UnicodeString emptyString;
+ UText empty = UTEXT_INITIALIZER;
+
+ utext_openUnicodeString(&empty, &emptyString, &status);
+ dest = utext_clone(nullptr, &empty, true, false, &status);
+ utext_close(&empty);
+ }
+
+ appendReplacement(dest, replacement, status);
+ appendTail(dest, status);
+
+ return dest;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// requireEnd
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::requireEnd() const {
+ return fRequireEnd;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// reset
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::reset() {
+ fRegionStart = 0;
+ fRegionLimit = fInputLength;
+ fActiveStart = 0;
+ fActiveLimit = fInputLength;
+ fAnchorStart = 0;
+ fAnchorLimit = fInputLength;
+ fLookStart = 0;
+ fLookLimit = fInputLength;
+ resetPreserveRegion();
+ return *this;
+}
+
+
+
+void RegexMatcher::resetPreserveRegion() {
+ fMatchStart = 0;
+ fMatchEnd = 0;
+ fLastMatchEnd = -1;
+ fAppendPosition = 0;
+ fMatch = false;
+ fHitEnd = false;
+ fRequireEnd = false;
+ fTime = 0;
+ fTickCounter = TIMER_INITIAL_VALUE;
+ //resetStack(); // more expensive than it looks...
+}
+
+
+RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
+ fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus);
+ if (fPattern->fNeedsAltInput) {
+ fAltInputText = utext_clone(fAltInputText, fInputText, false, true, &fDeferredStatus);
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ return *this;
+ }
+ fInputLength = utext_nativeLength(fInputText);
+
+ reset();
+ delete fInput;
+ fInput = nullptr;
+
+ // Do the following for any UnicodeString.
+ // This is for compatibility for those clients who modify the input string "live" during regex operations.
+ fInputUniStrMaybeMutable = true;
+
+#if UCONFIG_NO_BREAK_ITERATION==0
+ if (fWordBreakItr) {
+ fWordBreakItr->setText(fInputText, fDeferredStatus);
+ }
+ if (fGCBreakItr) {
+ fGCBreakItr->setText(fInputText, fDeferredStatus);
+ }
+#endif
+
+ return *this;
+}
+
+
+RegexMatcher &RegexMatcher::reset(UText *input) {
+ if (fInputText != input) {
+ fInputText = utext_clone(fInputText, input, false, true, &fDeferredStatus);
+ if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, false, true, &fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return *this;
+ }
+ fInputLength = utext_nativeLength(fInputText);
+
+ delete fInput;
+ fInput = nullptr;
+
+#if UCONFIG_NO_BREAK_ITERATION==0
+ if (fWordBreakItr) {
+ fWordBreakItr->setText(input, fDeferredStatus);
+ }
+ if (fGCBreakItr) {
+ fGCBreakItr->setText(fInputText, fDeferredStatus);
+ }
+#endif
+ }
+ reset();
+ fInputUniStrMaybeMutable = false;
+
+ return *this;
+}
+
+/*RegexMatcher &RegexMatcher::reset(const char16_t *) {
+ fDeferredStatus = U_INTERNAL_PROGRAM_ERROR;
+ return *this;
+}*/
+
+RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ reset(); // Reset also resets the region to be the entire string.
+
+ if (position < 0 || position > fActiveLimit) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return *this;
+ }
+ fMatchEnd = position;
+ return *this;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// refresh
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ if (input == nullptr) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return *this;
+ }
+ if (utext_nativeLength(fInputText) != utext_nativeLength(input)) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return *this;
+ }
+ int64_t pos = utext_getNativeIndex(fInputText);
+ // Shallow read-only clone of the new UText into the existing input UText
+ fInputText = utext_clone(fInputText, input, false, true, &status);
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ utext_setNativeIndex(fInputText, pos);
+
+ if (fAltInputText != nullptr) {
+ pos = utext_getNativeIndex(fAltInputText);
+ fAltInputText = utext_clone(fAltInputText, input, false, true, &status);
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ utext_setNativeIndex(fAltInputText, pos);
+ }
+ return *this;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// setTrace
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setTrace(UBool state) {
+ fTraceDebug = state;
+}
+
+
+
+/**
+ * UText, replace entire contents of the destination UText with a substring of the source UText.
+ *
+ * @param src The source UText
+ * @param dest The destination UText. Must be writable.
+ * May be nullptr, in which case a new UText will be allocated.
+ * @param start Start index of source substring.
+ * @param limit Limit index of source substring.
+ * @param status An error code.
+ */
+static UText *utext_extract_replace(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) {
+ if (U_FAILURE(*status)) {
+ return dest;
+ }
+ if (start == limit) {
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), nullptr, 0, status);
+ return dest;
+ } else {
+ return utext_openUChars(nullptr, nullptr, 0, status);
+ }
+ }
+ int32_t length = utext_extract(src, start, limit, nullptr, 0, status);
+ if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
+ return dest;
+ }
+ *status = U_ZERO_ERROR;
+ MaybeStackArray<char16_t, 40> buffer;
+ if (length >= buffer.getCapacity()) {
+ char16_t *newBuf = buffer.resize(length+1); // Leave space for terminating Nul.
+ if (newBuf == nullptr) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ }
+ utext_extract(src, start, limit, buffer.getAlias(), length+1, status);
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), buffer.getAlias(), length, status);
+ return dest;
+ }
+
+ // Caller did not provide a preexisting UText.
+ // Open a new one, and have it adopt the text buffer storage.
+ if (U_FAILURE(*status)) {
+ return nullptr;
+ }
+ int32_t ownedLength = 0;
+ char16_t *ownedBuf = buffer.orphanOrClone(length+1, ownedLength);
+ if (ownedBuf == nullptr) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return nullptr;
+ }
+ UText *result = utext_openUChars(nullptr, ownedBuf, length, status);
+ if (U_FAILURE(*status)) {
+ uprv_free(ownedBuf);
+ return nullptr;
+ }
+ result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT);
+ return result;
+}
+
+
+//---------------------------------------------------------------------
+//
+// split
+//
+//---------------------------------------------------------------------
+int32_t RegexMatcher::split(const UnicodeString &input,
+ UnicodeString dest[],
+ int32_t destCapacity,
+ UErrorCode &status)
+{
+ UText inputText = UTEXT_INITIALIZER;
+ utext_openConstUnicodeString(&inputText, &input, &status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity);
+ if (destText == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+ int32_t i;
+ for (i = 0; i < destCapacity; i++) {
+ destText[i] = utext_openUnicodeString(nullptr, &dest[i], &status);
+ }
+
+ int32_t fieldCount = split(&inputText, destText, destCapacity, status);
+
+ for (i = 0; i < destCapacity; i++) {
+ utext_close(destText[i]);
+ }
+
+ uprv_free(destText);
+ utext_close(&inputText);
+ return fieldCount;
+}
+
+//
+// split, UText mode
+//
+int32_t RegexMatcher::split(UText *input,
+ UText *dest[],
+ int32_t destCapacity,
+ UErrorCode &status)
+{
+ //
+ // Check arguments for validity
+ //
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ if (destCapacity < 1) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+
+ //
+ // Reset for the input text
+ //
+ reset(input);
+ int64_t nextOutputStringStart = 0;
+ if (fActiveLimit == 0) {
+ return 0;
+ }
+
+ //
+ // Loop through the input text, searching for the delimiter pattern
+ //
+ int32_t i;
+ int32_t numCaptureGroups = fPattern->fGroupMap->size();
+ for (i=0; ; i++) {
+ if (i>=destCapacity-1) {
+ // There is one or zero output string left.
+ // Fill the last output string with whatever is left from the input, then exit the loop.
+ // ( i will be == destCapacity if we filled the output array while processing
+ // capture groups of the delimiter expression, in which case we will discard the
+ // last capture group saved in favor of the unprocessed remainder of the
+ // input string.)
+ i = destCapacity-1;
+ if (fActiveLimit > nextOutputStringStart) {
+ if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
+ input->chunkContents+nextOutputStringStart,
+ (int32_t)(fActiveLimit-nextOutputStringStart), &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
+ fActiveLimit-nextOutputStringStart, &status);
+ dest[i] = utext_clone(nullptr, &remainingText, true, false, &status);
+ utext_close(&remainingText);
+ }
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ int32_t remaining16Length =
+ utext_extract(input, nextOutputStringStart, fActiveLimit, nullptr, 0, &lengthStatus);
+ char16_t *remainingChars = (char16_t *)uprv_malloc(sizeof(char16_t)*(remaining16Length+1));
+ if (remainingChars == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ break;
+ }
+
+ utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
+ dest[i] = utext_clone(nullptr, &remainingText, true, false, &status);
+ utext_close(&remainingText);
+ }
+
+ uprv_free(remainingChars);
+ }
+ }
+ break;
+ }
+ if (find()) {
+ // We found another delimiter. Move everything from where we started looking
+ // up until the start of the delimiter into the next output string.
+ if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
+ input->chunkContents+nextOutputStringStart,
+ (int32_t)(fMatchStart-nextOutputStringStart), &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
+ fMatchStart-nextOutputStringStart, &status);
+ dest[i] = utext_clone(nullptr, &remainingText, true, false, &status);
+ utext_close(&remainingText);
+ }
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, nullptr, 0, &lengthStatus);
+ char16_t *remainingChars = (char16_t *)uprv_malloc(sizeof(char16_t)*(remaining16Length+1));
+ if (remainingChars == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ break;
+ }
+ utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status);
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
+ dest[i] = utext_clone(nullptr, &remainingText, true, false, &status);
+ utext_close(&remainingText);
+ }
+
+ uprv_free(remainingChars);
+ }
+ nextOutputStringStart = fMatchEnd;
+
+ // If the delimiter pattern has capturing parentheses, the captured
+ // text goes out into the next n destination strings.
+ int32_t groupNum;
+ for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
+ if (i >= destCapacity-2) {
+ // Never fill the last available output string with capture group text.
+ // It will filled with the last field, the remainder of the
+ // unsplit input text.
+ break;
+ }
+ i++;
+ dest[i] = utext_extract_replace(fInputText, dest[i],
+ start64(groupNum, status), end64(groupNum, status), &status);
+ }
+
+ if (nextOutputStringStart == fActiveLimit) {
+ // The delimiter was at the end of the string. We're done, but first
+ // we output one last empty string, for the empty field following
+ // the delimiter at the end of input.
+ if (i+1 < destCapacity) {
+ ++i;
+ if (dest[i] == nullptr) {
+ dest[i] = utext_openUChars(nullptr, nullptr, 0, &status);
+ } else {
+ static const char16_t emptyString[] = {(char16_t)0};
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status);
+ }
+ }
+ break;
+
+ }
+ }
+ else
+ {
+ // We ran off the end of the input while looking for the next delimiter.
+ // All the remaining text goes into the current output string.
+ if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
+ input->chunkContents+nextOutputStringStart,
+ (int32_t)(fActiveLimit-nextOutputStringStart), &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
+ fActiveLimit-nextOutputStringStart, &status);
+ dest[i] = utext_clone(nullptr, &remainingText, true, false, &status);
+ utext_close(&remainingText);
+ }
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, nullptr, 0, &lengthStatus);
+ char16_t *remainingChars = (char16_t *)uprv_malloc(sizeof(char16_t)*(remaining16Length+1));
+ if (remainingChars == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ break;
+ }
+
+ utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
+ dest[i] = utext_clone(nullptr, &remainingText, true, false, &status);
+ utext_close(&remainingText);
+ }
+
+ uprv_free(remainingChars);
+ }
+ break;
+ }
+ if (U_FAILURE(status)) {
+ break;
+ }
+ } // end of for loop
+ return i+1;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// start
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::start(UErrorCode &status) const {
+ return start(0, status);
+}
+
+int64_t RegexMatcher::start64(UErrorCode &status) const {
+ return start64(0, status);
+}
+
+//--------------------------------------------------------------------------------
+//
+// start(int32_t group, UErrorCode &status)
+//
+//--------------------------------------------------------------------------------
+
+int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const {
+ if (U_FAILURE(status)) {
+ return -1;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return -1;
+ }
+ if (fMatch == false) {
+ status = U_REGEX_INVALID_STATE;
+ return -1;
+ }
+ if (group < 0 || group > fPattern->fGroupMap->size()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return -1;
+ }
+ int64_t s;
+ if (group == 0) {
+ s = fMatchStart;
+ } else {
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ s = fFrame->fExtra[groupOffset];
+ }
+
+ return s;
+}
+
+
+int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const {
+ return (int32_t)start64(group, status);
+}
+
+//--------------------------------------------------------------------------------
+//
+// useAnchoringBounds
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) {
+ fAnchoringBounds = b;
+ fAnchorStart = (fAnchoringBounds ? fRegionStart : 0);
+ fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength);
+ return *this;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// useTransparentBounds
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) {
+ fTransparentBounds = b;
+ fLookStart = (fTransparentBounds ? 0 : fRegionStart);
+ fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit);
+ return *this;
+}
+
+//--------------------------------------------------------------------------------
+//
+// setTimeLimit
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return;
+ }
+ if (limit < 0) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ fTimeLimit = limit;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getTimeLimit
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::getTimeLimit() const {
+ return fTimeLimit;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// setStackLimit
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return;
+ }
+ if (limit < 0) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+
+ // Reset the matcher. This is needed here in case there is a current match
+ // whose final stack frame (containing the match results, pointed to by fFrame)
+ // would be lost by resizing to a smaller stack size.
+ reset();
+
+ if (limit == 0) {
+ // Unlimited stack expansion
+ fStack->setMaxCapacity(0);
+ } else {
+ // Change the units of the limit from bytes to ints, and bump the size up
+ // to be big enough to hold at least one stack frame for the pattern,
+ // if it isn't there already.
+ int32_t adjustedLimit = limit / sizeof(int32_t);
+ if (adjustedLimit < fPattern->fFrameSize) {
+ adjustedLimit = fPattern->fFrameSize;
+ }
+ fStack->setMaxCapacity(adjustedLimit);
+ }
+ fStackLimit = limit;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getStackLimit
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::getStackLimit() const {
+ return fStackLimit;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// setMatchCallback
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setMatchCallback(URegexMatchCallback *callback,
+ const void *context,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ fCallbackFn = callback;
+ fCallbackContext = context;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getMatchCallback
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback,
+ const void *&context,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ callback = fCallbackFn;
+ context = fCallbackContext;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// setMatchCallback
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback,
+ const void *context,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ fFindProgressCallbackFn = callback;
+ fFindProgressCallbackContext = context;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getMatchCallback
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback,
+ const void *&context,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ callback = fFindProgressCallbackFn;
+ context = fFindProgressCallbackContext;
+}
+
+
+//================================================================================
+//
+// Code following this point in this file is the internal
+// Match Engine Implementation.
+//
+//================================================================================
+
+
+//--------------------------------------------------------------------------------
+//
+// resetStack
+// Discard any previous contents of the state save stack, and initialize a
+// new stack frame to all -1. The -1s are needed for capture group limits,
+// where they indicate that a group has not yet matched anything.
+//--------------------------------------------------------------------------------
+REStackFrame *RegexMatcher::resetStack() {
+ // Discard any previous contents of the state save stack, and initialize a
+ // new stack frame with all -1 data. The -1s are needed for capture group limits,
+ // where they indicate that a group has not yet matched anything.
+ fStack->removeAllElements();
+
+ REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
+ if(U_FAILURE(fDeferredStatus)) {
+ return nullptr;
+ }
+
+ int32_t i;
+ for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) {
+ iFrame->fExtra[i] = -1;
+ }
+ return iFrame;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// isWordBoundary
+// in perl, "xab..cd..", \b is true at positions 0,3,5,7
+// For us,
+// If the current char is a combining mark,
+// \b is false.
+// Else Scan backwards to the first non-combining char.
+// We are at a boundary if the this char and the original chars are
+// opposite in membership in \w set
+//
+// parameters: pos - the current position in the input buffer
+//
+// TODO: double-check edge cases at region boundaries.
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::isWordBoundary(int64_t pos) {
+ UBool isBoundary = false;
+ UBool cIsWord = false;
+
+ if (pos >= fLookLimit) {
+ fHitEnd = true;
+ } else {
+ // Determine whether char c at current position is a member of the word set of chars.
+ // If we're off the end of the string, behave as though we're not at a word char.
+ UTEXT_SETNATIVEINDEX(fInputText, pos);
+ UChar32 c = UTEXT_CURRENT32(fInputText);
+ if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
+ // Current char is a combining one. Not a boundary.
+ return false;
+ }
+ cIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(c);
+ }
+
+ // Back up until we come to a non-combining char, determine whether
+ // that char is a word char.
+ UBool prevCIsWord = false;
+ for (;;) {
+ if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) {
+ break;
+ }
+ UChar32 prevChar = UTEXT_PREVIOUS32(fInputText);
+ if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
+ || u_charType(prevChar) == U_FORMAT_CHAR)) {
+ prevCIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(prevChar);
+ break;
+ }
+ }
+ isBoundary = cIsWord ^ prevCIsWord;
+ return isBoundary;
+}
+
+UBool RegexMatcher::isChunkWordBoundary(int32_t pos) {
+ UBool isBoundary = false;
+ UBool cIsWord = false;
+
+ const char16_t *inputBuf = fInputText->chunkContents;
+
+ if (pos >= fLookLimit) {
+ fHitEnd = true;
+ } else {
+ // Determine whether char c at current position is a member of the word set of chars.
+ // If we're off the end of the string, behave as though we're not at a word char.
+ UChar32 c;
+ U16_GET(inputBuf, fLookStart, pos, fLookLimit, c);
+ if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
+ // Current char is a combining one. Not a boundary.
+ return false;
+ }
+ cIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(c);
+ }
+
+ // Back up until we come to a non-combining char, determine whether
+ // that char is a word char.
+ UBool prevCIsWord = false;
+ for (;;) {
+ if (pos <= fLookStart) {
+ break;
+ }
+ UChar32 prevChar;
+ U16_PREV(inputBuf, fLookStart, pos, prevChar);
+ if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
+ || u_charType(prevChar) == U_FORMAT_CHAR)) {
+ prevCIsWord = RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].contains(prevChar);
+ break;
+ }
+ }
+ isBoundary = cIsWord ^ prevCIsWord;
+ return isBoundary;
+}
+
+//--------------------------------------------------------------------------------
+//
+// isUWordBoundary
+//
+// Test for a word boundary using RBBI word break.
+//
+// parameters: pos - the current position in the input buffer
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::isUWordBoundary(int64_t pos, UErrorCode &status) {
+ UBool returnVal = false;
+
+#if UCONFIG_NO_BREAK_ITERATION==0
+ // Note: this point will never be reached if break iteration is configured out.
+ // Regex patterns that would require this function will fail to compile.
+
+ // If we haven't yet created a break iterator for this matcher, do it now.
+ if (fWordBreakItr == nullptr) {
+ fWordBreakItr = BreakIterator::createWordInstance(Locale::getEnglish(), status);
+ if (U_FAILURE(status)) {
+ return false;
+ }
+ fWordBreakItr->setText(fInputText, status);
+ }
+
+ // Note: zero width boundary tests like \b see through transparent region bounds,
+ // which is why fLookLimit is used here, rather than fActiveLimit.
+ if (pos >= fLookLimit) {
+ fHitEnd = true;
+ returnVal = true; // With Unicode word rules, only positions within the interior of "real"
+ // words are not boundaries. All non-word chars stand by themselves,
+ // with word boundaries on both sides.
+ } else {
+ returnVal = fWordBreakItr->isBoundary((int32_t)pos);
+ }
+#endif
+ return returnVal;
+}
+
+
+int64_t RegexMatcher::followingGCBoundary(int64_t pos, UErrorCode &status) {
+ int64_t result = pos;
+
+#if UCONFIG_NO_BREAK_ITERATION==0
+ // Note: this point will never be reached if break iteration is configured out.
+ // Regex patterns that would require this function will fail to compile.
+
+ // If we haven't yet created a break iterator for this matcher, do it now.
+ if (fGCBreakItr == nullptr) {
+ fGCBreakItr = BreakIterator::createCharacterInstance(Locale::getEnglish(), status);
+ if (U_FAILURE(status)) {
+ return pos;
+ }
+ fGCBreakItr->setText(fInputText, status);
+ }
+ result = fGCBreakItr->following(pos);
+ if (result == BreakIterator::DONE) {
+ result = pos;
+ }
+#endif
+ return result;
+}
+
+//--------------------------------------------------------------------------------
+//
+// IncrementTime This function is called once each TIMER_INITIAL_VALUE state
+// saves. Increment the "time" counter, and call the
+// user callback function if there is one installed.
+//
+// If the match operation needs to be aborted, either for a time-out
+// or because the user callback asked for it, just set an error status.
+// The engine will pick that up and stop in its outer loop.
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::IncrementTime(UErrorCode &status) {
+ fTickCounter = TIMER_INITIAL_VALUE;
+ fTime++;
+ if (fCallbackFn != nullptr) {
+ if ((*fCallbackFn)(fCallbackContext, fTime) == false) {
+ status = U_REGEX_STOPPED_BY_CALLER;
+ return;
+ }
+ }
+ if (fTimeLimit > 0 && fTime >= fTimeLimit) {
+ status = U_REGEX_TIME_OUT;
+ }
+}
+
+//--------------------------------------------------------------------------------
+//
+// StateSave
+// Make a new stack frame, initialized as a copy of the current stack frame.
+// Set the pattern index in the original stack frame from the operand value
+// in the opcode. Execution of the engine continues with the state in
+// the newly created stack frame
+//
+// Note that reserveBlock() may grow the stack, resulting in the
+// whole thing being relocated in memory.
+//
+// Parameters:
+// fp The top frame pointer when called. At return, a new
+// fame will be present
+// savePatIdx An index into the compiled pattern. Goes into the original
+// (not new) frame. If execution ever back-tracks out of the
+// new frame, this will be where we continue from in the pattern.
+// Return
+// The new frame pointer.
+//
+//--------------------------------------------------------------------------------
+inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return fp;
+ }
+ // push storage for a new frame.
+ int64_t *newFP = fStack->reserveBlock(fFrameSize, status);
+ if (U_FAILURE(status)) {
+ // Failure on attempted stack expansion.
+ // Stack function set some other error code, change it to a more
+ // specific one for regular expressions.
+ status = U_REGEX_STACK_OVERFLOW;
+ // We need to return a writable stack frame, so just return the
+ // previous frame. The match operation will stop quickly
+ // because of the error status, after which the frame will never
+ // be looked at again.
+ return fp;
+ }
+ fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack.
+
+ // New stack frame = copy of old top frame.
+ int64_t *source = (int64_t *)fp;
+ int64_t *dest = newFP;
+ for (;;) {
+ *dest++ = *source++;
+ if (source == newFP) {
+ break;
+ }
+ }
+
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
+ fp->fPatIdx = savePatIdx;
+ return (REStackFrame *)newFP;
+}
+
+#if defined(REGEX_DEBUG)
+namespace {
+UnicodeString StringFromUText(UText *ut) {
+ UnicodeString result;
+ for (UChar32 c = utext_next32From(ut, 0); c != U_SENTINEL; c = UTEXT_NEXT32(ut)) {
+ result.append(c);
+ }
+ return result;
+}
+}
+#endif // REGEX_DEBUG
+
+
+//--------------------------------------------------------------------------------
+//
+// MatchAt This is the actual matching engine.
+//
+// startIdx: begin matching a this index.
+// toEnd: if true, match must extend to end of the input region
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) {
+ UBool isMatch = false; // True if the we have a match.
+
+ int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards
+
+ int32_t op; // Operation from the compiled pattern, split into
+ int32_t opType; // the opcode
+ int32_t opValue; // and the operand value.
+
+#ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug) {
+ printf("MatchAt(startIdx=%ld)\n", startIdx);
+ printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))());
+ printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))());
+ }
+#endif
+
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ // Cache frequently referenced items from the compiled pattern
+ //
+ int64_t *pat = fPattern->fCompiledPat->getBuffer();
+
+ const char16_t *litText = fPattern->fLiteralText.getBuffer();
+ UVector *fSets = fPattern->fSets;
+
+ fFrameSize = fPattern->fFrameSize;
+ REStackFrame *fp = resetStack();
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return;
+ }
+
+ fp->fPatIdx = 0;
+ fp->fInputIdx = startIdx;
+
+ // Zero out the pattern's static data
+ int32_t i;
+ for (i = 0; i<fPattern->fDataSize; i++) {
+ fData[i] = 0;
+ }
+
+ //
+ // Main loop for interpreting the compiled pattern.
+ // One iteration of the loop per pattern operation performed.
+ //
+ for (;;) {
+ op = (int32_t)pat[fp->fPatIdx];
+ opType = URX_TYPE(op);
+ opValue = URX_VAL(op);
+#ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug) {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx,
+ UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
+ fPattern->dumpOp(fp->fPatIdx);
+ }
+#endif
+ fp->fPatIdx++;
+
+ switch (opType) {
+
+
+ case URX_NOP:
+ break;
+
+
+ case URX_BACKTRACK:
+ // Force a backtrack. In some circumstances, the pattern compiler
+ // will notice that the pattern can't possibly match anything, and will
+ // emit one of these at that point.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_ONECHAR:
+ if (fp->fInputIdx < fActiveLimit) {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c == opValue) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ } else {
+ fHitEnd = true;
+ }
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_STRING:
+ {
+ // Test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+
+ int32_t stringStartIdx = opValue;
+ op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
+ fp->fPatIdx++;
+ opType = URX_TYPE(op);
+ int32_t stringLen = URX_VAL(op);
+ U_ASSERT(opType == URX_STRING_LEN);
+ U_ASSERT(stringLen >= 2);
+
+ const char16_t *patternString = litText+stringStartIdx;
+ int32_t patternStringIndex = 0;
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 inputChar;
+ UChar32 patternChar;
+ UBool success = true;
+ while (patternStringIndex < stringLen) {
+ if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
+ success = false;
+ fHitEnd = true;
+ break;
+ }
+ inputChar = UTEXT_NEXT32(fInputText);
+ U16_NEXT(patternString, patternStringIndex, stringLen, patternChar);
+ if (patternChar != inputChar) {
+ success = false;
+ break;
+ }
+ }
+
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_STATE_SAVE:
+ fp = StateSave(fp, opValue, status);
+ break;
+
+
+ case URX_END:
+ // The match loop will exit via this path on a successful match,
+ // when we reach the end of the pattern.
+ if (toEnd && fp->fInputIdx != fActiveLimit) {
+ // The pattern matched, but not to the end of input. Try some more.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ isMatch = true;
+ goto breakFromLoop;
+
+ // Start and End Capture stack frame variables are laid out out like this:
+ // fp->fExtra[opValue] - The start of a completed capture group
+ // opValue+1 - The end of a completed capture group
+ // opValue+2 - the start of a capture group whose end
+ // has not yet been reached (and might not ever be).
+ case URX_START_CAPTURE:
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
+ fp->fExtra[opValue+2] = fp->fInputIdx;
+ break;
+
+
+ case URX_END_CAPTURE:
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
+ U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
+ fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
+ fp->fExtra[opValue+1] = fp->fInputIdx; // End position
+ U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
+ break;
+
+
+ case URX_DOLLAR: // $, test for End of line
+ // or for position before new line at end of input
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // If we are positioned just before a new-line that is located at the
+ // end of input, succeed.
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
+ if (isLineTerminator(c)) {
+ // If not in the middle of a CR/LF sequence
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) {
+ // At new-line at end of input. Success
+ fHitEnd = true;
+ fRequireEnd = true;
+
+ break;
+ }
+ }
+ } else {
+ UChar32 nextC = UTEXT_NEXT32(fInputText);
+ if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
+ fHitEnd = true;
+ fRequireEnd = true;
+ break; // At CR/LF at end of input. Success
+ }
+ }
+
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // Off the end of input. Success.
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ // Either at the last character of input, or off the end.
+ if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) {
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ }
+ }
+
+ // Not at end of input. Back-track out.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_DOLLAR_M: // $, test for End of line in multi-line mode
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ }
+ // If we are positioned just before a new-line, succeed.
+ // It makes no difference where the new-line is within the input.
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_CURRENT32(fInputText);
+ if (isLineTerminator(c)) {
+ // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
+ // In multi-line mode, hitting a new-line just before the end of input does not
+ // set the hitEnd or requireEnd flags
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) {
+ break;
+ }
+ }
+ // not at a new line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = true;
+ fRequireEnd = true; // Java set requireEnd in this case, even though
+ break; // adding a new-line would not lose the match.
+ }
+ // If we are not positioned just before a new-line, the test fails; backtrack out.
+ // It makes no difference where the new-line is within the input.
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ if (UTEXT_CURRENT32(fInputText) != 0x0a) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_CARET: // ^, test for start of line
+ if (fp->fInputIdx != fAnchorStart) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_CARET_M: // ^, test for start of line in mulit-line mode
+ {
+ if (fp->fInputIdx == fAnchorStart) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ // unless we are at the end of input
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_PREVIOUS32(fInputText);
+ if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) {
+ // It's a new-line. ^ is true. Success.
+ // TODO: what should be done with positions between a CR and LF?
+ break;
+ }
+ // Not at the start of a line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
+ {
+ U_ASSERT(fp->fInputIdx >= fAnchorStart);
+ if (fp->fInputIdx <= fAnchorStart) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ U_ASSERT(fp->fInputIdx <= fAnchorLimit);
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_PREVIOUS32(fInputText);
+ if (c != 0x0a) {
+ // Not at the start of a line. Back-track out.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_BACKSLASH_B: // Test for word boundaries
+ {
+ UBool success = isWordBoundary(fp->fInputIdx);
+ success ^= (UBool)(opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
+ {
+ UBool success = isUWordBoundary(fp->fInputIdx, status);
+ success ^= (UBool)(opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_D: // Test for decimal digit
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
+ UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
+ success ^= (UBool)(opValue != 0); // flip sense for \D
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_G: // Test for position at end of previous match
+ if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==false && fp->fInputIdx==fActiveStart))) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_BACKSLASH_H: // Test for \h, horizontal white space.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ int8_t ctype = u_charType(c);
+ UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB
+ success ^= (UBool)(opValue != 0); // flip sense for \H
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_R: // Test for \R, any line break sequence.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (isLineTerminator(c)) {
+ if (c == 0x0d && utext_current32(fInputText) == 0x0a) {
+ utext_next32(fInputText);
+ }
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_V: // \v, any single line ending character.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ UBool success = isLineTerminator(c);
+ success ^= (UBool)(opValue != 0); // flip sense for \V
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_X:
+ // Match a Grapheme, as defined by Unicode UAX 29.
+
+ // Fail if at end of input
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ fp->fInputIdx = followingGCBoundary(fp->fInputIdx, status);
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp->fInputIdx = fActiveLimit;
+ }
+ break;
+
+
+ case URX_BACKSLASH_Z: // Test for end of Input
+ if (fp->fInputIdx < fAnchorLimit) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ } else {
+ fHitEnd = true;
+ fRequireEnd = true;
+ }
+ break;
+
+
+
+ case URX_STATIC_SETREF:
+ {
+ // Test input character against one of the predefined sets
+ // (Word Characters, for example)
+ // The high bit of the op value is a flag for the match polarity.
+ // 0: success if input char is in set.
+ // 1: success if input char is not in set.
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
+ opValue &= ~URX_NEG_SET;
+ U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c < 256) {
+ Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue];
+ if (s8.contains(c)) {
+ success = !success;
+ }
+ } else {
+ const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue];
+ if (s.contains(c)) {
+ success = !success;
+ }
+ }
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ // the character wasn't in the set.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_STAT_SETREF_N:
+ {
+ // Test input character for NOT being a member of one of
+ // the predefined sets (Word Characters, for example)
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c < 256) {
+ Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue];
+ if (s8.contains(c) == false) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ } else {
+ const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue];
+ if (s.contains(c) == false) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ }
+ // the character wasn't in the set.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_SETREF:
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // There is input left. Pick up one char and test it for set membership.
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ U_ASSERT(opValue > 0 && opValue < fSets->size());
+ if (c<256) {
+ Regex8BitSet *s8 = &fPattern->fSets8[opValue];
+ if (s8->contains(c)) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ } else {
+ UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
+ if (s->contains(c)) {
+ // The character is in the set. A Match.
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ }
+
+ // the character wasn't in the set.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_DOTANY:
+ {
+ // . matches anything, but stops at end-of-line.
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // There is input left. Advance over one char, unless we've hit end-of-line
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (isLineTerminator(c)) {
+ // End of line in normal mode. . does not match.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ break;
+
+
+ case URX_DOTANY_ALL:
+ {
+ // ., in dot-matches-all (including new lines) mode
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // There is input left. Advance over one char, except if we are
+ // at a cr/lf, advance over both of them.
+ UChar32 c;
+ c = UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ if (c==0x0d && fp->fInputIdx < fActiveLimit) {
+ // In the case of a CR/LF, we need to advance over both.
+ UChar32 nextc = UTEXT_CURRENT32(fInputText);
+ if (nextc == 0x0a) {
+ (void)UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+ }
+ break;
+
+
+ case URX_DOTANY_UNIX:
+ {
+ // '.' operator, matches all, but stops at end-of-line.
+ // UNIX_LINES mode, so 0x0a is the only recognized line ending.
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // There is input left. Advance over one char, unless we've hit end-of-line
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c == 0x0a) {
+ // End of line in normal mode. '.' does not match the \n
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ } else {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+ break;
+
+
+ case URX_JMP:
+ fp->fPatIdx = opValue;
+ break;
+
+ case URX_FAIL:
+ isMatch = false;
+ goto breakFromLoop;
+
+ case URX_JMP_SAV:
+ U_ASSERT(opValue < fPattern->fCompiledPat->size());
+ fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
+ fp->fPatIdx = opValue; // Then JMP.
+ break;
+
+ case URX_JMP_SAV_X:
+ // This opcode is used with (x)+, when x can match a zero length string.
+ // Same as JMP_SAV, except conditional on the match having made forward progress.
+ // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
+ // data address of the input position at the start of the loop.
+ {
+ U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
+ int32_t stoOp = (int32_t)pat[opValue-1];
+ U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
+ int32_t frameLoc = URX_VAL(stoOp);
+ U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
+ int64_t prevInputIdx = fp->fExtra[frameLoc];
+ U_ASSERT(prevInputIdx <= fp->fInputIdx);
+ if (prevInputIdx < fp->fInputIdx) {
+ // The match did make progress. Repeat the loop.
+ fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
+ fp->fPatIdx = opValue;
+ fp->fExtra[frameLoc] = fp->fInputIdx;
+ }
+ // If the input position did not advance, we do nothing here,
+ // execution will fall out of the loop.
+ }
+ break;
+
+ case URX_CTR_INIT:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
+ fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
+
+ // Pick up the three extra operands that CTR_INIT has, and
+ // skip the pattern location counter past
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 3;
+ int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
+ int32_t minCount = (int32_t)pat[instrOperandLoc+1];
+ int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
+ U_ASSERT(minCount>=0);
+ U_ASSERT(maxCount>=minCount || maxCount==-1);
+ U_ASSERT(loopLoc>=fp->fPatIdx);
+
+ if (minCount == 0) {
+ fp = StateSave(fp, loopLoc+1, status);
+ }
+ if (maxCount == -1) {
+ fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking.
+ } else if (maxCount == 0) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_CTR_LOOP:
+ {
+ U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
+ int32_t initOp = (int32_t)pat[opValue];
+ U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
+ int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = (int32_t)pat[opValue+2];
+ int32_t maxCount = (int32_t)pat[opValue+3];
+ (*pCounter)++;
+ if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
+ U_ASSERT(*pCounter == maxCount);
+ break;
+ }
+ if (*pCounter >= minCount) {
+ if (maxCount == -1) {
+ // Loop has no hard upper bound.
+ // Check that it is progressing through the input, break if it is not.
+ int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1];
+ if (fp->fInputIdx == *pLastInputIdx) {
+ break;
+ } else {
+ *pLastInputIdx = fp->fInputIdx;
+ }
+ }
+ fp = StateSave(fp, fp->fPatIdx, status);
+ } else {
+ // Increment time-out counter. (StateSave() does it if count >= minCount)
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
+ }
+
+ fp->fPatIdx = opValue + 4; // Loop back.
+ }
+ break;
+
+ case URX_CTR_INIT_NG:
+ {
+ // Initialize a non-greedy loop
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
+ fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
+
+ // Pick up the three extra operands that CTR_INIT_NG has, and
+ // skip the pattern location counter past
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 3;
+ int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
+ int32_t minCount = (int32_t)pat[instrOperandLoc+1];
+ int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
+ U_ASSERT(minCount>=0);
+ U_ASSERT(maxCount>=minCount || maxCount==-1);
+ U_ASSERT(loopLoc>fp->fPatIdx);
+ if (maxCount == -1) {
+ fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking.
+ }
+
+ if (minCount == 0) {
+ if (maxCount != 0) {
+ fp = StateSave(fp, fp->fPatIdx, status);
+ }
+ fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
+ }
+ }
+ break;
+
+ case URX_CTR_LOOP_NG:
+ {
+ // Non-greedy {min, max} loops
+ U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
+ int32_t initOp = (int32_t)pat[opValue];
+ U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
+ int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = (int32_t)pat[opValue+2];
+ int32_t maxCount = (int32_t)pat[opValue+3];
+
+ (*pCounter)++;
+ if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
+ // The loop has matched the maximum permitted number of times.
+ // Break out of here with no action. Matching will
+ // continue with the following pattern.
+ U_ASSERT(*pCounter == maxCount);
+ break;
+ }
+
+ if (*pCounter < minCount) {
+ // We haven't met the minimum number of matches yet.
+ // Loop back for another one.
+ fp->fPatIdx = opValue + 4; // Loop back.
+ // Increment time-out counter. (StateSave() does it if count >= minCount)
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
+ } else {
+ // We do have the minimum number of matches.
+
+ // If there is no upper bound on the loop iterations, check that the input index
+ // is progressing, and stop the loop if it is not.
+ if (maxCount == -1) {
+ int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1];
+ if (fp->fInputIdx == *pLastInputIdx) {
+ break;
+ }
+ *pLastInputIdx = fp->fInputIdx;
+ }
+
+ // Loop Continuation: we will fall into the pattern following the loop
+ // (non-greedy, don't execute loop body first), but first do
+ // a state save to the top of the loop, so that a match failure
+ // in the following pattern will try another iteration of the loop.
+ fp = StateSave(fp, opValue + 4, status);
+ }
+ }
+ break;
+
+ case URX_STO_SP:
+ U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ break;
+
+ case URX_LD_SP:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
+ int32_t newStackSize = (int32_t)fData[opValue];
+ U_ASSERT(newStackSize <= fStack->size());
+ int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
+ if (newFP == (int64_t *)fp) {
+ break;
+ }
+ int32_t j;
+ for (j=0; j<fFrameSize; j++) {
+ newFP[j] = ((int64_t *)fp)[j];
+ }
+ fp = (REStackFrame *)newFP;
+ fStack->setSize(newStackSize);
+ }
+ break;
+
+ case URX_BACKREF:
+ {
+ U_ASSERT(opValue < fFrameSize);
+ int64_t groupStartIdx = fp->fExtra[opValue];
+ int64_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(groupStartIdx <= groupEndIdx);
+ if (groupStartIdx < 0) {
+ // This capture group has not participated in the match thus far,
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
+ break;
+ }
+ UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx);
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // Note: if the capture group match was of an empty string the backref
+ // match succeeds. Verified by testing: Perl matches succeed
+ // in this case, so we do too.
+
+ UBool success = true;
+ for (;;) {
+ if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
+ success = true;
+ break;
+ }
+ if (utext_getNativeIndex(fInputText) >= fActiveLimit) {
+ success = false;
+ fHitEnd = true;
+ break;
+ }
+ UChar32 captureGroupChar = utext_next32(fAltInputText);
+ UChar32 inputChar = utext_next32(fInputText);
+ if (inputChar != captureGroupChar) {
+ success = false;
+ break;
+ }
+ }
+
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+
+ case URX_BACKREF_I:
+ {
+ U_ASSERT(opValue < fFrameSize);
+ int64_t groupStartIdx = fp->fExtra[opValue];
+ int64_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(groupStartIdx <= groupEndIdx);
+ if (groupStartIdx < 0) {
+ // This capture group has not participated in the match thus far,
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
+ break;
+ }
+ utext_setNativeIndex(fAltInputText, groupStartIdx);
+ utext_setNativeIndex(fInputText, fp->fInputIdx);
+ CaseFoldingUTextIterator captureGroupItr(*fAltInputText);
+ CaseFoldingUTextIterator inputItr(*fInputText);
+
+ // Note: if the capture group match was of an empty string the backref
+ // match succeeds. Verified by testing: Perl matches succeed
+ // in this case, so we do too.
+
+ UBool success = true;
+ for (;;) {
+ if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
+ success = true;
+ break;
+ }
+ if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) {
+ success = false;
+ fHitEnd = true;
+ break;
+ }
+ UChar32 captureGroupChar = captureGroupItr.next();
+ UChar32 inputChar = inputItr.next();
+ if (inputChar != captureGroupChar) {
+ success = false;
+ break;
+ }
+ }
+
+ if (success && inputItr.inExpansion()) {
+ // We obtained a match by consuming part of a string obtained from
+ // case-folding a single code point of the input text.
+ // This does not count as an overall match.
+ success = false;
+ }
+
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+
+ }
+ break;
+
+ case URX_STO_INP_LOC:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize);
+ fp->fExtra[opValue] = fp->fInputIdx;
+ }
+ break;
+
+ case URX_JMPX:
+ {
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 1;
+ int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
+ U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
+ int64_t savedInputIdx = fp->fExtra[dataLoc];
+ U_ASSERT(savedInputIdx <= fp->fInputIdx);
+ if (savedInputIdx < fp->fInputIdx) {
+ fp->fPatIdx = opValue; // JMP
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
+ }
+ }
+ break;
+
+ case URX_LA_START:
+ {
+ // Entering a look around block.
+ // Save Stack Ptr, Input Pos.
+ U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ fData[opValue+1] = fp->fInputIdx;
+ fData[opValue+2] = fActiveStart;
+ fData[opValue+3] = fActiveLimit;
+ fActiveStart = fLookStart; // Set the match region change for
+ fActiveLimit = fLookLimit; // transparent bounds.
+ }
+ break;
+
+ case URX_LA_END:
+ {
+ // Leaving a look-ahead block.
+ // restore Stack Ptr, Input Pos to positions they had on entry to block.
+ U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize);
+ int32_t stackSize = fStack->size();
+ int32_t newStackSize =(int32_t)fData[opValue];
+ U_ASSERT(stackSize >= newStackSize);
+ if (stackSize > newStackSize) {
+ // Copy the current top frame back to the new (cut back) top frame.
+ // This makes the capture groups from within the look-ahead
+ // expression available.
+ int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
+ int32_t j;
+ for (j=0; j<fFrameSize; j++) {
+ newFP[j] = ((int64_t *)fp)[j];
+ }
+ fp = (REStackFrame *)newFP;
+ fStack->setSize(newStackSize);
+ }
+ fp->fInputIdx = fData[opValue+1];
+
+ // Restore the active region bounds in the input string; they may have
+ // been changed because of transparent bounds on a Region.
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+ }
+ break;
+
+ case URX_ONECHAR_I:
+ // Case insensitive one char. The char from the pattern is already case folded.
+ // Input text is not, but case folding the input can not reduce two or more code
+ // points to one.
+ if (fp->fInputIdx < fActiveLimit) {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ } else {
+ fHitEnd = true;
+ }
+
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+ case URX_STRING_I:
+ {
+ // Case-insensitive test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+ // The compiled string has already been case folded.
+ {
+ const char16_t *patternString = litText + opValue;
+ int32_t patternStringIdx = 0;
+
+ op = (int32_t)pat[fp->fPatIdx];
+ fp->fPatIdx++;
+ opType = URX_TYPE(op);
+ opValue = URX_VAL(op);
+ U_ASSERT(opType == URX_STRING_LEN);
+ int32_t patternStringLen = opValue; // Length of the string from the pattern.
+
+
+ UChar32 cPattern;
+ UChar32 cText;
+ UBool success = true;
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ CaseFoldingUTextIterator inputIterator(*fInputText);
+ while (patternStringIdx < patternStringLen) {
+ if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
+ success = false;
+ fHitEnd = true;
+ break;
+ }
+ U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
+ cText = inputIterator.next();
+ if (cText != cPattern) {
+ success = false;
+ break;
+ }
+ }
+ if (inputIterator.inExpansion()) {
+ success = false;
+ }
+
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ }
+ break;
+
+ case URX_LB_START:
+ {
+ // Entering a look-behind block.
+ // Save Stack Ptr, Input Pos and active input region.
+ // TODO: implement transparent bounds. Ticket #6067
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ fData[opValue+1] = fp->fInputIdx;
+ // Save input string length, then reset to pin any matches to end at
+ // the current position.
+ fData[opValue+2] = fActiveStart;
+ fData[opValue+3] = fActiveLimit;
+ fActiveStart = fRegionStart;
+ fActiveLimit = fp->fInputIdx;
+ // Init the variable containing the start index for attempted matches.
+ fData[opValue+4] = -1;
+ }
+ break;
+
+
+ case URX_LB_CONT:
+ {
+ // Positive Look-Behind, at top of loop checking for matches of LB expression
+ // at all possible input starting positions.
+
+ // Fetch the min and max possible match lengths. They are the operands
+ // of this op in the pattern.
+ int32_t minML = (int32_t)pat[fp->fPatIdx++];
+ int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ if (!UTEXT_USES_U16(fInputText)) {
+ // utf-8 fix to maximum match length. The pattern compiler assumes utf-16.
+ // The max length need not be exact; it just needs to be >= actual maximum.
+ maxML *= 3;
+ }
+ U_ASSERT(minML <= maxML);
+ U_ASSERT(minML >= 0);
+
+ // Fetch (from data) the last input index where a match was attempted.
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ int64_t &lbStartIdx = fData[opValue+4];
+ if (lbStartIdx < 0) {
+ // First time through loop.
+ lbStartIdx = fp->fInputIdx - minML;
+ if (lbStartIdx > 0) {
+ // move index to a code point boundary, if it's not on one already.
+ UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
+ lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ } else {
+ // 2nd through nth time through the loop.
+ // Back up start position for match by one.
+ if (lbStartIdx == 0) {
+ (lbStartIdx)--;
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
+ (void)UTEXT_PREVIOUS32(fInputText);
+ lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+
+ if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
+ // We have tried all potential match starting points without
+ // getting a match. Backtrack out, and out of the
+ // Look Behind altogether.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+ break;
+ }
+
+ // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
+ // (successful match will fall off the end of the loop.)
+ fp = StateSave(fp, fp->fPatIdx-3, status);
+ fp->fInputIdx = lbStartIdx;
+ }
+ break;
+
+ case URX_LB_END:
+ // End of a look-behind block, after a successful match.
+ {
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ if (fp->fInputIdx != fActiveLimit) {
+ // The look-behind expression matched, but the match did not
+ // extend all the way to the point that we are looking behind from.
+ // FAIL out of here, which will take us back to the LB_CONT, which
+ // will retry the match starting at another position or fail
+ // the look-behind altogether, whichever is appropriate.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // Look-behind match is good. Restore the original input string region,
+ // which had been truncated to pin the end of the lookbehind match to the
+ // position being looked-behind.
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+ }
+ break;
+
+
+ case URX_LBN_CONT:
+ {
+ // Negative Look-Behind, at top of loop checking for matches of LB expression
+ // at all possible input starting positions.
+
+ // Fetch the extra parameters of this op.
+ int32_t minML = (int32_t)pat[fp->fPatIdx++];
+ int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ if (!UTEXT_USES_U16(fInputText)) {
+ // utf-8 fix to maximum match length. The pattern compiler assumes utf-16.
+ // The max length need not be exact; it just needs to be >= actual maximum.
+ maxML *= 3;
+ }
+ int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
+ continueLoc = URX_VAL(continueLoc);
+ U_ASSERT(minML <= maxML);
+ U_ASSERT(minML >= 0);
+ U_ASSERT(continueLoc > fp->fPatIdx);
+
+ // Fetch (from data) the last input index where a match was attempted.
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ int64_t &lbStartIdx = fData[opValue+4];
+ if (lbStartIdx < 0) {
+ // First time through loop.
+ lbStartIdx = fp->fInputIdx - minML;
+ if (lbStartIdx > 0) {
+ // move index to a code point boundary, if it's not on one already.
+ UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
+ lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ } else {
+ // 2nd through nth time through the loop.
+ // Back up start position for match by one.
+ if (lbStartIdx == 0) {
+ (lbStartIdx)--;
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
+ (void)UTEXT_PREVIOUS32(fInputText);
+ lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+
+ if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
+ // We have tried all potential match starting points without
+ // getting a match, which means that the negative lookbehind as
+ // a whole has succeeded. Jump forward to the continue location
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+ fp->fPatIdx = continueLoc;
+ break;
+ }
+
+ // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
+ // (successful match will cause a FAIL out of the loop altogether.)
+ fp = StateSave(fp, fp->fPatIdx-4, status);
+ fp->fInputIdx = lbStartIdx;
+ }
+ break;
+
+ case URX_LBN_END:
+ // End of a negative look-behind block, after a successful match.
+ {
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ if (fp->fInputIdx != fActiveLimit) {
+ // The look-behind expression matched, but the match did not
+ // extend all the way to the point that we are looking behind from.
+ // FAIL out of here, which will take us back to the LB_CONT, which
+ // will retry the match starting at another position or succeed
+ // the look-behind altogether, whichever is appropriate.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // Look-behind expression matched, which means look-behind test as
+ // a whole Fails
+
+ // Restore the original input string length, which had been truncated
+ // inorder to pin the end of the lookbehind match
+ // to the position being looked-behind.
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+
+ // Restore original stack position, discarding any state saved
+ // by the successful pattern match.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int32_t newStackSize = (int32_t)fData[opValue];
+ U_ASSERT(fStack->size() > newStackSize);
+ fStack->setSize(newStackSize);
+
+ // FAIL, which will take control back to someplace
+ // prior to entering the look-behind test.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_LOOP_SR_I:
+ // Loop Initialization for the optimized implementation of
+ // [some character set]*
+ // This op scans through all matching input.
+ // The following LOOP_C op emulates stack unwinding if the following pattern fails.
+ {
+ U_ASSERT(opValue > 0 && opValue < fSets->size());
+ Regex8BitSet *s8 = &fPattern->fSets8[opValue];
+ UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
+
+ // Loop through input, until either the input is exhausted or
+ // we reach a character that is not a member of the set.
+ int64_t ix = fp->fInputIdx;
+ UTEXT_SETNATIVEINDEX(fInputText, ix);
+ for (;;) {
+ if (ix >= fActiveLimit) {
+ fHitEnd = true;
+ break;
+ }
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c<256) {
+ if (s8->contains(c) == false) {
+ break;
+ }
+ } else {
+ if (s->contains(c) == false) {
+ break;
+ }
+ }
+ ix = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+
+ // If there were no matching characters, skip over the loop altogether.
+ // The loop doesn't run at all, a * op always succeeds.
+ if (ix == fp->fInputIdx) {
+ fp->fPatIdx++; // skip the URX_LOOP_C op.
+ break;
+ }
+
+ // Peek ahead in the compiled pattern, to the URX_LOOP_C that
+ // must follow. It's operand is the stack location
+ // that holds the starting input index for the match of this [set]*
+ int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
+ U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
+ int32_t stackLoc = URX_VAL(loopcOp);
+ U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
+ fp->fExtra[stackLoc] = fp->fInputIdx;
+ fp->fInputIdx = ix;
+
+ // Save State to the URX_LOOP_C op that follows this one,
+ // so that match failures in the following code will return to there.
+ // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
+ fp = StateSave(fp, fp->fPatIdx, status);
+ fp->fPatIdx++;
+ }
+ break;
+
+
+ case URX_LOOP_DOT_I:
+ // Loop Initialization for the optimized implementation of .*
+ // This op scans through all remaining input.
+ // The following LOOP_C op emulates stack unwinding if the following pattern fails.
+ {
+ // Loop through input until the input is exhausted (we reach an end-of-line)
+ // In DOTALL mode, we can just go straight to the end of the input.
+ int64_t ix;
+ if ((opValue & 1) == 1) {
+ // Dot-matches-All mode. Jump straight to the end of the string.
+ ix = fActiveLimit;
+ fHitEnd = true;
+ } else {
+ // NOT DOT ALL mode. Line endings do not match '.'
+ // Scan forward until a line ending or end of input.
+ ix = fp->fInputIdx;
+ UTEXT_SETNATIVEINDEX(fInputText, ix);
+ for (;;) {
+ if (ix >= fActiveLimit) {
+ fHitEnd = true;
+ break;
+ }
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
+ if ((c == 0x0a) || // 0x0a is newline in both modes.
+ (((opValue & 2) == 0) && // IF not UNIX_LINES mode
+ isLineTerminator(c))) {
+ // char is a line ending. Exit the scanning loop.
+ break;
+ }
+ }
+ ix = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+
+ // If there were no matching characters, skip over the loop altogether.
+ // The loop doesn't run at all, a * op always succeeds.
+ if (ix == fp->fInputIdx) {
+ fp->fPatIdx++; // skip the URX_LOOP_C op.
+ break;
+ }
+
+ // Peek ahead in the compiled pattern, to the URX_LOOP_C that
+ // must follow. It's operand is the stack location
+ // that holds the starting input index for the match of this .*
+ int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
+ U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
+ int32_t stackLoc = URX_VAL(loopcOp);
+ U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
+ fp->fExtra[stackLoc] = fp->fInputIdx;
+ fp->fInputIdx = ix;
+
+ // Save State to the URX_LOOP_C op that follows this one,
+ // so that match failures in the following code will return to there.
+ // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
+ fp = StateSave(fp, fp->fPatIdx, status);
+ fp->fPatIdx++;
+ }
+ break;
+
+
+ case URX_LOOP_C:
+ {
+ U_ASSERT(opValue>=0 && opValue<fFrameSize);
+ backSearchIndex = fp->fExtra[opValue];
+ U_ASSERT(backSearchIndex <= fp->fInputIdx);
+ if (backSearchIndex == fp->fInputIdx) {
+ // We've backed up the input idx to the point that the loop started.
+ // The loop is done. Leave here without saving state.
+ // Subsequent failures won't come back here.
+ break;
+ }
+ // Set up for the next iteration of the loop, with input index
+ // backed up by one from the last time through,
+ // and a state save to this instruction in case the following code fails again.
+ // (We're going backwards because this loop emulates stack unwinding, not
+ // the initial scan forward.)
+ U_ASSERT(fp->fInputIdx > 0);
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 prevC = UTEXT_PREVIOUS32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+
+ UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText);
+ if (prevC == 0x0a &&
+ fp->fInputIdx > backSearchIndex &&
+ twoPrevC == 0x0d) {
+ int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
+ if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
+ // .*, stepping back over CRLF pair.
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+
+
+ fp = StateSave(fp, fp->fPatIdx-1, status);
+ }
+ break;
+
+
+
+ default:
+ // Trouble. The compiled pattern contains an entry with an
+ // unrecognized type tag.
+ UPRV_UNREACHABLE_ASSERT;
+ // Unknown opcode type in opType = URX_TYPE(pat[fp->fPatIdx]). But we have
+ // reports of this in production code, don't use UPRV_UNREACHABLE_EXIT.
+ // See ICU-21669.
+ status = U_INTERNAL_PROGRAM_ERROR;
+ }
+
+ if (U_FAILURE(status)) {
+ isMatch = false;
+ break;
+ }
+ }
+
+breakFromLoop:
+ fMatch = isMatch;
+ if (isMatch) {
+ fLastMatchEnd = fMatchEnd;
+ fMatchStart = startIdx;
+ fMatchEnd = fp->fInputIdx;
+ }
+
+#ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug) {
+ if (isMatch) {
+ printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd);
+ } else {
+ printf("No match\n\n");
+ }
+ }
+#endif
+
+ fFrame = fp; // The active stack frame when the engine stopped.
+ // Contains the capture group results that we need to
+ // access later.
+ return;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// MatchChunkAt This is the actual matching engine. Like MatchAt, but with the
+// assumption that the entire string is available in the UText's
+// chunk buffer. For now, that means we can use int32_t indexes,
+// except for anything that needs to be saved (like group starts
+// and ends).
+//
+// startIdx: begin matching a this index.
+// toEnd: if true, match must extend to end of the input region
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) {
+ UBool isMatch = false; // True if the we have a match.
+
+ int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards
+
+ int32_t op; // Operation from the compiled pattern, split into
+ int32_t opType; // the opcode
+ int32_t opValue; // and the operand value.
+
+#ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug) {
+ printf("MatchAt(startIdx=%d)\n", startIdx);
+ printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))());
+ printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))());
+ }
+#endif
+
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ // Cache frequently referenced items from the compiled pattern
+ //
+ int64_t *pat = fPattern->fCompiledPat->getBuffer();
+
+ const char16_t *litText = fPattern->fLiteralText.getBuffer();
+ UVector *fSets = fPattern->fSets;
+
+ const char16_t *inputBuf = fInputText->chunkContents;
+
+ fFrameSize = fPattern->fFrameSize;
+ REStackFrame *fp = resetStack();
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return;
+ }
+
+ fp->fPatIdx = 0;
+ fp->fInputIdx = startIdx;
+
+ // Zero out the pattern's static data
+ int32_t i;
+ for (i = 0; i<fPattern->fDataSize; i++) {
+ fData[i] = 0;
+ }
+
+ //
+ // Main loop for interpreting the compiled pattern.
+ // One iteration of the loop per pattern operation performed.
+ //
+ for (;;) {
+ op = (int32_t)pat[fp->fPatIdx];
+ opType = URX_TYPE(op);
+ opValue = URX_VAL(op);
+#ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug) {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx,
+ UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
+ fPattern->dumpOp(fp->fPatIdx);
+ }
+#endif
+ fp->fPatIdx++;
+
+ switch (opType) {
+
+
+ case URX_NOP:
+ break;
+
+
+ case URX_BACKTRACK:
+ // Force a backtrack. In some circumstances, the pattern compiler
+ // will notice that the pattern can't possibly match anything, and will
+ // emit one of these at that point.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_ONECHAR:
+ if (fp->fInputIdx < fActiveLimit) {
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c == opValue) {
+ break;
+ }
+ } else {
+ fHitEnd = true;
+ }
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_STRING:
+ {
+ // Test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+ int32_t stringStartIdx = opValue;
+ int32_t stringLen;
+
+ op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
+ fp->fPatIdx++;
+ opType = URX_TYPE(op);
+ stringLen = URX_VAL(op);
+ U_ASSERT(opType == URX_STRING_LEN);
+ U_ASSERT(stringLen >= 2);
+
+ const char16_t * pInp = inputBuf + fp->fInputIdx;
+ const char16_t * pInpLimit = inputBuf + fActiveLimit;
+ const char16_t * pPat = litText+stringStartIdx;
+ const char16_t * pEnd = pInp + stringLen;
+ UBool success = true;
+ while (pInp < pEnd) {
+ if (pInp >= pInpLimit) {
+ fHitEnd = true;
+ success = false;
+ break;
+ }
+ if (*pInp++ != *pPat++) {
+ success = false;
+ break;
+ }
+ }
+
+ if (success) {
+ fp->fInputIdx += stringLen;
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_STATE_SAVE:
+ fp = StateSave(fp, opValue, status);
+ break;
+
+
+ case URX_END:
+ // The match loop will exit via this path on a successful match,
+ // when we reach the end of the pattern.
+ if (toEnd && fp->fInputIdx != fActiveLimit) {
+ // The pattern matched, but not to the end of input. Try some more.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ isMatch = true;
+ goto breakFromLoop;
+
+ // Start and End Capture stack frame variables are laid out out like this:
+ // fp->fExtra[opValue] - The start of a completed capture group
+ // opValue+1 - The end of a completed capture group
+ // opValue+2 - the start of a capture group whose end
+ // has not yet been reached (and might not ever be).
+ case URX_START_CAPTURE:
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
+ fp->fExtra[opValue+2] = fp->fInputIdx;
+ break;
+
+
+ case URX_END_CAPTURE:
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
+ U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
+ fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
+ fp->fExtra[opValue+1] = fp->fInputIdx; // End position
+ U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
+ break;
+
+
+ case URX_DOLLAR: // $, test for End of line
+ // or for position before new line at end of input
+ if (fp->fInputIdx < fAnchorLimit-2) {
+ // We are no where near the end of input. Fail.
+ // This is the common case. Keep it first.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ }
+
+ // If we are positioned just before a new-line that is located at the
+ // end of input, succeed.
+ if (fp->fInputIdx == fAnchorLimit-1) {
+ UChar32 c;
+ U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c);
+
+ if (isLineTerminator(c)) {
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
+ // At new-line at end of input. Success
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ }
+ }
+ } else if (fp->fInputIdx == fAnchorLimit-2 &&
+ inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) {
+ fHitEnd = true;
+ fRequireEnd = true;
+ break; // At CR/LF at end of input. Success
+ }
+
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+
+ break;
+
+
+ case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
+ if (fp->fInputIdx >= fAnchorLimit-1) {
+ // Either at the last character of input, or off the end.
+ if (fp->fInputIdx == fAnchorLimit-1) {
+ // At last char of input. Success if it's a new line.
+ if (inputBuf[fp->fInputIdx] == 0x0a) {
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ }
+ } else {
+ // Off the end of input. Success.
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ }
+ }
+
+ // Not at end of input. Back-track out.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_DOLLAR_M: // $, test for End of line in multi-line mode
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = true;
+ fRequireEnd = true;
+ break;
+ }
+ // If we are positioned just before a new-line, succeed.
+ // It makes no difference where the new-line is within the input.
+ UChar32 c = inputBuf[fp->fInputIdx];
+ if (isLineTerminator(c)) {
+ // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
+ // In multi-line mode, hitting a new-line just before the end of input does not
+ // set the hitEnd or requireEnd flags
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
+ break;
+ }
+ }
+ // not at a new line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = true;
+ fRequireEnd = true; // Java set requireEnd in this case, even though
+ break; // adding a new-line would not lose the match.
+ }
+ // If we are not positioned just before a new-line, the test fails; backtrack out.
+ // It makes no difference where the new-line is within the input.
+ if (inputBuf[fp->fInputIdx] != 0x0a) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_CARET: // ^, test for start of line
+ if (fp->fInputIdx != fAnchorStart) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_CARET_M: // ^, test for start of line in mulit-line mode
+ {
+ if (fp->fInputIdx == fAnchorStart) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ // unless we are at the end of input
+ char16_t c = inputBuf[fp->fInputIdx - 1];
+ if ((fp->fInputIdx < fAnchorLimit) &&
+ isLineTerminator(c)) {
+ // It's a new-line. ^ is true. Success.
+ // TODO: what should be done with positions between a CR and LF?
+ break;
+ }
+ // Not at the start of a line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
+ {
+ U_ASSERT(fp->fInputIdx >= fAnchorStart);
+ if (fp->fInputIdx <= fAnchorStart) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ U_ASSERT(fp->fInputIdx <= fAnchorLimit);
+ char16_t c = inputBuf[fp->fInputIdx - 1];
+ if (c != 0x0a) {
+ // Not at the start of a line. Back-track out.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_BACKSLASH_B: // Test for word boundaries
+ {
+ UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx);
+ success ^= (UBool)(opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
+ {
+ UBool success = isUWordBoundary(fp->fInputIdx, status);
+ success ^= (UBool)(opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_D: // Test for decimal digit
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
+ UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
+ success ^= (UBool)(opValue != 0); // flip sense for \D
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_G: // Test for position at end of previous match
+ if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==false && fp->fInputIdx==fActiveStart))) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_BACKSLASH_H: // Test for \h, horizontal white space.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ int8_t ctype = u_charType(c);
+ UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB
+ success ^= (UBool)(opValue != 0); // flip sense for \H
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_R: // Test for \R, any line break sequence.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (isLineTerminator(c)) {
+ if (c == 0x0d && fp->fInputIdx < fActiveLimit) {
+ // Check for CR/LF sequence. Consume both together when found.
+ char16_t c2;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2);
+ if (c2 != 0x0a) {
+ U16_PREV(inputBuf, 0, fp->fInputIdx, c2);
+ }
+ }
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_V: // Any single code point line ending.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ UBool success = isLineTerminator(c);
+ success ^= (UBool)(opValue != 0); // flip sense for \V
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_X:
+ // Match a Grapheme, as defined by Unicode UAX 29.
+
+ // Fail if at end of input
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ fp->fInputIdx = followingGCBoundary(fp->fInputIdx, status);
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp->fInputIdx = fActiveLimit;
+ }
+ break;
+
+
+ case URX_BACKSLASH_Z: // Test for end of Input
+ if (fp->fInputIdx < fAnchorLimit) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ } else {
+ fHitEnd = true;
+ fRequireEnd = true;
+ }
+ break;
+
+
+
+ case URX_STATIC_SETREF:
+ {
+ // Test input character against one of the predefined sets
+ // (Word Characters, for example)
+ // The high bit of the op value is a flag for the match polarity.
+ // 0: success if input char is in set.
+ // 1: success if input char is not in set.
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
+ opValue &= ~URX_NEG_SET;
+ U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c < 256) {
+ Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue];
+ if (s8.contains(c)) {
+ success = !success;
+ }
+ } else {
+ const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue];
+ if (s.contains(c)) {
+ success = !success;
+ }
+ }
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_STAT_SETREF_N:
+ {
+ // Test input character for NOT being a member of one of
+ // the predefined sets (Word Characters, for example)
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c < 256) {
+ Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue];
+ if (s8.contains(c) == false) {
+ break;
+ }
+ } else {
+ const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue];
+ if (s.contains(c) == false) {
+ break;
+ }
+ }
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_SETREF:
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ U_ASSERT(opValue > 0 && opValue < fSets->size());
+
+ // There is input left. Pick up one char and test it for set membership.
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c<256) {
+ Regex8BitSet *s8 = &fPattern->fSets8[opValue];
+ if (s8->contains(c)) {
+ // The character is in the set. A Match.
+ break;
+ }
+ } else {
+ UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
+ if (s->contains(c)) {
+ // The character is in the set. A Match.
+ break;
+ }
+ }
+
+ // the character wasn't in the set.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_DOTANY:
+ {
+ // . matches anything, but stops at end-of-line.
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // There is input left. Advance over one char, unless we've hit end-of-line
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (isLineTerminator(c)) {
+ // End of line in normal mode. . does not match.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ }
+ break;
+
+
+ case URX_DOTANY_ALL:
+ {
+ // . in dot-matches-all (including new lines) mode
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // There is input left. Advance over one char, except if we are
+ // at a cr/lf, advance over both of them.
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c==0x0d && fp->fInputIdx < fActiveLimit) {
+ // In the case of a CR/LF, we need to advance over both.
+ if (inputBuf[fp->fInputIdx] == 0x0a) {
+ U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit);
+ }
+ }
+ }
+ break;
+
+
+ case URX_DOTANY_UNIX:
+ {
+ // '.' operator, matches all, but stops at end-of-line.
+ // UNIX_LINES mode, so 0x0a is the only recognized line ending.
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = true;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // There is input left. Advance over one char, unless we've hit end-of-line
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c == 0x0a) {
+ // End of line in normal mode. '.' does not match the \n
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_JMP:
+ fp->fPatIdx = opValue;
+ break;
+
+ case URX_FAIL:
+ isMatch = false;
+ goto breakFromLoop;
+
+ case URX_JMP_SAV:
+ U_ASSERT(opValue < fPattern->fCompiledPat->size());
+ fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
+ fp->fPatIdx = opValue; // Then JMP.
+ break;
+
+ case URX_JMP_SAV_X:
+ // This opcode is used with (x)+, when x can match a zero length string.
+ // Same as JMP_SAV, except conditional on the match having made forward progress.
+ // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
+ // data address of the input position at the start of the loop.
+ {
+ U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
+ int32_t stoOp = (int32_t)pat[opValue-1];
+ U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
+ int32_t frameLoc = URX_VAL(stoOp);
+ U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
+ int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc];
+ U_ASSERT(prevInputIdx <= fp->fInputIdx);
+ if (prevInputIdx < fp->fInputIdx) {
+ // The match did make progress. Repeat the loop.
+ fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
+ fp->fPatIdx = opValue;
+ fp->fExtra[frameLoc] = fp->fInputIdx;
+ }
+ // If the input position did not advance, we do nothing here,
+ // execution will fall out of the loop.
+ }
+ break;
+
+ case URX_CTR_INIT:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
+ fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
+
+ // Pick up the three extra operands that CTR_INIT has, and
+ // skip the pattern location counter past
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 3;
+ int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
+ int32_t minCount = (int32_t)pat[instrOperandLoc+1];
+ int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
+ U_ASSERT(minCount>=0);
+ U_ASSERT(maxCount>=minCount || maxCount==-1);
+ U_ASSERT(loopLoc>=fp->fPatIdx);
+
+ if (minCount == 0) {
+ fp = StateSave(fp, loopLoc+1, status);
+ }
+ if (maxCount == -1) {
+ fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking.
+ } else if (maxCount == 0) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_CTR_LOOP:
+ {
+ U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
+ int32_t initOp = (int32_t)pat[opValue];
+ U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
+ int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = (int32_t)pat[opValue+2];
+ int32_t maxCount = (int32_t)pat[opValue+3];
+ (*pCounter)++;
+ if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
+ U_ASSERT(*pCounter == maxCount);
+ break;
+ }
+ if (*pCounter >= minCount) {
+ if (maxCount == -1) {
+ // Loop has no hard upper bound.
+ // Check that it is progressing through the input, break if it is not.
+ int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1];
+ if (fp->fInputIdx == *pLastInputIdx) {
+ break;
+ } else {
+ *pLastInputIdx = fp->fInputIdx;
+ }
+ }
+ fp = StateSave(fp, fp->fPatIdx, status);
+ } else {
+ // Increment time-out counter. (StateSave() does it if count >= minCount)
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
+ }
+ fp->fPatIdx = opValue + 4; // Loop back.
+ }
+ break;
+
+ case URX_CTR_INIT_NG:
+ {
+ // Initialize a non-greedy loop
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
+ fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
+
+ // Pick up the three extra operands that CTR_INIT_NG has, and
+ // skip the pattern location counter past
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 3;
+ int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
+ int32_t minCount = (int32_t)pat[instrOperandLoc+1];
+ int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
+ U_ASSERT(minCount>=0);
+ U_ASSERT(maxCount>=minCount || maxCount==-1);
+ U_ASSERT(loopLoc>fp->fPatIdx);
+ if (maxCount == -1) {
+ fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking.
+ }
+
+ if (minCount == 0) {
+ if (maxCount != 0) {
+ fp = StateSave(fp, fp->fPatIdx, status);
+ }
+ fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
+ }
+ }
+ break;
+
+ case URX_CTR_LOOP_NG:
+ {
+ // Non-greedy {min, max} loops
+ U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
+ int32_t initOp = (int32_t)pat[opValue];
+ U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
+ int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = (int32_t)pat[opValue+2];
+ int32_t maxCount = (int32_t)pat[opValue+3];
+
+ (*pCounter)++;
+ if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
+ // The loop has matched the maximum permitted number of times.
+ // Break out of here with no action. Matching will
+ // continue with the following pattern.
+ U_ASSERT(*pCounter == maxCount);
+ break;
+ }
+
+ if (*pCounter < minCount) {
+ // We haven't met the minimum number of matches yet.
+ // Loop back for another one.
+ fp->fPatIdx = opValue + 4; // Loop back.
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
+ } else {
+ // We do have the minimum number of matches.
+
+ // If there is no upper bound on the loop iterations, check that the input index
+ // is progressing, and stop the loop if it is not.
+ if (maxCount == -1) {
+ int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1];
+ if (fp->fInputIdx == *pLastInputIdx) {
+ break;
+ }
+ *pLastInputIdx = fp->fInputIdx;
+ }
+
+ // Loop Continuation: we will fall into the pattern following the loop
+ // (non-greedy, don't execute loop body first), but first do
+ // a state save to the top of the loop, so that a match failure
+ // in the following pattern will try another iteration of the loop.
+ fp = StateSave(fp, opValue + 4, status);
+ }
+ }
+ break;
+
+ case URX_STO_SP:
+ U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ break;
+
+ case URX_LD_SP:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
+ int32_t newStackSize = (int32_t)fData[opValue];
+ U_ASSERT(newStackSize <= fStack->size());
+ int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
+ if (newFP == (int64_t *)fp) {
+ break;
+ }
+ int32_t j;
+ for (j=0; j<fFrameSize; j++) {
+ newFP[j] = ((int64_t *)fp)[j];
+ }
+ fp = (REStackFrame *)newFP;
+ fStack->setSize(newStackSize);
+ }
+ break;
+
+ case URX_BACKREF:
+ {
+ U_ASSERT(opValue < fFrameSize);
+ int64_t groupStartIdx = fp->fExtra[opValue];
+ int64_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(groupStartIdx <= groupEndIdx);
+ int64_t inputIndex = fp->fInputIdx;
+ if (groupStartIdx < 0) {
+ // This capture group has not participated in the match thus far,
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
+ break;
+ }
+ UBool success = true;
+ for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) {
+ if (inputIndex >= fActiveLimit) {
+ success = false;
+ fHitEnd = true;
+ break;
+ }
+ if (inputBuf[groupIndex] != inputBuf[inputIndex]) {
+ success = false;
+ break;
+ }
+ }
+ if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1]) &&
+ inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])) {
+ // Capture group ended with an unpaired lead surrogate.
+ // Back reference is not permitted to match lead only of a surrogatge pair.
+ success = false;
+ }
+ if (success) {
+ fp->fInputIdx = inputIndex;
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_BACKREF_I:
+ {
+ U_ASSERT(opValue < fFrameSize);
+ int64_t groupStartIdx = fp->fExtra[opValue];
+ int64_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(groupStartIdx <= groupEndIdx);
+ if (groupStartIdx < 0) {
+ // This capture group has not participated in the match thus far,
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
+ break;
+ }
+ CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx);
+ CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit);
+
+ // Note: if the capture group match was of an empty string the backref
+ // match succeeds. Verified by testing: Perl matches succeed
+ // in this case, so we do too.
+
+ UBool success = true;
+ for (;;) {
+ UChar32 captureGroupChar = captureGroupItr.next();
+ if (captureGroupChar == U_SENTINEL) {
+ success = true;
+ break;
+ }
+ UChar32 inputChar = inputItr.next();
+ if (inputChar == U_SENTINEL) {
+ success = false;
+ fHitEnd = true;
+ break;
+ }
+ if (inputChar != captureGroupChar) {
+ success = false;
+ break;
+ }
+ }
+
+ if (success && inputItr.inExpansion()) {
+ // We obtained a match by consuming part of a string obtained from
+ // case-folding a single code point of the input text.
+ // This does not count as an overall match.
+ success = false;
+ }
+
+ if (success) {
+ fp->fInputIdx = inputItr.getIndex();
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_STO_INP_LOC:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize);
+ fp->fExtra[opValue] = fp->fInputIdx;
+ }
+ break;
+
+ case URX_JMPX:
+ {
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 1;
+ int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
+ U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
+ int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc];
+ U_ASSERT(savedInputIdx <= fp->fInputIdx);
+ if (savedInputIdx < fp->fInputIdx) {
+ fp->fPatIdx = opValue; // JMP
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
+ }
+ }
+ break;
+
+ case URX_LA_START:
+ {
+ // Entering a look around block.
+ // Save Stack Ptr, Input Pos.
+ U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ fData[opValue+1] = fp->fInputIdx;
+ fData[opValue+2] = fActiveStart;
+ fData[opValue+3] = fActiveLimit;
+ fActiveStart = fLookStart; // Set the match region change for
+ fActiveLimit = fLookLimit; // transparent bounds.
+ }
+ break;
+
+ case URX_LA_END:
+ {
+ // Leaving a look around block.
+ // restore Stack Ptr, Input Pos to positions they had on entry to block.
+ U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize);
+ int32_t stackSize = fStack->size();
+ int32_t newStackSize = (int32_t)fData[opValue];
+ U_ASSERT(stackSize >= newStackSize);
+ if (stackSize > newStackSize) {
+ // Copy the current top frame back to the new (cut back) top frame.
+ // This makes the capture groups from within the look-ahead
+ // expression available.
+ int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
+ int32_t j;
+ for (j=0; j<fFrameSize; j++) {
+ newFP[j] = ((int64_t *)fp)[j];
+ }
+ fp = (REStackFrame *)newFP;
+ fStack->setSize(newStackSize);
+ }
+ fp->fInputIdx = fData[opValue+1];
+
+ // Restore the active region bounds in the input string; they may have
+ // been changed because of transparent bounds on a Region.
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+ }
+ break;
+
+ case URX_ONECHAR_I:
+ if (fp->fInputIdx < fActiveLimit) {
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
+ break;
+ }
+ } else {
+ fHitEnd = true;
+ }
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+ case URX_STRING_I:
+ // Case-insensitive test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+ // The compiled string has already been case folded.
+ {
+ const char16_t *patternString = litText + opValue;
+
+ op = (int32_t)pat[fp->fPatIdx];
+ fp->fPatIdx++;
+ opType = URX_TYPE(op);
+ opValue = URX_VAL(op);
+ U_ASSERT(opType == URX_STRING_LEN);
+ int32_t patternStringLen = opValue; // Length of the string from the pattern.
+
+ UChar32 cText;
+ UChar32 cPattern;
+ UBool success = true;
+ int32_t patternStringIdx = 0;
+ CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit);
+ while (patternStringIdx < patternStringLen) {
+ U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
+ cText = inputIterator.next();
+ if (cText != cPattern) {
+ success = false;
+ if (cText == U_SENTINEL) {
+ fHitEnd = true;
+ }
+ break;
+ }
+ }
+ if (inputIterator.inExpansion()) {
+ success = false;
+ }
+
+ if (success) {
+ fp->fInputIdx = inputIterator.getIndex();
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_LB_START:
+ {
+ // Entering a look-behind block.
+ // Save Stack Ptr, Input Pos and active input region.
+ // TODO: implement transparent bounds. Ticket #6067
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ fData[opValue+1] = fp->fInputIdx;
+ // Save input string length, then reset to pin any matches to end at
+ // the current position.
+ fData[opValue+2] = fActiveStart;
+ fData[opValue+3] = fActiveLimit;
+ fActiveStart = fRegionStart;
+ fActiveLimit = fp->fInputIdx;
+ // Init the variable containing the start index for attempted matches.
+ fData[opValue+4] = -1;
+ }
+ break;
+
+
+ case URX_LB_CONT:
+ {
+ // Positive Look-Behind, at top of loop checking for matches of LB expression
+ // at all possible input starting positions.
+
+ // Fetch the min and max possible match lengths. They are the operands
+ // of this op in the pattern.
+ int32_t minML = (int32_t)pat[fp->fPatIdx++];
+ int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ U_ASSERT(minML <= maxML);
+ U_ASSERT(minML >= 0);
+
+ // Fetch (from data) the last input index where a match was attempted.
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ int64_t &lbStartIdx = fData[opValue+4];
+ if (lbStartIdx < 0) {
+ // First time through loop.
+ lbStartIdx = fp->fInputIdx - minML;
+ if (lbStartIdx > 0 && lbStartIdx < fInputLength) {
+ U16_SET_CP_START(inputBuf, 0, lbStartIdx);
+ }
+ } else {
+ // 2nd through nth time through the loop.
+ // Back up start position for match by one.
+ if (lbStartIdx == 0) {
+ lbStartIdx--;
+ } else {
+ U16_BACK_1(inputBuf, 0, lbStartIdx);
+ }
+ }
+
+ if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
+ // We have tried all potential match starting points without
+ // getting a match. Backtrack out, and out of the
+ // Look Behind altogether.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+ break;
+ }
+
+ // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
+ // (successful match will fall off the end of the loop.)
+ fp = StateSave(fp, fp->fPatIdx-3, status);
+ fp->fInputIdx = lbStartIdx;
+ }
+ break;
+
+ case URX_LB_END:
+ // End of a look-behind block, after a successful match.
+ {
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ if (fp->fInputIdx != fActiveLimit) {
+ // The look-behind expression matched, but the match did not
+ // extend all the way to the point that we are looking behind from.
+ // FAIL out of here, which will take us back to the LB_CONT, which
+ // will retry the match starting at another position or fail
+ // the look-behind altogether, whichever is appropriate.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // Look-behind match is good. Restore the original input string region,
+ // which had been truncated to pin the end of the lookbehind match to the
+ // position being looked-behind.
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+ }
+ break;
+
+
+ case URX_LBN_CONT:
+ {
+ // Negative Look-Behind, at top of loop checking for matches of LB expression
+ // at all possible input starting positions.
+
+ // Fetch the extra parameters of this op.
+ int32_t minML = (int32_t)pat[fp->fPatIdx++];
+ int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
+ continueLoc = URX_VAL(continueLoc);
+ U_ASSERT(minML <= maxML);
+ U_ASSERT(minML >= 0);
+ U_ASSERT(continueLoc > fp->fPatIdx);
+
+ // Fetch (from data) the last input index where a match was attempted.
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ int64_t &lbStartIdx = fData[opValue+4];
+ if (lbStartIdx < 0) {
+ // First time through loop.
+ lbStartIdx = fp->fInputIdx - minML;
+ if (lbStartIdx > 0 && lbStartIdx < fInputLength) {
+ U16_SET_CP_START(inputBuf, 0, lbStartIdx);
+ }
+ } else {
+ // 2nd through nth time through the loop.
+ // Back up start position for match by one.
+ if (lbStartIdx == 0) {
+ lbStartIdx--; // Because U16_BACK is unsafe starting at 0.
+ } else {
+ U16_BACK_1(inputBuf, 0, lbStartIdx);
+ }
+ }
+
+ if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
+ // We have tried all potential match starting points without
+ // getting a match, which means that the negative lookbehind as
+ // a whole has succeeded. Jump forward to the continue location
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+ fp->fPatIdx = continueLoc;
+ break;
+ }
+
+ // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
+ // (successful match will cause a FAIL out of the loop altogether.)
+ fp = StateSave(fp, fp->fPatIdx-4, status);
+ fp->fInputIdx = lbStartIdx;
+ }
+ break;
+
+ case URX_LBN_END:
+ // End of a negative look-behind block, after a successful match.
+ {
+ U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
+ if (fp->fInputIdx != fActiveLimit) {
+ // The look-behind expression matched, but the match did not
+ // extend all the way to the point that we are looking behind from.
+ // FAIL out of here, which will take us back to the LB_CONT, which
+ // will retry the match starting at another position or succeed
+ // the look-behind altogether, whichever is appropriate.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // Look-behind expression matched, which means look-behind test as
+ // a whole Fails
+
+ // Restore the original input string length, which had been truncated
+ // inorder to pin the end of the lookbehind match
+ // to the position being looked-behind.
+ fActiveStart = fData[opValue+2];
+ fActiveLimit = fData[opValue+3];
+ U_ASSERT(fActiveStart >= 0);
+ U_ASSERT(fActiveLimit <= fInputLength);
+
+ // Restore original stack position, discarding any state saved
+ // by the successful pattern match.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int32_t newStackSize = (int32_t)fData[opValue];
+ U_ASSERT(fStack->size() > newStackSize);
+ fStack->setSize(newStackSize);
+
+ // FAIL, which will take control back to someplace
+ // prior to entering the look-behind test.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_LOOP_SR_I:
+ // Loop Initialization for the optimized implementation of
+ // [some character set]*
+ // This op scans through all matching input.
+ // The following LOOP_C op emulates stack unwinding if the following pattern fails.
+ {
+ U_ASSERT(opValue > 0 && opValue < fSets->size());
+ Regex8BitSet *s8 = &fPattern->fSets8[opValue];
+ UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
+
+ // Loop through input, until either the input is exhausted or
+ // we reach a character that is not a member of the set.
+ int32_t ix = (int32_t)fp->fInputIdx;
+ for (;;) {
+ if (ix >= fActiveLimit) {
+ fHitEnd = true;
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, ix, fActiveLimit, c);
+ if (c<256) {
+ if (s8->contains(c) == false) {
+ U16_BACK_1(inputBuf, 0, ix);
+ break;
+ }
+ } else {
+ if (s->contains(c) == false) {
+ U16_BACK_1(inputBuf, 0, ix);
+ break;
+ }
+ }
+ }
+
+ // If there were no matching characters, skip over the loop altogether.
+ // The loop doesn't run at all, a * op always succeeds.
+ if (ix == fp->fInputIdx) {
+ fp->fPatIdx++; // skip the URX_LOOP_C op.
+ break;
+ }
+
+ // Peek ahead in the compiled pattern, to the URX_LOOP_C that
+ // must follow. It's operand is the stack location
+ // that holds the starting input index for the match of this [set]*
+ int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
+ U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
+ int32_t stackLoc = URX_VAL(loopcOp);
+ U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
+ fp->fExtra[stackLoc] = fp->fInputIdx;
+ fp->fInputIdx = ix;
+
+ // Save State to the URX_LOOP_C op that follows this one,
+ // so that match failures in the following code will return to there.
+ // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
+ fp = StateSave(fp, fp->fPatIdx, status);
+ fp->fPatIdx++;
+ }
+ break;
+
+
+ case URX_LOOP_DOT_I:
+ // Loop Initialization for the optimized implementation of .*
+ // This op scans through all remaining input.
+ // The following LOOP_C op emulates stack unwinding if the following pattern fails.
+ {
+ // Loop through input until the input is exhausted (we reach an end-of-line)
+ // In DOTALL mode, we can just go straight to the end of the input.
+ int32_t ix;
+ if ((opValue & 1) == 1) {
+ // Dot-matches-All mode. Jump straight to the end of the string.
+ ix = (int32_t)fActiveLimit;
+ fHitEnd = true;
+ } else {
+ // NOT DOT ALL mode. Line endings do not match '.'
+ // Scan forward until a line ending or end of input.
+ ix = (int32_t)fp->fInputIdx;
+ for (;;) {
+ if (ix >= fActiveLimit) {
+ fHitEnd = true;
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++]
+ if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
+ if ((c == 0x0a) || // 0x0a is newline in both modes.
+ (((opValue & 2) == 0) && // IF not UNIX_LINES mode
+ isLineTerminator(c))) {
+ // char is a line ending. Put the input pos back to the
+ // line ending char, and exit the scanning loop.
+ U16_BACK_1(inputBuf, 0, ix);
+ break;
+ }
+ }
+ }
+ }
+
+ // If there were no matching characters, skip over the loop altogether.
+ // The loop doesn't run at all, a * op always succeeds.
+ if (ix == fp->fInputIdx) {
+ fp->fPatIdx++; // skip the URX_LOOP_C op.
+ break;
+ }
+
+ // Peek ahead in the compiled pattern, to the URX_LOOP_C that
+ // must follow. It's operand is the stack location
+ // that holds the starting input index for the match of this .*
+ int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
+ U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
+ int32_t stackLoc = URX_VAL(loopcOp);
+ U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
+ fp->fExtra[stackLoc] = fp->fInputIdx;
+ fp->fInputIdx = ix;
+
+ // Save State to the URX_LOOP_C op that follows this one,
+ // so that match failures in the following code will return to there.
+ // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
+ fp = StateSave(fp, fp->fPatIdx, status);
+ fp->fPatIdx++;
+ }
+ break;
+
+
+ case URX_LOOP_C:
+ {
+ U_ASSERT(opValue>=0 && opValue<fFrameSize);
+ backSearchIndex = (int32_t)fp->fExtra[opValue];
+ U_ASSERT(backSearchIndex <= fp->fInputIdx);
+ if (backSearchIndex == fp->fInputIdx) {
+ // We've backed up the input idx to the point that the loop started.
+ // The loop is done. Leave here without saving state.
+ // Subsequent failures won't come back here.
+ break;
+ }
+ // Set up for the next iteration of the loop, with input index
+ // backed up by one from the last time through,
+ // and a state save to this instruction in case the following code fails again.
+ // (We're going backwards because this loop emulates stack unwinding, not
+ // the initial scan forward.)
+ U_ASSERT(fp->fInputIdx > 0);
+ UChar32 prevC;
+ U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit?
+
+ if (prevC == 0x0a &&
+ fp->fInputIdx > backSearchIndex &&
+ inputBuf[fp->fInputIdx-1] == 0x0d) {
+ int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
+ if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
+ // .*, stepping back over CRLF pair.
+ U16_BACK_1(inputBuf, 0, fp->fInputIdx);
+ }
+ }
+
+
+ fp = StateSave(fp, fp->fPatIdx-1, status);
+ }
+ break;
+
+
+
+ default:
+ // Trouble. The compiled pattern contains an entry with an
+ // unrecognized type tag.
+ UPRV_UNREACHABLE_ASSERT;
+ // Unknown opcode type in opType = URX_TYPE(pat[fp->fPatIdx]). But we have
+ // reports of this in production code, don't use UPRV_UNREACHABLE_EXIT.
+ // See ICU-21669.
+ status = U_INTERNAL_PROGRAM_ERROR;
+ }
+
+ if (U_FAILURE(status)) {
+ isMatch = false;
+ break;
+ }
+ }
+
+breakFromLoop:
+ fMatch = isMatch;
+ if (isMatch) {
+ fLastMatchEnd = fMatchEnd;
+ fMatchStart = startIdx;
+ fMatchEnd = fp->fInputIdx;
+ }
+
+#ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug) {
+ if (isMatch) {
+ printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd);
+ } else {
+ printf("No match\n\n");
+ }
+ }
+#endif
+
+ fFrame = fp; // The active stack frame when the engine stopped.
+ // Contains the capture group results that we need to
+ // access later.
+
+ return;
+}
+
+
+UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)
+
+U_NAMESPACE_END
+
+#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
+