summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/tools/makeconv/gencnvex.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /intl/icu/source/tools/makeconv/gencnvex.c
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'intl/icu/source/tools/makeconv/gencnvex.c')
-rw-r--r--intl/icu/source/tools/makeconv/gencnvex.c1084
1 files changed, 1084 insertions, 0 deletions
diff --git a/intl/icu/source/tools/makeconv/gencnvex.c b/intl/icu/source/tools/makeconv/gencnvex.c
new file mode 100644
index 0000000000..837a2d2c50
--- /dev/null
+++ b/intl/icu/source/tools/makeconv/gencnvex.c
@@ -0,0 +1,1084 @@
+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+*******************************************************************************
+*
+* Copyright (C) 2003-2014, International Business Machines
+* Corporation and others. All Rights Reserved.
+*
+*******************************************************************************
+* file name: gencnvex.c
+* encoding: UTF-8
+* tab size: 8 (not used)
+* indentation:4
+*
+* created on: 2003oct12
+* created by: Markus W. Scherer
+*/
+
+#include <stdbool.h>
+#include <stdio.h>
+#include "unicode/utypes.h"
+#include "unicode/ustring.h"
+#include "cstring.h"
+#include "cmemory.h"
+#include "ucnv_cnv.h"
+#include "ucnvmbcs.h"
+#include "toolutil.h"
+#include "unewdata.h"
+#include "ucm.h"
+#include "makeconv.h"
+#include "genmbcs.h"
+
+static void
+CnvExtClose(NewConverter *cnvData);
+
+static UBool
+CnvExtIsValid(NewConverter *cnvData,
+ const uint8_t *bytes, int32_t length);
+
+static UBool
+CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
+
+static uint32_t
+CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
+ UNewDataMemory *pData, int32_t tableType);
+
+typedef struct CnvExtData {
+ NewConverter newConverter;
+
+ UCMFile *ucm;
+
+ /* toUnicode (state table in ucm->states) */
+ UToolMemory *toUTable, *toUUChars;
+
+ /* fromUnicode */
+ UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;
+
+ uint16_t stage1[MBCS_STAGE_1_SIZE];
+ uint16_t stage2[MBCS_STAGE_2_SIZE];
+ uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
+ uint32_t stage3b[0x10000];
+
+ int32_t stage1Top, stage2Top, stage3Top, stage3bTop;
+
+ /* for stage3 compaction of <subchar1> |2 mappings */
+ uint16_t stage3Sub1Block;
+
+ /* statistics */
+ int32_t
+ maxInBytes, maxOutBytes, maxBytesPerUChar,
+ maxInUChars, maxOutUChars, maxUCharsPerByte;
+} CnvExtData;
+
+NewConverter *
+CnvExtOpen(UCMFile *ucm) {
+ CnvExtData *extData;
+
+ extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
+ if(extData==NULL) {
+ printf("out of memory\n");
+ exit(U_MEMORY_ALLOCATION_ERROR);
+ }
+ uprv_memset(extData, 0, sizeof(CnvExtData));
+
+ extData->ucm=ucm; /* aliased, not owned */
+
+ extData->newConverter.close=CnvExtClose;
+ extData->newConverter.isValid=CnvExtIsValid;
+ extData->newConverter.addTable=CnvExtAddTable;
+ extData->newConverter.write=CnvExtWrite;
+ return &extData->newConverter;
+}
+
+static void
+CnvExtClose(NewConverter *cnvData) {
+ CnvExtData *extData=(CnvExtData *)cnvData;
+ if(extData!=NULL) {
+ utm_close(extData->toUTable);
+ utm_close(extData->toUUChars);
+ utm_close(extData->fromUTableUChars);
+ utm_close(extData->fromUTableValues);
+ utm_close(extData->fromUBytes);
+ uprv_free(extData);
+ }
+}
+
+/* we do not expect this to be called */
+static UBool
+CnvExtIsValid(NewConverter *cnvData,
+ const uint8_t *bytes, int32_t length) {
+ // suppress compiler warnings about unused variables
+ (void)cnvData;
+ (void)bytes;
+ (void)length;
+ return false;
+}
+
+static uint32_t
+CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
+ UNewDataMemory *pData, int32_t tableType) {
+ (void) staticData; // suppress compiler warnings about unused variable
+ CnvExtData *extData=(CnvExtData *)cnvData;
+ int32_t length, top, headerSize;
+
+ int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };
+
+ if(tableType&TABLE_BASE) {
+ headerSize=0;
+ } else {
+ _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+
+ /* write the header and base table name for an extension-only table */
+ length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
+ while(length&3) {
+ /* add padding */
+ extData->ucm->baseName[length++]=0;
+ }
+
+ headerSize=MBCS_HEADER_V4_LENGTH*4+length;
+
+ /* fill the header */
+ header.version[0]=4;
+ header.version[1]=2;
+ header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);
+
+ /* write the header and the base table name */
+ udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4);
+ udata_writeBlock(pData, extData->ucm->baseName, length);
+ }
+
+ /* fill indexes[] - offsets/indexes are in units of the target array */
+ top=0;
+
+ indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
+ top+=length*4;
+
+ indexes[UCNV_EXT_TO_U_INDEX]=top;
+ indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
+ top+=length*4;
+
+ indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
+ indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
+ top+=length*2;
+
+ indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
+ length=utm_countItems(extData->fromUTableUChars);
+ top+=length*2;
+
+ if(top&3) {
+ /* add padding */
+ *((UChar *)utm_alloc(extData->fromUTableUChars))=0;
+ *((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
+ ++length;
+ top+=2;
+ }
+ indexes[UCNV_EXT_FROM_U_LENGTH]=length;
+
+ indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
+ top+=length*4;
+
+ indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
+ length=utm_countItems(extData->fromUBytes);
+ top+=length;
+
+ if(top&1) {
+ /* add padding */
+ *((uint8_t *)utm_alloc(extData->fromUBytes))=0;
+ ++length;
+ ++top;
+ }
+ indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;
+
+ indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
+ indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
+ indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
+ top+=length*2;
+
+ indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
+ length=extData->stage3Top;
+ top+=length*2;
+
+ if(top&3) {
+ /* add padding */
+ extData->stage3[extData->stage3Top++]=0;
+ ++length;
+ top+=2;
+ }
+ indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;
+
+ indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
+ indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
+ top+=length*4;
+
+ indexes[UCNV_EXT_SIZE]=top;
+
+ /* statistics */
+ indexes[UCNV_EXT_COUNT_BYTES]=
+ (extData->maxInBytes<<16)|
+ (extData->maxOutBytes<<8)|
+ extData->maxBytesPerUChar;
+ indexes[UCNV_EXT_COUNT_UCHARS]=
+ (extData->maxInUChars<<16)|
+ (extData->maxOutUChars<<8)|
+ extData->maxUCharsPerByte;
+
+ indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;
+
+ /* write the extension data */
+ udata_writeBlock(pData, indexes, sizeof(indexes));
+ udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
+ udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);
+
+ udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
+ udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
+ udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);
+
+ udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
+ udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
+ udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
+ udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);
+
+#if 0
+ {
+ int32_t i, j;
+
+ length=extData->stage1Top;
+ printf("\nstage1[%x]:\n", length);
+
+ for(i=0; i<length; ++i) {
+ if(extData->stage1[i]!=length) {
+ printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
+ }
+ }
+
+ j=length;
+ length=extData->stage2Top;
+ printf("\nstage2[%x]:\n", length);
+
+ for(i=0; i<length; ++j, ++i) {
+ if(extData->stage2[i]!=0) {
+ printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
+ }
+ }
+
+ length=extData->stage3Top;
+ printf("\nstage3[%x]:\n", length);
+
+ for(i=0; i<length; ++i) {
+ if(extData->stage3[i]!=0) {
+ printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
+ }
+ }
+
+ length=extData->stage3bTop;
+ printf("\nstage3b[%x]:\n", length);
+
+ for(i=0; i<length; ++i) {
+ if(extData->stage3b[i]!=0) {
+ printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
+ }
+ }
+ }
+#endif
+
+ if(VERBOSE) {
+ printf("size of extension data: %ld\n", (long)top);
+ }
+
+ /* return the number of bytes that should have been written */
+ return (uint32_t)(headerSize+top);
+}
+
+/* to Unicode --------------------------------------------------------------- */
+
+/*
+ * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
+ * the toUnicode table.
+ * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable
+ * for the base toUnicode table but not for the base fromUnicode table.
+ * The table must be sorted.
+ * Modifies previous data in the reverseMap.
+ */
+static int32_t
+reduceToUMappings(UCMTable *table) {
+ UCMapping *mappings;
+ int32_t *map;
+ int32_t i, j, count;
+ int8_t flag;
+
+ mappings=table->mappings;
+ map=table->reverseMap;
+ count=table->mappingsLength;
+
+ /* leave the map alone for the initial mappings with desired flags */
+ for(i=j=0; i<count; ++i) {
+ flag=mappings[map[i]].f;
+ if(flag!=0 && flag!=3) {
+ break;
+ }
+ }
+
+ /* reduce from here to the rest */
+ for(j=i; i<count; ++i) {
+ flag=mappings[map[i]].f;
+ if(flag==0 || flag==3) {
+ map[j++]=map[i];
+ }
+ }
+
+ return j;
+}
+
+static uint32_t
+getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
+ UChar32 *u32;
+ UChar *u;
+ uint32_t value;
+ int32_t u16Length, ratio;
+ UErrorCode errorCode;
+
+ /* write the Unicode result code point or string index */
+ if(m->uLen==1) {
+ u16Length=U16_LENGTH(m->u);
+ value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
+ } else {
+ /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */
+
+ /* get the result code point string and its 16-bit string length */
+ u32=UCM_GET_CODE_POINTS(table, m);
+ errorCode=U_ZERO_ERROR;
+ u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
+ if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
+ exit(errorCode);
+ }
+
+ /* allocate it and put its length and index into the value */
+ value=
+ (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
+ ((uint32_t)utm_countItems(extData->toUUChars));
+ u=utm_allocN(extData->toUUChars, u16Length);
+
+ /* write the result 16-bit string */
+ errorCode=U_ZERO_ERROR;
+ u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
+ if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
+ exit(errorCode);
+ }
+ }
+ if(m->f==0) {
+ value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
+ }
+
+ /* update statistics */
+ if(m->bLen>extData->maxInBytes) {
+ extData->maxInBytes=m->bLen;
+ }
+ if(u16Length>extData->maxOutUChars) {
+ extData->maxOutUChars=u16Length;
+ }
+
+ ratio=(u16Length+(m->bLen-1))/m->bLen;
+ if(ratio>extData->maxUCharsPerByte) {
+ extData->maxUCharsPerByte=ratio;
+ }
+
+ return value;
+}
+
+/*
+ * Recursive toUTable generator core function.
+ * Preconditions:
+ * - start<limit (There is at least one mapping.)
+ * - The mappings are sorted lexically. (Access is through the reverseMap.)
+ * - All mappings between start and limit have input sequences that share
+ * the same prefix of unitIndex length, and therefore all of these sequences
+ * are at least unitIndex+1 long.
+ * - There are only relevant mappings available through the reverseMap,
+ * see reduceToUMappings().
+ *
+ * One function invocation generates one section table.
+ *
+ * Steps:
+ * 1. Count the number of unique unit values and get the low/high unit values
+ * that occur at unitIndex.
+ * 2. Allocate the section table with possible optimization for linear access.
+ * 3. Write temporary version of the section table with start indexes of
+ * subsections, each corresponding to one unit value at unitIndex.
+ * 4. Iterate through the table once more, and depending on the subsection length:
+ * 0: write 0 as a result value (unused byte in linear-access section table)
+ * >0: if there is one mapping with an input unit sequence of unitIndex+1
+ * then defaultValue=compute the mapping result for this whole sequence
+ * else defaultValue=0
+ *
+ * recurse into the subsection
+ */
+static UBool
+generateToUTable(CnvExtData *extData, UCMTable *table,
+ int32_t start, int32_t limit, int32_t unitIndex,
+ uint32_t defaultValue) {
+ UCMapping *mappings, *m;
+ int32_t *map;
+ int32_t i, j, uniqueCount, count, subStart, subLimit;
+
+ uint8_t *bytes;
+ int32_t low, high, prev;
+
+ uint32_t *section;
+
+ mappings=table->mappings;
+ map=table->reverseMap;
+
+ /* step 1: examine the input units; set low, high, uniqueCount */
+ m=mappings+map[start];
+ bytes=UCM_GET_BYTES(table, m);
+ low=bytes[unitIndex];
+ uniqueCount=1;
+
+ prev=high=low;
+ for(i=start+1; i<limit; ++i) {
+ m=mappings+map[i];
+ bytes=UCM_GET_BYTES(table, m);
+ high=bytes[unitIndex];
+
+ if(high!=prev) {
+ prev=high;
+ ++uniqueCount;
+ }
+ }
+
+ /* step 2: allocate the section; set count, section */
+ count=(high-low)+1;
+ if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) {
+ /*
+ * for the root table and for fairly full tables:
+ * allocate for direct, linear array access
+ * by keeping count, to write an entry for each unit value
+ * from low to high
+ * exception: use a compact table if count==0x100 because
+ * that cannot be encoded in the length byte
+ */
+ } else {
+ count=uniqueCount;
+ }
+
+ if(count>=0x100) {
+ fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count);
+ return false;
+ }
+
+ /* allocate the section: 1 entry for the header + count for the items */
+ section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);
+
+ /* write the section header */
+ *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;
+
+ /* step 3: write temporary section table with subsection starts */
+ prev=low-1; /* just before low to prevent empty subsections before low */
+ j=0; /* section table index */
+ for(i=start; i<limit; ++i) {
+ m=mappings+map[i];
+ bytes=UCM_GET_BYTES(table, m);
+ high=bytes[unitIndex];
+
+ if(high!=prev) {
+ /* start of a new subsection for unit high */
+ if(count>uniqueCount) {
+ /* write empty subsections for unused units in a linear table */
+ while(++prev<high) {
+ section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
+ }
+ } else {
+ prev=high;
+ }
+
+ /* write the entry with the subsection start */
+ section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
+ }
+ }
+ /* assert(j==count) */
+
+ /* step 4: recurse and write results */
+ subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
+ for(j=0; j<count; ++j) {
+ subStart=subLimit;
+ subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;
+
+ /* remove the subStart temporary value */
+ section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;
+
+ if(subStart==subLimit) {
+ /* leave the value zero: empty subsection for unused unit in a linear table */
+ continue;
+ }
+
+ /* see if there is exactly one input unit sequence of length unitIndex+1 */
+ defaultValue=0;
+ m=mappings+map[subStart];
+ if(m->bLen==unitIndex+1) {
+ /* do not include this in generateToUTable() */
+ ++subStart;
+
+ if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
+ /* print error for multiple same-input-sequence mappings */
+ fprintf(stderr, "error: multiple mappings from same bytes\n");
+ ucm_printMapping(table, m, stderr);
+ ucm_printMapping(table, mappings+map[subStart], stderr);
+ return false;
+ }
+
+ defaultValue=getToUnicodeValue(extData, table, m);
+ }
+
+ if(subStart==subLimit) {
+ /* write the result for the input sequence ending here */
+ section[j]|=defaultValue;
+ } else {
+ /* write the index to the subsection table */
+ section[j]|=(uint32_t)utm_countItems(extData->toUTable);
+
+ /* recurse */
+ if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+/*
+ * Generate the toUTable and toUUChars from the input table.
+ * The input table must be sorted, and all precision flags must be 0..3.
+ * This function will modify the table's reverseMap.
+ */
+static UBool
+makeToUTable(CnvExtData *extData, UCMTable *table) {
+ int32_t toUCount;
+
+ toUCount=reduceToUMappings(table);
+
+ extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
+ extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);
+
+ return generateToUTable(extData, table, 0, toUCount, 0, 0);
+}
+
+/* from Unicode ------------------------------------------------------------- */
+
+/*
+ * preprocessing:
+ * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
+ * change each Unicode string to encode all but the first code point in 16-bit form
+ *
+ * generation:
+ * for each unique code point
+ * write an entry in the 3-stage trie
+ * check that there is only one single-code point sequence
+ * start recursion for following 16-bit input units
+ */
+
+/*
+ * Remove toUnicode fallbacks and non-<subchar1> SUB mappings
+ * which are irrelevant for the fromUnicode extension table.
+ * Remove MBCS_FROM_U_EXT_FLAG bits.
+ * Overwrite the reverseMap with an index array to the relevant mappings.
+ * Modify the code point sequences to a generator-friendly format where
+ * the first code points remains unchanged but the following are recoded
+ * into 16-bit Unicode string form.
+ * The table must be sorted.
+ * Destroys previous data in the reverseMap.
+ */
+static int32_t
+prepareFromUMappings(UCMTable *table) {
+ UCMapping *mappings, *m;
+ int32_t *map;
+ int32_t i, j, count;
+ int8_t flag;
+
+ mappings=table->mappings;
+ map=table->reverseMap;
+ count=table->mappingsLength;
+
+ /*
+ * we do not go through the map on input because the mappings are
+ * sorted lexically
+ */
+ m=mappings;
+
+ for(i=j=0; i<count; ++m, ++i) {
+ flag=m->f;
+ if(flag>=0) {
+ flag&=MBCS_FROM_U_EXT_MASK;
+ m->f=flag;
+ }
+ if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) {
+ map[j++]=i;
+
+ if(m->uLen>1) {
+ /* recode all but the first code point to 16-bit Unicode */
+ UChar32 *u32;
+ UChar *u;
+ UChar32 c;
+ int32_t q, r;
+
+ u32=UCM_GET_CODE_POINTS(table, m);
+ u=(UChar *)u32; /* destructive in-place recoding */
+ for(r=2, q=1; q<m->uLen; ++q) {
+ c=u32[q];
+ U16_APPEND_UNSAFE(u, r, c);
+ }
+
+ /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
+ m->uLen=(int8_t)r;
+ }
+ }
+ }
+
+ return j;
+}
+
+static uint32_t
+getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
+ uint8_t *bytes, *resultBytes;
+ uint32_t value;
+ int32_t u16Length, ratio;
+
+ if(m->f==2) {
+ /*
+ * no mapping, <subchar1> preferred
+ *
+ * no need to count in statistics because the subchars are already
+ * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
+ * and this non-mapping does not count for maxInUChars which are always
+ * trivially at least two if counting unmappable supplementary code points
+ */
+ return UCNV_EXT_FROM_U_SUBCHAR1;
+ }
+
+ bytes=UCM_GET_BYTES(table, m);
+ value=0;
+ switch(m->bLen) {
+ /* 1..3: store the bytes in the value word */
+ case 3:
+ value=((uint32_t)*bytes++)<<16;
+ case 2:
+ value|=((uint32_t)*bytes++)<<8;
+ case 1:
+ value|=*bytes;
+ break;
+ default:
+ /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
+ /* store the bytes in fromUBytes[] and the index in the value word */
+ value=(uint32_t)utm_countItems(extData->fromUBytes);
+ resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
+ uprv_memcpy(resultBytes, bytes, m->bLen);
+ break;
+ }
+ value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
+ if(m->f==0) {
+ value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
+ } else if(m->f==4) {
+ value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG;
+ }
+
+ /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
+ if(m->uLen==1) {
+ u16Length=U16_LENGTH(m->u);
+ } else {
+ u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
+ }
+
+ /* update statistics */
+ if(u16Length>extData->maxInUChars) {
+ extData->maxInUChars=u16Length;
+ }
+ if(m->bLen>extData->maxOutBytes) {
+ extData->maxOutBytes=m->bLen;
+ }
+
+ ratio=(m->bLen+(u16Length-1))/u16Length;
+ if(ratio>extData->maxBytesPerUChar) {
+ extData->maxBytesPerUChar=ratio;
+ }
+
+ return value;
+}
+
+/*
+ * works like generateToUTable(), except that the
+ * output section consists of two arrays, one for input UChars and one
+ * for result values
+ *
+ * also, fromUTable sections are always stored in a compact form for
+ * access via binary search
+ */
+static UBool
+generateFromUTable(CnvExtData *extData, UCMTable *table,
+ int32_t start, int32_t limit, int32_t unitIndex,
+ uint32_t defaultValue) {
+ UCMapping *mappings, *m;
+ int32_t *map;
+ int32_t i, j, uniqueCount, count, subStart, subLimit;
+
+ UChar *uchars;
+ UChar32 low, high, prev;
+
+ UChar *sectionUChars;
+ uint32_t *sectionValues;
+
+ mappings=table->mappings;
+ map=table->reverseMap;
+
+ /* step 1: examine the input units; set low, high, uniqueCount */
+ m=mappings+map[start];
+ uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
+ low=uchars[unitIndex];
+ uniqueCount=1;
+
+ prev=high=low;
+ for(i=start+1; i<limit; ++i) {
+ m=mappings+map[i];
+ uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
+ high=uchars[unitIndex];
+
+ if(high!=prev) {
+ prev=high;
+ ++uniqueCount;
+ }
+ }
+
+ /* step 2: allocate the section; set count, section */
+ /* the fromUTable always stores for access via binary search */
+ count=uniqueCount;
+
+ /* allocate the section: 1 entry for the header + count for the items */
+ sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
+ sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);
+
+ /* write the section header */
+ *sectionUChars++=(UChar)count;
+ *sectionValues++=defaultValue;
+
+ /* step 3: write temporary section table with subsection starts */
+ prev=low-1; /* just before low to prevent empty subsections before low */
+ j=0; /* section table index */
+ for(i=start; i<limit; ++i) {
+ m=mappings+map[i];
+ uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
+ high=uchars[unitIndex];
+
+ if(high!=prev) {
+ /* start of a new subsection for unit high */
+ prev=high;
+
+ /* write the entry with the subsection start */
+ sectionUChars[j]=(UChar)high;
+ sectionValues[j]=(uint32_t)i;
+ ++j;
+ }
+ }
+ /* assert(j==count) */
+
+ /* step 4: recurse and write results */
+ subLimit=(int32_t)(sectionValues[0]);
+ for(j=0; j<count; ++j) {
+ subStart=subLimit;
+ subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;
+
+ /* see if there is exactly one input unit sequence of length unitIndex+1 */
+ defaultValue=0;
+ m=mappings+map[subStart];
+ if(m->uLen==unitIndex+1) {
+ /* do not include this in generateToUTable() */
+ ++subStart;
+
+ if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
+ /* print error for multiple same-input-sequence mappings */
+ fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
+ ucm_printMapping(table, m, stderr);
+ ucm_printMapping(table, mappings+map[subStart], stderr);
+ return false;
+ }
+
+ defaultValue=getFromUBytesValue(extData, table, m);
+ }
+
+ if(subStart==subLimit) {
+ /* write the result for the input sequence ending here */
+ sectionValues[j]=defaultValue;
+ } else {
+ /* write the index to the subsection table */
+ sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);
+
+ /* recurse */
+ if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+/*
+ * add entries to the fromUnicode trie,
+ * assume to be called with code points in ascending order
+ * and use that to build the trie in precompacted form
+ */
+static void
+addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
+ int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;
+
+ if(value==0) {
+ return;
+ }
+
+ /*
+ * compute the index for each stage,
+ * allocate a stage block if necessary,
+ * and write the stage value
+ */
+ i1=c>>10;
+ if(i1>=extData->stage1Top) {
+ extData->stage1Top=i1+1;
+ }
+
+ nextOffset=(c>>4)&0x3f;
+
+ if(extData->stage1[i1]==0) {
+ /* allocate another block in stage 2; overlap with the previous block */
+ newBlock=extData->stage2Top;
+ min=newBlock-nextOffset; /* minimum block start with overlap */
+ while(min<newBlock && extData->stage2[newBlock-1]==0) {
+ --newBlock;
+ }
+
+ extData->stage1[i1]=(uint16_t)newBlock;
+ extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
+ if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) {
+ fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
+ exit(U_MEMORY_ALLOCATION_ERROR);
+ }
+ }
+
+ i2=extData->stage1[i1]+nextOffset;
+ nextOffset=c&0xf;
+
+ if(extData->stage2[i2]==0) {
+ /* allocate another block in stage 3; overlap with the previous block */
+ newBlock=extData->stage3Top;
+ min=newBlock-nextOffset; /* minimum block start with overlap */
+ while(min<newBlock && extData->stage3[newBlock-1]==0) {
+ --newBlock;
+ }
+
+ /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
+ newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
+ extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);
+
+ extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
+ if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) {
+ fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
+ exit(U_MEMORY_ALLOCATION_ERROR);
+ }
+ }
+
+ i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
+ /*
+ * assume extData->stage3[i3]==0 because we get
+ * code points in strictly ascending order
+ */
+
+ if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
+ /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
+ extData->stage3[i3]=1;
+
+ /*
+ * precompaction is not optimal for <subchar1> |2 mappings because
+ * stage3 values for them are all the same, unlike for other mappings
+ * which all have unique values;
+ * use a simple compaction of reusing a whole block filled with these
+ * mappings
+ */
+
+ /* is the entire block filled with <subchar1> |2 mappings? */
+ if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
+ for(min=i3-nextOffset;
+ min<i3 && extData->stage3[min]==1;
+ ++min) {}
+
+ if(min==i3) {
+ /* the entire block is filled with these mappings */
+ if(extData->stage3Sub1Block!=0) {
+ /* point to the previous such block and remove this block from stage3 */
+ extData->stage2[i2]=extData->stage3Sub1Block;
+ extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
+ uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
+ } else {
+ /* remember this block's stage2 entry */
+ extData->stage3Sub1Block=extData->stage2[i2];
+ }
+ }
+ }
+ } else {
+ if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) {
+ fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
+ exit(U_MEMORY_ALLOCATION_ERROR);
+ }
+
+ /* roundtrip or fallback mapping */
+ extData->stage3[i3]=(uint16_t)i3b;
+ extData->stage3b[i3b]=value;
+ }
+}
+
+static UBool
+generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
+ UCMapping *mappings, *m;
+ int32_t *map;
+ uint32_t value;
+ int32_t subStart, subLimit;
+
+ UChar32 *codePoints;
+ UChar32 c, next;
+
+ if(mapLength==0) {
+ return true;
+ }
+
+ mappings=table->mappings;
+ map=table->reverseMap;
+
+ /*
+ * iterate over same-initial-code point mappings,
+ * enter the initial code point into the trie,
+ * and start a recursion on the corresponding mappings section
+ * with generateFromUTable()
+ */
+ m=mappings+map[0];
+ codePoints=UCM_GET_CODE_POINTS(table, m);
+ next=codePoints[0];
+ subLimit=0;
+ while(subLimit<mapLength) {
+ /* get a new subsection of mappings starting with the same code point */
+ subStart=subLimit;
+ c=next;
+ while(next==c && ++subLimit<mapLength) {
+ m=mappings+map[subLimit];
+ codePoints=UCM_GET_CODE_POINTS(table, m);
+ next=codePoints[0];
+ }
+
+ /*
+ * compute the value for this code point;
+ * if there is a mapping for this code point alone, it is at subStart
+ * because the table is sorted lexically
+ */
+ value=0;
+ m=mappings+map[subStart];
+ codePoints=UCM_GET_CODE_POINTS(table, m);
+ if(m->uLen==1) {
+ /* do not include this in generateFromUTable() */
+ ++subStart;
+
+ if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
+ /* print error for multiple same-input-sequence mappings */
+ fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
+ ucm_printMapping(table, m, stderr);
+ ucm_printMapping(table, mappings+map[subStart], stderr);
+ return false;
+ }
+
+ value=getFromUBytesValue(extData, table, m);
+ }
+
+ if(subStart==subLimit) {
+ /* write the result for this one code point */
+ addFromUTrieEntry(extData, c, value);
+ } else {
+ /* write the index to the subsection table */
+ addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));
+
+ /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
+ if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+/*
+ * Generate the fromU data structures from the input table.
+ * The input table must be sorted, and all precision flags must be 0..3.
+ * This function will modify the table's reverseMap.
+ */
+static UBool
+makeFromUTable(CnvExtData *extData, UCMTable *table) {
+ uint16_t *stage1;
+ int32_t i, stage1Top, fromUCount;
+
+ fromUCount=prepareFromUMappings(table);
+
+ extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
+ extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
+ extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);
+
+ /* allocate all-unassigned stage blocks */
+ extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
+ extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;
+
+ /*
+ * stage 3b stores only unique values, and in
+ * index 0: 0 for "no mapping"
+ * index 1: "no mapping" with preference for <subchar1> rather than <subchar>
+ */
+ extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
+ extData->stage3bTop=2;
+
+ /* allocate the first entry in the fromUTable because index 0 means "no result" */
+ utm_alloc(extData->fromUTableUChars);
+ utm_alloc(extData->fromUTableValues);
+
+ if(!generateFromUTrie(extData, table, fromUCount)) {
+ return false;
+ }
+
+ /*
+ * offset the stage 1 trie entries by stage1Top because they will
+ * be stored in a single array
+ */
+ stage1=extData->stage1;
+ stage1Top=extData->stage1Top;
+ for(i=0; i<stage1Top; ++i) {
+ stage1[i]=(uint16_t)(stage1[i]+stage1Top);
+ }
+
+ return true;
+}
+
+/* -------------------------------------------------------------------------- */
+
+static UBool
+CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
+ CnvExtData *extData;
+
+ if(table->unicodeMask&UCNV_HAS_SURROGATES) {
+ fprintf(stderr, "error: contains mappings for surrogate code points\n");
+ return false;
+ }
+
+ staticData->conversionType=UCNV_MBCS;
+
+ extData=(CnvExtData *)cnvData;
+
+ /*
+ * assume that the table is sorted
+ *
+ * call the functions in this order because
+ * makeToUTable() modifies the original reverseMap,
+ * makeFromUTable() writes a whole new mapping into reverseMap
+ */
+ return
+ makeToUTable(extData, table) &&
+ makeFromUTable(extData, table);
+}