diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /security/nss/lib/freebl/mpi/mpi-priv.h | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/nss/lib/freebl/mpi/mpi-priv.h')
-rw-r--r-- | security/nss/lib/freebl/mpi/mpi-priv.h | 243 |
1 files changed, 243 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/mpi/mpi-priv.h b/security/nss/lib/freebl/mpi/mpi-priv.h new file mode 100644 index 0000000000..9447a818f3 --- /dev/null +++ b/security/nss/lib/freebl/mpi/mpi-priv.h @@ -0,0 +1,243 @@ +/* + * mpi-priv.h - Private header file for MPI + * Arbitrary precision integer arithmetic library + * + * NOTE WELL: the content of this header file is NOT part of the "public" + * API for the MPI library, and may change at any time. + * Application programs that use libmpi should NOT include this header file. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ +#ifndef _MPI_PRIV_H_ +#define _MPI_PRIV_H_ 1 + +#include "mpi.h" +#include <stdlib.h> +#include <string.h> +#include <ctype.h> + +#if MP_DEBUG +#include <stdio.h> + +#define DIAG(T, V) \ + { \ + fprintf(stderr, T); \ + mp_print(V, stderr); \ + fputc('\n', stderr); \ + } +#else +#define DIAG(T, V) +#endif + +/* If we aren't using a wired-in logarithm table, we need to include + the math library to get the log() function + */ + +/* {{{ s_logv_2[] - log table for 2 in various bases */ + +#if MP_LOGTAB +/* + A table of the logs of 2 for various bases (the 0 and 1 entries of + this table are meaningless and should not be referenced). + + This table is used to compute output lengths for the mp_toradix() + function. Since a number n in radix r takes up about log_r(n) + digits, we estimate the output size by taking the least integer + greater than log_r(n), where: + + log_r(n) = log_2(n) * log_r(2) + + This table, therefore, is a table of log_r(2) for 2 <= r <= 36, + which are the output bases supported. + */ + +extern const float s_logv_2[]; +#define LOG_V_2(R) s_logv_2[(R)] + +#else + +/* + If MP_LOGTAB is not defined, use the math library to compute the + logarithms on the fly. Otherwise, use the table. + Pick which works best for your system. + */ + +#include <math.h> +#define LOG_V_2(R) (log(2.0) / log(R)) + +#endif /* if MP_LOGTAB */ + +/* }}} */ + +/* {{{ Digit arithmetic macros */ + +/* + When adding and multiplying digits, the results can be larger than + can be contained in an mp_digit. Thus, an mp_word is used. These + macros mask off the upper and lower digits of the mp_word (the + mp_word may be more than 2 mp_digits wide, but we only concern + ourselves with the low-order 2 mp_digits) + */ + +#define CARRYOUT(W) (mp_digit)((W) >> DIGIT_BIT) +#define ACCUM(W) (mp_digit)(W) + +#define MP_MIN(a, b) (((a) < (b)) ? (a) : (b)) +#define MP_MAX(a, b) (((a) > (b)) ? (a) : (b)) +#define MP_HOWMANY(a, b) (((a) + (b)-1) / (b)) +#define MP_ROUNDUP(a, b) (MP_HOWMANY(a, b) * (b)) + +/* }}} */ + +/* {{{ Comparison constants */ + +#define MP_LT -1 +#define MP_EQ 0 +#define MP_GT 1 + +/* }}} */ + +/* {{{ private function declarations */ + +void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ +void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ +void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ +void s_mp_free(void *ptr); /* general free function */ + +mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ +mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ + +void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ + +void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ + +mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ +void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ +mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */ +void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ +void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ +void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ +mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ +mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); +/* normalize for division */ +mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ +mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ +mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ +mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); +/* unsigned digit divide */ +mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); +/* Barrett reduction */ +mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */ +mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c); +mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */ +mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c); +mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset); +/* a += b * RADIX^offset */ +mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */ +#if MP_SQUARE +mp_err s_mp_sqr(mp_int *a); /* magnitude square */ +#else +#define s_mp_sqr(a) s_mp_mul(a, a) +#endif +mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */ +mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c); +mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ +int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */ +int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */ +int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */ +int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ + +int s_mp_tovalue(char ch, int r); /* convert ch to value */ +char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */ +int s_mp_outlen(int bits, int r); /* output length in bytes */ +mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */ +mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c); +mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c); +mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c); + +#ifdef NSS_USE_COMBA +PR_STATIC_ASSERT(sizeof(mp_digit) == 8); +#define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1))) + +void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C); +void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C); +void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C); +void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C); + +void s_mp_sqr_comba_4(const mp_int *A, mp_int *B); +void s_mp_sqr_comba_8(const mp_int *A, mp_int *B); +void s_mp_sqr_comba_16(const mp_int *A, mp_int *B); +void s_mp_sqr_comba_32(const mp_int *A, mp_int *B); + +#endif /* end NSS_USE_COMBA */ + +/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */ +#if defined(__OS2__) && defined(__IBMC__) +#define MPI_ASM_DECL __cdecl +#else +#define MPI_ASM_DECL +#endif + +#ifdef MPI_AMD64 + +mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit *, mp_digit *, mp_size, mp_digit); +mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit *, const mp_digit *, mp_size, mp_digit); + +/* c = a * b */ +#define s_mpv_mul_d(a, a_len, b, c) \ + ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b) + +/* c += a * b */ +#define s_mpv_mul_d_add(a, a_len, b, c) \ + ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b) + +#else + +void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len, + mp_digit b, mp_digit *c); +void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, + mp_digit b, mp_digit *c); + +#endif + +void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a, + mp_size a_len, mp_digit b, + mp_digit *c); +void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a, + mp_size a_len, + mp_digit *sqrs); + +mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, + mp_digit divisor, mp_digit *quot, mp_digit *rem); + +/* c += a * b * (MP_RADIX ** offset); */ +/* Callers of this macro should be aware that the return type might vary; + * it should be treated as a void function. */ +#define s_mp_mul_d_add_offset(a, b, c, off) \ + s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off) + +typedef struct { + mp_int N; /* modulus N */ + mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */ +} mp_mont_modulus; + +mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, + mp_mont_modulus *mmm); +mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm); + +/* + * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line + * if a cache exists, or zero if there is no cache. If more than one + * cache line exists, it should return the smallest line size (which is + * usually the L1 cache). + * + * mp_modexp uses this information to make sure that private key information + * isn't being leaked through the cache. + * + * see mpcpucache.c for the implementation. + */ +unsigned long s_mpi_getProcessorLineSize(); + +/* }}} */ +#endif |