diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /media/libjpeg/simd/arm/jidctred-neon.c | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libjpeg/simd/arm/jidctred-neon.c')
-rw-r--r-- | media/libjpeg/simd/arm/jidctred-neon.c | 486 |
1 files changed, 486 insertions, 0 deletions
diff --git a/media/libjpeg/simd/arm/jidctred-neon.c b/media/libjpeg/simd/arm/jidctred-neon.c new file mode 100644 index 0000000000..be9627e61d --- /dev/null +++ b/media/libjpeg/simd/arm/jidctred-neon.c @@ -0,0 +1,486 @@ +/* + * jidctred-neon.c - reduced-size IDCT (Arm Neon) + * + * Copyright (C) 2020, Arm Limited. All Rights Reserved. + * Copyright (C) 2020, D. R. Commander. All Rights Reserved. + * + * This software is provided 'as-is', without any express or implied + * warranty. In no event will the authors be held liable for any damages + * arising from the use of this software. + * + * Permission is granted to anyone to use this software for any purpose, + * including commercial applications, and to alter it and redistribute it + * freely, subject to the following restrictions: + * + * 1. The origin of this software must not be misrepresented; you must not + * claim that you wrote the original software. If you use this software + * in a product, an acknowledgment in the product documentation would be + * appreciated but is not required. + * 2. Altered source versions must be plainly marked as such, and must not be + * misrepresented as being the original software. + * 3. This notice may not be removed or altered from any source distribution. + */ + +#define JPEG_INTERNALS +#include "../../jinclude.h" +#include "../../jpeglib.h" +#include "../../jsimd.h" +#include "../../jdct.h" +#include "../../jsimddct.h" +#include "../jsimd.h" +#include "align.h" +#include "neon-compat.h" + +#include <arm_neon.h> + + +#define CONST_BITS 13 +#define PASS1_BITS 2 + +#define F_0_211 1730 +#define F_0_509 4176 +#define F_0_601 4926 +#define F_0_720 5906 +#define F_0_765 6270 +#define F_0_850 6967 +#define F_0_899 7373 +#define F_1_061 8697 +#define F_1_272 10426 +#define F_1_451 11893 +#define F_1_847 15137 +#define F_2_172 17799 +#define F_2_562 20995 +#define F_3_624 29692 + + +/* jsimd_idct_2x2_neon() is an inverse DCT function that produces reduced-size + * 2x2 output from an 8x8 DCT block. It uses the same calculations and + * produces exactly the same output as IJG's original jpeg_idct_2x2() function + * from jpeg-6b, which can be found in jidctred.c. + * + * Scaled integer constants are used to avoid floating-point arithmetic: + * 0.720959822 = 5906 * 2^-13 + * 0.850430095 = 6967 * 2^-13 + * 1.272758580 = 10426 * 2^-13 + * 3.624509785 = 29692 * 2^-13 + * + * See jidctred.c for further details of the 2x2 IDCT algorithm. Where + * possible, the variable names and comments here in jsimd_idct_2x2_neon() + * match up with those in jpeg_idct_2x2(). + */ + +ALIGN(16) static const int16_t jsimd_idct_2x2_neon_consts[] = { + -F_0_720, F_0_850, -F_1_272, F_3_624 +}; + +void jsimd_idct_2x2_neon(void *dct_table, JCOEFPTR coef_block, + JSAMPARRAY output_buf, JDIMENSION output_col) +{ + ISLOW_MULT_TYPE *quantptr = dct_table; + + /* Load DCT coefficients. */ + int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE); + int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE); + int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE); + int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE); + int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE); + + /* Load quantization table values. */ + int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE); + int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE); + int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE); + int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE); + int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE); + + /* Dequantize DCT coefficients. */ + row0 = vmulq_s16(row0, quant_row0); + row1 = vmulq_s16(row1, quant_row1); + row3 = vmulq_s16(row3, quant_row3); + row5 = vmulq_s16(row5, quant_row5); + row7 = vmulq_s16(row7, quant_row7); + + /* Load IDCT conversion constants. */ + const int16x4_t consts = vld1_s16(jsimd_idct_2x2_neon_consts); + + /* Pass 1: process columns from input, put results in vectors row0 and + * row1. + */ + + /* Even part */ + int32x4_t tmp10_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 2); + int32x4_t tmp10_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 2); + + /* Odd part */ + int32x4_t tmp0_l = vmull_lane_s16(vget_low_s16(row1), consts, 3); + tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row3), consts, 2); + tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row5), consts, 1); + tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row7), consts, 0); + int32x4_t tmp0_h = vmull_lane_s16(vget_high_s16(row1), consts, 3); + tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row3), consts, 2); + tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row5), consts, 1); + tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row7), consts, 0); + + /* Final output stage: descale and narrow to 16-bit. */ + row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp0_l), CONST_BITS), + vrshrn_n_s32(vaddq_s32(tmp10_h, tmp0_h), CONST_BITS)); + row1 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp0_l), CONST_BITS), + vrshrn_n_s32(vsubq_s32(tmp10_h, tmp0_h), CONST_BITS)); + + /* Transpose two rows, ready for second pass. */ + int16x8x2_t cols_0246_1357 = vtrnq_s16(row0, row1); + int16x8_t cols_0246 = cols_0246_1357.val[0]; + int16x8_t cols_1357 = cols_0246_1357.val[1]; + /* Duplicate columns such that each is accessible in its own vector. */ + int32x4x2_t cols_1155_3377 = vtrnq_s32(vreinterpretq_s32_s16(cols_1357), + vreinterpretq_s32_s16(cols_1357)); + int16x8_t cols_1155 = vreinterpretq_s16_s32(cols_1155_3377.val[0]); + int16x8_t cols_3377 = vreinterpretq_s16_s32(cols_1155_3377.val[1]); + + /* Pass 2: process two rows, store to output array. */ + + /* Even part: we're only interested in col0; the top half of tmp10 is "don't + * care." + */ + int32x4_t tmp10 = vshll_n_s16(vget_low_s16(cols_0246), CONST_BITS + 2); + + /* Odd part: we're only interested in the bottom half of tmp0. */ + int32x4_t tmp0 = vmull_lane_s16(vget_low_s16(cols_1155), consts, 3); + tmp0 = vmlal_lane_s16(tmp0, vget_low_s16(cols_3377), consts, 2); + tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_1155), consts, 1); + tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_3377), consts, 0); + + /* Final output stage: descale and clamp to range [0-255]. */ + int16x8_t output_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp0), + vsubhn_s32(tmp10, tmp0)); + output_s16 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_s16, + CONST_BITS + PASS1_BITS + 3 + 2 - 16); + /* Narrow to 8-bit and convert to unsigned. */ + uint8x8_t output_u8 = vqmovun_s16(output_s16); + + /* Store 2x2 block to memory. */ + vst1_lane_u8(output_buf[0] + output_col, output_u8, 0); + vst1_lane_u8(output_buf[1] + output_col, output_u8, 1); + vst1_lane_u8(output_buf[0] + output_col + 1, output_u8, 4); + vst1_lane_u8(output_buf[1] + output_col + 1, output_u8, 5); +} + + +/* jsimd_idct_4x4_neon() is an inverse DCT function that produces reduced-size + * 4x4 output from an 8x8 DCT block. It uses the same calculations and + * produces exactly the same output as IJG's original jpeg_idct_4x4() function + * from jpeg-6b, which can be found in jidctred.c. + * + * Scaled integer constants are used to avoid floating-point arithmetic: + * 0.211164243 = 1730 * 2^-13 + * 0.509795579 = 4176 * 2^-13 + * 0.601344887 = 4926 * 2^-13 + * 0.765366865 = 6270 * 2^-13 + * 0.899976223 = 7373 * 2^-13 + * 1.061594337 = 8697 * 2^-13 + * 1.451774981 = 11893 * 2^-13 + * 1.847759065 = 15137 * 2^-13 + * 2.172734803 = 17799 * 2^-13 + * 2.562915447 = 20995 * 2^-13 + * + * See jidctred.c for further details of the 4x4 IDCT algorithm. Where + * possible, the variable names and comments here in jsimd_idct_4x4_neon() + * match up with those in jpeg_idct_4x4(). + */ + +ALIGN(16) static const int16_t jsimd_idct_4x4_neon_consts[] = { + F_1_847, -F_0_765, -F_0_211, F_1_451, + -F_2_172, F_1_061, -F_0_509, -F_0_601, + F_0_899, F_2_562, 0, 0 +}; + +void jsimd_idct_4x4_neon(void *dct_table, JCOEFPTR coef_block, + JSAMPARRAY output_buf, JDIMENSION output_col) +{ + ISLOW_MULT_TYPE *quantptr = dct_table; + + /* Load DCT coefficients. */ + int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE); + int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE); + int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE); + int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE); + int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE); + int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE); + int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE); + + /* Load quantization table values for DC coefficients. */ + int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE); + /* Dequantize DC coefficients. */ + row0 = vmulq_s16(row0, quant_row0); + + /* Construct bitmap to test if all AC coefficients are 0. */ + int16x8_t bitmap = vorrq_s16(row1, row2); + bitmap = vorrq_s16(bitmap, row3); + bitmap = vorrq_s16(bitmap, row5); + bitmap = vorrq_s16(bitmap, row6); + bitmap = vorrq_s16(bitmap, row7); + + int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0); + int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1); + + /* Load constants for IDCT computation. */ +#ifdef HAVE_VLD1_S16_X3 + const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_4x4_neon_consts); +#else + /* GCC does not currently support the intrinsic vld1_<type>_x3(). */ + const int16x4_t consts1 = vld1_s16(jsimd_idct_4x4_neon_consts); + const int16x4_t consts2 = vld1_s16(jsimd_idct_4x4_neon_consts + 4); + const int16x4_t consts3 = vld1_s16(jsimd_idct_4x4_neon_consts + 8); + const int16x4x3_t consts = { { consts1, consts2, consts3 } }; +#endif + + if (left_ac_bitmap == 0 && right_ac_bitmap == 0) { + /* All AC coefficients are zero. + * Compute DC values and duplicate into row vectors 0, 1, 2, and 3. + */ + int16x8_t dcval = vshlq_n_s16(row0, PASS1_BITS); + row0 = dcval; + row1 = dcval; + row2 = dcval; + row3 = dcval; + } else if (left_ac_bitmap == 0) { + /* AC coefficients are zero for columns 0, 1, 2, and 3. + * Compute DC values for these columns. + */ + int16x4_t dcval = vshl_n_s16(vget_low_s16(row0), PASS1_BITS); + + /* Commence regular IDCT computation for columns 4, 5, 6, and 7. */ + + /* Load quantization table. */ + int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4); + int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4); + int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4); + int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4); + int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4); + int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4); + + /* Even part */ + int32x4_t tmp0 = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1); + + int16x4_t z2 = vmul_s16(vget_high_s16(row2), quant_row2); + int16x4_t z3 = vmul_s16(vget_high_s16(row6), quant_row6); + + int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0); + tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1); + + int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); + int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); + + /* Odd part */ + int16x4_t z1 = vmul_s16(vget_high_s16(row7), quant_row7); + z2 = vmul_s16(vget_high_s16(row5), quant_row5); + z3 = vmul_s16(vget_high_s16(row3), quant_row3); + int16x4_t z4 = vmul_s16(vget_high_s16(row1), quant_row1); + + tmp0 = vmull_lane_s16(z1, consts.val[0], 2); + tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3); + tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0); + tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1); + + tmp2 = vmull_lane_s16(z1, consts.val[1], 2); + tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3); + tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0); + tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1); + + /* Final output stage: descale and narrow to 16-bit. */ + row0 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp10, tmp2), + CONST_BITS - PASS1_BITS + 1)); + row3 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp10, tmp2), + CONST_BITS - PASS1_BITS + 1)); + row1 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp12, tmp0), + CONST_BITS - PASS1_BITS + 1)); + row2 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp12, tmp0), + CONST_BITS - PASS1_BITS + 1)); + } else if (right_ac_bitmap == 0) { + /* AC coefficients are zero for columns 4, 5, 6, and 7. + * Compute DC values for these columns. + */ + int16x4_t dcval = vshl_n_s16(vget_high_s16(row0), PASS1_BITS); + + /* Commence regular IDCT computation for columns 0, 1, 2, and 3. */ + + /* Load quantization table. */ + int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE); + int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE); + int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE); + int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE); + int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE); + int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE); + + /* Even part */ + int32x4_t tmp0 = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1); + + int16x4_t z2 = vmul_s16(vget_low_s16(row2), quant_row2); + int16x4_t z3 = vmul_s16(vget_low_s16(row6), quant_row6); + + int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0); + tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1); + + int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); + int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); + + /* Odd part */ + int16x4_t z1 = vmul_s16(vget_low_s16(row7), quant_row7); + z2 = vmul_s16(vget_low_s16(row5), quant_row5); + z3 = vmul_s16(vget_low_s16(row3), quant_row3); + int16x4_t z4 = vmul_s16(vget_low_s16(row1), quant_row1); + + tmp0 = vmull_lane_s16(z1, consts.val[0], 2); + tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3); + tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0); + tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1); + + tmp2 = vmull_lane_s16(z1, consts.val[1], 2); + tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3); + tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0); + tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1); + + /* Final output stage: descale and narrow to 16-bit. */ + row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10, tmp2), + CONST_BITS - PASS1_BITS + 1), dcval); + row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10, tmp2), + CONST_BITS - PASS1_BITS + 1), dcval); + row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12, tmp0), + CONST_BITS - PASS1_BITS + 1), dcval); + row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12, tmp0), + CONST_BITS - PASS1_BITS + 1), dcval); + } else { + /* All AC coefficients are non-zero; full IDCT calculation required. */ + int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE); + int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE); + int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE); + int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE); + int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE); + int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE); + + /* Even part */ + int32x4_t tmp0_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1); + int32x4_t tmp0_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1); + + int16x8_t z2 = vmulq_s16(row2, quant_row2); + int16x8_t z3 = vmulq_s16(row6, quant_row6); + + int32x4_t tmp2_l = vmull_lane_s16(vget_low_s16(z2), consts.val[0], 0); + int32x4_t tmp2_h = vmull_lane_s16(vget_high_s16(z2), consts.val[0], 0); + tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[0], 1); + tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[0], 1); + + int32x4_t tmp10_l = vaddq_s32(tmp0_l, tmp2_l); + int32x4_t tmp10_h = vaddq_s32(tmp0_h, tmp2_h); + int32x4_t tmp12_l = vsubq_s32(tmp0_l, tmp2_l); + int32x4_t tmp12_h = vsubq_s32(tmp0_h, tmp2_h); + + /* Odd part */ + int16x8_t z1 = vmulq_s16(row7, quant_row7); + z2 = vmulq_s16(row5, quant_row5); + z3 = vmulq_s16(row3, quant_row3); + int16x8_t z4 = vmulq_s16(row1, quant_row1); + + tmp0_l = vmull_lane_s16(vget_low_s16(z1), consts.val[0], 2); + tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z2), consts.val[0], 3); + tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z3), consts.val[1], 0); + tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z4), consts.val[1], 1); + tmp0_h = vmull_lane_s16(vget_high_s16(z1), consts.val[0], 2); + tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z2), consts.val[0], 3); + tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z3), consts.val[1], 0); + tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z4), consts.val[1], 1); + + tmp2_l = vmull_lane_s16(vget_low_s16(z1), consts.val[1], 2); + tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z2), consts.val[1], 3); + tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[2], 0); + tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z4), consts.val[2], 1); + tmp2_h = vmull_lane_s16(vget_high_s16(z1), consts.val[1], 2); + tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z2), consts.val[1], 3); + tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[2], 0); + tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z4), consts.val[2], 1); + + /* Final output stage: descale and narrow to 16-bit. */ + row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp2_l), + CONST_BITS - PASS1_BITS + 1), + vrshrn_n_s32(vaddq_s32(tmp10_h, tmp2_h), + CONST_BITS - PASS1_BITS + 1)); + row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp2_l), + CONST_BITS - PASS1_BITS + 1), + vrshrn_n_s32(vsubq_s32(tmp10_h, tmp2_h), + CONST_BITS - PASS1_BITS + 1)); + row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12_l, tmp0_l), + CONST_BITS - PASS1_BITS + 1), + vrshrn_n_s32(vaddq_s32(tmp12_h, tmp0_h), + CONST_BITS - PASS1_BITS + 1)); + row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12_l, tmp0_l), + CONST_BITS - PASS1_BITS + 1), + vrshrn_n_s32(vsubq_s32(tmp12_h, tmp0_h), + CONST_BITS - PASS1_BITS + 1)); + } + + /* Transpose 8x4 block to perform IDCT on rows in second pass. */ + int16x8x2_t row_01 = vtrnq_s16(row0, row1); + int16x8x2_t row_23 = vtrnq_s16(row2, row3); + + int32x4x2_t cols_0426 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[0]), + vreinterpretq_s32_s16(row_23.val[0])); + int32x4x2_t cols_1537 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[1]), + vreinterpretq_s32_s16(row_23.val[1])); + + int16x4_t col0 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[0])); + int16x4_t col1 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[0])); + int16x4_t col2 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[1])); + int16x4_t col3 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[1])); + int16x4_t col5 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[0])); + int16x4_t col6 = vreinterpret_s16_s32(vget_high_s32(cols_0426.val[1])); + int16x4_t col7 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[1])); + + /* Commence second pass of IDCT. */ + + /* Even part */ + int32x4_t tmp0 = vshll_n_s16(col0, CONST_BITS + 1); + int32x4_t tmp2 = vmull_lane_s16(col2, consts.val[0], 0); + tmp2 = vmlal_lane_s16(tmp2, col6, consts.val[0], 1); + + int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); + int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); + + /* Odd part */ + tmp0 = vmull_lane_s16(col7, consts.val[0], 2); + tmp0 = vmlal_lane_s16(tmp0, col5, consts.val[0], 3); + tmp0 = vmlal_lane_s16(tmp0, col3, consts.val[1], 0); + tmp0 = vmlal_lane_s16(tmp0, col1, consts.val[1], 1); + + tmp2 = vmull_lane_s16(col7, consts.val[1], 2); + tmp2 = vmlal_lane_s16(tmp2, col5, consts.val[1], 3); + tmp2 = vmlal_lane_s16(tmp2, col3, consts.val[2], 0); + tmp2 = vmlal_lane_s16(tmp2, col1, consts.val[2], 1); + + /* Final output stage: descale and clamp to range [0-255]. */ + int16x8_t output_cols_02 = vcombine_s16(vaddhn_s32(tmp10, tmp2), + vsubhn_s32(tmp12, tmp0)); + int16x8_t output_cols_13 = vcombine_s16(vaddhn_s32(tmp12, tmp0), + vsubhn_s32(tmp10, tmp2)); + output_cols_02 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_02, + CONST_BITS + PASS1_BITS + 3 + 1 - 16); + output_cols_13 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_13, + CONST_BITS + PASS1_BITS + 3 + 1 - 16); + /* Narrow to 8-bit and convert to unsigned while zipping 8-bit elements. + * An interleaving store completes the transpose. + */ + uint8x8x2_t output_0123 = vzip_u8(vqmovun_s16(output_cols_02), + vqmovun_s16(output_cols_13)); + uint16x4x2_t output_01_23 = { { + vreinterpret_u16_u8(output_0123.val[0]), + vreinterpret_u16_u8(output_0123.val[1]) + } }; + + /* Store 4x4 block to memory. */ + JSAMPROW outptr0 = output_buf[0] + output_col; + JSAMPROW outptr1 = output_buf[1] + output_col; + JSAMPROW outptr2 = output_buf[2] + output_col; + JSAMPROW outptr3 = output_buf[3] + output_col; + vst2_lane_u16((uint16_t *)outptr0, output_01_23, 0); + vst2_lane_u16((uint16_t *)outptr1, output_01_23, 1); + vst2_lane_u16((uint16_t *)outptr2, output_01_23, 2); + vst2_lane_u16((uint16_t *)outptr3, output_01_23, 3); +} |