summaryrefslogtreecommitdiffstats
path: root/third_party/rust/crossbeam-channel
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/crossbeam-channel
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--third_party/rust/crossbeam-channel/.cargo-checksum.json1
-rw-r--r--third_party/rust/crossbeam-channel/CHANGELOG.md206
-rw-r--r--third_party/rust/crossbeam-channel/Cargo.lock133
-rw-r--r--third_party/rust/crossbeam-channel/Cargo.toml54
-rw-r--r--third_party/rust/crossbeam-channel/LICENSE-APACHE201
-rw-r--r--third_party/rust/crossbeam-channel/LICENSE-MIT27
-rw-r--r--third_party/rust/crossbeam-channel/LICENSE-THIRD-PARTY593
-rw-r--r--third_party/rust/crossbeam-channel/README.md84
-rw-r--r--third_party/rust/crossbeam-channel/benches/crossbeam.rs712
-rw-r--r--third_party/rust/crossbeam-channel/examples/fibonacci.rs25
-rw-r--r--third_party/rust/crossbeam-channel/examples/matching.rs72
-rw-r--r--third_party/rust/crossbeam-channel/examples/stopwatch.rs56
-rw-r--r--third_party/rust/crossbeam-channel/src/channel.rs1511
-rw-r--r--third_party/rust/crossbeam-channel/src/context.rs193
-rw-r--r--third_party/rust/crossbeam-channel/src/counter.rs144
-rw-r--r--third_party/rust/crossbeam-channel/src/err.rs378
-rw-r--r--third_party/rust/crossbeam-channel/src/flavors/array.rs635
-rw-r--r--third_party/rust/crossbeam-channel/src/flavors/at.rs202
-rw-r--r--third_party/rust/crossbeam-channel/src/flavors/list.rs745
-rw-r--r--third_party/rust/crossbeam-channel/src/flavors/mod.rs17
-rw-r--r--third_party/rust/crossbeam-channel/src/flavors/never.rs110
-rw-r--r--third_party/rust/crossbeam-channel/src/flavors/tick.rs168
-rw-r--r--third_party/rust/crossbeam-channel/src/flavors/zero.rs495
-rw-r--r--third_party/rust/crossbeam-channel/src/lib.rs371
-rw-r--r--third_party/rust/crossbeam-channel/src/select.rs1256
-rw-r--r--third_party/rust/crossbeam-channel/src/select_macro.rs1116
-rw-r--r--third_party/rust/crossbeam-channel/src/utils.rs66
-rw-r--r--third_party/rust/crossbeam-channel/src/waker.rs286
-rw-r--r--third_party/rust/crossbeam-channel/tests/after.rs336
-rw-r--r--third_party/rust/crossbeam-channel/tests/array.rs744
-rw-r--r--third_party/rust/crossbeam-channel/tests/golang.rs2141
-rw-r--r--third_party/rust/crossbeam-channel/tests/iter.rs110
-rw-r--r--third_party/rust/crossbeam-channel/tests/list.rs582
-rw-r--r--third_party/rust/crossbeam-channel/tests/mpsc.rs2129
-rw-r--r--third_party/rust/crossbeam-channel/tests/never.rs95
-rw-r--r--third_party/rust/crossbeam-channel/tests/ready.rs852
-rw-r--r--third_party/rust/crossbeam-channel/tests/same_channel.rs112
-rw-r--r--third_party/rust/crossbeam-channel/tests/select.rs1328
-rw-r--r--third_party/rust/crossbeam-channel/tests/select_macro.rs1480
-rw-r--r--third_party/rust/crossbeam-channel/tests/thread_locals.rs53
-rw-r--r--third_party/rust/crossbeam-channel/tests/tick.rs352
-rw-r--r--third_party/rust/crossbeam-channel/tests/zero.rs587
42 files changed, 20758 insertions, 0 deletions
diff --git a/third_party/rust/crossbeam-channel/.cargo-checksum.json b/third_party/rust/crossbeam-channel/.cargo-checksum.json
new file mode 100644
index 0000000000..96db2f1abd
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"CHANGELOG.md":"f87a526ab720644e07509dd76d29c08993a5e52a6d6ec230d809fc31a1c0e403","Cargo.lock":"8af0a5f8b3d1e6f036332a5ecc91b30222343f29a465ea398bca3298c0212f4a","Cargo.toml":"81a227ee6f529cd0cf62327f63eb098fed59c04dde2a8e68aeaa0ea32dbafbcf","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"5734ed989dfca1f625b40281ee9f4530f91b2411ec01cb748223e7eb87e201ab","LICENSE-THIRD-PARTY":"b16db96b93b1d7cf7bea533f572091ec6bca3234fbe0a83038be772ff391a44c","README.md":"4e16587d8f6a15f2016f256535aa6c9429424672ebdcd03c1a7d964746e46127","benches/crossbeam.rs":"96cb1abd23cac3ef8a7174a802e94609926b555bb02c9658c78723d433f1dd92","examples/fibonacci.rs":"4e88fa40048cdc31e9c7bb60347d46f92543d7ddf39cab3b52bfe44affdb6a02","examples/matching.rs":"63c250e164607a7a9f643d46f107bb5da846d49e89cf9069909562d20e530f71","examples/stopwatch.rs":"d02121258f08d56f1eb7997e19bcb9bacb6836cfa0abbba90a9e59d8a50ae5cf","src/channel.rs":"9538e285101c152e23c5ff6a47b0305753d94a5b27f3426499052b0e3d0f97ee","src/context.rs":"ff4d39639ddf16aaab582d4a5f3d10ef2c71afe1abbf4e60f3d9d2ddbd72c230","src/counter.rs":"c49a9f44587888850edeb62f7c8ecd1acecb39c836834254ff3ac934c478440a","src/err.rs":"44cb2024ee6b0cd6fd24996430e53720769f64b4ac35016bc3e05cb9db48681d","src/flavors/array.rs":"508e54587fc8d9e8dfacd16446a601e33838d7bb1dfd9d7ccc3e65315b66b35a","src/flavors/at.rs":"1db64919593b7c14f838c16a22732515f1e716d2d5f6cc639f42631380e545cd","src/flavors/list.rs":"d901d9259185a71aeb5cf74be70e5c38b550c7f38b87e023196cb47fed2d1a11","src/flavors/mod.rs":"3d9d43bc38b0adb18c96c995c2bd3421d8e33ab6c30b20c3c467d21d48e485dc","src/flavors/never.rs":"747da857aa1a7601641f23f4930e6ad00ebaf50456d9be5c7aa270e2ecc24dcb","src/flavors/tick.rs":"69b2dfe0186bc8b9fd7a73e32da59d2656d8150da1e00fba92a412e0907568a3","src/flavors/zero.rs":"7458eb0ece475dc5093b4f2cde13f6de57e4f70291258850de4fa3c951c8f594","src/lib.rs":"3a65706d4124844ffc4c8cb1f8cc779631ec94f449f85cbb68364ad3619404f1","src/select.rs":"3b00c3929d3a8973e46188db41f6ae0b47c89ab108cf7ec2cb348e272e77e132","src/select_macro.rs":"283acd04870356b0c4d3d4046c5070638b562c9ffb8fa29c1a5b90a2509bf3af","src/utils.rs":"0b6e6621198236c077fcb6b66203317e36dc8f1a157dd3b22ad422b6599ae389","src/waker.rs":"6839108d1c9357b3c0c1c162c8b4633ff5ac4f756e95e677ac1293e7df942635","tests/after.rs":"0154a8e152880db17a20514ecdd49dabc361d3629858d119b9746b5e932c780c","tests/array.rs":"a57ae6264e676f573d7adb5c4b024994e98bc6811352516adb3444f880f7125e","tests/golang.rs":"284bed0d4c07857f33de96f2addc9a69c5688f864935a3e3e113c88c04bd826b","tests/iter.rs":"25dc02135bbae9d47a30f9047661648e66bdc134e40ba78bc2fbacbb8b3819bc","tests/list.rs":"3d1a4ae23bb6b4767242b8109a8efda26f1d3b28c0f90da3368f8eb9ca0eee37","tests/mpsc.rs":"d1e185c6290240132a34aa91221271225959f8652d7fc4ceb546ee9712361176","tests/never.rs":"ee40c4fc4dd5af4983fae8de6927f52b81174d222c162f745b26c4a6c7108e4f","tests/ready.rs":"d349702f123925a0781b48d677e6dcf64fc5d1fc788a7bf1e151a3d57e81871c","tests/same_channel.rs":"2bab761443671e841e1b2476bd8082d75533a2f6be7946f5dbcee67cdc82dccb","tests/select.rs":"ce12a8e0284fb9ccf6c1543bec309d9054193e6d942663aed19aa8499ef69c43","tests/select_macro.rs":"597d526fbd021ce70619d9172c931439f778ee3034ec1479aea461b65971a81a","tests/thread_locals.rs":"25ab70a8dcd8a0da9173e5476e17dcc8916caa5b68207d9c403655deaa8e8f4a","tests/tick.rs":"5f697bd14c48505d932e82065b5302ef668e1cc19cac18e8ac22e0c83c221c1d","tests/zero.rs":"9c5af802d5efb2c711f8242b8905ed29cc2601e48dbd95e41c7e6fbfe2918398"},"package":"c2dd04ddaf88237dc3b8d8f9a3c1004b506b54b3313403944054d23c0870c521"} \ No newline at end of file
diff --git a/third_party/rust/crossbeam-channel/CHANGELOG.md b/third_party/rust/crossbeam-channel/CHANGELOG.md
new file mode 100644
index 0000000000..f0d11e60c1
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/CHANGELOG.md
@@ -0,0 +1,206 @@
+# Version 0.5.6
+
+- Bump the minimum supported Rust version to 1.38. (#877)
+
+# Version 0.5.5
+
+- Replace Spinlock with Mutex. (#835)
+
+# Version 0.5.4
+
+- Workaround a bug in upstream related to TLS access on AArch64 Linux. (#802)
+
+# Version 0.5.3
+
+**Note:** This release has been yanked. See [#802](https://github.com/crossbeam-rs/crossbeam/issues/802) for details.
+
+- Fix panic on very large timeout. (#798)
+
+# Version 0.5.2
+
+**Note:** This release has been yanked. See [#802](https://github.com/crossbeam-rs/crossbeam/issues/802) for details.
+
+- Fix stacked borrows violations when `-Zmiri-tag-raw-pointers` is enabled. (#763, #764)
+
+# Version 0.5.1
+
+- Fix memory leak in unbounded channel. (#669)
+
+# Version 0.5.0
+
+- Bump the minimum supported Rust version to 1.36.
+- Add `at()` function.
+- Add `Sender::send_deadline()` and `Receiver::recv_deadline()` methods.
+- Add `Select::select_deadline()` and `Select::ready_deadline()` methods.
+- Add `std` (enabled by default) feature for forward compatibility.
+- Allow `select!` macro compile with `forbid(unsafe_code)`.
+
+# Version 0.4.4
+
+- Fix bug in release (yanking 0.4.3)
+- Fix UB and breaking change introduced in 0.4.3
+
+# Version 0.4.3
+
+**Note:** This release has been yanked. See [GHSA-v5m7-53cv-f3hx](https://github.com/crossbeam-rs/crossbeam/security/advisories/GHSA-v5m7-53cv-f3hx) for details.
+
+- Change license to "MIT OR Apache-2.0".
+
+# Version 0.4.2
+
+- Fix bug in release (yanking 0.4.1)
+
+# Version 0.4.1
+
+- Avoid time drift in `channel::tick`. (#456)
+- Fix unsoundness issues by adopting `MaybeUninit`. (#458)
+
+# Version 0.4.0
+
+- Bump the minimum required version to 1.28.
+- Bump `crossbeam-utils` to `0.7`.
+
+# Version 0.3.9
+
+- Fix a bug in reference counting.
+- Optimize `recv_timeout()`.
+- Add `Select::remove()`.
+- Various small improvements, code cleanup, more tests.
+
+# Version 0.3.8
+
+- Bump the minimum required version of `crossbeam-utils`.
+
+# Version 0.3.7
+
+- Remove `parking_lot` and `rand` dependencies.
+- Expand documentation.
+- Implement `Default` for `Select`.
+- Make `size_of::<Receiver<T>>()` smaller.
+- Several minor optimizations.
+- Add more tests.
+
+# Version 0.3.6
+
+- Fix a bug in initialization of unbounded channels.
+
+# Version 0.3.5
+
+- New implementation for unbounded channels.
+- A number of small performance improvements.
+- Remove `crossbeam-epoch` dependency.
+
+# Version 0.3.4
+
+- Bump `crossbeam-epoch` to `0.7`.
+- Improve documentation.
+
+# Version 0.3.3
+
+- Relax the lifetime in `SelectedOperation<'_>`.
+- Add `Select::try_ready()`, `Select::ready()`, and `Select::ready_timeout()`.
+- Update licensing notices.
+- Improve documentation.
+- Add methods `is_disconnected()`, `is_timeout()`, `is_empty()`, and `is_full()` on error types.
+
+# Version 0.3.2
+
+- More elaborate licensing notices.
+
+# Version 0.3.1
+
+- Update `crossbeam-utils` to `0.6`.
+
+# Version 0.3.0
+
+- Add a special `never` channel type.
+- Dropping all receivers now closes the channel.
+- The interface of sending and receiving methods is now very similar to those in v0.1.
+- The syntax for `send` in `select!` is now `send(sender, msg) -> res => body`.
+- The syntax for `recv` in `select!` is now `recv(receiver) -> res => body`.
+- New, more efficient interface for `Select` without callbacks.
+- Timeouts can be specified in `select!`.
+
+# Version 0.2.6
+
+- `Select` struct that can add cases dynamically.
+- More documentation (in particular, the FAQ section).
+- Optimize contended sends/receives in unbounded channels.
+
+# Version 0.2.5
+
+- Use `LocalKey::try_with` instead of `LocalKey::with`.
+- Remove helper macros `__crossbeam_channel*`.
+
+# Version 0.2.4
+
+- Make `select!` linearizable with other channel operations.
+- Update `crossbeam-utils` to `0.5.0`.
+- Update `parking_lot` to `0.6.3`.
+- Remove Mac OS X tests.
+
+# Version 0.2.3
+
+- Add Mac OS X tests.
+- Lower some memory orderings.
+- Eliminate calls to `mem::unitialized`, which caused bugs with ZST.
+
+# Version 0.2.2
+
+- Add more tests.
+- Update `crossbeam-epoch` to 0.5.0
+- Initialize the RNG seed to a random value.
+- Replace `libc::abort` with `std::process::abort`.
+- Ignore clippy warnings in `select!`.
+- Better interaction of `select!` with the NLL borrow checker.
+
+# Version 0.2.1
+
+- Fix compilation errors when using `select!` with `#[deny(unsafe_code)]`.
+
+# Version 0.2.0
+
+- Implement `IntoIterator<Item = T>` for `Receiver<T>`.
+- Add a new `select!` macro.
+- Add special channels `after` and `tick`.
+- Dropping receivers doesn't close the channel anymore.
+- Change the signature of `recv`, `send`, and `try_recv`.
+- Remove `Sender::is_closed` and `Receiver::is_closed`.
+- Remove `Sender::close` and `Receiver::close`.
+- Remove `Sender::send_timeout` and `Receiver::recv_timeout`.
+- Remove `Sender::try_send`.
+- Remove `Select` and `select_loop!`.
+- Remove all error types.
+- Remove `Iter`, `TryIter`, and `IntoIter`.
+- Remove the `nightly` feature.
+- Remove ordering operators for `Sender` and `Receiver`.
+
+# Version 0.1.3
+
+- Add `Sender::disconnect` and `Receiver::disconnect`.
+- Implement comparison operators for `Sender` and `Receiver`.
+- Allow arbitrary patterns in place of `msg` in `recv(r, msg)`.
+- Add a few conversion impls between error types.
+- Add benchmarks for `atomicring` and `mpmc`.
+- Add benchmarks for different message sizes.
+- Documentation improvements.
+- Update `crossbeam-epoch` to 0.4.0
+- Update `crossbeam-utils` to 0.3.0
+- Update `parking_lot` to 0.5
+- Update `rand` to 0.4
+
+# Version 0.1.2
+
+- Allow conditional cases in `select_loop!` macro.
+- Fix typos in documentation.
+- Fix deadlock in selection when all channels are disconnected and a timeout is specified.
+
+# Version 0.1.1
+
+- Implement `Debug` for `Sender`, `Receiver`, `Iter`, `TryIter`, `IntoIter`, and `Select`.
+- Implement `Default` for `Select`.
+
+# Version 0.1.0
+
+- First implementation of the channels.
+- Add `select_loop!` macro by @TimNN.
diff --git a/third_party/rust/crossbeam-channel/Cargo.lock b/third_party/rust/crossbeam-channel/Cargo.lock
new file mode 100644
index 0000000000..e40f83650b
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/Cargo.lock
@@ -0,0 +1,133 @@
+# This file is automatically @generated by Cargo.
+# It is not intended for manual editing.
+version = 3
+
+[[package]]
+name = "cfg-if"
+version = "1.0.0"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
+
+[[package]]
+name = "crossbeam-channel"
+version = "0.5.6"
+dependencies = [
+ "cfg-if",
+ "crossbeam-utils",
+ "num_cpus",
+ "rand",
+ "signal-hook",
+]
+
+[[package]]
+name = "crossbeam-utils"
+version = "0.8.11"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "51887d4adc7b564537b15adcfb307936f8075dfcd5f00dde9a9f1d29383682bc"
+dependencies = [
+ "cfg-if",
+ "once_cell",
+]
+
+[[package]]
+name = "getrandom"
+version = "0.2.7"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "4eb1a864a501629691edf6c15a593b7a51eebaa1e8468e9ddc623de7c9b58ec6"
+dependencies = [
+ "cfg-if",
+ "libc",
+ "wasi",
+]
+
+[[package]]
+name = "hermit-abi"
+version = "0.1.19"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "62b467343b94ba476dcb2500d242dadbb39557df889310ac77c5d99100aaac33"
+dependencies = [
+ "libc",
+]
+
+[[package]]
+name = "libc"
+version = "0.2.126"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "349d5a591cd28b49e1d1037471617a32ddcda5731b99419008085f72d5a53836"
+
+[[package]]
+name = "num_cpus"
+version = "1.13.1"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "19e64526ebdee182341572e50e9ad03965aa510cd94427a4549448f285e957a1"
+dependencies = [
+ "hermit-abi",
+ "libc",
+]
+
+[[package]]
+name = "once_cell"
+version = "1.13.0"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "18a6dbe30758c9f83eb00cbea4ac95966305f5a7772f3f42ebfc7fc7eddbd8e1"
+
+[[package]]
+name = "ppv-lite86"
+version = "0.2.16"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "eb9f9e6e233e5c4a35559a617bf40a4ec447db2e84c20b55a6f83167b7e57872"
+
+[[package]]
+name = "rand"
+version = "0.8.5"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "34af8d1a0e25924bc5b7c43c079c942339d8f0a8b57c39049bef581b46327404"
+dependencies = [
+ "libc",
+ "rand_chacha",
+ "rand_core",
+]
+
+[[package]]
+name = "rand_chacha"
+version = "0.3.1"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "e6c10a63a0fa32252be49d21e7709d4d4baf8d231c2dbce1eaa8141b9b127d88"
+dependencies = [
+ "ppv-lite86",
+ "rand_core",
+]
+
+[[package]]
+name = "rand_core"
+version = "0.6.3"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "d34f1408f55294453790c48b2f1ebbb1c5b4b7563eb1f418bcfcfdbb06ebb4e7"
+dependencies = [
+ "getrandom",
+]
+
+[[package]]
+name = "signal-hook"
+version = "0.3.14"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "a253b5e89e2698464fc26b545c9edceb338e18a89effeeecfea192c3025be29d"
+dependencies = [
+ "libc",
+ "signal-hook-registry",
+]
+
+[[package]]
+name = "signal-hook-registry"
+version = "1.4.0"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "e51e73328dc4ac0c7ccbda3a494dfa03df1de2f46018127f60c693f2648455b0"
+dependencies = [
+ "libc",
+]
+
+[[package]]
+name = "wasi"
+version = "0.11.0+wasi-snapshot-preview1"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"
diff --git a/third_party/rust/crossbeam-channel/Cargo.toml b/third_party/rust/crossbeam-channel/Cargo.toml
new file mode 100644
index 0000000000..619fad4230
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/Cargo.toml
@@ -0,0 +1,54 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies.
+#
+# If you are reading this file be aware that the original Cargo.toml
+# will likely look very different (and much more reasonable).
+# See Cargo.toml.orig for the original contents.
+
+[package]
+edition = "2018"
+rust-version = "1.38"
+name = "crossbeam-channel"
+version = "0.5.6"
+description = "Multi-producer multi-consumer channels for message passing"
+homepage = "https://github.com/crossbeam-rs/crossbeam/tree/master/crossbeam-channel"
+readme = "README.md"
+keywords = [
+ "channel",
+ "mpmc",
+ "select",
+ "golang",
+ "message",
+]
+categories = [
+ "algorithms",
+ "concurrency",
+ "data-structures",
+]
+license = "MIT OR Apache-2.0"
+repository = "https://github.com/crossbeam-rs/crossbeam"
+
+[dependencies.cfg-if]
+version = "1"
+
+[dependencies.crossbeam-utils]
+version = "0.8"
+optional = true
+default-features = false
+
+[dev-dependencies.num_cpus]
+version = "1.13.0"
+
+[dev-dependencies.rand]
+version = "0.8"
+
+[dev-dependencies.signal-hook]
+version = "0.3"
+
+[features]
+default = ["std"]
+std = ["crossbeam-utils/std"]
diff --git a/third_party/rust/crossbeam-channel/LICENSE-APACHE b/third_party/rust/crossbeam-channel/LICENSE-APACHE
new file mode 100644
index 0000000000..16fe87b06e
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/LICENSE-APACHE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/third_party/rust/crossbeam-channel/LICENSE-MIT b/third_party/rust/crossbeam-channel/LICENSE-MIT
new file mode 100644
index 0000000000..068d491fd5
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/LICENSE-MIT
@@ -0,0 +1,27 @@
+The MIT License (MIT)
+
+Copyright (c) 2019 The Crossbeam Project Developers
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/third_party/rust/crossbeam-channel/LICENSE-THIRD-PARTY b/third_party/rust/crossbeam-channel/LICENSE-THIRD-PARTY
new file mode 100644
index 0000000000..ed4df76f4c
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/LICENSE-THIRD-PARTY
@@ -0,0 +1,593 @@
+===============================================================================
+
+matching.go
+https://creativecommons.org/licenses/by/3.0/legalcode
+
+Creative Commons Legal Code
+
+Attribution 3.0 Unported
+
+ CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
+ LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
+ ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
+ INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
+ REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
+ DAMAGES RESULTING FROM ITS USE.
+
+License
+
+THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
+COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
+COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
+AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
+
+BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
+TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
+BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
+CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
+CONDITIONS.
+
+1. Definitions
+
+ a. "Adaptation" means a work based upon the Work, or upon the Work and
+ other pre-existing works, such as a translation, adaptation,
+ derivative work, arrangement of music or other alterations of a
+ literary or artistic work, or phonogram or performance and includes
+ cinematographic adaptations or any other form in which the Work may be
+ recast, transformed, or adapted including in any form recognizably
+ derived from the original, except that a work that constitutes a
+ Collection will not be considered an Adaptation for the purpose of
+ this License. For the avoidance of doubt, where the Work is a musical
+ work, performance or phonogram, the synchronization of the Work in
+ timed-relation with a moving image ("synching") will be considered an
+ Adaptation for the purpose of this License.
+ b. "Collection" means a collection of literary or artistic works, such as
+ encyclopedias and anthologies, or performances, phonograms or
+ broadcasts, or other works or subject matter other than works listed
+ in Section 1(f) below, which, by reason of the selection and
+ arrangement of their contents, constitute intellectual creations, in
+ which the Work is included in its entirety in unmodified form along
+ with one or more other contributions, each constituting separate and
+ independent works in themselves, which together are assembled into a
+ collective whole. A work that constitutes a Collection will not be
+ considered an Adaptation (as defined above) for the purposes of this
+ License.
+ c. "Distribute" means to make available to the public the original and
+ copies of the Work or Adaptation, as appropriate, through sale or
+ other transfer of ownership.
+ d. "Licensor" means the individual, individuals, entity or entities that
+ offer(s) the Work under the terms of this License.
+ e. "Original Author" means, in the case of a literary or artistic work,
+ the individual, individuals, entity or entities who created the Work
+ or if no individual or entity can be identified, the publisher; and in
+ addition (i) in the case of a performance the actors, singers,
+ musicians, dancers, and other persons who act, sing, deliver, declaim,
+ play in, interpret or otherwise perform literary or artistic works or
+ expressions of folklore; (ii) in the case of a phonogram the producer
+ being the person or legal entity who first fixes the sounds of a
+ performance or other sounds; and, (iii) in the case of broadcasts, the
+ organization that transmits the broadcast.
+ f. "Work" means the literary and/or artistic work offered under the terms
+ of this License including without limitation any production in the
+ literary, scientific and artistic domain, whatever may be the mode or
+ form of its expression including digital form, such as a book,
+ pamphlet and other writing; a lecture, address, sermon or other work
+ of the same nature; a dramatic or dramatico-musical work; a
+ choreographic work or entertainment in dumb show; a musical
+ composition with or without words; a cinematographic work to which are
+ assimilated works expressed by a process analogous to cinematography;
+ a work of drawing, painting, architecture, sculpture, engraving or
+ lithography; a photographic work to which are assimilated works
+ expressed by a process analogous to photography; a work of applied
+ art; an illustration, map, plan, sketch or three-dimensional work
+ relative to geography, topography, architecture or science; a
+ performance; a broadcast; a phonogram; a compilation of data to the
+ extent it is protected as a copyrightable work; or a work performed by
+ a variety or circus performer to the extent it is not otherwise
+ considered a literary or artistic work.
+ g. "You" means an individual or entity exercising rights under this
+ License who has not previously violated the terms of this License with
+ respect to the Work, or who has received express permission from the
+ Licensor to exercise rights under this License despite a previous
+ violation.
+ h. "Publicly Perform" means to perform public recitations of the Work and
+ to communicate to the public those public recitations, by any means or
+ process, including by wire or wireless means or public digital
+ performances; to make available to the public Works in such a way that
+ members of the public may access these Works from a place and at a
+ place individually chosen by them; to perform the Work to the public
+ by any means or process and the communication to the public of the
+ performances of the Work, including by public digital performance; to
+ broadcast and rebroadcast the Work by any means including signs,
+ sounds or images.
+ i. "Reproduce" means to make copies of the Work by any means including
+ without limitation by sound or visual recordings and the right of
+ fixation and reproducing fixations of the Work, including storage of a
+ protected performance or phonogram in digital form or other electronic
+ medium.
+
+2. Fair Dealing Rights. Nothing in this License is intended to reduce,
+limit, or restrict any uses free from copyright or rights arising from
+limitations or exceptions that are provided for in connection with the
+copyright protection under copyright law or other applicable laws.
+
+3. License Grant. Subject to the terms and conditions of this License,
+Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
+perpetual (for the duration of the applicable copyright) license to
+exercise the rights in the Work as stated below:
+
+ a. to Reproduce the Work, to incorporate the Work into one or more
+ Collections, and to Reproduce the Work as incorporated in the
+ Collections;
+ b. to create and Reproduce Adaptations provided that any such Adaptation,
+ including any translation in any medium, takes reasonable steps to
+ clearly label, demarcate or otherwise identify that changes were made
+ to the original Work. For example, a translation could be marked "The
+ original work was translated from English to Spanish," or a
+ modification could indicate "The original work has been modified.";
+ c. to Distribute and Publicly Perform the Work including as incorporated
+ in Collections; and,
+ d. to Distribute and Publicly Perform Adaptations.
+ e. For the avoidance of doubt:
+
+ i. Non-waivable Compulsory License Schemes. In those jurisdictions in
+ which the right to collect royalties through any statutory or
+ compulsory licensing scheme cannot be waived, the Licensor
+ reserves the exclusive right to collect such royalties for any
+ exercise by You of the rights granted under this License;
+ ii. Waivable Compulsory License Schemes. In those jurisdictions in
+ which the right to collect royalties through any statutory or
+ compulsory licensing scheme can be waived, the Licensor waives the
+ exclusive right to collect such royalties for any exercise by You
+ of the rights granted under this License; and,
+ iii. Voluntary License Schemes. The Licensor waives the right to
+ collect royalties, whether individually or, in the event that the
+ Licensor is a member of a collecting society that administers
+ voluntary licensing schemes, via that society, from any exercise
+ by You of the rights granted under this License.
+
+The above rights may be exercised in all media and formats whether now
+known or hereafter devised. The above rights include the right to make
+such modifications as are technically necessary to exercise the rights in
+other media and formats. Subject to Section 8(f), all rights not expressly
+granted by Licensor are hereby reserved.
+
+4. Restrictions. The license granted in Section 3 above is expressly made
+subject to and limited by the following restrictions:
+
+ a. You may Distribute or Publicly Perform the Work only under the terms
+ of this License. You must include a copy of, or the Uniform Resource
+ Identifier (URI) for, this License with every copy of the Work You
+ Distribute or Publicly Perform. You may not offer or impose any terms
+ on the Work that restrict the terms of this License or the ability of
+ the recipient of the Work to exercise the rights granted to that
+ recipient under the terms of the License. You may not sublicense the
+ Work. You must keep intact all notices that refer to this License and
+ to the disclaimer of warranties with every copy of the Work You
+ Distribute or Publicly Perform. When You Distribute or Publicly
+ Perform the Work, You may not impose any effective technological
+ measures on the Work that restrict the ability of a recipient of the
+ Work from You to exercise the rights granted to that recipient under
+ the terms of the License. This Section 4(a) applies to the Work as
+ incorporated in a Collection, but this does not require the Collection
+ apart from the Work itself to be made subject to the terms of this
+ License. If You create a Collection, upon notice from any Licensor You
+ must, to the extent practicable, remove from the Collection any credit
+ as required by Section 4(b), as requested. If You create an
+ Adaptation, upon notice from any Licensor You must, to the extent
+ practicable, remove from the Adaptation any credit as required by
+ Section 4(b), as requested.
+ b. If You Distribute, or Publicly Perform the Work or any Adaptations or
+ Collections, You must, unless a request has been made pursuant to
+ Section 4(a), keep intact all copyright notices for the Work and
+ provide, reasonable to the medium or means You are utilizing: (i) the
+ name of the Original Author (or pseudonym, if applicable) if supplied,
+ and/or if the Original Author and/or Licensor designate another party
+ or parties (e.g., a sponsor institute, publishing entity, journal) for
+ attribution ("Attribution Parties") in Licensor's copyright notice,
+ terms of service or by other reasonable means, the name of such party
+ or parties; (ii) the title of the Work if supplied; (iii) to the
+ extent reasonably practicable, the URI, if any, that Licensor
+ specifies to be associated with the Work, unless such URI does not
+ refer to the copyright notice or licensing information for the Work;
+ and (iv) , consistent with Section 3(b), in the case of an Adaptation,
+ a credit identifying the use of the Work in the Adaptation (e.g.,
+ "French translation of the Work by Original Author," or "Screenplay
+ based on original Work by Original Author"). The credit required by
+ this Section 4 (b) may be implemented in any reasonable manner;
+ provided, however, that in the case of a Adaptation or Collection, at
+ a minimum such credit will appear, if a credit for all contributing
+ authors of the Adaptation or Collection appears, then as part of these
+ credits and in a manner at least as prominent as the credits for the
+ other contributing authors. For the avoidance of doubt, You may only
+ use the credit required by this Section for the purpose of attribution
+ in the manner set out above and, by exercising Your rights under this
+ License, You may not implicitly or explicitly assert or imply any
+ connection with, sponsorship or endorsement by the Original Author,
+ Licensor and/or Attribution Parties, as appropriate, of You or Your
+ use of the Work, without the separate, express prior written
+ permission of the Original Author, Licensor and/or Attribution
+ Parties.
+ c. Except as otherwise agreed in writing by the Licensor or as may be
+ otherwise permitted by applicable law, if You Reproduce, Distribute or
+ Publicly Perform the Work either by itself or as part of any
+ Adaptations or Collections, You must not distort, mutilate, modify or
+ take other derogatory action in relation to the Work which would be
+ prejudicial to the Original Author's honor or reputation. Licensor
+ agrees that in those jurisdictions (e.g. Japan), in which any exercise
+ of the right granted in Section 3(b) of this License (the right to
+ make Adaptations) would be deemed to be a distortion, mutilation,
+ modification or other derogatory action prejudicial to the Original
+ Author's honor and reputation, the Licensor will waive or not assert,
+ as appropriate, this Section, to the fullest extent permitted by the
+ applicable national law, to enable You to reasonably exercise Your
+ right under Section 3(b) of this License (right to make Adaptations)
+ but not otherwise.
+
+5. Representations, Warranties and Disclaimer
+
+UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
+OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
+KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
+INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
+FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
+LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
+WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
+OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
+
+6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
+LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
+ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
+ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
+BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
+
+7. Termination
+
+ a. This License and the rights granted hereunder will terminate
+ automatically upon any breach by You of the terms of this License.
+ Individuals or entities who have received Adaptations or Collections
+ from You under this License, however, will not have their licenses
+ terminated provided such individuals or entities remain in full
+ compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
+ survive any termination of this License.
+ b. Subject to the above terms and conditions, the license granted here is
+ perpetual (for the duration of the applicable copyright in the Work).
+ Notwithstanding the above, Licensor reserves the right to release the
+ Work under different license terms or to stop distributing the Work at
+ any time; provided, however that any such election will not serve to
+ withdraw this License (or any other license that has been, or is
+ required to be, granted under the terms of this License), and this
+ License will continue in full force and effect unless terminated as
+ stated above.
+
+8. Miscellaneous
+
+ a. Each time You Distribute or Publicly Perform the Work or a Collection,
+ the Licensor offers to the recipient a license to the Work on the same
+ terms and conditions as the license granted to You under this License.
+ b. Each time You Distribute or Publicly Perform an Adaptation, Licensor
+ offers to the recipient a license to the original Work on the same
+ terms and conditions as the license granted to You under this License.
+ c. If any provision of this License is invalid or unenforceable under
+ applicable law, it shall not affect the validity or enforceability of
+ the remainder of the terms of this License, and without further action
+ by the parties to this agreement, such provision shall be reformed to
+ the minimum extent necessary to make such provision valid and
+ enforceable.
+ d. No term or provision of this License shall be deemed waived and no
+ breach consented to unless such waiver or consent shall be in writing
+ and signed by the party to be charged with such waiver or consent.
+ e. This License constitutes the entire agreement between the parties with
+ respect to the Work licensed here. There are no understandings,
+ agreements or representations with respect to the Work not specified
+ here. Licensor shall not be bound by any additional provisions that
+ may appear in any communication from You. This License may not be
+ modified without the mutual written agreement of the Licensor and You.
+ f. The rights granted under, and the subject matter referenced, in this
+ License were drafted utilizing the terminology of the Berne Convention
+ for the Protection of Literary and Artistic Works (as amended on
+ September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
+ Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
+ and the Universal Copyright Convention (as revised on July 24, 1971).
+ These rights and subject matter take effect in the relevant
+ jurisdiction in which the License terms are sought to be enforced
+ according to the corresponding provisions of the implementation of
+ those treaty provisions in the applicable national law. If the
+ standard suite of rights granted under applicable copyright law
+ includes additional rights not granted under this License, such
+ additional rights are deemed to be included in the License; this
+ License is not intended to restrict the license of any rights under
+ applicable law.
+
+
+Creative Commons Notice
+
+ Creative Commons is not a party to this License, and makes no warranty
+ whatsoever in connection with the Work. Creative Commons will not be
+ liable to You or any party on any legal theory for any damages
+ whatsoever, including without limitation any general, special,
+ incidental or consequential damages arising in connection to this
+ license. Notwithstanding the foregoing two (2) sentences, if Creative
+ Commons has expressly identified itself as the Licensor hereunder, it
+ shall have all rights and obligations of Licensor.
+
+ Except for the limited purpose of indicating to the public that the
+ Work is licensed under the CCPL, Creative Commons does not authorize
+ the use by either party of the trademark "Creative Commons" or any
+ related trademark or logo of Creative Commons without the prior
+ written consent of Creative Commons. Any permitted use will be in
+ compliance with Creative Commons' then-current trademark usage
+ guidelines, as may be published on its website or otherwise made
+ available upon request from time to time. For the avoidance of doubt,
+ this trademark restriction does not form part of this License.
+
+ Creative Commons may be contacted at https://creativecommons.org/.
+
+===============================================================================
+
+The Go Programming Language
+https://golang.org/LICENSE
+
+Copyright (c) 2009 The Go Authors. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+ * Neither the name of Google Inc. nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+===============================================================================
+
+The Rust Programming Language
+https://github.com/rust-lang/rust/blob/master/LICENSE-MIT
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
+
+===============================================================================
+
+The Rust Programming Language
+https://github.com/rust-lang/rust/blob/master/LICENSE-APACHE
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/third_party/rust/crossbeam-channel/README.md b/third_party/rust/crossbeam-channel/README.md
new file mode 100644
index 0000000000..4c42d863c8
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/README.md
@@ -0,0 +1,84 @@
+# Crossbeam Channel
+
+[![Build Status](https://github.com/crossbeam-rs/crossbeam/workflows/CI/badge.svg)](
+https://github.com/crossbeam-rs/crossbeam/actions)
+[![License](https://img.shields.io/badge/license-MIT_OR_Apache--2.0-blue.svg)](
+https://github.com/crossbeam-rs/crossbeam/tree/master/crossbeam-channel#license)
+[![Cargo](https://img.shields.io/crates/v/crossbeam-channel.svg)](
+https://crates.io/crates/crossbeam-channel)
+[![Documentation](https://docs.rs/crossbeam-channel/badge.svg)](
+https://docs.rs/crossbeam-channel)
+[![Rust 1.38+](https://img.shields.io/badge/rust-1.38+-lightgray.svg)](
+https://www.rust-lang.org)
+[![chat](https://img.shields.io/discord/569610676205781012.svg?logo=discord)](https://discord.com/invite/JXYwgWZ)
+
+This crate provides multi-producer multi-consumer channels for message passing.
+It is an alternative to [`std::sync::mpsc`] with more features and better performance.
+
+Some highlights:
+
+* [`Sender`]s and [`Receiver`]s can be cloned and shared among threads.
+* Two main kinds of channels are [`bounded`] and [`unbounded`].
+* Convenient extra channels like [`after`], [`never`], and [`tick`].
+* The [`select!`] macro can block on multiple channel operations.
+* [`Select`] can select over a dynamically built list of channel operations.
+* Channels use locks very sparingly for maximum [performance](benchmarks).
+
+[`std::sync::mpsc`]: https://doc.rust-lang.org/std/sync/mpsc/index.html
+[`Sender`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/struct.Sender.html
+[`Receiver`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/struct.Receiver.html
+[`bounded`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/fn.bounded.html
+[`unbounded`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/fn.unbounded.html
+[`after`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/fn.after.html
+[`never`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/fn.never.html
+[`tick`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/fn.tick.html
+[`select!`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/macro.select.html
+[`Select`]: https://docs.rs/crossbeam-channel/*/crossbeam_channel/struct.Select.html
+
+## Usage
+
+Add this to your `Cargo.toml`:
+
+```toml
+[dependencies]
+crossbeam-channel = "0.5"
+```
+
+## Compatibility
+
+Crossbeam Channel supports stable Rust releases going back at least six months,
+and every time the minimum supported Rust version is increased, a new minor
+version is released. Currently, the minimum supported Rust version is 1.38.
+
+## License
+
+Licensed under either of
+
+ * Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
+ * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
+
+at your option.
+
+#### Contribution
+
+Unless you explicitly state otherwise, any contribution intentionally submitted
+for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
+dual licensed as above, without any additional terms or conditions.
+
+#### Third party software
+
+This product includes copies and modifications of software developed by third parties:
+
+* [examples/matching.rs](examples/matching.rs) includes
+ [matching.go](http://www.nada.kth.se/~snilsson/concurrency/src/matching.go) by Stefan Nilsson,
+ licensed under Creative Commons Attribution 3.0 Unported License.
+
+* [tests/mpsc.rs](tests/mpsc.rs) includes modifications of code from The Rust Programming Language,
+ licensed under the MIT License and the Apache License, Version 2.0.
+
+* [tests/golang.rs](tests/golang.rs) is based on code from The Go Programming Language, licensed
+ under the 3-Clause BSD License.
+
+See the source code files for more details.
+
+Copies of third party licenses can be found in [LICENSE-THIRD-PARTY](LICENSE-THIRD-PARTY).
diff --git a/third_party/rust/crossbeam-channel/benches/crossbeam.rs b/third_party/rust/crossbeam-channel/benches/crossbeam.rs
new file mode 100644
index 0000000000..1c05222947
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/benches/crossbeam.rs
@@ -0,0 +1,712 @@
+#![feature(test)]
+
+extern crate test;
+
+use crossbeam_channel::{bounded, unbounded};
+use crossbeam_utils::thread::scope;
+use test::Bencher;
+
+const TOTAL_STEPS: usize = 40_000;
+
+mod unbounded {
+ use super::*;
+
+ #[bench]
+ fn create(b: &mut Bencher) {
+ b.iter(unbounded::<i32>);
+ }
+
+ #[bench]
+ fn oneshot(b: &mut Bencher) {
+ b.iter(|| {
+ let (s, r) = unbounded::<i32>();
+ s.send(0).unwrap();
+ r.recv().unwrap();
+ });
+ }
+
+ #[bench]
+ fn inout(b: &mut Bencher) {
+ let (s, r) = unbounded::<i32>();
+ b.iter(|| {
+ s.send(0).unwrap();
+ r.recv().unwrap();
+ });
+ }
+
+ #[bench]
+ fn par_inout(b: &mut Bencher) {
+ let threads = num_cpus::get();
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = unbounded::<i32>();
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn spsc(b: &mut Bencher) {
+ let steps = TOTAL_STEPS;
+ let (s, r) = unbounded::<i32>();
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+
+ b.iter(|| {
+ s1.send(()).unwrap();
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ r2.recv().unwrap();
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn spmc(b: &mut Bencher) {
+ let threads = num_cpus::get() - 1;
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = unbounded::<i32>();
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for i in 0..steps * threads {
+ s.send(i as i32).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn mpsc(b: &mut Bencher) {
+ let threads = num_cpus::get() - 1;
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = unbounded::<i32>();
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..steps * threads {
+ r.recv().unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn mpmc(b: &mut Bencher) {
+ let threads = num_cpus::get();
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = unbounded::<i32>();
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads / 2 {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+ for _ in 0..threads / 2 {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+}
+
+mod bounded_n {
+ use super::*;
+
+ #[bench]
+ fn spsc(b: &mut Bencher) {
+ let steps = TOTAL_STEPS;
+ let (s, r) = bounded::<i32>(steps);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+
+ b.iter(|| {
+ s1.send(()).unwrap();
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ r2.recv().unwrap();
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn spmc(b: &mut Bencher) {
+ let threads = num_cpus::get() - 1;
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(steps * threads);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for i in 0..steps * threads {
+ s.send(i as i32).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn mpsc(b: &mut Bencher) {
+ let threads = num_cpus::get() - 1;
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(steps * threads);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..steps * threads {
+ r.recv().unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn par_inout(b: &mut Bencher) {
+ let threads = num_cpus::get();
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(threads);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn mpmc(b: &mut Bencher) {
+ let threads = num_cpus::get();
+ assert_eq!(threads % 2, 0);
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(steps * threads);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads / 2 {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+ for _ in 0..threads / 2 {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+}
+
+mod bounded_1 {
+ use super::*;
+
+ #[bench]
+ fn create(b: &mut Bencher) {
+ b.iter(|| bounded::<i32>(1));
+ }
+
+ #[bench]
+ fn oneshot(b: &mut Bencher) {
+ b.iter(|| {
+ let (s, r) = bounded::<i32>(1);
+ s.send(0).unwrap();
+ r.recv().unwrap();
+ });
+ }
+
+ #[bench]
+ fn spsc(b: &mut Bencher) {
+ let steps = TOTAL_STEPS;
+ let (s, r) = bounded::<i32>(1);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+
+ b.iter(|| {
+ s1.send(()).unwrap();
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ r2.recv().unwrap();
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn spmc(b: &mut Bencher) {
+ let threads = num_cpus::get() - 1;
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(1);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for i in 0..steps * threads {
+ s.send(i as i32).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn mpsc(b: &mut Bencher) {
+ let threads = num_cpus::get() - 1;
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(1);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..steps * threads {
+ r.recv().unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn mpmc(b: &mut Bencher) {
+ let threads = num_cpus::get();
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(1);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads / 2 {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+ for _ in 0..threads / 2 {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+}
+
+mod bounded_0 {
+ use super::*;
+
+ #[bench]
+ fn create(b: &mut Bencher) {
+ b.iter(|| bounded::<i32>(0));
+ }
+
+ #[bench]
+ fn spsc(b: &mut Bencher) {
+ let steps = TOTAL_STEPS;
+ let (s, r) = bounded::<i32>(0);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+
+ b.iter(|| {
+ s1.send(()).unwrap();
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ r2.recv().unwrap();
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn spmc(b: &mut Bencher) {
+ let threads = num_cpus::get() - 1;
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(0);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for i in 0..steps * threads {
+ s.send(i as i32).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn mpsc(b: &mut Bencher) {
+ let threads = num_cpus::get() - 1;
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(0);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..steps * threads {
+ r.recv().unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+
+ #[bench]
+ fn mpmc(b: &mut Bencher) {
+ let threads = num_cpus::get();
+ let steps = TOTAL_STEPS / threads;
+ let (s, r) = bounded::<i32>(0);
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ scope(|scope| {
+ for _ in 0..threads / 2 {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for i in 0..steps {
+ s.send(i as i32).unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+ for _ in 0..threads / 2 {
+ scope.spawn(|_| {
+ while r1.recv().is_ok() {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ s2.send(()).unwrap();
+ }
+ });
+ }
+
+ b.iter(|| {
+ for _ in 0..threads {
+ s1.send(()).unwrap();
+ }
+ for _ in 0..threads {
+ r2.recv().unwrap();
+ }
+ });
+ drop(s1);
+ })
+ .unwrap();
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/examples/fibonacci.rs b/third_party/rust/crossbeam-channel/examples/fibonacci.rs
new file mode 100644
index 0000000000..e6f5e89c04
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/examples/fibonacci.rs
@@ -0,0 +1,25 @@
+//! An asynchronous fibonacci sequence generator.
+
+use std::thread;
+
+use crossbeam_channel::{bounded, Sender};
+
+// Sends the Fibonacci sequence into the channel until it becomes disconnected.
+fn fibonacci(sender: Sender<u64>) {
+ let (mut x, mut y) = (0, 1);
+ while sender.send(x).is_ok() {
+ let tmp = x;
+ x = y;
+ y += tmp;
+ }
+}
+
+fn main() {
+ let (s, r) = bounded(0);
+ thread::spawn(|| fibonacci(s));
+
+ // Print the first 20 Fibonacci numbers.
+ for num in r.iter().take(20) {
+ println!("{}", num);
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/examples/matching.rs b/third_party/rust/crossbeam-channel/examples/matching.rs
new file mode 100644
index 0000000000..5421169b9d
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/examples/matching.rs
@@ -0,0 +1,72 @@
+//! Using `select!` to send and receive on the same channel at the same time.
+//!
+//! This example is based on the following program in Go.
+//!
+//! Source:
+//! - https://web.archive.org/web/20171209034309/https://www.nada.kth.se/~snilsson/concurrency
+//! - http://www.nada.kth.se/~snilsson/concurrency/src/matching.go
+//!
+//! Copyright & License:
+//! - Stefan Nilsson
+//! - Creative Commons Attribution 3.0 Unported License
+//! - https://creativecommons.org/licenses/by/3.0/
+//!
+//! ```go
+//! func main() {
+//! people := []string{"Anna", "Bob", "Cody", "Dave", "Eva"}
+//! match := make(chan string, 1) // Make room for one unmatched send.
+//! wg := new(sync.WaitGroup)
+//! for _, name := range people {
+//! wg.Add(1)
+//! go Seek(name, match, wg)
+//! }
+//! wg.Wait()
+//! select {
+//! case name := <-match:
+//! fmt.Printf("No one received %s’s message.\n", name)
+//! default:
+//! // There was no pending send operation.
+//! }
+//! }
+//!
+//! // Seek either sends or receives, whichever possible, a name on the match
+//! // channel and notifies the wait group when done.
+//! func Seek(name string, match chan string, wg *sync.WaitGroup) {
+//! select {
+//! case peer := <-match:
+//! fmt.Printf("%s received a message from %s.\n", name, peer)
+//! case match <- name:
+//! // Wait for someone to receive my message.
+//! }
+//! wg.Done()
+//! }
+//! ```
+
+use crossbeam_channel::{bounded, select};
+use crossbeam_utils::thread;
+
+fn main() {
+ let people = vec!["Anna", "Bob", "Cody", "Dave", "Eva"];
+ let (s, r) = bounded(1); // Make room for one unmatched send.
+
+ // Either send my name into the channel or receive someone else's, whatever happens first.
+ let seek = |name, s, r| {
+ select! {
+ recv(r) -> peer => println!("{} received a message from {}.", name, peer.unwrap()),
+ send(s, name) -> _ => {}, // Wait for someone to receive my message.
+ }
+ };
+
+ thread::scope(|scope| {
+ for name in people {
+ let (s, r) = (s.clone(), r.clone());
+ scope.spawn(move |_| seek(name, s, r));
+ }
+ })
+ .unwrap();
+
+ // Check if there is a pending send operation.
+ if let Ok(name) = r.try_recv() {
+ println!("No one received {}’s message.", name);
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/examples/stopwatch.rs b/third_party/rust/crossbeam-channel/examples/stopwatch.rs
new file mode 100644
index 0000000000..3a7578e00d
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/examples/stopwatch.rs
@@ -0,0 +1,56 @@
+//! Prints the elapsed time every 1 second and quits on Ctrl+C.
+
+#[cfg(windows)] // signal_hook::iterator does not work on windows
+fn main() {
+ println!("This example does not work on Windows");
+}
+
+#[cfg(not(windows))]
+fn main() {
+ use std::io;
+ use std::thread;
+ use std::time::{Duration, Instant};
+
+ use crossbeam_channel::{bounded, select, tick, Receiver};
+ use signal_hook::consts::SIGINT;
+ use signal_hook::iterator::Signals;
+
+ // Creates a channel that gets a message every time `SIGINT` is signalled.
+ fn sigint_notifier() -> io::Result<Receiver<()>> {
+ let (s, r) = bounded(100);
+ let mut signals = Signals::new(&[SIGINT])?;
+
+ thread::spawn(move || {
+ for _ in signals.forever() {
+ if s.send(()).is_err() {
+ break;
+ }
+ }
+ });
+
+ Ok(r)
+ }
+
+ // Prints the elapsed time.
+ fn show(dur: Duration) {
+ println!("Elapsed: {}.{:03} sec", dur.as_secs(), dur.subsec_millis());
+ }
+
+ let start = Instant::now();
+ let update = tick(Duration::from_secs(1));
+ let ctrl_c = sigint_notifier().unwrap();
+
+ loop {
+ select! {
+ recv(update) -> _ => {
+ show(start.elapsed());
+ }
+ recv(ctrl_c) -> _ => {
+ println!();
+ println!("Goodbye!");
+ show(start.elapsed());
+ break;
+ }
+ }
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/channel.rs b/third_party/rust/crossbeam-channel/src/channel.rs
new file mode 100644
index 0000000000..800fe63527
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/channel.rs
@@ -0,0 +1,1511 @@
+//! The channel interface.
+
+use std::fmt;
+use std::iter::FusedIterator;
+use std::mem;
+use std::panic::{RefUnwindSafe, UnwindSafe};
+use std::sync::Arc;
+use std::time::{Duration, Instant};
+
+use crate::context::Context;
+use crate::counter;
+use crate::err::{
+ RecvError, RecvTimeoutError, SendError, SendTimeoutError, TryRecvError, TrySendError,
+};
+use crate::flavors;
+use crate::select::{Operation, SelectHandle, Token};
+use crate::utils;
+
+/// Creates a channel of unbounded capacity.
+///
+/// This channel has a growable buffer that can hold any number of messages at a time.
+///
+/// # Examples
+///
+/// ```
+/// use std::thread;
+/// use crossbeam_channel::unbounded;
+///
+/// let (s, r) = unbounded();
+///
+/// // Computes the n-th Fibonacci number.
+/// fn fib(n: i32) -> i32 {
+/// if n <= 1 {
+/// n
+/// } else {
+/// fib(n - 1) + fib(n - 2)
+/// }
+/// }
+///
+/// // Spawn an asynchronous computation.
+/// thread::spawn(move || s.send(fib(20)).unwrap());
+///
+/// // Print the result of the computation.
+/// println!("{}", r.recv().unwrap());
+/// ```
+pub fn unbounded<T>() -> (Sender<T>, Receiver<T>) {
+ let (s, r) = counter::new(flavors::list::Channel::new());
+ let s = Sender {
+ flavor: SenderFlavor::List(s),
+ };
+ let r = Receiver {
+ flavor: ReceiverFlavor::List(r),
+ };
+ (s, r)
+}
+
+/// Creates a channel of bounded capacity.
+///
+/// This channel has a buffer that can hold at most `cap` messages at a time.
+///
+/// A special case is zero-capacity channel, which cannot hold any messages. Instead, send and
+/// receive operations must appear at the same time in order to pair up and pass the message over.
+///
+/// # Examples
+///
+/// A channel of capacity 1:
+///
+/// ```
+/// use std::thread;
+/// use std::time::Duration;
+/// use crossbeam_channel::bounded;
+///
+/// let (s, r) = bounded(1);
+///
+/// // This call returns immediately because there is enough space in the channel.
+/// s.send(1).unwrap();
+///
+/// thread::spawn(move || {
+/// // This call blocks the current thread because the channel is full.
+/// // It will be able to complete only after the first message is received.
+/// s.send(2).unwrap();
+/// });
+///
+/// thread::sleep(Duration::from_secs(1));
+/// assert_eq!(r.recv(), Ok(1));
+/// assert_eq!(r.recv(), Ok(2));
+/// ```
+///
+/// A zero-capacity channel:
+///
+/// ```
+/// use std::thread;
+/// use std::time::Duration;
+/// use crossbeam_channel::bounded;
+///
+/// let (s, r) = bounded(0);
+///
+/// thread::spawn(move || {
+/// // This call blocks the current thread until a receive operation appears
+/// // on the other side of the channel.
+/// s.send(1).unwrap();
+/// });
+///
+/// thread::sleep(Duration::from_secs(1));
+/// assert_eq!(r.recv(), Ok(1));
+/// ```
+pub fn bounded<T>(cap: usize) -> (Sender<T>, Receiver<T>) {
+ if cap == 0 {
+ let (s, r) = counter::new(flavors::zero::Channel::new());
+ let s = Sender {
+ flavor: SenderFlavor::Zero(s),
+ };
+ let r = Receiver {
+ flavor: ReceiverFlavor::Zero(r),
+ };
+ (s, r)
+ } else {
+ let (s, r) = counter::new(flavors::array::Channel::with_capacity(cap));
+ let s = Sender {
+ flavor: SenderFlavor::Array(s),
+ };
+ let r = Receiver {
+ flavor: ReceiverFlavor::Array(r),
+ };
+ (s, r)
+ }
+}
+
+/// Creates a receiver that delivers a message after a certain duration of time.
+///
+/// The channel is bounded with capacity of 1 and never gets disconnected. Exactly one message will
+/// be sent into the channel after `duration` elapses. The message is the instant at which it is
+/// sent.
+///
+/// # Examples
+///
+/// Using an `after` channel for timeouts:
+///
+/// ```
+/// use std::time::Duration;
+/// use crossbeam_channel::{after, select, unbounded};
+///
+/// let (s, r) = unbounded::<i32>();
+/// let timeout = Duration::from_millis(100);
+///
+/// select! {
+/// recv(r) -> msg => println!("received {:?}", msg),
+/// recv(after(timeout)) -> _ => println!("timed out"),
+/// }
+/// ```
+///
+/// When the message gets sent:
+///
+/// ```
+/// use std::thread;
+/// use std::time::{Duration, Instant};
+/// use crossbeam_channel::after;
+///
+/// // Converts a number of milliseconds into a `Duration`.
+/// let ms = |ms| Duration::from_millis(ms);
+///
+/// // Returns `true` if `a` and `b` are very close `Instant`s.
+/// let eq = |a, b| a + ms(50) > b && b + ms(50) > a;
+///
+/// let start = Instant::now();
+/// let r = after(ms(100));
+///
+/// thread::sleep(ms(500));
+///
+/// // This message was sent 100 ms from the start and received 500 ms from the start.
+/// assert!(eq(r.recv().unwrap(), start + ms(100)));
+/// assert!(eq(Instant::now(), start + ms(500)));
+/// ```
+pub fn after(duration: Duration) -> Receiver<Instant> {
+ Receiver {
+ flavor: ReceiverFlavor::At(Arc::new(flavors::at::Channel::new_timeout(duration))),
+ }
+}
+
+/// Creates a receiver that delivers a message at a certain instant in time.
+///
+/// The channel is bounded with capacity of 1 and never gets disconnected. Exactly one message will
+/// be sent into the channel at the moment in time `when`. The message is the instant at which it
+/// is sent, which is the same as `when`. If `when` is in the past, the message will be delivered
+/// instantly to the receiver.
+///
+/// # Examples
+///
+/// Using an `at` channel for timeouts:
+///
+/// ```
+/// use std::time::{Instant, Duration};
+/// use crossbeam_channel::{at, select, unbounded};
+///
+/// let (s, r) = unbounded::<i32>();
+/// let deadline = Instant::now() + Duration::from_millis(500);
+///
+/// select! {
+/// recv(r) -> msg => println!("received {:?}", msg),
+/// recv(at(deadline)) -> _ => println!("timed out"),
+/// }
+/// ```
+///
+/// When the message gets sent:
+///
+/// ```
+/// use std::time::{Duration, Instant};
+/// use crossbeam_channel::at;
+///
+/// // Converts a number of milliseconds into a `Duration`.
+/// let ms = |ms| Duration::from_millis(ms);
+///
+/// let start = Instant::now();
+/// let end = start + ms(100);
+///
+/// let r = at(end);
+///
+/// // This message was sent 100 ms from the start
+/// assert_eq!(r.recv().unwrap(), end);
+/// assert!(Instant::now() > start + ms(100));
+/// ```
+pub fn at(when: Instant) -> Receiver<Instant> {
+ Receiver {
+ flavor: ReceiverFlavor::At(Arc::new(flavors::at::Channel::new_deadline(when))),
+ }
+}
+
+/// Creates a receiver that never delivers messages.
+///
+/// The channel is bounded with capacity of 0 and never gets disconnected.
+///
+/// # Examples
+///
+/// Using a `never` channel to optionally add a timeout to [`select!`]:
+///
+/// [`select!`]: crate::select!
+///
+/// ```
+/// use std::thread;
+/// use std::time::Duration;
+/// use crossbeam_channel::{after, select, never, unbounded};
+///
+/// let (s, r) = unbounded();
+///
+/// thread::spawn(move || {
+/// thread::sleep(Duration::from_secs(1));
+/// s.send(1).unwrap();
+/// });
+///
+/// // Suppose this duration can be a `Some` or a `None`.
+/// let duration = Some(Duration::from_millis(100));
+///
+/// // Create a channel that times out after the specified duration.
+/// let timeout = duration
+/// .map(|d| after(d))
+/// .unwrap_or(never());
+///
+/// select! {
+/// recv(r) -> msg => assert_eq!(msg, Ok(1)),
+/// recv(timeout) -> _ => println!("timed out"),
+/// }
+/// ```
+pub fn never<T>() -> Receiver<T> {
+ Receiver {
+ flavor: ReceiverFlavor::Never(flavors::never::Channel::new()),
+ }
+}
+
+/// Creates a receiver that delivers messages periodically.
+///
+/// The channel is bounded with capacity of 1 and never gets disconnected. Messages will be
+/// sent into the channel in intervals of `duration`. Each message is the instant at which it is
+/// sent.
+///
+/// # Examples
+///
+/// Using a `tick` channel to periodically print elapsed time:
+///
+/// ```
+/// use std::time::{Duration, Instant};
+/// use crossbeam_channel::tick;
+///
+/// let start = Instant::now();
+/// let ticker = tick(Duration::from_millis(100));
+///
+/// for _ in 0..5 {
+/// ticker.recv().unwrap();
+/// println!("elapsed: {:?}", start.elapsed());
+/// }
+/// ```
+///
+/// When messages get sent:
+///
+/// ```
+/// use std::thread;
+/// use std::time::{Duration, Instant};
+/// use crossbeam_channel::tick;
+///
+/// // Converts a number of milliseconds into a `Duration`.
+/// let ms = |ms| Duration::from_millis(ms);
+///
+/// // Returns `true` if `a` and `b` are very close `Instant`s.
+/// let eq = |a, b| a + ms(65) > b && b + ms(65) > a;
+///
+/// let start = Instant::now();
+/// let r = tick(ms(100));
+///
+/// // This message was sent 100 ms from the start and received 100 ms from the start.
+/// assert!(eq(r.recv().unwrap(), start + ms(100)));
+/// assert!(eq(Instant::now(), start + ms(100)));
+///
+/// thread::sleep(ms(500));
+///
+/// // This message was sent 200 ms from the start and received 600 ms from the start.
+/// assert!(eq(r.recv().unwrap(), start + ms(200)));
+/// assert!(eq(Instant::now(), start + ms(600)));
+///
+/// // This message was sent 700 ms from the start and received 700 ms from the start.
+/// assert!(eq(r.recv().unwrap(), start + ms(700)));
+/// assert!(eq(Instant::now(), start + ms(700)));
+/// ```
+pub fn tick(duration: Duration) -> Receiver<Instant> {
+ Receiver {
+ flavor: ReceiverFlavor::Tick(Arc::new(flavors::tick::Channel::new(duration))),
+ }
+}
+
+/// The sending side of a channel.
+///
+/// # Examples
+///
+/// ```
+/// use std::thread;
+/// use crossbeam_channel::unbounded;
+///
+/// let (s1, r) = unbounded();
+/// let s2 = s1.clone();
+///
+/// thread::spawn(move || s1.send(1).unwrap());
+/// thread::spawn(move || s2.send(2).unwrap());
+///
+/// let msg1 = r.recv().unwrap();
+/// let msg2 = r.recv().unwrap();
+///
+/// assert_eq!(msg1 + msg2, 3);
+/// ```
+pub struct Sender<T> {
+ flavor: SenderFlavor<T>,
+}
+
+/// Sender flavors.
+enum SenderFlavor<T> {
+ /// Bounded channel based on a preallocated array.
+ Array(counter::Sender<flavors::array::Channel<T>>),
+
+ /// Unbounded channel implemented as a linked list.
+ List(counter::Sender<flavors::list::Channel<T>>),
+
+ /// Zero-capacity channel.
+ Zero(counter::Sender<flavors::zero::Channel<T>>),
+}
+
+unsafe impl<T: Send> Send for Sender<T> {}
+unsafe impl<T: Send> Sync for Sender<T> {}
+
+impl<T> UnwindSafe for Sender<T> {}
+impl<T> RefUnwindSafe for Sender<T> {}
+
+impl<T> Sender<T> {
+ /// Attempts to send a message into the channel without blocking.
+ ///
+ /// This method will either send a message into the channel immediately or return an error if
+ /// the channel is full or disconnected. The returned error contains the original message.
+ ///
+ /// If called on a zero-capacity channel, this method will send the message only if there
+ /// happens to be a receive operation on the other side of the channel at the same time.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{bounded, TrySendError};
+ ///
+ /// let (s, r) = bounded(1);
+ ///
+ /// assert_eq!(s.try_send(1), Ok(()));
+ /// assert_eq!(s.try_send(2), Err(TrySendError::Full(2)));
+ ///
+ /// drop(r);
+ /// assert_eq!(s.try_send(3), Err(TrySendError::Disconnected(3)));
+ /// ```
+ pub fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.try_send(msg),
+ SenderFlavor::List(chan) => chan.try_send(msg),
+ SenderFlavor::Zero(chan) => chan.try_send(msg),
+ }
+ }
+
+ /// Blocks the current thread until a message is sent or the channel is disconnected.
+ ///
+ /// If the channel is full and not disconnected, this call will block until the send operation
+ /// can proceed. If the channel becomes disconnected, this call will wake up and return an
+ /// error. The returned error contains the original message.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a receive operation to
+ /// appear on the other side of the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::{bounded, SendError};
+ ///
+ /// let (s, r) = bounded(1);
+ /// assert_eq!(s.send(1), Ok(()));
+ ///
+ /// thread::spawn(move || {
+ /// assert_eq!(r.recv(), Ok(1));
+ /// thread::sleep(Duration::from_secs(1));
+ /// drop(r);
+ /// });
+ ///
+ /// assert_eq!(s.send(2), Ok(()));
+ /// assert_eq!(s.send(3), Err(SendError(3)));
+ /// ```
+ pub fn send(&self, msg: T) -> Result<(), SendError<T>> {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.send(msg, None),
+ SenderFlavor::List(chan) => chan.send(msg, None),
+ SenderFlavor::Zero(chan) => chan.send(msg, None),
+ }
+ .map_err(|err| match err {
+ SendTimeoutError::Disconnected(msg) => SendError(msg),
+ SendTimeoutError::Timeout(_) => unreachable!(),
+ })
+ }
+
+ /// Waits for a message to be sent into the channel, but only for a limited time.
+ ///
+ /// If the channel is full and not disconnected, this call will block until the send operation
+ /// can proceed or the operation times out. If the channel becomes disconnected, this call will
+ /// wake up and return an error. The returned error contains the original message.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a receive operation to
+ /// appear on the other side of the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::{bounded, SendTimeoutError};
+ ///
+ /// let (s, r) = bounded(0);
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// assert_eq!(r.recv(), Ok(2));
+ /// drop(r);
+ /// });
+ ///
+ /// assert_eq!(
+ /// s.send_timeout(1, Duration::from_millis(500)),
+ /// Err(SendTimeoutError::Timeout(1)),
+ /// );
+ /// assert_eq!(
+ /// s.send_timeout(2, Duration::from_secs(1)),
+ /// Ok(()),
+ /// );
+ /// assert_eq!(
+ /// s.send_timeout(3, Duration::from_millis(500)),
+ /// Err(SendTimeoutError::Disconnected(3)),
+ /// );
+ /// ```
+ pub fn send_timeout(&self, msg: T, timeout: Duration) -> Result<(), SendTimeoutError<T>> {
+ self.send_deadline(msg, utils::convert_timeout_to_deadline(timeout))
+ }
+
+ /// Waits for a message to be sent into the channel, but only until a given deadline.
+ ///
+ /// If the channel is full and not disconnected, this call will block until the send operation
+ /// can proceed or the operation times out. If the channel becomes disconnected, this call will
+ /// wake up and return an error. The returned error contains the original message.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a receive operation to
+ /// appear on the other side of the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::{Duration, Instant};
+ /// use crossbeam_channel::{bounded, SendTimeoutError};
+ ///
+ /// let (s, r) = bounded(0);
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// assert_eq!(r.recv(), Ok(2));
+ /// drop(r);
+ /// });
+ ///
+ /// let now = Instant::now();
+ ///
+ /// assert_eq!(
+ /// s.send_deadline(1, now + Duration::from_millis(500)),
+ /// Err(SendTimeoutError::Timeout(1)),
+ /// );
+ /// assert_eq!(
+ /// s.send_deadline(2, now + Duration::from_millis(1500)),
+ /// Ok(()),
+ /// );
+ /// assert_eq!(
+ /// s.send_deadline(3, now + Duration::from_millis(2000)),
+ /// Err(SendTimeoutError::Disconnected(3)),
+ /// );
+ /// ```
+ pub fn send_deadline(&self, msg: T, deadline: Instant) -> Result<(), SendTimeoutError<T>> {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.send(msg, Some(deadline)),
+ SenderFlavor::List(chan) => chan.send(msg, Some(deadline)),
+ SenderFlavor::Zero(chan) => chan.send(msg, Some(deadline)),
+ }
+ }
+
+ /// Returns `true` if the channel is empty.
+ ///
+ /// Note: Zero-capacity channels are always empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, r) = unbounded();
+ /// assert!(s.is_empty());
+ ///
+ /// s.send(0).unwrap();
+ /// assert!(!s.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.is_empty(),
+ SenderFlavor::List(chan) => chan.is_empty(),
+ SenderFlavor::Zero(chan) => chan.is_empty(),
+ }
+ }
+
+ /// Returns `true` if the channel is full.
+ ///
+ /// Note: Zero-capacity channels are always full.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::bounded;
+ ///
+ /// let (s, r) = bounded(1);
+ ///
+ /// assert!(!s.is_full());
+ /// s.send(0).unwrap();
+ /// assert!(s.is_full());
+ /// ```
+ pub fn is_full(&self) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.is_full(),
+ SenderFlavor::List(chan) => chan.is_full(),
+ SenderFlavor::Zero(chan) => chan.is_full(),
+ }
+ }
+
+ /// Returns the number of messages in the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, r) = unbounded();
+ /// assert_eq!(s.len(), 0);
+ ///
+ /// s.send(1).unwrap();
+ /// s.send(2).unwrap();
+ /// assert_eq!(s.len(), 2);
+ /// ```
+ pub fn len(&self) -> usize {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.len(),
+ SenderFlavor::List(chan) => chan.len(),
+ SenderFlavor::Zero(chan) => chan.len(),
+ }
+ }
+
+ /// If the channel is bounded, returns its capacity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{bounded, unbounded};
+ ///
+ /// let (s, _) = unbounded::<i32>();
+ /// assert_eq!(s.capacity(), None);
+ ///
+ /// let (s, _) = bounded::<i32>(5);
+ /// assert_eq!(s.capacity(), Some(5));
+ ///
+ /// let (s, _) = bounded::<i32>(0);
+ /// assert_eq!(s.capacity(), Some(0));
+ /// ```
+ pub fn capacity(&self) -> Option<usize> {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.capacity(),
+ SenderFlavor::List(chan) => chan.capacity(),
+ SenderFlavor::Zero(chan) => chan.capacity(),
+ }
+ }
+
+ /// Returns `true` if senders belong to the same channel.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, _) = unbounded::<usize>();
+ ///
+ /// let s2 = s.clone();
+ /// assert!(s.same_channel(&s2));
+ ///
+ /// let (s3, _) = unbounded();
+ /// assert!(!s.same_channel(&s3));
+ /// ```
+ pub fn same_channel(&self, other: &Sender<T>) -> bool {
+ match (&self.flavor, &other.flavor) {
+ (SenderFlavor::Array(ref a), SenderFlavor::Array(ref b)) => a == b,
+ (SenderFlavor::List(ref a), SenderFlavor::List(ref b)) => a == b,
+ (SenderFlavor::Zero(ref a), SenderFlavor::Zero(ref b)) => a == b,
+ _ => false,
+ }
+ }
+}
+
+impl<T> Drop for Sender<T> {
+ fn drop(&mut self) {
+ unsafe {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.release(|c| c.disconnect()),
+ SenderFlavor::List(chan) => chan.release(|c| c.disconnect_senders()),
+ SenderFlavor::Zero(chan) => chan.release(|c| c.disconnect()),
+ }
+ }
+ }
+}
+
+impl<T> Clone for Sender<T> {
+ fn clone(&self) -> Self {
+ let flavor = match &self.flavor {
+ SenderFlavor::Array(chan) => SenderFlavor::Array(chan.acquire()),
+ SenderFlavor::List(chan) => SenderFlavor::List(chan.acquire()),
+ SenderFlavor::Zero(chan) => SenderFlavor::Zero(chan.acquire()),
+ };
+
+ Sender { flavor }
+ }
+}
+
+impl<T> fmt::Debug for Sender<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Sender { .. }")
+ }
+}
+
+/// The receiving side of a channel.
+///
+/// # Examples
+///
+/// ```
+/// use std::thread;
+/// use std::time::Duration;
+/// use crossbeam_channel::unbounded;
+///
+/// let (s, r) = unbounded();
+///
+/// thread::spawn(move || {
+/// let _ = s.send(1);
+/// thread::sleep(Duration::from_secs(1));
+/// let _ = s.send(2);
+/// });
+///
+/// assert_eq!(r.recv(), Ok(1)); // Received immediately.
+/// assert_eq!(r.recv(), Ok(2)); // Received after 1 second.
+/// ```
+pub struct Receiver<T> {
+ flavor: ReceiverFlavor<T>,
+}
+
+/// Receiver flavors.
+enum ReceiverFlavor<T> {
+ /// Bounded channel based on a preallocated array.
+ Array(counter::Receiver<flavors::array::Channel<T>>),
+
+ /// Unbounded channel implemented as a linked list.
+ List(counter::Receiver<flavors::list::Channel<T>>),
+
+ /// Zero-capacity channel.
+ Zero(counter::Receiver<flavors::zero::Channel<T>>),
+
+ /// The after flavor.
+ At(Arc<flavors::at::Channel>),
+
+ /// The tick flavor.
+ Tick(Arc<flavors::tick::Channel>),
+
+ /// The never flavor.
+ Never(flavors::never::Channel<T>),
+}
+
+unsafe impl<T: Send> Send for Receiver<T> {}
+unsafe impl<T: Send> Sync for Receiver<T> {}
+
+impl<T> UnwindSafe for Receiver<T> {}
+impl<T> RefUnwindSafe for Receiver<T> {}
+
+impl<T> Receiver<T> {
+ /// Attempts to receive a message from the channel without blocking.
+ ///
+ /// This method will either receive a message from the channel immediately or return an error
+ /// if the channel is empty.
+ ///
+ /// If called on a zero-capacity channel, this method will receive a message only if there
+ /// happens to be a send operation on the other side of the channel at the same time.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{unbounded, TryRecvError};
+ ///
+ /// let (s, r) = unbounded();
+ /// assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ ///
+ /// s.send(5).unwrap();
+ /// drop(s);
+ ///
+ /// assert_eq!(r.try_recv(), Ok(5));
+ /// assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
+ /// ```
+ pub fn try_recv(&self) -> Result<T, TryRecvError> {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.try_recv(),
+ ReceiverFlavor::List(chan) => chan.try_recv(),
+ ReceiverFlavor::Zero(chan) => chan.try_recv(),
+ ReceiverFlavor::At(chan) => {
+ let msg = chan.try_recv();
+ unsafe {
+ mem::transmute_copy::<Result<Instant, TryRecvError>, Result<T, TryRecvError>>(
+ &msg,
+ )
+ }
+ }
+ ReceiverFlavor::Tick(chan) => {
+ let msg = chan.try_recv();
+ unsafe {
+ mem::transmute_copy::<Result<Instant, TryRecvError>, Result<T, TryRecvError>>(
+ &msg,
+ )
+ }
+ }
+ ReceiverFlavor::Never(chan) => chan.try_recv(),
+ }
+ }
+
+ /// Blocks the current thread until a message is received or the channel is empty and
+ /// disconnected.
+ ///
+ /// If the channel is empty and not disconnected, this call will block until the receive
+ /// operation can proceed. If the channel is empty and becomes disconnected, this call will
+ /// wake up and return an error.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a send operation to appear
+ /// on the other side of the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::{unbounded, RecvError};
+ ///
+ /// let (s, r) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s.send(5).unwrap();
+ /// drop(s);
+ /// });
+ ///
+ /// assert_eq!(r.recv(), Ok(5));
+ /// assert_eq!(r.recv(), Err(RecvError));
+ /// ```
+ pub fn recv(&self) -> Result<T, RecvError> {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.recv(None),
+ ReceiverFlavor::List(chan) => chan.recv(None),
+ ReceiverFlavor::Zero(chan) => chan.recv(None),
+ ReceiverFlavor::At(chan) => {
+ let msg = chan.recv(None);
+ unsafe {
+ mem::transmute_copy::<
+ Result<Instant, RecvTimeoutError>,
+ Result<T, RecvTimeoutError>,
+ >(&msg)
+ }
+ }
+ ReceiverFlavor::Tick(chan) => {
+ let msg = chan.recv(None);
+ unsafe {
+ mem::transmute_copy::<
+ Result<Instant, RecvTimeoutError>,
+ Result<T, RecvTimeoutError>,
+ >(&msg)
+ }
+ }
+ ReceiverFlavor::Never(chan) => chan.recv(None),
+ }
+ .map_err(|_| RecvError)
+ }
+
+ /// Waits for a message to be received from the channel, but only for a limited time.
+ ///
+ /// If the channel is empty and not disconnected, this call will block until the receive
+ /// operation can proceed or the operation times out. If the channel is empty and becomes
+ /// disconnected, this call will wake up and return an error.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a send operation to appear
+ /// on the other side of the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::{unbounded, RecvTimeoutError};
+ ///
+ /// let (s, r) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s.send(5).unwrap();
+ /// drop(s);
+ /// });
+ ///
+ /// assert_eq!(
+ /// r.recv_timeout(Duration::from_millis(500)),
+ /// Err(RecvTimeoutError::Timeout),
+ /// );
+ /// assert_eq!(
+ /// r.recv_timeout(Duration::from_secs(1)),
+ /// Ok(5),
+ /// );
+ /// assert_eq!(
+ /// r.recv_timeout(Duration::from_secs(1)),
+ /// Err(RecvTimeoutError::Disconnected),
+ /// );
+ /// ```
+ pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
+ self.recv_deadline(utils::convert_timeout_to_deadline(timeout))
+ }
+
+ /// Waits for a message to be received from the channel, but only before a given deadline.
+ ///
+ /// If the channel is empty and not disconnected, this call will block until the receive
+ /// operation can proceed or the operation times out. If the channel is empty and becomes
+ /// disconnected, this call will wake up and return an error.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a send operation to appear
+ /// on the other side of the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::{Instant, Duration};
+ /// use crossbeam_channel::{unbounded, RecvTimeoutError};
+ ///
+ /// let (s, r) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s.send(5).unwrap();
+ /// drop(s);
+ /// });
+ ///
+ /// let now = Instant::now();
+ ///
+ /// assert_eq!(
+ /// r.recv_deadline(now + Duration::from_millis(500)),
+ /// Err(RecvTimeoutError::Timeout),
+ /// );
+ /// assert_eq!(
+ /// r.recv_deadline(now + Duration::from_millis(1500)),
+ /// Ok(5),
+ /// );
+ /// assert_eq!(
+ /// r.recv_deadline(now + Duration::from_secs(5)),
+ /// Err(RecvTimeoutError::Disconnected),
+ /// );
+ /// ```
+ pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError> {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.recv(Some(deadline)),
+ ReceiverFlavor::List(chan) => chan.recv(Some(deadline)),
+ ReceiverFlavor::Zero(chan) => chan.recv(Some(deadline)),
+ ReceiverFlavor::At(chan) => {
+ let msg = chan.recv(Some(deadline));
+ unsafe {
+ mem::transmute_copy::<
+ Result<Instant, RecvTimeoutError>,
+ Result<T, RecvTimeoutError>,
+ >(&msg)
+ }
+ }
+ ReceiverFlavor::Tick(chan) => {
+ let msg = chan.recv(Some(deadline));
+ unsafe {
+ mem::transmute_copy::<
+ Result<Instant, RecvTimeoutError>,
+ Result<T, RecvTimeoutError>,
+ >(&msg)
+ }
+ }
+ ReceiverFlavor::Never(chan) => chan.recv(Some(deadline)),
+ }
+ }
+
+ /// Returns `true` if the channel is empty.
+ ///
+ /// Note: Zero-capacity channels are always empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, r) = unbounded();
+ ///
+ /// assert!(r.is_empty());
+ /// s.send(0).unwrap();
+ /// assert!(!r.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.is_empty(),
+ ReceiverFlavor::List(chan) => chan.is_empty(),
+ ReceiverFlavor::Zero(chan) => chan.is_empty(),
+ ReceiverFlavor::At(chan) => chan.is_empty(),
+ ReceiverFlavor::Tick(chan) => chan.is_empty(),
+ ReceiverFlavor::Never(chan) => chan.is_empty(),
+ }
+ }
+
+ /// Returns `true` if the channel is full.
+ ///
+ /// Note: Zero-capacity channels are always full.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::bounded;
+ ///
+ /// let (s, r) = bounded(1);
+ ///
+ /// assert!(!r.is_full());
+ /// s.send(0).unwrap();
+ /// assert!(r.is_full());
+ /// ```
+ pub fn is_full(&self) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.is_full(),
+ ReceiverFlavor::List(chan) => chan.is_full(),
+ ReceiverFlavor::Zero(chan) => chan.is_full(),
+ ReceiverFlavor::At(chan) => chan.is_full(),
+ ReceiverFlavor::Tick(chan) => chan.is_full(),
+ ReceiverFlavor::Never(chan) => chan.is_full(),
+ }
+ }
+
+ /// Returns the number of messages in the channel.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, r) = unbounded();
+ /// assert_eq!(r.len(), 0);
+ ///
+ /// s.send(1).unwrap();
+ /// s.send(2).unwrap();
+ /// assert_eq!(r.len(), 2);
+ /// ```
+ pub fn len(&self) -> usize {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.len(),
+ ReceiverFlavor::List(chan) => chan.len(),
+ ReceiverFlavor::Zero(chan) => chan.len(),
+ ReceiverFlavor::At(chan) => chan.len(),
+ ReceiverFlavor::Tick(chan) => chan.len(),
+ ReceiverFlavor::Never(chan) => chan.len(),
+ }
+ }
+
+ /// If the channel is bounded, returns its capacity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{bounded, unbounded};
+ ///
+ /// let (_, r) = unbounded::<i32>();
+ /// assert_eq!(r.capacity(), None);
+ ///
+ /// let (_, r) = bounded::<i32>(5);
+ /// assert_eq!(r.capacity(), Some(5));
+ ///
+ /// let (_, r) = bounded::<i32>(0);
+ /// assert_eq!(r.capacity(), Some(0));
+ /// ```
+ pub fn capacity(&self) -> Option<usize> {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.capacity(),
+ ReceiverFlavor::List(chan) => chan.capacity(),
+ ReceiverFlavor::Zero(chan) => chan.capacity(),
+ ReceiverFlavor::At(chan) => chan.capacity(),
+ ReceiverFlavor::Tick(chan) => chan.capacity(),
+ ReceiverFlavor::Never(chan) => chan.capacity(),
+ }
+ }
+
+ /// A blocking iterator over messages in the channel.
+ ///
+ /// Each call to [`next`] blocks waiting for the next message and then returns it. However, if
+ /// the channel becomes empty and disconnected, it returns [`None`] without blocking.
+ ///
+ /// [`next`]: Iterator::next
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, r) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// s.send(1).unwrap();
+ /// s.send(2).unwrap();
+ /// s.send(3).unwrap();
+ /// drop(s); // Disconnect the channel.
+ /// });
+ ///
+ /// // Collect all messages from the channel.
+ /// // Note that the call to `collect` blocks until the sender is dropped.
+ /// let v: Vec<_> = r.iter().collect();
+ ///
+ /// assert_eq!(v, [1, 2, 3]);
+ /// ```
+ pub fn iter(&self) -> Iter<'_, T> {
+ Iter { receiver: self }
+ }
+
+ /// A non-blocking iterator over messages in the channel.
+ ///
+ /// Each call to [`next`] returns a message if there is one ready to be received. The iterator
+ /// never blocks waiting for the next message.
+ ///
+ /// [`next`]: Iterator::next
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, r) = unbounded::<i32>();
+ ///
+ /// thread::spawn(move || {
+ /// s.send(1).unwrap();
+ /// thread::sleep(Duration::from_secs(1));
+ /// s.send(2).unwrap();
+ /// thread::sleep(Duration::from_secs(2));
+ /// s.send(3).unwrap();
+ /// });
+ ///
+ /// thread::sleep(Duration::from_secs(2));
+ ///
+ /// // Collect all messages from the channel without blocking.
+ /// // The third message hasn't been sent yet so we'll collect only the first two.
+ /// let v: Vec<_> = r.try_iter().collect();
+ ///
+ /// assert_eq!(v, [1, 2]);
+ /// ```
+ pub fn try_iter(&self) -> TryIter<'_, T> {
+ TryIter { receiver: self }
+ }
+
+ /// Returns `true` if receivers belong to the same channel.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (_, r) = unbounded::<usize>();
+ ///
+ /// let r2 = r.clone();
+ /// assert!(r.same_channel(&r2));
+ ///
+ /// let (_, r3) = unbounded();
+ /// assert!(!r.same_channel(&r3));
+ /// ```
+ pub fn same_channel(&self, other: &Receiver<T>) -> bool {
+ match (&self.flavor, &other.flavor) {
+ (ReceiverFlavor::Array(a), ReceiverFlavor::Array(b)) => a == b,
+ (ReceiverFlavor::List(a), ReceiverFlavor::List(b)) => a == b,
+ (ReceiverFlavor::Zero(a), ReceiverFlavor::Zero(b)) => a == b,
+ (ReceiverFlavor::At(a), ReceiverFlavor::At(b)) => Arc::ptr_eq(a, b),
+ (ReceiverFlavor::Tick(a), ReceiverFlavor::Tick(b)) => Arc::ptr_eq(a, b),
+ (ReceiverFlavor::Never(_), ReceiverFlavor::Never(_)) => true,
+ _ => false,
+ }
+ }
+}
+
+impl<T> Drop for Receiver<T> {
+ fn drop(&mut self) {
+ unsafe {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.release(|c| c.disconnect()),
+ ReceiverFlavor::List(chan) => chan.release(|c| c.disconnect_receivers()),
+ ReceiverFlavor::Zero(chan) => chan.release(|c| c.disconnect()),
+ ReceiverFlavor::At(_) => {}
+ ReceiverFlavor::Tick(_) => {}
+ ReceiverFlavor::Never(_) => {}
+ }
+ }
+ }
+}
+
+impl<T> Clone for Receiver<T> {
+ fn clone(&self) -> Self {
+ let flavor = match &self.flavor {
+ ReceiverFlavor::Array(chan) => ReceiverFlavor::Array(chan.acquire()),
+ ReceiverFlavor::List(chan) => ReceiverFlavor::List(chan.acquire()),
+ ReceiverFlavor::Zero(chan) => ReceiverFlavor::Zero(chan.acquire()),
+ ReceiverFlavor::At(chan) => ReceiverFlavor::At(chan.clone()),
+ ReceiverFlavor::Tick(chan) => ReceiverFlavor::Tick(chan.clone()),
+ ReceiverFlavor::Never(_) => ReceiverFlavor::Never(flavors::never::Channel::new()),
+ };
+
+ Receiver { flavor }
+ }
+}
+
+impl<T> fmt::Debug for Receiver<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Receiver { .. }")
+ }
+}
+
+impl<'a, T> IntoIterator for &'a Receiver<T> {
+ type Item = T;
+ type IntoIter = Iter<'a, T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter()
+ }
+}
+
+impl<T> IntoIterator for Receiver<T> {
+ type Item = T;
+ type IntoIter = IntoIter<T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ IntoIter { receiver: self }
+ }
+}
+
+/// A blocking iterator over messages in a channel.
+///
+/// Each call to [`next`] blocks waiting for the next message and then returns it. However, if the
+/// channel becomes empty and disconnected, it returns [`None`] without blocking.
+///
+/// [`next`]: Iterator::next
+///
+/// # Examples
+///
+/// ```
+/// use std::thread;
+/// use crossbeam_channel::unbounded;
+///
+/// let (s, r) = unbounded();
+///
+/// thread::spawn(move || {
+/// s.send(1).unwrap();
+/// s.send(2).unwrap();
+/// s.send(3).unwrap();
+/// drop(s); // Disconnect the channel.
+/// });
+///
+/// // Collect all messages from the channel.
+/// // Note that the call to `collect` blocks until the sender is dropped.
+/// let v: Vec<_> = r.iter().collect();
+///
+/// assert_eq!(v, [1, 2, 3]);
+/// ```
+pub struct Iter<'a, T> {
+ receiver: &'a Receiver<T>,
+}
+
+impl<T> FusedIterator for Iter<'_, T> {}
+
+impl<T> Iterator for Iter<'_, T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.receiver.recv().ok()
+ }
+}
+
+impl<T> fmt::Debug for Iter<'_, T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Iter { .. }")
+ }
+}
+
+/// A non-blocking iterator over messages in a channel.
+///
+/// Each call to [`next`] returns a message if there is one ready to be received. The iterator
+/// never blocks waiting for the next message.
+///
+/// [`next`]: Iterator::next
+///
+/// # Examples
+///
+/// ```
+/// use std::thread;
+/// use std::time::Duration;
+/// use crossbeam_channel::unbounded;
+///
+/// let (s, r) = unbounded::<i32>();
+///
+/// thread::spawn(move || {
+/// s.send(1).unwrap();
+/// thread::sleep(Duration::from_secs(1));
+/// s.send(2).unwrap();
+/// thread::sleep(Duration::from_secs(2));
+/// s.send(3).unwrap();
+/// });
+///
+/// thread::sleep(Duration::from_secs(2));
+///
+/// // Collect all messages from the channel without blocking.
+/// // The third message hasn't been sent yet so we'll collect only the first two.
+/// let v: Vec<_> = r.try_iter().collect();
+///
+/// assert_eq!(v, [1, 2]);
+/// ```
+pub struct TryIter<'a, T> {
+ receiver: &'a Receiver<T>,
+}
+
+impl<T> Iterator for TryIter<'_, T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.receiver.try_recv().ok()
+ }
+}
+
+impl<T> fmt::Debug for TryIter<'_, T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("TryIter { .. }")
+ }
+}
+
+/// A blocking iterator over messages in a channel.
+///
+/// Each call to [`next`] blocks waiting for the next message and then returns it. However, if the
+/// channel becomes empty and disconnected, it returns [`None`] without blocking.
+///
+/// [`next`]: Iterator::next
+///
+/// # Examples
+///
+/// ```
+/// use std::thread;
+/// use crossbeam_channel::unbounded;
+///
+/// let (s, r) = unbounded();
+///
+/// thread::spawn(move || {
+/// s.send(1).unwrap();
+/// s.send(2).unwrap();
+/// s.send(3).unwrap();
+/// drop(s); // Disconnect the channel.
+/// });
+///
+/// // Collect all messages from the channel.
+/// // Note that the call to `collect` blocks until the sender is dropped.
+/// let v: Vec<_> = r.into_iter().collect();
+///
+/// assert_eq!(v, [1, 2, 3]);
+/// ```
+pub struct IntoIter<T> {
+ receiver: Receiver<T>,
+}
+
+impl<T> FusedIterator for IntoIter<T> {}
+
+impl<T> Iterator for IntoIter<T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.receiver.recv().ok()
+ }
+}
+
+impl<T> fmt::Debug for IntoIter<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("IntoIter { .. }")
+ }
+}
+
+impl<T> SelectHandle for Sender<T> {
+ fn try_select(&self, token: &mut Token) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.sender().try_select(token),
+ SenderFlavor::List(chan) => chan.sender().try_select(token),
+ SenderFlavor::Zero(chan) => chan.sender().try_select(token),
+ }
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ None
+ }
+
+ fn register(&self, oper: Operation, cx: &Context) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.sender().register(oper, cx),
+ SenderFlavor::List(chan) => chan.sender().register(oper, cx),
+ SenderFlavor::Zero(chan) => chan.sender().register(oper, cx),
+ }
+ }
+
+ fn unregister(&self, oper: Operation) {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.sender().unregister(oper),
+ SenderFlavor::List(chan) => chan.sender().unregister(oper),
+ SenderFlavor::Zero(chan) => chan.sender().unregister(oper),
+ }
+ }
+
+ fn accept(&self, token: &mut Token, cx: &Context) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.sender().accept(token, cx),
+ SenderFlavor::List(chan) => chan.sender().accept(token, cx),
+ SenderFlavor::Zero(chan) => chan.sender().accept(token, cx),
+ }
+ }
+
+ fn is_ready(&self) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.sender().is_ready(),
+ SenderFlavor::List(chan) => chan.sender().is_ready(),
+ SenderFlavor::Zero(chan) => chan.sender().is_ready(),
+ }
+ }
+
+ fn watch(&self, oper: Operation, cx: &Context) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.sender().watch(oper, cx),
+ SenderFlavor::List(chan) => chan.sender().watch(oper, cx),
+ SenderFlavor::Zero(chan) => chan.sender().watch(oper, cx),
+ }
+ }
+
+ fn unwatch(&self, oper: Operation) {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.sender().unwatch(oper),
+ SenderFlavor::List(chan) => chan.sender().unwatch(oper),
+ SenderFlavor::Zero(chan) => chan.sender().unwatch(oper),
+ }
+ }
+}
+
+impl<T> SelectHandle for Receiver<T> {
+ fn try_select(&self, token: &mut Token) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.receiver().try_select(token),
+ ReceiverFlavor::List(chan) => chan.receiver().try_select(token),
+ ReceiverFlavor::Zero(chan) => chan.receiver().try_select(token),
+ ReceiverFlavor::At(chan) => chan.try_select(token),
+ ReceiverFlavor::Tick(chan) => chan.try_select(token),
+ ReceiverFlavor::Never(chan) => chan.try_select(token),
+ }
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ match &self.flavor {
+ ReceiverFlavor::Array(_) => None,
+ ReceiverFlavor::List(_) => None,
+ ReceiverFlavor::Zero(_) => None,
+ ReceiverFlavor::At(chan) => chan.deadline(),
+ ReceiverFlavor::Tick(chan) => chan.deadline(),
+ ReceiverFlavor::Never(chan) => chan.deadline(),
+ }
+ }
+
+ fn register(&self, oper: Operation, cx: &Context) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.receiver().register(oper, cx),
+ ReceiverFlavor::List(chan) => chan.receiver().register(oper, cx),
+ ReceiverFlavor::Zero(chan) => chan.receiver().register(oper, cx),
+ ReceiverFlavor::At(chan) => chan.register(oper, cx),
+ ReceiverFlavor::Tick(chan) => chan.register(oper, cx),
+ ReceiverFlavor::Never(chan) => chan.register(oper, cx),
+ }
+ }
+
+ fn unregister(&self, oper: Operation) {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.receiver().unregister(oper),
+ ReceiverFlavor::List(chan) => chan.receiver().unregister(oper),
+ ReceiverFlavor::Zero(chan) => chan.receiver().unregister(oper),
+ ReceiverFlavor::At(chan) => chan.unregister(oper),
+ ReceiverFlavor::Tick(chan) => chan.unregister(oper),
+ ReceiverFlavor::Never(chan) => chan.unregister(oper),
+ }
+ }
+
+ fn accept(&self, token: &mut Token, cx: &Context) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.receiver().accept(token, cx),
+ ReceiverFlavor::List(chan) => chan.receiver().accept(token, cx),
+ ReceiverFlavor::Zero(chan) => chan.receiver().accept(token, cx),
+ ReceiverFlavor::At(chan) => chan.accept(token, cx),
+ ReceiverFlavor::Tick(chan) => chan.accept(token, cx),
+ ReceiverFlavor::Never(chan) => chan.accept(token, cx),
+ }
+ }
+
+ fn is_ready(&self) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.receiver().is_ready(),
+ ReceiverFlavor::List(chan) => chan.receiver().is_ready(),
+ ReceiverFlavor::Zero(chan) => chan.receiver().is_ready(),
+ ReceiverFlavor::At(chan) => chan.is_ready(),
+ ReceiverFlavor::Tick(chan) => chan.is_ready(),
+ ReceiverFlavor::Never(chan) => chan.is_ready(),
+ }
+ }
+
+ fn watch(&self, oper: Operation, cx: &Context) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.receiver().watch(oper, cx),
+ ReceiverFlavor::List(chan) => chan.receiver().watch(oper, cx),
+ ReceiverFlavor::Zero(chan) => chan.receiver().watch(oper, cx),
+ ReceiverFlavor::At(chan) => chan.watch(oper, cx),
+ ReceiverFlavor::Tick(chan) => chan.watch(oper, cx),
+ ReceiverFlavor::Never(chan) => chan.watch(oper, cx),
+ }
+ }
+
+ fn unwatch(&self, oper: Operation) {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.receiver().unwatch(oper),
+ ReceiverFlavor::List(chan) => chan.receiver().unwatch(oper),
+ ReceiverFlavor::Zero(chan) => chan.receiver().unwatch(oper),
+ ReceiverFlavor::At(chan) => chan.unwatch(oper),
+ ReceiverFlavor::Tick(chan) => chan.unwatch(oper),
+ ReceiverFlavor::Never(chan) => chan.unwatch(oper),
+ }
+ }
+}
+
+/// Writes a message into the channel.
+pub(crate) unsafe fn write<T>(s: &Sender<T>, token: &mut Token, msg: T) -> Result<(), T> {
+ match &s.flavor {
+ SenderFlavor::Array(chan) => chan.write(token, msg),
+ SenderFlavor::List(chan) => chan.write(token, msg),
+ SenderFlavor::Zero(chan) => chan.write(token, msg),
+ }
+}
+
+/// Reads a message from the channel.
+pub(crate) unsafe fn read<T>(r: &Receiver<T>, token: &mut Token) -> Result<T, ()> {
+ match &r.flavor {
+ ReceiverFlavor::Array(chan) => chan.read(token),
+ ReceiverFlavor::List(chan) => chan.read(token),
+ ReceiverFlavor::Zero(chan) => chan.read(token),
+ ReceiverFlavor::At(chan) => {
+ mem::transmute_copy::<Result<Instant, ()>, Result<T, ()>>(&chan.read(token))
+ }
+ ReceiverFlavor::Tick(chan) => {
+ mem::transmute_copy::<Result<Instant, ()>, Result<T, ()>>(&chan.read(token))
+ }
+ ReceiverFlavor::Never(chan) => chan.read(token),
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/context.rs b/third_party/rust/crossbeam-channel/src/context.rs
new file mode 100644
index 0000000000..7467b802cb
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/context.rs
@@ -0,0 +1,193 @@
+//! Thread-local context used in select.
+
+use std::cell::Cell;
+use std::ptr;
+use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
+use std::sync::Arc;
+use std::thread::{self, Thread, ThreadId};
+use std::time::Instant;
+
+use crossbeam_utils::Backoff;
+
+use crate::select::Selected;
+
+/// Thread-local context used in select.
+// This is a private API that is used by the select macro.
+#[derive(Debug, Clone)]
+pub struct Context {
+ inner: Arc<Inner>,
+}
+
+/// Inner representation of `Context`.
+#[derive(Debug)]
+struct Inner {
+ /// Selected operation.
+ select: AtomicUsize,
+
+ /// A slot into which another thread may store a pointer to its `Packet`.
+ packet: AtomicPtr<()>,
+
+ /// Thread handle.
+ thread: Thread,
+
+ /// Thread id.
+ thread_id: ThreadId,
+}
+
+impl Context {
+ /// Creates a new context for the duration of the closure.
+ #[inline]
+ pub fn with<F, R>(f: F) -> R
+ where
+ F: FnOnce(&Context) -> R,
+ {
+ thread_local! {
+ /// Cached thread-local context.
+ static CONTEXT: Cell<Option<Context>> = Cell::new(Some(Context::new()));
+ }
+
+ let mut f = Some(f);
+ let mut f = |cx: &Context| -> R {
+ let f = f.take().unwrap();
+ f(cx)
+ };
+
+ CONTEXT
+ .try_with(|cell| match cell.take() {
+ None => f(&Context::new()),
+ Some(cx) => {
+ cx.reset();
+ let res = f(&cx);
+ cell.set(Some(cx));
+ res
+ }
+ })
+ .unwrap_or_else(|_| f(&Context::new()))
+ }
+
+ /// Creates a new `Context`.
+ #[cold]
+ fn new() -> Context {
+ Context {
+ inner: Arc::new(Inner {
+ select: AtomicUsize::new(Selected::Waiting.into()),
+ packet: AtomicPtr::new(ptr::null_mut()),
+ thread: thread::current(),
+ thread_id: thread::current().id(),
+ }),
+ }
+ }
+
+ /// Resets `select` and `packet`.
+ #[inline]
+ fn reset(&self) {
+ self.inner
+ .select
+ .store(Selected::Waiting.into(), Ordering::Release);
+ self.inner.packet.store(ptr::null_mut(), Ordering::Release);
+ }
+
+ /// Attempts to select an operation.
+ ///
+ /// On failure, the previously selected operation is returned.
+ #[inline]
+ pub fn try_select(&self, select: Selected) -> Result<(), Selected> {
+ self.inner
+ .select
+ .compare_exchange(
+ Selected::Waiting.into(),
+ select.into(),
+ Ordering::AcqRel,
+ Ordering::Acquire,
+ )
+ .map(|_| ())
+ .map_err(|e| e.into())
+ }
+
+ /// Returns the selected operation.
+ #[inline]
+ pub fn selected(&self) -> Selected {
+ Selected::from(self.inner.select.load(Ordering::Acquire))
+ }
+
+ /// Stores a packet.
+ ///
+ /// This method must be called after `try_select` succeeds and there is a packet to provide.
+ #[inline]
+ pub fn store_packet(&self, packet: *mut ()) {
+ if !packet.is_null() {
+ self.inner.packet.store(packet, Ordering::Release);
+ }
+ }
+
+ /// Waits until a packet is provided and returns it.
+ #[inline]
+ pub fn wait_packet(&self) -> *mut () {
+ let backoff = Backoff::new();
+ loop {
+ let packet = self.inner.packet.load(Ordering::Acquire);
+ if !packet.is_null() {
+ return packet;
+ }
+ backoff.snooze();
+ }
+ }
+
+ /// Waits until an operation is selected and returns it.
+ ///
+ /// If the deadline is reached, `Selected::Aborted` will be selected.
+ #[inline]
+ pub fn wait_until(&self, deadline: Option<Instant>) -> Selected {
+ // Spin for a short time, waiting until an operation is selected.
+ let backoff = Backoff::new();
+ loop {
+ let sel = Selected::from(self.inner.select.load(Ordering::Acquire));
+ if sel != Selected::Waiting {
+ return sel;
+ }
+
+ if backoff.is_completed() {
+ break;
+ } else {
+ backoff.snooze();
+ }
+ }
+
+ loop {
+ // Check whether an operation has been selected.
+ let sel = Selected::from(self.inner.select.load(Ordering::Acquire));
+ if sel != Selected::Waiting {
+ return sel;
+ }
+
+ // If there's a deadline, park the current thread until the deadline is reached.
+ if let Some(end) = deadline {
+ let now = Instant::now();
+
+ if now < end {
+ thread::park_timeout(end - now);
+ } else {
+ // The deadline has been reached. Try aborting select.
+ return match self.try_select(Selected::Aborted) {
+ Ok(()) => Selected::Aborted,
+ Err(s) => s,
+ };
+ }
+ } else {
+ thread::park();
+ }
+ }
+ }
+
+ /// Unparks the thread this context belongs to.
+ #[inline]
+ pub fn unpark(&self) {
+ self.inner.thread.unpark();
+ }
+
+ /// Returns the id of the thread this context belongs to.
+ #[inline]
+ pub fn thread_id(&self) -> ThreadId {
+ self.inner.thread_id
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/counter.rs b/third_party/rust/crossbeam-channel/src/counter.rs
new file mode 100644
index 0000000000..2c27f7c6b2
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/counter.rs
@@ -0,0 +1,144 @@
+//! Reference counter for channels.
+
+use std::isize;
+use std::ops;
+use std::process;
+use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
+
+/// Reference counter internals.
+struct Counter<C> {
+ /// The number of senders associated with the channel.
+ senders: AtomicUsize,
+
+ /// The number of receivers associated with the channel.
+ receivers: AtomicUsize,
+
+ /// Set to `true` if the last sender or the last receiver reference deallocates the channel.
+ destroy: AtomicBool,
+
+ /// The internal channel.
+ chan: C,
+}
+
+/// Wraps a channel into the reference counter.
+pub(crate) fn new<C>(chan: C) -> (Sender<C>, Receiver<C>) {
+ let counter = Box::into_raw(Box::new(Counter {
+ senders: AtomicUsize::new(1),
+ receivers: AtomicUsize::new(1),
+ destroy: AtomicBool::new(false),
+ chan,
+ }));
+ let s = Sender { counter };
+ let r = Receiver { counter };
+ (s, r)
+}
+
+/// The sending side.
+pub(crate) struct Sender<C> {
+ counter: *mut Counter<C>,
+}
+
+impl<C> Sender<C> {
+ /// Returns the internal `Counter`.
+ fn counter(&self) -> &Counter<C> {
+ unsafe { &*self.counter }
+ }
+
+ /// Acquires another sender reference.
+ pub(crate) fn acquire(&self) -> Sender<C> {
+ let count = self.counter().senders.fetch_add(1, Ordering::Relaxed);
+
+ // Cloning senders and calling `mem::forget` on the clones could potentially overflow the
+ // counter. It's very difficult to recover sensibly from such degenerate scenarios so we
+ // just abort when the count becomes very large.
+ if count > isize::MAX as usize {
+ process::abort();
+ }
+
+ Sender {
+ counter: self.counter,
+ }
+ }
+
+ /// Releases the sender reference.
+ ///
+ /// Function `disconnect` will be called if this is the last sender reference.
+ pub(crate) unsafe fn release<F: FnOnce(&C) -> bool>(&self, disconnect: F) {
+ if self.counter().senders.fetch_sub(1, Ordering::AcqRel) == 1 {
+ disconnect(&self.counter().chan);
+
+ if self.counter().destroy.swap(true, Ordering::AcqRel) {
+ drop(Box::from_raw(self.counter));
+ }
+ }
+ }
+}
+
+impl<C> ops::Deref for Sender<C> {
+ type Target = C;
+
+ fn deref(&self) -> &C {
+ &self.counter().chan
+ }
+}
+
+impl<C> PartialEq for Sender<C> {
+ fn eq(&self, other: &Sender<C>) -> bool {
+ self.counter == other.counter
+ }
+}
+
+/// The receiving side.
+pub(crate) struct Receiver<C> {
+ counter: *mut Counter<C>,
+}
+
+impl<C> Receiver<C> {
+ /// Returns the internal `Counter`.
+ fn counter(&self) -> &Counter<C> {
+ unsafe { &*self.counter }
+ }
+
+ /// Acquires another receiver reference.
+ pub(crate) fn acquire(&self) -> Receiver<C> {
+ let count = self.counter().receivers.fetch_add(1, Ordering::Relaxed);
+
+ // Cloning receivers and calling `mem::forget` on the clones could potentially overflow the
+ // counter. It's very difficult to recover sensibly from such degenerate scenarios so we
+ // just abort when the count becomes very large.
+ if count > isize::MAX as usize {
+ process::abort();
+ }
+
+ Receiver {
+ counter: self.counter,
+ }
+ }
+
+ /// Releases the receiver reference.
+ ///
+ /// Function `disconnect` will be called if this is the last receiver reference.
+ pub(crate) unsafe fn release<F: FnOnce(&C) -> bool>(&self, disconnect: F) {
+ if self.counter().receivers.fetch_sub(1, Ordering::AcqRel) == 1 {
+ disconnect(&self.counter().chan);
+
+ if self.counter().destroy.swap(true, Ordering::AcqRel) {
+ drop(Box::from_raw(self.counter));
+ }
+ }
+ }
+}
+
+impl<C> ops::Deref for Receiver<C> {
+ type Target = C;
+
+ fn deref(&self) -> &C {
+ &self.counter().chan
+ }
+}
+
+impl<C> PartialEq for Receiver<C> {
+ fn eq(&self, other: &Receiver<C>) -> bool {
+ self.counter == other.counter
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/err.rs b/third_party/rust/crossbeam-channel/src/err.rs
new file mode 100644
index 0000000000..18cb8307a8
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/err.rs
@@ -0,0 +1,378 @@
+use std::error;
+use std::fmt;
+
+/// An error returned from the [`send`] method.
+///
+/// The message could not be sent because the channel is disconnected.
+///
+/// The error contains the message so it can be recovered.
+///
+/// [`send`]: super::Sender::send
+#[derive(PartialEq, Eq, Clone, Copy)]
+pub struct SendError<T>(pub T);
+
+/// An error returned from the [`try_send`] method.
+///
+/// The error contains the message being sent so it can be recovered.
+///
+/// [`try_send`]: super::Sender::try_send
+#[derive(PartialEq, Eq, Clone, Copy)]
+pub enum TrySendError<T> {
+ /// The message could not be sent because the channel is full.
+ ///
+ /// If this is a zero-capacity channel, then the error indicates that there was no receiver
+ /// available to receive the message at the time.
+ Full(T),
+
+ /// The message could not be sent because the channel is disconnected.
+ Disconnected(T),
+}
+
+/// An error returned from the [`send_timeout`] method.
+///
+/// The error contains the message being sent so it can be recovered.
+///
+/// [`send_timeout`]: super::Sender::send_timeout
+#[derive(PartialEq, Eq, Clone, Copy)]
+pub enum SendTimeoutError<T> {
+ /// The message could not be sent because the channel is full and the operation timed out.
+ ///
+ /// If this is a zero-capacity channel, then the error indicates that there was no receiver
+ /// available to receive the message and the operation timed out.
+ Timeout(T),
+
+ /// The message could not be sent because the channel is disconnected.
+ Disconnected(T),
+}
+
+/// An error returned from the [`recv`] method.
+///
+/// A message could not be received because the channel is empty and disconnected.
+///
+/// [`recv`]: super::Receiver::recv
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct RecvError;
+
+/// An error returned from the [`try_recv`] method.
+///
+/// [`try_recv`]: super::Receiver::try_recv
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub enum TryRecvError {
+ /// A message could not be received because the channel is empty.
+ ///
+ /// If this is a zero-capacity channel, then the error indicates that there was no sender
+ /// available to send a message at the time.
+ Empty,
+
+ /// The message could not be received because the channel is empty and disconnected.
+ Disconnected,
+}
+
+/// An error returned from the [`recv_timeout`] method.
+///
+/// [`recv_timeout`]: super::Receiver::recv_timeout
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub enum RecvTimeoutError {
+ /// A message could not be received because the channel is empty and the operation timed out.
+ ///
+ /// If this is a zero-capacity channel, then the error indicates that there was no sender
+ /// available to send a message and the operation timed out.
+ Timeout,
+
+ /// The message could not be received because the channel is empty and disconnected.
+ Disconnected,
+}
+
+/// An error returned from the [`try_select`] method.
+///
+/// Failed because none of the channel operations were ready.
+///
+/// [`try_select`]: super::Select::try_select
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct TrySelectError;
+
+/// An error returned from the [`select_timeout`] method.
+///
+/// Failed because none of the channel operations became ready before the timeout.
+///
+/// [`select_timeout`]: super::Select::select_timeout
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct SelectTimeoutError;
+
+/// An error returned from the [`try_ready`] method.
+///
+/// Failed because none of the channel operations were ready.
+///
+/// [`try_ready`]: super::Select::try_ready
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct TryReadyError;
+
+/// An error returned from the [`ready_timeout`] method.
+///
+/// Failed because none of the channel operations became ready before the timeout.
+///
+/// [`ready_timeout`]: super::Select::ready_timeout
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct ReadyTimeoutError;
+
+impl<T> fmt::Debug for SendError<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ "SendError(..)".fmt(f)
+ }
+}
+
+impl<T> fmt::Display for SendError<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ "sending on a disconnected channel".fmt(f)
+ }
+}
+
+impl<T: Send> error::Error for SendError<T> {}
+
+impl<T> SendError<T> {
+ /// Unwraps the message.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, r) = unbounded();
+ /// drop(r);
+ ///
+ /// if let Err(err) = s.send("foo") {
+ /// assert_eq!(err.into_inner(), "foo");
+ /// }
+ /// ```
+ pub fn into_inner(self) -> T {
+ self.0
+ }
+}
+
+impl<T> fmt::Debug for TrySendError<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self {
+ TrySendError::Full(..) => "Full(..)".fmt(f),
+ TrySendError::Disconnected(..) => "Disconnected(..)".fmt(f),
+ }
+ }
+}
+
+impl<T> fmt::Display for TrySendError<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self {
+ TrySendError::Full(..) => "sending on a full channel".fmt(f),
+ TrySendError::Disconnected(..) => "sending on a disconnected channel".fmt(f),
+ }
+ }
+}
+
+impl<T: Send> error::Error for TrySendError<T> {}
+
+impl<T> From<SendError<T>> for TrySendError<T> {
+ fn from(err: SendError<T>) -> TrySendError<T> {
+ match err {
+ SendError(t) => TrySendError::Disconnected(t),
+ }
+ }
+}
+
+impl<T> TrySendError<T> {
+ /// Unwraps the message.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::bounded;
+ ///
+ /// let (s, r) = bounded(0);
+ ///
+ /// if let Err(err) = s.try_send("foo") {
+ /// assert_eq!(err.into_inner(), "foo");
+ /// }
+ /// ```
+ pub fn into_inner(self) -> T {
+ match self {
+ TrySendError::Full(v) => v,
+ TrySendError::Disconnected(v) => v,
+ }
+ }
+
+ /// Returns `true` if the send operation failed because the channel is full.
+ pub fn is_full(&self) -> bool {
+ match self {
+ TrySendError::Full(_) => true,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if the send operation failed because the channel is disconnected.
+ pub fn is_disconnected(&self) -> bool {
+ match self {
+ TrySendError::Disconnected(_) => true,
+ _ => false,
+ }
+ }
+}
+
+impl<T> fmt::Debug for SendTimeoutError<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ "SendTimeoutError(..)".fmt(f)
+ }
+}
+
+impl<T> fmt::Display for SendTimeoutError<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self {
+ SendTimeoutError::Timeout(..) => "timed out waiting on send operation".fmt(f),
+ SendTimeoutError::Disconnected(..) => "sending on a disconnected channel".fmt(f),
+ }
+ }
+}
+
+impl<T: Send> error::Error for SendTimeoutError<T> {}
+
+impl<T> From<SendError<T>> for SendTimeoutError<T> {
+ fn from(err: SendError<T>) -> SendTimeoutError<T> {
+ match err {
+ SendError(e) => SendTimeoutError::Disconnected(e),
+ }
+ }
+}
+
+impl<T> SendTimeoutError<T> {
+ /// Unwraps the message.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::time::Duration;
+ /// use crossbeam_channel::unbounded;
+ ///
+ /// let (s, r) = unbounded();
+ ///
+ /// if let Err(err) = s.send_timeout("foo", Duration::from_secs(1)) {
+ /// assert_eq!(err.into_inner(), "foo");
+ /// }
+ /// ```
+ pub fn into_inner(self) -> T {
+ match self {
+ SendTimeoutError::Timeout(v) => v,
+ SendTimeoutError::Disconnected(v) => v,
+ }
+ }
+
+ /// Returns `true` if the send operation timed out.
+ pub fn is_timeout(&self) -> bool {
+ match self {
+ SendTimeoutError::Timeout(_) => true,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if the send operation failed because the channel is disconnected.
+ pub fn is_disconnected(&self) -> bool {
+ match self {
+ SendTimeoutError::Disconnected(_) => true,
+ _ => false,
+ }
+ }
+}
+
+impl fmt::Display for RecvError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ "receiving on an empty and disconnected channel".fmt(f)
+ }
+}
+
+impl error::Error for RecvError {}
+
+impl fmt::Display for TryRecvError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self {
+ TryRecvError::Empty => "receiving on an empty channel".fmt(f),
+ TryRecvError::Disconnected => "receiving on an empty and disconnected channel".fmt(f),
+ }
+ }
+}
+
+impl error::Error for TryRecvError {}
+
+impl From<RecvError> for TryRecvError {
+ fn from(err: RecvError) -> TryRecvError {
+ match err {
+ RecvError => TryRecvError::Disconnected,
+ }
+ }
+}
+
+impl TryRecvError {
+ /// Returns `true` if the receive operation failed because the channel is empty.
+ pub fn is_empty(&self) -> bool {
+ match self {
+ TryRecvError::Empty => true,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if the receive operation failed because the channel is disconnected.
+ pub fn is_disconnected(&self) -> bool {
+ match self {
+ TryRecvError::Disconnected => true,
+ _ => false,
+ }
+ }
+}
+
+impl fmt::Display for RecvTimeoutError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self {
+ RecvTimeoutError::Timeout => "timed out waiting on receive operation".fmt(f),
+ RecvTimeoutError::Disconnected => "channel is empty and disconnected".fmt(f),
+ }
+ }
+}
+
+impl error::Error for RecvTimeoutError {}
+
+impl From<RecvError> for RecvTimeoutError {
+ fn from(err: RecvError) -> RecvTimeoutError {
+ match err {
+ RecvError => RecvTimeoutError::Disconnected,
+ }
+ }
+}
+
+impl RecvTimeoutError {
+ /// Returns `true` if the receive operation timed out.
+ pub fn is_timeout(&self) -> bool {
+ match self {
+ RecvTimeoutError::Timeout => true,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if the receive operation failed because the channel is disconnected.
+ pub fn is_disconnected(&self) -> bool {
+ match self {
+ RecvTimeoutError::Disconnected => true,
+ _ => false,
+ }
+ }
+}
+
+impl fmt::Display for TrySelectError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ "all operations in select would block".fmt(f)
+ }
+}
+
+impl error::Error for TrySelectError {}
+
+impl fmt::Display for SelectTimeoutError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ "timed out waiting on select".fmt(f)
+ }
+}
+
+impl error::Error for SelectTimeoutError {}
diff --git a/third_party/rust/crossbeam-channel/src/flavors/array.rs b/third_party/rust/crossbeam-channel/src/flavors/array.rs
new file mode 100644
index 0000000000..63b82eb859
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/flavors/array.rs
@@ -0,0 +1,635 @@
+//! Bounded channel based on a preallocated array.
+//!
+//! This flavor has a fixed, positive capacity.
+//!
+//! The implementation is based on Dmitry Vyukov's bounded MPMC queue.
+//!
+//! Source:
+//! - <http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue>
+//! - <https://docs.google.com/document/d/1yIAYmbvL3JxOKOjuCyon7JhW4cSv1wy5hC0ApeGMV9s/pub>
+
+use std::cell::UnsafeCell;
+use std::mem::MaybeUninit;
+use std::ptr;
+use std::sync::atomic::{self, AtomicUsize, Ordering};
+use std::time::Instant;
+
+use crossbeam_utils::{Backoff, CachePadded};
+
+use crate::context::Context;
+use crate::err::{RecvTimeoutError, SendTimeoutError, TryRecvError, TrySendError};
+use crate::select::{Operation, SelectHandle, Selected, Token};
+use crate::waker::SyncWaker;
+
+/// A slot in a channel.
+struct Slot<T> {
+ /// The current stamp.
+ stamp: AtomicUsize,
+
+ /// The message in this slot.
+ msg: UnsafeCell<MaybeUninit<T>>,
+}
+
+/// The token type for the array flavor.
+#[derive(Debug)]
+pub(crate) struct ArrayToken {
+ /// Slot to read from or write to.
+ slot: *const u8,
+
+ /// Stamp to store into the slot after reading or writing.
+ stamp: usize,
+}
+
+impl Default for ArrayToken {
+ #[inline]
+ fn default() -> Self {
+ ArrayToken {
+ slot: ptr::null(),
+ stamp: 0,
+ }
+ }
+}
+
+/// Bounded channel based on a preallocated array.
+pub(crate) struct Channel<T> {
+ /// The head of the channel.
+ ///
+ /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
+ /// packed into a single `usize`. The lower bits represent the index, while the upper bits
+ /// represent the lap. The mark bit in the head is always zero.
+ ///
+ /// Messages are popped from the head of the channel.
+ head: CachePadded<AtomicUsize>,
+
+ /// The tail of the channel.
+ ///
+ /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
+ /// packed into a single `usize`. The lower bits represent the index, while the upper bits
+ /// represent the lap. The mark bit indicates that the channel is disconnected.
+ ///
+ /// Messages are pushed into the tail of the channel.
+ tail: CachePadded<AtomicUsize>,
+
+ /// The buffer holding slots.
+ buffer: Box<[Slot<T>]>,
+
+ /// The channel capacity.
+ cap: usize,
+
+ /// A stamp with the value of `{ lap: 1, mark: 0, index: 0 }`.
+ one_lap: usize,
+
+ /// If this bit is set in the tail, that means the channel is disconnected.
+ mark_bit: usize,
+
+ /// Senders waiting while the channel is full.
+ senders: SyncWaker,
+
+ /// Receivers waiting while the channel is empty and not disconnected.
+ receivers: SyncWaker,
+}
+
+impl<T> Channel<T> {
+ /// Creates a bounded channel of capacity `cap`.
+ pub(crate) fn with_capacity(cap: usize) -> Self {
+ assert!(cap > 0, "capacity must be positive");
+
+ // Compute constants `mark_bit` and `one_lap`.
+ let mark_bit = (cap + 1).next_power_of_two();
+ let one_lap = mark_bit * 2;
+
+ // Head is initialized to `{ lap: 0, mark: 0, index: 0 }`.
+ let head = 0;
+ // Tail is initialized to `{ lap: 0, mark: 0, index: 0 }`.
+ let tail = 0;
+
+ // Allocate a buffer of `cap` slots initialized
+ // with stamps.
+ let buffer: Box<[Slot<T>]> = (0..cap)
+ .map(|i| {
+ // Set the stamp to `{ lap: 0, mark: 0, index: i }`.
+ Slot {
+ stamp: AtomicUsize::new(i),
+ msg: UnsafeCell::new(MaybeUninit::uninit()),
+ }
+ })
+ .collect();
+
+ Channel {
+ buffer,
+ cap,
+ one_lap,
+ mark_bit,
+ head: CachePadded::new(AtomicUsize::new(head)),
+ tail: CachePadded::new(AtomicUsize::new(tail)),
+ senders: SyncWaker::new(),
+ receivers: SyncWaker::new(),
+ }
+ }
+
+ /// Returns a receiver handle to the channel.
+ pub(crate) fn receiver(&self) -> Receiver<'_, T> {
+ Receiver(self)
+ }
+
+ /// Returns a sender handle to the channel.
+ pub(crate) fn sender(&self) -> Sender<'_, T> {
+ Sender(self)
+ }
+
+ /// Attempts to reserve a slot for sending a message.
+ fn start_send(&self, token: &mut Token) -> bool {
+ let backoff = Backoff::new();
+ let mut tail = self.tail.load(Ordering::Relaxed);
+
+ loop {
+ // Check if the channel is disconnected.
+ if tail & self.mark_bit != 0 {
+ token.array.slot = ptr::null();
+ token.array.stamp = 0;
+ return true;
+ }
+
+ // Deconstruct the tail.
+ let index = tail & (self.mark_bit - 1);
+ let lap = tail & !(self.one_lap - 1);
+
+ // Inspect the corresponding slot.
+ debug_assert!(index < self.buffer.len());
+ let slot = unsafe { self.buffer.get_unchecked(index) };
+ let stamp = slot.stamp.load(Ordering::Acquire);
+
+ // If the tail and the stamp match, we may attempt to push.
+ if tail == stamp {
+ let new_tail = if index + 1 < self.cap {
+ // Same lap, incremented index.
+ // Set to `{ lap: lap, mark: 0, index: index + 1 }`.
+ tail + 1
+ } else {
+ // One lap forward, index wraps around to zero.
+ // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
+ lap.wrapping_add(self.one_lap)
+ };
+
+ // Try moving the tail.
+ match self.tail.compare_exchange_weak(
+ tail,
+ new_tail,
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => {
+ // Prepare the token for the follow-up call to `write`.
+ token.array.slot = slot as *const Slot<T> as *const u8;
+ token.array.stamp = tail + 1;
+ return true;
+ }
+ Err(t) => {
+ tail = t;
+ backoff.spin();
+ }
+ }
+ } else if stamp.wrapping_add(self.one_lap) == tail + 1 {
+ atomic::fence(Ordering::SeqCst);
+ let head = self.head.load(Ordering::Relaxed);
+
+ // If the head lags one lap behind the tail as well...
+ if head.wrapping_add(self.one_lap) == tail {
+ // ...then the channel is full.
+ return false;
+ }
+
+ backoff.spin();
+ tail = self.tail.load(Ordering::Relaxed);
+ } else {
+ // Snooze because we need to wait for the stamp to get updated.
+ backoff.snooze();
+ tail = self.tail.load(Ordering::Relaxed);
+ }
+ }
+ }
+
+ /// Writes a message into the channel.
+ pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
+ // If there is no slot, the channel is disconnected.
+ if token.array.slot.is_null() {
+ return Err(msg);
+ }
+
+ let slot: &Slot<T> = &*token.array.slot.cast::<Slot<T>>();
+
+ // Write the message into the slot and update the stamp.
+ slot.msg.get().write(MaybeUninit::new(msg));
+ slot.stamp.store(token.array.stamp, Ordering::Release);
+
+ // Wake a sleeping receiver.
+ self.receivers.notify();
+ Ok(())
+ }
+
+ /// Attempts to reserve a slot for receiving a message.
+ fn start_recv(&self, token: &mut Token) -> bool {
+ let backoff = Backoff::new();
+ let mut head = self.head.load(Ordering::Relaxed);
+
+ loop {
+ // Deconstruct the head.
+ let index = head & (self.mark_bit - 1);
+ let lap = head & !(self.one_lap - 1);
+
+ // Inspect the corresponding slot.
+ debug_assert!(index < self.buffer.len());
+ let slot = unsafe { self.buffer.get_unchecked(index) };
+ let stamp = slot.stamp.load(Ordering::Acquire);
+
+ // If the the stamp is ahead of the head by 1, we may attempt to pop.
+ if head + 1 == stamp {
+ let new = if index + 1 < self.cap {
+ // Same lap, incremented index.
+ // Set to `{ lap: lap, mark: 0, index: index + 1 }`.
+ head + 1
+ } else {
+ // One lap forward, index wraps around to zero.
+ // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
+ lap.wrapping_add(self.one_lap)
+ };
+
+ // Try moving the head.
+ match self.head.compare_exchange_weak(
+ head,
+ new,
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ ) {
+ Ok(_) => {
+ // Prepare the token for the follow-up call to `read`.
+ token.array.slot = slot as *const Slot<T> as *const u8;
+ token.array.stamp = head.wrapping_add(self.one_lap);
+ return true;
+ }
+ Err(h) => {
+ head = h;
+ backoff.spin();
+ }
+ }
+ } else if stamp == head {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the channel is empty.
+ if (tail & !self.mark_bit) == head {
+ // If the channel is disconnected...
+ if tail & self.mark_bit != 0 {
+ // ...then receive an error.
+ token.array.slot = ptr::null();
+ token.array.stamp = 0;
+ return true;
+ } else {
+ // Otherwise, the receive operation is not ready.
+ return false;
+ }
+ }
+
+ backoff.spin();
+ head = self.head.load(Ordering::Relaxed);
+ } else {
+ // Snooze because we need to wait for the stamp to get updated.
+ backoff.snooze();
+ head = self.head.load(Ordering::Relaxed);
+ }
+ }
+ }
+
+ /// Reads a message from the channel.
+ pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
+ if token.array.slot.is_null() {
+ // The channel is disconnected.
+ return Err(());
+ }
+
+ let slot: &Slot<T> = &*token.array.slot.cast::<Slot<T>>();
+
+ // Read the message from the slot and update the stamp.
+ let msg = slot.msg.get().read().assume_init();
+ slot.stamp.store(token.array.stamp, Ordering::Release);
+
+ // Wake a sleeping sender.
+ self.senders.notify();
+ Ok(msg)
+ }
+
+ /// Attempts to send a message into the channel.
+ pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
+ let token = &mut Token::default();
+ if self.start_send(token) {
+ unsafe { self.write(token, msg).map_err(TrySendError::Disconnected) }
+ } else {
+ Err(TrySendError::Full(msg))
+ }
+ }
+
+ /// Sends a message into the channel.
+ pub(crate) fn send(
+ &self,
+ msg: T,
+ deadline: Option<Instant>,
+ ) -> Result<(), SendTimeoutError<T>> {
+ let token = &mut Token::default();
+ loop {
+ // Try sending a message several times.
+ let backoff = Backoff::new();
+ loop {
+ if self.start_send(token) {
+ let res = unsafe { self.write(token, msg) };
+ return res.map_err(SendTimeoutError::Disconnected);
+ }
+
+ if backoff.is_completed() {
+ break;
+ } else {
+ backoff.snooze();
+ }
+ }
+
+ if let Some(d) = deadline {
+ if Instant::now() >= d {
+ return Err(SendTimeoutError::Timeout(msg));
+ }
+ }
+
+ Context::with(|cx| {
+ // Prepare for blocking until a receiver wakes us up.
+ let oper = Operation::hook(token);
+ self.senders.register(oper, cx);
+
+ // Has the channel become ready just now?
+ if !self.is_full() || self.is_disconnected() {
+ let _ = cx.try_select(Selected::Aborted);
+ }
+
+ // Block the current thread.
+ let sel = cx.wait_until(deadline);
+
+ match sel {
+ Selected::Waiting => unreachable!(),
+ Selected::Aborted | Selected::Disconnected => {
+ self.senders.unregister(oper).unwrap();
+ }
+ Selected::Operation(_) => {}
+ }
+ });
+ }
+ }
+
+ /// Attempts to receive a message without blocking.
+ pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
+ let token = &mut Token::default();
+
+ if self.start_recv(token) {
+ unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
+ } else {
+ Err(TryRecvError::Empty)
+ }
+ }
+
+ /// Receives a message from the channel.
+ pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
+ let token = &mut Token::default();
+ loop {
+ // Try receiving a message several times.
+ let backoff = Backoff::new();
+ loop {
+ if self.start_recv(token) {
+ let res = unsafe { self.read(token) };
+ return res.map_err(|_| RecvTimeoutError::Disconnected);
+ }
+
+ if backoff.is_completed() {
+ break;
+ } else {
+ backoff.snooze();
+ }
+ }
+
+ if let Some(d) = deadline {
+ if Instant::now() >= d {
+ return Err(RecvTimeoutError::Timeout);
+ }
+ }
+
+ Context::with(|cx| {
+ // Prepare for blocking until a sender wakes us up.
+ let oper = Operation::hook(token);
+ self.receivers.register(oper, cx);
+
+ // Has the channel become ready just now?
+ if !self.is_empty() || self.is_disconnected() {
+ let _ = cx.try_select(Selected::Aborted);
+ }
+
+ // Block the current thread.
+ let sel = cx.wait_until(deadline);
+
+ match sel {
+ Selected::Waiting => unreachable!(),
+ Selected::Aborted | Selected::Disconnected => {
+ self.receivers.unregister(oper).unwrap();
+ // If the channel was disconnected, we still have to check for remaining
+ // messages.
+ }
+ Selected::Operation(_) => {}
+ }
+ });
+ }
+ }
+
+ /// Returns the current number of messages inside the channel.
+ pub(crate) fn len(&self) -> usize {
+ loop {
+ // Load the tail, then load the head.
+ let tail = self.tail.load(Ordering::SeqCst);
+ let head = self.head.load(Ordering::SeqCst);
+
+ // If the tail didn't change, we've got consistent values to work with.
+ if self.tail.load(Ordering::SeqCst) == tail {
+ let hix = head & (self.mark_bit - 1);
+ let tix = tail & (self.mark_bit - 1);
+
+ return if hix < tix {
+ tix - hix
+ } else if hix > tix {
+ self.cap - hix + tix
+ } else if (tail & !self.mark_bit) == head {
+ 0
+ } else {
+ self.cap
+ };
+ }
+ }
+ }
+
+ /// Returns the capacity of the channel.
+ pub(crate) fn capacity(&self) -> Option<usize> {
+ Some(self.cap)
+ }
+
+ /// Disconnects the channel and wakes up all blocked senders and receivers.
+ ///
+ /// Returns `true` if this call disconnected the channel.
+ pub(crate) fn disconnect(&self) -> bool {
+ let tail = self.tail.fetch_or(self.mark_bit, Ordering::SeqCst);
+
+ if tail & self.mark_bit == 0 {
+ self.senders.disconnect();
+ self.receivers.disconnect();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Returns `true` if the channel is disconnected.
+ pub(crate) fn is_disconnected(&self) -> bool {
+ self.tail.load(Ordering::SeqCst) & self.mark_bit != 0
+ }
+
+ /// Returns `true` if the channel is empty.
+ pub(crate) fn is_empty(&self) -> bool {
+ let head = self.head.load(Ordering::SeqCst);
+ let tail = self.tail.load(Ordering::SeqCst);
+
+ // Is the tail equal to the head?
+ //
+ // Note: If the head changes just before we load the tail, that means there was a moment
+ // when the channel was not empty, so it is safe to just return `false`.
+ (tail & !self.mark_bit) == head
+ }
+
+ /// Returns `true` if the channel is full.
+ pub(crate) fn is_full(&self) -> bool {
+ let tail = self.tail.load(Ordering::SeqCst);
+ let head = self.head.load(Ordering::SeqCst);
+
+ // Is the head lagging one lap behind tail?
+ //
+ // Note: If the tail changes just before we load the head, that means there was a moment
+ // when the channel was not full, so it is safe to just return `false`.
+ head.wrapping_add(self.one_lap) == tail & !self.mark_bit
+ }
+}
+
+impl<T> Drop for Channel<T> {
+ fn drop(&mut self) {
+ // Get the index of the head.
+ let head = *self.head.get_mut();
+ let tail = *self.tail.get_mut();
+
+ let hix = head & (self.mark_bit - 1);
+ let tix = tail & (self.mark_bit - 1);
+
+ let len = if hix < tix {
+ tix - hix
+ } else if hix > tix {
+ self.cap - hix + tix
+ } else if (tail & !self.mark_bit) == head {
+ 0
+ } else {
+ self.cap
+ };
+
+ // Loop over all slots that hold a message and drop them.
+ for i in 0..len {
+ // Compute the index of the next slot holding a message.
+ let index = if hix + i < self.cap {
+ hix + i
+ } else {
+ hix + i - self.cap
+ };
+
+ unsafe {
+ debug_assert!(index < self.buffer.len());
+ let slot = self.buffer.get_unchecked_mut(index);
+ let msg = &mut *slot.msg.get();
+ msg.as_mut_ptr().drop_in_place();
+ }
+ }
+ }
+}
+
+/// Receiver handle to a channel.
+pub(crate) struct Receiver<'a, T>(&'a Channel<T>);
+
+/// Sender handle to a channel.
+pub(crate) struct Sender<'a, T>(&'a Channel<T>);
+
+impl<T> SelectHandle for Receiver<'_, T> {
+ fn try_select(&self, token: &mut Token) -> bool {
+ self.0.start_recv(token)
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ None
+ }
+
+ fn register(&self, oper: Operation, cx: &Context) -> bool {
+ self.0.receivers.register(oper, cx);
+ self.is_ready()
+ }
+
+ fn unregister(&self, oper: Operation) {
+ self.0.receivers.unregister(oper);
+ }
+
+ fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
+ self.try_select(token)
+ }
+
+ fn is_ready(&self) -> bool {
+ !self.0.is_empty() || self.0.is_disconnected()
+ }
+
+ fn watch(&self, oper: Operation, cx: &Context) -> bool {
+ self.0.receivers.watch(oper, cx);
+ self.is_ready()
+ }
+
+ fn unwatch(&self, oper: Operation) {
+ self.0.receivers.unwatch(oper);
+ }
+}
+
+impl<T> SelectHandle for Sender<'_, T> {
+ fn try_select(&self, token: &mut Token) -> bool {
+ self.0.start_send(token)
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ None
+ }
+
+ fn register(&self, oper: Operation, cx: &Context) -> bool {
+ self.0.senders.register(oper, cx);
+ self.is_ready()
+ }
+
+ fn unregister(&self, oper: Operation) {
+ self.0.senders.unregister(oper);
+ }
+
+ fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
+ self.try_select(token)
+ }
+
+ fn is_ready(&self) -> bool {
+ !self.0.is_full() || self.0.is_disconnected()
+ }
+
+ fn watch(&self, oper: Operation, cx: &Context) -> bool {
+ self.0.senders.watch(oper, cx);
+ self.is_ready()
+ }
+
+ fn unwatch(&self, oper: Operation) {
+ self.0.senders.unwatch(oper);
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/flavors/at.rs b/third_party/rust/crossbeam-channel/src/flavors/at.rs
new file mode 100644
index 0000000000..ca5ee60f52
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/flavors/at.rs
@@ -0,0 +1,202 @@
+//! Channel that delivers a message at a certain moment in time.
+//!
+//! Messages cannot be sent into this kind of channel; they are materialized on demand.
+
+use std::sync::atomic::{AtomicBool, Ordering};
+use std::thread;
+use std::time::{Duration, Instant};
+
+use crate::context::Context;
+use crate::err::{RecvTimeoutError, TryRecvError};
+use crate::select::{Operation, SelectHandle, Token};
+use crate::utils;
+
+/// Result of a receive operation.
+pub(crate) type AtToken = Option<Instant>;
+
+/// Channel that delivers a message at a certain moment in time
+pub(crate) struct Channel {
+ /// The instant at which the message will be delivered.
+ delivery_time: Instant,
+
+ /// `true` if the message has been received.
+ received: AtomicBool,
+}
+
+impl Channel {
+ /// Creates a channel that delivers a message at a certain instant in time.
+ #[inline]
+ pub(crate) fn new_deadline(when: Instant) -> Self {
+ Channel {
+ delivery_time: when,
+ received: AtomicBool::new(false),
+ }
+ }
+ /// Creates a channel that delivers a message after a certain duration of time.
+ #[inline]
+ pub(crate) fn new_timeout(dur: Duration) -> Self {
+ Self::new_deadline(utils::convert_timeout_to_deadline(dur))
+ }
+
+ /// Attempts to receive a message without blocking.
+ #[inline]
+ pub(crate) fn try_recv(&self) -> Result<Instant, TryRecvError> {
+ // We use relaxed ordering because this is just an optional optimistic check.
+ if self.received.load(Ordering::Relaxed) {
+ // The message has already been received.
+ return Err(TryRecvError::Empty);
+ }
+
+ if Instant::now() < self.delivery_time {
+ // The message was not delivered yet.
+ return Err(TryRecvError::Empty);
+ }
+
+ // Try receiving the message if it is still available.
+ if !self.received.swap(true, Ordering::SeqCst) {
+ // Success! Return delivery time as the message.
+ Ok(self.delivery_time)
+ } else {
+ // The message was already received.
+ Err(TryRecvError::Empty)
+ }
+ }
+
+ /// Receives a message from the channel.
+ #[inline]
+ pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<Instant, RecvTimeoutError> {
+ // We use relaxed ordering because this is just an optional optimistic check.
+ if self.received.load(Ordering::Relaxed) {
+ // The message has already been received.
+ utils::sleep_until(deadline);
+ return Err(RecvTimeoutError::Timeout);
+ }
+
+ // Wait until the message is received or the deadline is reached.
+ loop {
+ let now = Instant::now();
+
+ let deadline = match deadline {
+ // Check if we can receive the next message.
+ _ if now >= self.delivery_time => break,
+ // Check if the timeout deadline has been reached.
+ Some(d) if now >= d => return Err(RecvTimeoutError::Timeout),
+
+ // Sleep until one of the above happens
+ Some(d) if d < self.delivery_time => d,
+ _ => self.delivery_time,
+ };
+
+ thread::sleep(deadline - now);
+ }
+
+ // Try receiving the message if it is still available.
+ if !self.received.swap(true, Ordering::SeqCst) {
+ // Success! Return the message, which is the instant at which it was delivered.
+ Ok(self.delivery_time)
+ } else {
+ // The message was already received. Block forever.
+ utils::sleep_until(None);
+ unreachable!()
+ }
+ }
+
+ /// Reads a message from the channel.
+ #[inline]
+ pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<Instant, ()> {
+ token.at.ok_or(())
+ }
+
+ /// Returns `true` if the channel is empty.
+ #[inline]
+ pub(crate) fn is_empty(&self) -> bool {
+ // We use relaxed ordering because this is just an optional optimistic check.
+ if self.received.load(Ordering::Relaxed) {
+ return true;
+ }
+
+ // If the delivery time hasn't been reached yet, the channel is empty.
+ if Instant::now() < self.delivery_time {
+ return true;
+ }
+
+ // The delivery time has been reached. The channel is empty only if the message has already
+ // been received.
+ self.received.load(Ordering::SeqCst)
+ }
+
+ /// Returns `true` if the channel is full.
+ #[inline]
+ pub(crate) fn is_full(&self) -> bool {
+ !self.is_empty()
+ }
+
+ /// Returns the number of messages in the channel.
+ #[inline]
+ pub(crate) fn len(&self) -> usize {
+ if self.is_empty() {
+ 0
+ } else {
+ 1
+ }
+ }
+
+ /// Returns the capacity of the channel.
+ #[inline]
+ pub(crate) fn capacity(&self) -> Option<usize> {
+ Some(1)
+ }
+}
+
+impl SelectHandle for Channel {
+ #[inline]
+ fn try_select(&self, token: &mut Token) -> bool {
+ match self.try_recv() {
+ Ok(msg) => {
+ token.at = Some(msg);
+ true
+ }
+ Err(TryRecvError::Disconnected) => {
+ token.at = None;
+ true
+ }
+ Err(TryRecvError::Empty) => false,
+ }
+ }
+
+ #[inline]
+ fn deadline(&self) -> Option<Instant> {
+ // We use relaxed ordering because this is just an optional optimistic check.
+ if self.received.load(Ordering::Relaxed) {
+ None
+ } else {
+ Some(self.delivery_time)
+ }
+ }
+
+ #[inline]
+ fn register(&self, _oper: Operation, _cx: &Context) -> bool {
+ self.is_ready()
+ }
+
+ #[inline]
+ fn unregister(&self, _oper: Operation) {}
+
+ #[inline]
+ fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
+ self.try_select(token)
+ }
+
+ #[inline]
+ fn is_ready(&self) -> bool {
+ !self.is_empty()
+ }
+
+ #[inline]
+ fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
+ self.is_ready()
+ }
+
+ #[inline]
+ fn unwatch(&self, _oper: Operation) {}
+}
diff --git a/third_party/rust/crossbeam-channel/src/flavors/list.rs b/third_party/rust/crossbeam-channel/src/flavors/list.rs
new file mode 100644
index 0000000000..6090b8d471
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/flavors/list.rs
@@ -0,0 +1,745 @@
+//! Unbounded channel implemented as a linked list.
+
+use std::cell::UnsafeCell;
+use std::marker::PhantomData;
+use std::mem::MaybeUninit;
+use std::ptr;
+use std::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
+use std::time::Instant;
+
+use crossbeam_utils::{Backoff, CachePadded};
+
+use crate::context::Context;
+use crate::err::{RecvTimeoutError, SendTimeoutError, TryRecvError, TrySendError};
+use crate::select::{Operation, SelectHandle, Selected, Token};
+use crate::waker::SyncWaker;
+
+// TODO(stjepang): Once we bump the minimum required Rust version to 1.28 or newer, re-apply the
+// following changes by @kleimkuhler:
+//
+// 1. https://github.com/crossbeam-rs/crossbeam-channel/pull/100
+// 2. https://github.com/crossbeam-rs/crossbeam-channel/pull/101
+
+// Bits indicating the state of a slot:
+// * If a message has been written into the slot, `WRITE` is set.
+// * If a message has been read from the slot, `READ` is set.
+// * If the block is being destroyed, `DESTROY` is set.
+const WRITE: usize = 1;
+const READ: usize = 2;
+const DESTROY: usize = 4;
+
+// Each block covers one "lap" of indices.
+const LAP: usize = 32;
+// The maximum number of messages a block can hold.
+const BLOCK_CAP: usize = LAP - 1;
+// How many lower bits are reserved for metadata.
+const SHIFT: usize = 1;
+// Has two different purposes:
+// * If set in head, indicates that the block is not the last one.
+// * If set in tail, indicates that the channel is disconnected.
+const MARK_BIT: usize = 1;
+
+/// A slot in a block.
+struct Slot<T> {
+ /// The message.
+ msg: UnsafeCell<MaybeUninit<T>>,
+
+ /// The state of the slot.
+ state: AtomicUsize,
+}
+
+impl<T> Slot<T> {
+ const UNINIT: Self = Self {
+ msg: UnsafeCell::new(MaybeUninit::uninit()),
+ state: AtomicUsize::new(0),
+ };
+
+ /// Waits until a message is written into the slot.
+ fn wait_write(&self) {
+ let backoff = Backoff::new();
+ while self.state.load(Ordering::Acquire) & WRITE == 0 {
+ backoff.snooze();
+ }
+ }
+}
+
+/// A block in a linked list.
+///
+/// Each block in the list can hold up to `BLOCK_CAP` messages.
+struct Block<T> {
+ /// The next block in the linked list.
+ next: AtomicPtr<Block<T>>,
+
+ /// Slots for messages.
+ slots: [Slot<T>; BLOCK_CAP],
+}
+
+impl<T> Block<T> {
+ /// Creates an empty block.
+ fn new() -> Block<T> {
+ Self {
+ next: AtomicPtr::new(ptr::null_mut()),
+ slots: [Slot::UNINIT; BLOCK_CAP],
+ }
+ }
+
+ /// Waits until the next pointer is set.
+ fn wait_next(&self) -> *mut Block<T> {
+ let backoff = Backoff::new();
+ loop {
+ let next = self.next.load(Ordering::Acquire);
+ if !next.is_null() {
+ return next;
+ }
+ backoff.snooze();
+ }
+ }
+
+ /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
+ unsafe fn destroy(this: *mut Block<T>, start: usize) {
+ // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
+ // begun destruction of the block.
+ for i in start..BLOCK_CAP - 1 {
+ let slot = (*this).slots.get_unchecked(i);
+
+ // Mark the `DESTROY` bit if a thread is still using the slot.
+ if slot.state.load(Ordering::Acquire) & READ == 0
+ && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
+ {
+ // If a thread is still using the slot, it will continue destruction of the block.
+ return;
+ }
+ }
+
+ // No thread is using the block, now it is safe to destroy it.
+ drop(Box::from_raw(this));
+ }
+}
+
+/// A position in a channel.
+#[derive(Debug)]
+struct Position<T> {
+ /// The index in the channel.
+ index: AtomicUsize,
+
+ /// The block in the linked list.
+ block: AtomicPtr<Block<T>>,
+}
+
+/// The token type for the list flavor.
+#[derive(Debug)]
+pub(crate) struct ListToken {
+ /// The block of slots.
+ block: *const u8,
+
+ /// The offset into the block.
+ offset: usize,
+}
+
+impl Default for ListToken {
+ #[inline]
+ fn default() -> Self {
+ ListToken {
+ block: ptr::null(),
+ offset: 0,
+ }
+ }
+}
+
+/// Unbounded channel implemented as a linked list.
+///
+/// Each message sent into the channel is assigned a sequence number, i.e. an index. Indices are
+/// represented as numbers of type `usize` and wrap on overflow.
+///
+/// Consecutive messages are grouped into blocks in order to put less pressure on the allocator and
+/// improve cache efficiency.
+pub(crate) struct Channel<T> {
+ /// The head of the channel.
+ head: CachePadded<Position<T>>,
+
+ /// The tail of the channel.
+ tail: CachePadded<Position<T>>,
+
+ /// Receivers waiting while the channel is empty and not disconnected.
+ receivers: SyncWaker,
+
+ /// Indicates that dropping a `Channel<T>` may drop messages of type `T`.
+ _marker: PhantomData<T>,
+}
+
+impl<T> Channel<T> {
+ /// Creates a new unbounded channel.
+ pub(crate) fn new() -> Self {
+ Channel {
+ head: CachePadded::new(Position {
+ block: AtomicPtr::new(ptr::null_mut()),
+ index: AtomicUsize::new(0),
+ }),
+ tail: CachePadded::new(Position {
+ block: AtomicPtr::new(ptr::null_mut()),
+ index: AtomicUsize::new(0),
+ }),
+ receivers: SyncWaker::new(),
+ _marker: PhantomData,
+ }
+ }
+
+ /// Returns a receiver handle to the channel.
+ pub(crate) fn receiver(&self) -> Receiver<'_, T> {
+ Receiver(self)
+ }
+
+ /// Returns a sender handle to the channel.
+ pub(crate) fn sender(&self) -> Sender<'_, T> {
+ Sender(self)
+ }
+
+ /// Attempts to reserve a slot for sending a message.
+ fn start_send(&self, token: &mut Token) -> bool {
+ let backoff = Backoff::new();
+ let mut tail = self.tail.index.load(Ordering::Acquire);
+ let mut block = self.tail.block.load(Ordering::Acquire);
+ let mut next_block = None;
+
+ loop {
+ // Check if the channel is disconnected.
+ if tail & MARK_BIT != 0 {
+ token.list.block = ptr::null();
+ return true;
+ }
+
+ // Calculate the offset of the index into the block.
+ let offset = (tail >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ tail = self.tail.index.load(Ordering::Acquire);
+ block = self.tail.block.load(Ordering::Acquire);
+ continue;
+ }
+
+ // If we're going to have to install the next block, allocate it in advance in order to
+ // make the wait for other threads as short as possible.
+ if offset + 1 == BLOCK_CAP && next_block.is_none() {
+ next_block = Some(Box::new(Block::<T>::new()));
+ }
+
+ // If this is the first message to be sent into the channel, we need to allocate the
+ // first block and install it.
+ if block.is_null() {
+ let new = Box::into_raw(Box::new(Block::<T>::new()));
+
+ if self
+ .tail
+ .block
+ .compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
+ .is_ok()
+ {
+ self.head.block.store(new, Ordering::Release);
+ block = new;
+ } else {
+ next_block = unsafe { Some(Box::from_raw(new)) };
+ tail = self.tail.index.load(Ordering::Acquire);
+ block = self.tail.block.load(Ordering::Acquire);
+ continue;
+ }
+ }
+
+ let new_tail = tail + (1 << SHIFT);
+
+ // Try advancing the tail forward.
+ match self.tail.index.compare_exchange_weak(
+ tail,
+ new_tail,
+ Ordering::SeqCst,
+ Ordering::Acquire,
+ ) {
+ Ok(_) => unsafe {
+ // If we've reached the end of the block, install the next one.
+ if offset + 1 == BLOCK_CAP {
+ let next_block = Box::into_raw(next_block.unwrap());
+ self.tail.block.store(next_block, Ordering::Release);
+ self.tail.index.fetch_add(1 << SHIFT, Ordering::Release);
+ (*block).next.store(next_block, Ordering::Release);
+ }
+
+ token.list.block = block as *const u8;
+ token.list.offset = offset;
+ return true;
+ },
+ Err(t) => {
+ tail = t;
+ block = self.tail.block.load(Ordering::Acquire);
+ backoff.spin();
+ }
+ }
+ }
+ }
+
+ /// Writes a message into the channel.
+ pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
+ // If there is no slot, the channel is disconnected.
+ if token.list.block.is_null() {
+ return Err(msg);
+ }
+
+ // Write the message into the slot.
+ let block = token.list.block.cast::<Block<T>>();
+ let offset = token.list.offset;
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.msg.get().write(MaybeUninit::new(msg));
+ slot.state.fetch_or(WRITE, Ordering::Release);
+
+ // Wake a sleeping receiver.
+ self.receivers.notify();
+ Ok(())
+ }
+
+ /// Attempts to reserve a slot for receiving a message.
+ fn start_recv(&self, token: &mut Token) -> bool {
+ let backoff = Backoff::new();
+ let mut head = self.head.index.load(Ordering::Acquire);
+ let mut block = self.head.block.load(Ordering::Acquire);
+
+ loop {
+ // Calculate the offset of the index into the block.
+ let offset = (head >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+ continue;
+ }
+
+ let mut new_head = head + (1 << SHIFT);
+
+ if new_head & MARK_BIT == 0 {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the channel is empty.
+ if head >> SHIFT == tail >> SHIFT {
+ // If the channel is disconnected...
+ if tail & MARK_BIT != 0 {
+ // ...then receive an error.
+ token.list.block = ptr::null();
+ return true;
+ } else {
+ // Otherwise, the receive operation is not ready.
+ return false;
+ }
+ }
+
+ // If head and tail are not in the same block, set `MARK_BIT` in head.
+ if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
+ new_head |= MARK_BIT;
+ }
+ }
+
+ // The block can be null here only if the first message is being sent into the channel.
+ // In that case, just wait until it gets initialized.
+ if block.is_null() {
+ backoff.snooze();
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+ continue;
+ }
+
+ // Try moving the head index forward.
+ match self.head.index.compare_exchange_weak(
+ head,
+ new_head,
+ Ordering::SeqCst,
+ Ordering::Acquire,
+ ) {
+ Ok(_) => unsafe {
+ // If we've reached the end of the block, move to the next one.
+ if offset + 1 == BLOCK_CAP {
+ let next = (*block).wait_next();
+ let mut next_index = (new_head & !MARK_BIT).wrapping_add(1 << SHIFT);
+ if !(*next).next.load(Ordering::Relaxed).is_null() {
+ next_index |= MARK_BIT;
+ }
+
+ self.head.block.store(next, Ordering::Release);
+ self.head.index.store(next_index, Ordering::Release);
+ }
+
+ token.list.block = block as *const u8;
+ token.list.offset = offset;
+ return true;
+ },
+ Err(h) => {
+ head = h;
+ block = self.head.block.load(Ordering::Acquire);
+ backoff.spin();
+ }
+ }
+ }
+ }
+
+ /// Reads a message from the channel.
+ pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
+ if token.list.block.is_null() {
+ // The channel is disconnected.
+ return Err(());
+ }
+
+ // Read the message.
+ let block = token.list.block as *mut Block<T>;
+ let offset = token.list.offset;
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.wait_write();
+ let msg = slot.msg.get().read().assume_init();
+
+ // Destroy the block if we've reached the end, or if another thread wanted to destroy but
+ // couldn't because we were busy reading from the slot.
+ if offset + 1 == BLOCK_CAP {
+ Block::destroy(block, 0);
+ } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
+ Block::destroy(block, offset + 1);
+ }
+
+ Ok(msg)
+ }
+
+ /// Attempts to send a message into the channel.
+ pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
+ self.send(msg, None).map_err(|err| match err {
+ SendTimeoutError::Disconnected(msg) => TrySendError::Disconnected(msg),
+ SendTimeoutError::Timeout(_) => unreachable!(),
+ })
+ }
+
+ /// Sends a message into the channel.
+ pub(crate) fn send(
+ &self,
+ msg: T,
+ _deadline: Option<Instant>,
+ ) -> Result<(), SendTimeoutError<T>> {
+ let token = &mut Token::default();
+ assert!(self.start_send(token));
+ unsafe {
+ self.write(token, msg)
+ .map_err(SendTimeoutError::Disconnected)
+ }
+ }
+
+ /// Attempts to receive a message without blocking.
+ pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
+ let token = &mut Token::default();
+
+ if self.start_recv(token) {
+ unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
+ } else {
+ Err(TryRecvError::Empty)
+ }
+ }
+
+ /// Receives a message from the channel.
+ pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
+ let token = &mut Token::default();
+ loop {
+ // Try receiving a message several times.
+ let backoff = Backoff::new();
+ loop {
+ if self.start_recv(token) {
+ unsafe {
+ return self.read(token).map_err(|_| RecvTimeoutError::Disconnected);
+ }
+ }
+
+ if backoff.is_completed() {
+ break;
+ } else {
+ backoff.snooze();
+ }
+ }
+
+ if let Some(d) = deadline {
+ if Instant::now() >= d {
+ return Err(RecvTimeoutError::Timeout);
+ }
+ }
+
+ // Prepare for blocking until a sender wakes us up.
+ Context::with(|cx| {
+ let oper = Operation::hook(token);
+ self.receivers.register(oper, cx);
+
+ // Has the channel become ready just now?
+ if !self.is_empty() || self.is_disconnected() {
+ let _ = cx.try_select(Selected::Aborted);
+ }
+
+ // Block the current thread.
+ let sel = cx.wait_until(deadline);
+
+ match sel {
+ Selected::Waiting => unreachable!(),
+ Selected::Aborted | Selected::Disconnected => {
+ self.receivers.unregister(oper).unwrap();
+ // If the channel was disconnected, we still have to check for remaining
+ // messages.
+ }
+ Selected::Operation(_) => {}
+ }
+ });
+ }
+ }
+
+ /// Returns the current number of messages inside the channel.
+ pub(crate) fn len(&self) -> usize {
+ loop {
+ // Load the tail index, then load the head index.
+ let mut tail = self.tail.index.load(Ordering::SeqCst);
+ let mut head = self.head.index.load(Ordering::SeqCst);
+
+ // If the tail index didn't change, we've got consistent indices to work with.
+ if self.tail.index.load(Ordering::SeqCst) == tail {
+ // Erase the lower bits.
+ tail &= !((1 << SHIFT) - 1);
+ head &= !((1 << SHIFT) - 1);
+
+ // Fix up indices if they fall onto block ends.
+ if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
+ tail = tail.wrapping_add(1 << SHIFT);
+ }
+ if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
+ head = head.wrapping_add(1 << SHIFT);
+ }
+
+ // Rotate indices so that head falls into the first block.
+ let lap = (head >> SHIFT) / LAP;
+ tail = tail.wrapping_sub((lap * LAP) << SHIFT);
+ head = head.wrapping_sub((lap * LAP) << SHIFT);
+
+ // Remove the lower bits.
+ tail >>= SHIFT;
+ head >>= SHIFT;
+
+ // Return the difference minus the number of blocks between tail and head.
+ return tail - head - tail / LAP;
+ }
+ }
+ }
+
+ /// Returns the capacity of the channel.
+ pub(crate) fn capacity(&self) -> Option<usize> {
+ None
+ }
+
+ /// Disconnects senders and wakes up all blocked receivers.
+ ///
+ /// Returns `true` if this call disconnected the channel.
+ pub(crate) fn disconnect_senders(&self) -> bool {
+ let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
+
+ if tail & MARK_BIT == 0 {
+ self.receivers.disconnect();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Disconnects receivers.
+ ///
+ /// Returns `true` if this call disconnected the channel.
+ pub(crate) fn disconnect_receivers(&self) -> bool {
+ let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
+
+ if tail & MARK_BIT == 0 {
+ // If receivers are dropped first, discard all messages to free
+ // memory eagerly.
+ self.discard_all_messages();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Discards all messages.
+ ///
+ /// This method should only be called when all receivers are dropped.
+ fn discard_all_messages(&self) {
+ let backoff = Backoff::new();
+ let mut tail = self.tail.index.load(Ordering::Acquire);
+ loop {
+ let offset = (tail >> SHIFT) % LAP;
+ if offset != BLOCK_CAP {
+ break;
+ }
+
+ // New updates to tail will be rejected by MARK_BIT and aborted unless it's
+ // at boundary. We need to wait for the updates take affect otherwise there
+ // can be memory leaks.
+ backoff.snooze();
+ tail = self.tail.index.load(Ordering::Acquire);
+ }
+
+ let mut head = self.head.index.load(Ordering::Acquire);
+ let mut block = self.head.block.load(Ordering::Acquire);
+
+ unsafe {
+ // Drop all messages between head and tail and deallocate the heap-allocated blocks.
+ while head >> SHIFT != tail >> SHIFT {
+ let offset = (head >> SHIFT) % LAP;
+
+ if offset < BLOCK_CAP {
+ // Drop the message in the slot.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.wait_write();
+ let p = &mut *slot.msg.get();
+ p.as_mut_ptr().drop_in_place();
+ } else {
+ (*block).wait_next();
+ // Deallocate the block and move to the next one.
+ let next = (*block).next.load(Ordering::Acquire);
+ drop(Box::from_raw(block));
+ block = next;
+ }
+
+ head = head.wrapping_add(1 << SHIFT);
+ }
+
+ // Deallocate the last remaining block.
+ if !block.is_null() {
+ drop(Box::from_raw(block));
+ }
+ }
+ head &= !MARK_BIT;
+ self.head.block.store(ptr::null_mut(), Ordering::Release);
+ self.head.index.store(head, Ordering::Release);
+ }
+
+ /// Returns `true` if the channel is disconnected.
+ pub(crate) fn is_disconnected(&self) -> bool {
+ self.tail.index.load(Ordering::SeqCst) & MARK_BIT != 0
+ }
+
+ /// Returns `true` if the channel is empty.
+ pub(crate) fn is_empty(&self) -> bool {
+ let head = self.head.index.load(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::SeqCst);
+ head >> SHIFT == tail >> SHIFT
+ }
+
+ /// Returns `true` if the channel is full.
+ pub(crate) fn is_full(&self) -> bool {
+ false
+ }
+}
+
+impl<T> Drop for Channel<T> {
+ fn drop(&mut self) {
+ let mut head = *self.head.index.get_mut();
+ let mut tail = *self.tail.index.get_mut();
+ let mut block = *self.head.block.get_mut();
+
+ // Erase the lower bits.
+ head &= !((1 << SHIFT) - 1);
+ tail &= !((1 << SHIFT) - 1);
+
+ unsafe {
+ // Drop all messages between head and tail and deallocate the heap-allocated blocks.
+ while head != tail {
+ let offset = (head >> SHIFT) % LAP;
+
+ if offset < BLOCK_CAP {
+ // Drop the message in the slot.
+ let slot = (*block).slots.get_unchecked(offset);
+ let p = &mut *slot.msg.get();
+ p.as_mut_ptr().drop_in_place();
+ } else {
+ // Deallocate the block and move to the next one.
+ let next = *(*block).next.get_mut();
+ drop(Box::from_raw(block));
+ block = next;
+ }
+
+ head = head.wrapping_add(1 << SHIFT);
+ }
+
+ // Deallocate the last remaining block.
+ if !block.is_null() {
+ drop(Box::from_raw(block));
+ }
+ }
+ }
+}
+
+/// Receiver handle to a channel.
+pub(crate) struct Receiver<'a, T>(&'a Channel<T>);
+
+/// Sender handle to a channel.
+pub(crate) struct Sender<'a, T>(&'a Channel<T>);
+
+impl<T> SelectHandle for Receiver<'_, T> {
+ fn try_select(&self, token: &mut Token) -> bool {
+ self.0.start_recv(token)
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ None
+ }
+
+ fn register(&self, oper: Operation, cx: &Context) -> bool {
+ self.0.receivers.register(oper, cx);
+ self.is_ready()
+ }
+
+ fn unregister(&self, oper: Operation) {
+ self.0.receivers.unregister(oper);
+ }
+
+ fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
+ self.try_select(token)
+ }
+
+ fn is_ready(&self) -> bool {
+ !self.0.is_empty() || self.0.is_disconnected()
+ }
+
+ fn watch(&self, oper: Operation, cx: &Context) -> bool {
+ self.0.receivers.watch(oper, cx);
+ self.is_ready()
+ }
+
+ fn unwatch(&self, oper: Operation) {
+ self.0.receivers.unwatch(oper);
+ }
+}
+
+impl<T> SelectHandle for Sender<'_, T> {
+ fn try_select(&self, token: &mut Token) -> bool {
+ self.0.start_send(token)
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ None
+ }
+
+ fn register(&self, _oper: Operation, _cx: &Context) -> bool {
+ self.is_ready()
+ }
+
+ fn unregister(&self, _oper: Operation) {}
+
+ fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
+ self.try_select(token)
+ }
+
+ fn is_ready(&self) -> bool {
+ true
+ }
+
+ fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
+ self.is_ready()
+ }
+
+ fn unwatch(&self, _oper: Operation) {}
+}
diff --git a/third_party/rust/crossbeam-channel/src/flavors/mod.rs b/third_party/rust/crossbeam-channel/src/flavors/mod.rs
new file mode 100644
index 0000000000..0314bf4209
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/flavors/mod.rs
@@ -0,0 +1,17 @@
+//! Channel flavors.
+//!
+//! There are six flavors:
+//!
+//! 1. `at` - Channel that delivers a message after a certain amount of time.
+//! 2. `array` - Bounded channel based on a preallocated array.
+//! 3. `list` - Unbounded channel implemented as a linked list.
+//! 4. `never` - Channel that never delivers messages.
+//! 5. `tick` - Channel that delivers messages periodically.
+//! 6. `zero` - Zero-capacity channel.
+
+pub(crate) mod array;
+pub(crate) mod at;
+pub(crate) mod list;
+pub(crate) mod never;
+pub(crate) mod tick;
+pub(crate) mod zero;
diff --git a/third_party/rust/crossbeam-channel/src/flavors/never.rs b/third_party/rust/crossbeam-channel/src/flavors/never.rs
new file mode 100644
index 0000000000..277a61dc1c
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/flavors/never.rs
@@ -0,0 +1,110 @@
+//! Channel that never delivers messages.
+//!
+//! Messages cannot be sent into this kind of channel.
+
+use std::marker::PhantomData;
+use std::time::Instant;
+
+use crate::context::Context;
+use crate::err::{RecvTimeoutError, TryRecvError};
+use crate::select::{Operation, SelectHandle, Token};
+use crate::utils;
+
+/// This flavor doesn't need a token.
+pub(crate) type NeverToken = ();
+
+/// Channel that never delivers messages.
+pub(crate) struct Channel<T> {
+ _marker: PhantomData<T>,
+}
+
+impl<T> Channel<T> {
+ /// Creates a channel that never delivers messages.
+ #[inline]
+ pub(crate) fn new() -> Self {
+ Channel {
+ _marker: PhantomData,
+ }
+ }
+
+ /// Attempts to receive a message without blocking.
+ #[inline]
+ pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
+ Err(TryRecvError::Empty)
+ }
+
+ /// Receives a message from the channel.
+ #[inline]
+ pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
+ utils::sleep_until(deadline);
+ Err(RecvTimeoutError::Timeout)
+ }
+
+ /// Reads a message from the channel.
+ #[inline]
+ pub(crate) unsafe fn read(&self, _token: &mut Token) -> Result<T, ()> {
+ Err(())
+ }
+
+ /// Returns `true` if the channel is empty.
+ #[inline]
+ pub(crate) fn is_empty(&self) -> bool {
+ true
+ }
+
+ /// Returns `true` if the channel is full.
+ #[inline]
+ pub(crate) fn is_full(&self) -> bool {
+ true
+ }
+
+ /// Returns the number of messages in the channel.
+ #[inline]
+ pub(crate) fn len(&self) -> usize {
+ 0
+ }
+
+ /// Returns the capacity of the channel.
+ #[inline]
+ pub(crate) fn capacity(&self) -> Option<usize> {
+ Some(0)
+ }
+}
+
+impl<T> SelectHandle for Channel<T> {
+ #[inline]
+ fn try_select(&self, _token: &mut Token) -> bool {
+ false
+ }
+
+ #[inline]
+ fn deadline(&self) -> Option<Instant> {
+ None
+ }
+
+ #[inline]
+ fn register(&self, _oper: Operation, _cx: &Context) -> bool {
+ self.is_ready()
+ }
+
+ #[inline]
+ fn unregister(&self, _oper: Operation) {}
+
+ #[inline]
+ fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
+ self.try_select(token)
+ }
+
+ #[inline]
+ fn is_ready(&self) -> bool {
+ false
+ }
+
+ #[inline]
+ fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
+ self.is_ready()
+ }
+
+ #[inline]
+ fn unwatch(&self, _oper: Operation) {}
+}
diff --git a/third_party/rust/crossbeam-channel/src/flavors/tick.rs b/third_party/rust/crossbeam-channel/src/flavors/tick.rs
new file mode 100644
index 0000000000..4201b6eb0b
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/flavors/tick.rs
@@ -0,0 +1,168 @@
+//! Channel that delivers messages periodically.
+//!
+//! Messages cannot be sent into this kind of channel; they are materialized on demand.
+
+use std::thread;
+use std::time::{Duration, Instant};
+
+use crossbeam_utils::atomic::AtomicCell;
+
+use crate::context::Context;
+use crate::err::{RecvTimeoutError, TryRecvError};
+use crate::select::{Operation, SelectHandle, Token};
+use crate::utils;
+
+/// Result of a receive operation.
+pub(crate) type TickToken = Option<Instant>;
+
+/// Channel that delivers messages periodically.
+pub(crate) struct Channel {
+ /// The instant at which the next message will be delivered.
+ delivery_time: AtomicCell<Instant>,
+
+ /// The time interval in which messages get delivered.
+ duration: Duration,
+}
+
+impl Channel {
+ /// Creates a channel that delivers messages periodically.
+ #[inline]
+ pub(crate) fn new(dur: Duration) -> Self {
+ Channel {
+ delivery_time: AtomicCell::new(utils::convert_timeout_to_deadline(dur)),
+ duration: dur,
+ }
+ }
+
+ /// Attempts to receive a message without blocking.
+ #[inline]
+ pub(crate) fn try_recv(&self) -> Result<Instant, TryRecvError> {
+ loop {
+ let now = Instant::now();
+ let delivery_time = self.delivery_time.load();
+
+ if now < delivery_time {
+ return Err(TryRecvError::Empty);
+ }
+
+ if self
+ .delivery_time
+ .compare_exchange(delivery_time, now + self.duration)
+ .is_ok()
+ {
+ return Ok(delivery_time);
+ }
+ }
+ }
+
+ /// Receives a message from the channel.
+ #[inline]
+ pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<Instant, RecvTimeoutError> {
+ loop {
+ let delivery_time = self.delivery_time.load();
+ let now = Instant::now();
+
+ if let Some(d) = deadline {
+ if d < delivery_time {
+ if now < d {
+ thread::sleep(d - now);
+ }
+ return Err(RecvTimeoutError::Timeout);
+ }
+ }
+
+ if self
+ .delivery_time
+ .compare_exchange(delivery_time, delivery_time.max(now) + self.duration)
+ .is_ok()
+ {
+ if now < delivery_time {
+ thread::sleep(delivery_time - now);
+ }
+ return Ok(delivery_time);
+ }
+ }
+ }
+
+ /// Reads a message from the channel.
+ #[inline]
+ pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<Instant, ()> {
+ token.tick.ok_or(())
+ }
+
+ /// Returns `true` if the channel is empty.
+ #[inline]
+ pub(crate) fn is_empty(&self) -> bool {
+ Instant::now() < self.delivery_time.load()
+ }
+
+ /// Returns `true` if the channel is full.
+ #[inline]
+ pub(crate) fn is_full(&self) -> bool {
+ !self.is_empty()
+ }
+
+ /// Returns the number of messages in the channel.
+ #[inline]
+ pub(crate) fn len(&self) -> usize {
+ if self.is_empty() {
+ 0
+ } else {
+ 1
+ }
+ }
+
+ /// Returns the capacity of the channel.
+ #[inline]
+ pub(crate) fn capacity(&self) -> Option<usize> {
+ Some(1)
+ }
+}
+
+impl SelectHandle for Channel {
+ #[inline]
+ fn try_select(&self, token: &mut Token) -> bool {
+ match self.try_recv() {
+ Ok(msg) => {
+ token.tick = Some(msg);
+ true
+ }
+ Err(TryRecvError::Disconnected) => {
+ token.tick = None;
+ true
+ }
+ Err(TryRecvError::Empty) => false,
+ }
+ }
+
+ #[inline]
+ fn deadline(&self) -> Option<Instant> {
+ Some(self.delivery_time.load())
+ }
+
+ #[inline]
+ fn register(&self, _oper: Operation, _cx: &Context) -> bool {
+ self.is_ready()
+ }
+
+ #[inline]
+ fn unregister(&self, _oper: Operation) {}
+
+ #[inline]
+ fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
+ self.try_select(token)
+ }
+
+ #[inline]
+ fn is_ready(&self) -> bool {
+ !self.is_empty()
+ }
+
+ #[inline]
+ fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
+ self.is_ready()
+ }
+
+ #[inline]
+ fn unwatch(&self, _oper: Operation) {}
+}
diff --git a/third_party/rust/crossbeam-channel/src/flavors/zero.rs b/third_party/rust/crossbeam-channel/src/flavors/zero.rs
new file mode 100644
index 0000000000..aae2ea3002
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/flavors/zero.rs
@@ -0,0 +1,495 @@
+//! Zero-capacity channel.
+//!
+//! This kind of channel is also known as *rendezvous* channel.
+
+use std::cell::UnsafeCell;
+use std::marker::PhantomData;
+use std::sync::atomic::{AtomicBool, Ordering};
+use std::sync::Mutex;
+use std::time::Instant;
+use std::{fmt, ptr};
+
+use crossbeam_utils::Backoff;
+
+use crate::context::Context;
+use crate::err::{RecvTimeoutError, SendTimeoutError, TryRecvError, TrySendError};
+use crate::select::{Operation, SelectHandle, Selected, Token};
+use crate::waker::Waker;
+
+/// A pointer to a packet.
+pub(crate) struct ZeroToken(*mut ());
+
+impl Default for ZeroToken {
+ fn default() -> Self {
+ Self(ptr::null_mut())
+ }
+}
+
+impl fmt::Debug for ZeroToken {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&(self.0 as usize), f)
+ }
+}
+
+/// A slot for passing one message from a sender to a receiver.
+struct Packet<T> {
+ /// Equals `true` if the packet is allocated on the stack.
+ on_stack: bool,
+
+ /// Equals `true` once the packet is ready for reading or writing.
+ ready: AtomicBool,
+
+ /// The message.
+ msg: UnsafeCell<Option<T>>,
+}
+
+impl<T> Packet<T> {
+ /// Creates an empty packet on the stack.
+ fn empty_on_stack() -> Packet<T> {
+ Packet {
+ on_stack: true,
+ ready: AtomicBool::new(false),
+ msg: UnsafeCell::new(None),
+ }
+ }
+
+ /// Creates an empty packet on the heap.
+ fn empty_on_heap() -> Box<Packet<T>> {
+ Box::new(Packet {
+ on_stack: false,
+ ready: AtomicBool::new(false),
+ msg: UnsafeCell::new(None),
+ })
+ }
+
+ /// Creates a packet on the stack, containing a message.
+ fn message_on_stack(msg: T) -> Packet<T> {
+ Packet {
+ on_stack: true,
+ ready: AtomicBool::new(false),
+ msg: UnsafeCell::new(Some(msg)),
+ }
+ }
+
+ /// Waits until the packet becomes ready for reading or writing.
+ fn wait_ready(&self) {
+ let backoff = Backoff::new();
+ while !self.ready.load(Ordering::Acquire) {
+ backoff.snooze();
+ }
+ }
+}
+
+/// Inner representation of a zero-capacity channel.
+struct Inner {
+ /// Senders waiting to pair up with a receive operation.
+ senders: Waker,
+
+ /// Receivers waiting to pair up with a send operation.
+ receivers: Waker,
+
+ /// Equals `true` when the channel is disconnected.
+ is_disconnected: bool,
+}
+
+/// Zero-capacity channel.
+pub(crate) struct Channel<T> {
+ /// Inner representation of the channel.
+ inner: Mutex<Inner>,
+
+ /// Indicates that dropping a `Channel<T>` may drop values of type `T`.
+ _marker: PhantomData<T>,
+}
+
+impl<T> Channel<T> {
+ /// Constructs a new zero-capacity channel.
+ pub(crate) fn new() -> Self {
+ Channel {
+ inner: Mutex::new(Inner {
+ senders: Waker::new(),
+ receivers: Waker::new(),
+ is_disconnected: false,
+ }),
+ _marker: PhantomData,
+ }
+ }
+
+ /// Returns a receiver handle to the channel.
+ pub(crate) fn receiver(&self) -> Receiver<'_, T> {
+ Receiver(self)
+ }
+
+ /// Returns a sender handle to the channel.
+ pub(crate) fn sender(&self) -> Sender<'_, T> {
+ Sender(self)
+ }
+
+ /// Attempts to reserve a slot for sending a message.
+ fn start_send(&self, token: &mut Token) -> bool {
+ let mut inner = self.inner.lock().unwrap();
+
+ // If there's a waiting receiver, pair up with it.
+ if let Some(operation) = inner.receivers.try_select() {
+ token.zero.0 = operation.packet;
+ true
+ } else if inner.is_disconnected {
+ token.zero.0 = ptr::null_mut();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Writes a message into the packet.
+ pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
+ // If there is no packet, the channel is disconnected.
+ if token.zero.0.is_null() {
+ return Err(msg);
+ }
+
+ let packet = &*(token.zero.0 as *const Packet<T>);
+ packet.msg.get().write(Some(msg));
+ packet.ready.store(true, Ordering::Release);
+ Ok(())
+ }
+
+ /// Attempts to pair up with a sender.
+ fn start_recv(&self, token: &mut Token) -> bool {
+ let mut inner = self.inner.lock().unwrap();
+
+ // If there's a waiting sender, pair up with it.
+ if let Some(operation) = inner.senders.try_select() {
+ token.zero.0 = operation.packet;
+ true
+ } else if inner.is_disconnected {
+ token.zero.0 = ptr::null_mut();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Reads a message from the packet.
+ pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
+ // If there is no packet, the channel is disconnected.
+ if token.zero.0.is_null() {
+ return Err(());
+ }
+
+ let packet = &*(token.zero.0 as *const Packet<T>);
+
+ if packet.on_stack {
+ // The message has been in the packet from the beginning, so there is no need to wait
+ // for it. However, after reading the message, we need to set `ready` to `true` in
+ // order to signal that the packet can be destroyed.
+ let msg = packet.msg.get().replace(None).unwrap();
+ packet.ready.store(true, Ordering::Release);
+ Ok(msg)
+ } else {
+ // Wait until the message becomes available, then read it and destroy the
+ // heap-allocated packet.
+ packet.wait_ready();
+ let msg = packet.msg.get().replace(None).unwrap();
+ drop(Box::from_raw(token.zero.0.cast::<Packet<T>>()));
+ Ok(msg)
+ }
+ }
+
+ /// Attempts to send a message into the channel.
+ pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
+ let token = &mut Token::default();
+ let mut inner = self.inner.lock().unwrap();
+
+ // If there's a waiting receiver, pair up with it.
+ if let Some(operation) = inner.receivers.try_select() {
+ token.zero.0 = operation.packet;
+ drop(inner);
+ unsafe {
+ self.write(token, msg).ok().unwrap();
+ }
+ Ok(())
+ } else if inner.is_disconnected {
+ Err(TrySendError::Disconnected(msg))
+ } else {
+ Err(TrySendError::Full(msg))
+ }
+ }
+
+ /// Sends a message into the channel.
+ pub(crate) fn send(
+ &self,
+ msg: T,
+ deadline: Option<Instant>,
+ ) -> Result<(), SendTimeoutError<T>> {
+ let token = &mut Token::default();
+ let mut inner = self.inner.lock().unwrap();
+
+ // If there's a waiting receiver, pair up with it.
+ if let Some(operation) = inner.receivers.try_select() {
+ token.zero.0 = operation.packet;
+ drop(inner);
+ unsafe {
+ self.write(token, msg).ok().unwrap();
+ }
+ return Ok(());
+ }
+
+ if inner.is_disconnected {
+ return Err(SendTimeoutError::Disconnected(msg));
+ }
+
+ Context::with(|cx| {
+ // Prepare for blocking until a receiver wakes us up.
+ let oper = Operation::hook(token);
+ let mut packet = Packet::<T>::message_on_stack(msg);
+ inner
+ .senders
+ .register_with_packet(oper, &mut packet as *mut Packet<T> as *mut (), cx);
+ inner.receivers.notify();
+ drop(inner);
+
+ // Block the current thread.
+ let sel = cx.wait_until(deadline);
+
+ match sel {
+ Selected::Waiting => unreachable!(),
+ Selected::Aborted => {
+ self.inner.lock().unwrap().senders.unregister(oper).unwrap();
+ let msg = unsafe { packet.msg.get().replace(None).unwrap() };
+ Err(SendTimeoutError::Timeout(msg))
+ }
+ Selected::Disconnected => {
+ self.inner.lock().unwrap().senders.unregister(oper).unwrap();
+ let msg = unsafe { packet.msg.get().replace(None).unwrap() };
+ Err(SendTimeoutError::Disconnected(msg))
+ }
+ Selected::Operation(_) => {
+ // Wait until the message is read, then drop the packet.
+ packet.wait_ready();
+ Ok(())
+ }
+ }
+ })
+ }
+
+ /// Attempts to receive a message without blocking.
+ pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
+ let token = &mut Token::default();
+ let mut inner = self.inner.lock().unwrap();
+
+ // If there's a waiting sender, pair up with it.
+ if let Some(operation) = inner.senders.try_select() {
+ token.zero.0 = operation.packet;
+ drop(inner);
+ unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
+ } else if inner.is_disconnected {
+ Err(TryRecvError::Disconnected)
+ } else {
+ Err(TryRecvError::Empty)
+ }
+ }
+
+ /// Receives a message from the channel.
+ pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
+ let token = &mut Token::default();
+ let mut inner = self.inner.lock().unwrap();
+
+ // If there's a waiting sender, pair up with it.
+ if let Some(operation) = inner.senders.try_select() {
+ token.zero.0 = operation.packet;
+ drop(inner);
+ unsafe {
+ return self.read(token).map_err(|_| RecvTimeoutError::Disconnected);
+ }
+ }
+
+ if inner.is_disconnected {
+ return Err(RecvTimeoutError::Disconnected);
+ }
+
+ Context::with(|cx| {
+ // Prepare for blocking until a sender wakes us up.
+ let oper = Operation::hook(token);
+ let mut packet = Packet::<T>::empty_on_stack();
+ inner.receivers.register_with_packet(
+ oper,
+ &mut packet as *mut Packet<T> as *mut (),
+ cx,
+ );
+ inner.senders.notify();
+ drop(inner);
+
+ // Block the current thread.
+ let sel = cx.wait_until(deadline);
+
+ match sel {
+ Selected::Waiting => unreachable!(),
+ Selected::Aborted => {
+ self.inner
+ .lock()
+ .unwrap()
+ .receivers
+ .unregister(oper)
+ .unwrap();
+ Err(RecvTimeoutError::Timeout)
+ }
+ Selected::Disconnected => {
+ self.inner
+ .lock()
+ .unwrap()
+ .receivers
+ .unregister(oper)
+ .unwrap();
+ Err(RecvTimeoutError::Disconnected)
+ }
+ Selected::Operation(_) => {
+ // Wait until the message is provided, then read it.
+ packet.wait_ready();
+ unsafe { Ok(packet.msg.get().replace(None).unwrap()) }
+ }
+ }
+ })
+ }
+
+ /// Disconnects the channel and wakes up all blocked senders and receivers.
+ ///
+ /// Returns `true` if this call disconnected the channel.
+ pub(crate) fn disconnect(&self) -> bool {
+ let mut inner = self.inner.lock().unwrap();
+
+ if !inner.is_disconnected {
+ inner.is_disconnected = true;
+ inner.senders.disconnect();
+ inner.receivers.disconnect();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Returns the current number of messages inside the channel.
+ pub(crate) fn len(&self) -> usize {
+ 0
+ }
+
+ /// Returns the capacity of the channel.
+ pub(crate) fn capacity(&self) -> Option<usize> {
+ Some(0)
+ }
+
+ /// Returns `true` if the channel is empty.
+ pub(crate) fn is_empty(&self) -> bool {
+ true
+ }
+
+ /// Returns `true` if the channel is full.
+ pub(crate) fn is_full(&self) -> bool {
+ true
+ }
+}
+
+/// Receiver handle to a channel.
+pub(crate) struct Receiver<'a, T>(&'a Channel<T>);
+
+/// Sender handle to a channel.
+pub(crate) struct Sender<'a, T>(&'a Channel<T>);
+
+impl<T> SelectHandle for Receiver<'_, T> {
+ fn try_select(&self, token: &mut Token) -> bool {
+ self.0.start_recv(token)
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ None
+ }
+
+ fn register(&self, oper: Operation, cx: &Context) -> bool {
+ let packet = Box::into_raw(Packet::<T>::empty_on_heap());
+
+ let mut inner = self.0.inner.lock().unwrap();
+ inner
+ .receivers
+ .register_with_packet(oper, packet.cast::<()>(), cx);
+ inner.senders.notify();
+ inner.senders.can_select() || inner.is_disconnected
+ }
+
+ fn unregister(&self, oper: Operation) {
+ if let Some(operation) = self.0.inner.lock().unwrap().receivers.unregister(oper) {
+ unsafe {
+ drop(Box::from_raw(operation.packet.cast::<Packet<T>>()));
+ }
+ }
+ }
+
+ fn accept(&self, token: &mut Token, cx: &Context) -> bool {
+ token.zero.0 = cx.wait_packet();
+ true
+ }
+
+ fn is_ready(&self) -> bool {
+ let inner = self.0.inner.lock().unwrap();
+ inner.senders.can_select() || inner.is_disconnected
+ }
+
+ fn watch(&self, oper: Operation, cx: &Context) -> bool {
+ let mut inner = self.0.inner.lock().unwrap();
+ inner.receivers.watch(oper, cx);
+ inner.senders.can_select() || inner.is_disconnected
+ }
+
+ fn unwatch(&self, oper: Operation) {
+ let mut inner = self.0.inner.lock().unwrap();
+ inner.receivers.unwatch(oper);
+ }
+}
+
+impl<T> SelectHandle for Sender<'_, T> {
+ fn try_select(&self, token: &mut Token) -> bool {
+ self.0.start_send(token)
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ None
+ }
+
+ fn register(&self, oper: Operation, cx: &Context) -> bool {
+ let packet = Box::into_raw(Packet::<T>::empty_on_heap());
+
+ let mut inner = self.0.inner.lock().unwrap();
+ inner
+ .senders
+ .register_with_packet(oper, packet.cast::<()>(), cx);
+ inner.receivers.notify();
+ inner.receivers.can_select() || inner.is_disconnected
+ }
+
+ fn unregister(&self, oper: Operation) {
+ if let Some(operation) = self.0.inner.lock().unwrap().senders.unregister(oper) {
+ unsafe {
+ drop(Box::from_raw(operation.packet.cast::<Packet<T>>()));
+ }
+ }
+ }
+
+ fn accept(&self, token: &mut Token, cx: &Context) -> bool {
+ token.zero.0 = cx.wait_packet();
+ true
+ }
+
+ fn is_ready(&self) -> bool {
+ let inner = self.0.inner.lock().unwrap();
+ inner.receivers.can_select() || inner.is_disconnected
+ }
+
+ fn watch(&self, oper: Operation, cx: &Context) -> bool {
+ let mut inner = self.0.inner.lock().unwrap();
+ inner.senders.watch(oper, cx);
+ inner.receivers.can_select() || inner.is_disconnected
+ }
+
+ fn unwatch(&self, oper: Operation) {
+ let mut inner = self.0.inner.lock().unwrap();
+ inner.senders.unwatch(oper);
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/lib.rs b/third_party/rust/crossbeam-channel/src/lib.rs
new file mode 100644
index 0000000000..cc1ef112f9
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/lib.rs
@@ -0,0 +1,371 @@
+//! Multi-producer multi-consumer channels for message passing.
+//!
+//! This crate is an alternative to [`std::sync::mpsc`] with more features and better performance.
+//!
+//! # Hello, world!
+//!
+//! ```
+//! use crossbeam_channel::unbounded;
+//!
+//! // Create a channel of unbounded capacity.
+//! let (s, r) = unbounded();
+//!
+//! // Send a message into the channel.
+//! s.send("Hello, world!").unwrap();
+//!
+//! // Receive the message from the channel.
+//! assert_eq!(r.recv(), Ok("Hello, world!"));
+//! ```
+//!
+//! # Channel types
+//!
+//! Channels can be created using two functions:
+//!
+//! * [`bounded`] creates a channel of bounded capacity, i.e. there is a limit to how many messages
+//! it can hold at a time.
+//!
+//! * [`unbounded`] creates a channel of unbounded capacity, i.e. it can hold any number of
+//! messages at a time.
+//!
+//! Both functions return a [`Sender`] and a [`Receiver`], which represent the two opposite sides
+//! of a channel.
+//!
+//! Creating a bounded channel:
+//!
+//! ```
+//! use crossbeam_channel::bounded;
+//!
+//! // Create a channel that can hold at most 5 messages at a time.
+//! let (s, r) = bounded(5);
+//!
+//! // Can send only 5 messages without blocking.
+//! for i in 0..5 {
+//! s.send(i).unwrap();
+//! }
+//!
+//! // Another call to `send` would block because the channel is full.
+//! // s.send(5).unwrap();
+//! ```
+//!
+//! Creating an unbounded channel:
+//!
+//! ```
+//! use crossbeam_channel::unbounded;
+//!
+//! // Create an unbounded channel.
+//! let (s, r) = unbounded();
+//!
+//! // Can send any number of messages into the channel without blocking.
+//! for i in 0..1000 {
+//! s.send(i).unwrap();
+//! }
+//! ```
+//!
+//! A special case is zero-capacity channel, which cannot hold any messages. Instead, send and
+//! receive operations must appear at the same time in order to pair up and pass the message over:
+//!
+//! ```
+//! use std::thread;
+//! use crossbeam_channel::bounded;
+//!
+//! // Create a zero-capacity channel.
+//! let (s, r) = bounded(0);
+//!
+//! // Sending blocks until a receive operation appears on the other side.
+//! thread::spawn(move || s.send("Hi!").unwrap());
+//!
+//! // Receiving blocks until a send operation appears on the other side.
+//! assert_eq!(r.recv(), Ok("Hi!"));
+//! ```
+//!
+//! # Sharing channels
+//!
+//! Senders and receivers can be cloned and sent to other threads:
+//!
+//! ```
+//! use std::thread;
+//! use crossbeam_channel::bounded;
+//!
+//! let (s1, r1) = bounded(0);
+//! let (s2, r2) = (s1.clone(), r1.clone());
+//!
+//! // Spawn a thread that receives a message and then sends one.
+//! thread::spawn(move || {
+//! r2.recv().unwrap();
+//! s2.send(2).unwrap();
+//! });
+//!
+//! // Send a message and then receive one.
+//! s1.send(1).unwrap();
+//! r1.recv().unwrap();
+//! ```
+//!
+//! Note that cloning only creates a new handle to the same sending or receiving side. It does not
+//! create a separate stream of messages in any way:
+//!
+//! ```
+//! use crossbeam_channel::unbounded;
+//!
+//! let (s1, r1) = unbounded();
+//! let (s2, r2) = (s1.clone(), r1.clone());
+//! let (s3, r3) = (s2.clone(), r2.clone());
+//!
+//! s1.send(10).unwrap();
+//! s2.send(20).unwrap();
+//! s3.send(30).unwrap();
+//!
+//! assert_eq!(r3.recv(), Ok(10));
+//! assert_eq!(r1.recv(), Ok(20));
+//! assert_eq!(r2.recv(), Ok(30));
+//! ```
+//!
+//! It's also possible to share senders and receivers by reference:
+//!
+//! ```
+//! use crossbeam_channel::bounded;
+//! use crossbeam_utils::thread::scope;
+//!
+//! let (s, r) = bounded(0);
+//!
+//! scope(|scope| {
+//! // Spawn a thread that receives a message and then sends one.
+//! scope.spawn(|_| {
+//! r.recv().unwrap();
+//! s.send(2).unwrap();
+//! });
+//!
+//! // Send a message and then receive one.
+//! s.send(1).unwrap();
+//! r.recv().unwrap();
+//! }).unwrap();
+//! ```
+//!
+//! # Disconnection
+//!
+//! When all senders or all receivers associated with a channel get dropped, the channel becomes
+//! disconnected. No more messages can be sent, but any remaining messages can still be received.
+//! Send and receive operations on a disconnected channel never block.
+//!
+//! ```
+//! use crossbeam_channel::{unbounded, RecvError};
+//!
+//! let (s, r) = unbounded();
+//! s.send(1).unwrap();
+//! s.send(2).unwrap();
+//! s.send(3).unwrap();
+//!
+//! // The only sender is dropped, disconnecting the channel.
+//! drop(s);
+//!
+//! // The remaining messages can be received.
+//! assert_eq!(r.recv(), Ok(1));
+//! assert_eq!(r.recv(), Ok(2));
+//! assert_eq!(r.recv(), Ok(3));
+//!
+//! // There are no more messages in the channel.
+//! assert!(r.is_empty());
+//!
+//! // Note that calling `r.recv()` does not block.
+//! // Instead, `Err(RecvError)` is returned immediately.
+//! assert_eq!(r.recv(), Err(RecvError));
+//! ```
+//!
+//! # Blocking operations
+//!
+//! Send and receive operations come in three flavors:
+//!
+//! * Non-blocking (returns immediately with success or failure).
+//! * Blocking (waits until the operation succeeds or the channel becomes disconnected).
+//! * Blocking with a timeout (blocks only for a certain duration of time).
+//!
+//! A simple example showing the difference between non-blocking and blocking operations:
+//!
+//! ```
+//! use crossbeam_channel::{bounded, RecvError, TryRecvError};
+//!
+//! let (s, r) = bounded(1);
+//!
+//! // Send a message into the channel.
+//! s.send("foo").unwrap();
+//!
+//! // This call would block because the channel is full.
+//! // s.send("bar").unwrap();
+//!
+//! // Receive the message.
+//! assert_eq!(r.recv(), Ok("foo"));
+//!
+//! // This call would block because the channel is empty.
+//! // r.recv();
+//!
+//! // Try receiving a message without blocking.
+//! assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+//!
+//! // Disconnect the channel.
+//! drop(s);
+//!
+//! // This call doesn't block because the channel is now disconnected.
+//! assert_eq!(r.recv(), Err(RecvError));
+//! ```
+//!
+//! # Iteration
+//!
+//! Receivers can be used as iterators. For example, method [`iter`] creates an iterator that
+//! receives messages until the channel becomes empty and disconnected. Note that iteration may
+//! block waiting for next message to arrive.
+//!
+//! ```
+//! use std::thread;
+//! use crossbeam_channel::unbounded;
+//!
+//! let (s, r) = unbounded();
+//!
+//! thread::spawn(move || {
+//! s.send(1).unwrap();
+//! s.send(2).unwrap();
+//! s.send(3).unwrap();
+//! drop(s); // Disconnect the channel.
+//! });
+//!
+//! // Collect all messages from the channel.
+//! // Note that the call to `collect` blocks until the sender is dropped.
+//! let v: Vec<_> = r.iter().collect();
+//!
+//! assert_eq!(v, [1, 2, 3]);
+//! ```
+//!
+//! A non-blocking iterator can be created using [`try_iter`], which receives all available
+//! messages without blocking:
+//!
+//! ```
+//! use crossbeam_channel::unbounded;
+//!
+//! let (s, r) = unbounded();
+//! s.send(1).unwrap();
+//! s.send(2).unwrap();
+//! s.send(3).unwrap();
+//! // No need to drop the sender.
+//!
+//! // Receive all messages currently in the channel.
+//! let v: Vec<_> = r.try_iter().collect();
+//!
+//! assert_eq!(v, [1, 2, 3]);
+//! ```
+//!
+//! # Selection
+//!
+//! The [`select!`] macro allows you to define a set of channel operations, wait until any one of
+//! them becomes ready, and finally execute it. If multiple operations are ready at the same time,
+//! a random one among them is selected.
+//!
+//! It is also possible to define a `default` case that gets executed if none of the operations are
+//! ready, either right away or for a certain duration of time.
+//!
+//! An operation is considered to be ready if it doesn't have to block. Note that it is ready even
+//! when it will simply return an error because the channel is disconnected.
+//!
+//! An example of receiving a message from two channels:
+//!
+//! ```
+//! use std::thread;
+//! use std::time::Duration;
+//! use crossbeam_channel::{select, unbounded};
+//!
+//! let (s1, r1) = unbounded();
+//! let (s2, r2) = unbounded();
+//!
+//! thread::spawn(move || s1.send(10).unwrap());
+//! thread::spawn(move || s2.send(20).unwrap());
+//!
+//! // At most one of these two receive operations will be executed.
+//! select! {
+//! recv(r1) -> msg => assert_eq!(msg, Ok(10)),
+//! recv(r2) -> msg => assert_eq!(msg, Ok(20)),
+//! default(Duration::from_secs(1)) => println!("timed out"),
+//! }
+//! ```
+//!
+//! If you need to select over a dynamically created list of channel operations, use [`Select`]
+//! instead. The [`select!`] macro is just a convenience wrapper around [`Select`].
+//!
+//! # Extra channels
+//!
+//! Three functions can create special kinds of channels, all of which return just a [`Receiver`]
+//! handle:
+//!
+//! * [`after`] creates a channel that delivers a single message after a certain duration of time.
+//! * [`tick`] creates a channel that delivers messages periodically.
+//! * [`never`](never()) creates a channel that never delivers messages.
+//!
+//! These channels are very efficient because messages get lazily generated on receive operations.
+//!
+//! An example that prints elapsed time every 50 milliseconds for the duration of 1 second:
+//!
+//! ```
+//! use std::time::{Duration, Instant};
+//! use crossbeam_channel::{after, select, tick};
+//!
+//! let start = Instant::now();
+//! let ticker = tick(Duration::from_millis(50));
+//! let timeout = after(Duration::from_secs(1));
+//!
+//! loop {
+//! select! {
+//! recv(ticker) -> _ => println!("elapsed: {:?}", start.elapsed()),
+//! recv(timeout) -> _ => break,
+//! }
+//! }
+//! ```
+//!
+//! [`send`]: Sender::send
+//! [`recv`]: Receiver::recv
+//! [`iter`]: Receiver::iter
+//! [`try_iter`]: Receiver::try_iter
+
+#![doc(test(
+ no_crate_inject,
+ attr(
+ deny(warnings, rust_2018_idioms),
+ allow(dead_code, unused_assignments, unused_variables)
+ )
+))]
+#![warn(
+ missing_docs,
+ missing_debug_implementations,
+ rust_2018_idioms,
+ unreachable_pub
+)]
+#![cfg_attr(not(feature = "std"), no_std)]
+
+use cfg_if::cfg_if;
+
+cfg_if! {
+ if #[cfg(feature = "std")] {
+ mod channel;
+ mod context;
+ mod counter;
+ mod err;
+ mod flavors;
+ mod select;
+ mod select_macro;
+ mod utils;
+ mod waker;
+
+ /// Crate internals used by the `select!` macro.
+ #[doc(hidden)]
+ pub mod internal {
+ pub use crate::select::SelectHandle;
+ pub use crate::select::{select, select_timeout, try_select};
+ }
+
+ pub use crate::channel::{after, at, never, tick};
+ pub use crate::channel::{bounded, unbounded};
+ pub use crate::channel::{IntoIter, Iter, TryIter};
+ pub use crate::channel::{Receiver, Sender};
+
+ pub use crate::select::{Select, SelectedOperation};
+
+ pub use crate::err::{ReadyTimeoutError, SelectTimeoutError, TryReadyError, TrySelectError};
+ pub use crate::err::{RecvError, RecvTimeoutError, TryRecvError};
+ pub use crate::err::{SendError, SendTimeoutError, TrySendError};
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/select.rs b/third_party/rust/crossbeam-channel/src/select.rs
new file mode 100644
index 0000000000..57d67a3a1a
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/select.rs
@@ -0,0 +1,1256 @@
+//! Interface to the select mechanism.
+
+use std::fmt;
+use std::marker::PhantomData;
+use std::mem;
+use std::time::{Duration, Instant};
+
+use crossbeam_utils::Backoff;
+
+use crate::channel::{self, Receiver, Sender};
+use crate::context::Context;
+use crate::err::{ReadyTimeoutError, TryReadyError};
+use crate::err::{RecvError, SendError};
+use crate::err::{SelectTimeoutError, TrySelectError};
+use crate::flavors;
+use crate::utils;
+
+/// Temporary data that gets initialized during select or a blocking operation, and is consumed by
+/// `read` or `write`.
+///
+/// Each field contains data associated with a specific channel flavor.
+// This is a private API that is used by the select macro.
+#[derive(Debug, Default)]
+pub struct Token {
+ pub(crate) at: flavors::at::AtToken,
+ pub(crate) array: flavors::array::ArrayToken,
+ pub(crate) list: flavors::list::ListToken,
+ #[allow(dead_code)]
+ pub(crate) never: flavors::never::NeverToken,
+ pub(crate) tick: flavors::tick::TickToken,
+ pub(crate) zero: flavors::zero::ZeroToken,
+}
+
+/// Identifier associated with an operation by a specific thread on a specific channel.
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+pub struct Operation(usize);
+
+impl Operation {
+ /// Creates an operation identifier from a mutable reference.
+ ///
+ /// This function essentially just turns the address of the reference into a number. The
+ /// reference should point to a variable that is specific to the thread and the operation,
+ /// and is alive for the entire duration of select or blocking operation.
+ #[inline]
+ pub fn hook<T>(r: &mut T) -> Operation {
+ let val = r as *mut T as usize;
+ // Make sure that the pointer address doesn't equal the numerical representation of
+ // `Selected::{Waiting, Aborted, Disconnected}`.
+ assert!(val > 2);
+ Operation(val)
+ }
+}
+
+/// Current state of a select or a blocking operation.
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+pub enum Selected {
+ /// Still waiting for an operation.
+ Waiting,
+
+ /// The attempt to block the current thread has been aborted.
+ Aborted,
+
+ /// An operation became ready because a channel is disconnected.
+ Disconnected,
+
+ /// An operation became ready because a message can be sent or received.
+ Operation(Operation),
+}
+
+impl From<usize> for Selected {
+ #[inline]
+ fn from(val: usize) -> Selected {
+ match val {
+ 0 => Selected::Waiting,
+ 1 => Selected::Aborted,
+ 2 => Selected::Disconnected,
+ oper => Selected::Operation(Operation(oper)),
+ }
+ }
+}
+
+impl Into<usize> for Selected {
+ #[inline]
+ fn into(self) -> usize {
+ match self {
+ Selected::Waiting => 0,
+ Selected::Aborted => 1,
+ Selected::Disconnected => 2,
+ Selected::Operation(Operation(val)) => val,
+ }
+ }
+}
+
+/// A receiver or a sender that can participate in select.
+///
+/// This is a handle that assists select in executing an operation, registration, deciding on the
+/// appropriate deadline for blocking, etc.
+// This is a private API (exposed inside crossbeam_channel::internal module) that is used by the select macro.
+pub trait SelectHandle {
+ /// Attempts to select an operation and returns `true` on success.
+ fn try_select(&self, token: &mut Token) -> bool;
+
+ /// Returns a deadline for an operation, if there is one.
+ fn deadline(&self) -> Option<Instant>;
+
+ /// Registers an operation for execution and returns `true` if it is now ready.
+ fn register(&self, oper: Operation, cx: &Context) -> bool;
+
+ /// Unregisters an operation for execution.
+ fn unregister(&self, oper: Operation);
+
+ /// Attempts to select an operation the thread got woken up for and returns `true` on success.
+ fn accept(&self, token: &mut Token, cx: &Context) -> bool;
+
+ /// Returns `true` if an operation can be executed without blocking.
+ fn is_ready(&self) -> bool;
+
+ /// Registers an operation for readiness notification and returns `true` if it is now ready.
+ fn watch(&self, oper: Operation, cx: &Context) -> bool;
+
+ /// Unregisters an operation for readiness notification.
+ fn unwatch(&self, oper: Operation);
+}
+
+impl<T: SelectHandle> SelectHandle for &T {
+ fn try_select(&self, token: &mut Token) -> bool {
+ (**self).try_select(token)
+ }
+
+ fn deadline(&self) -> Option<Instant> {
+ (**self).deadline()
+ }
+
+ fn register(&self, oper: Operation, cx: &Context) -> bool {
+ (**self).register(oper, cx)
+ }
+
+ fn unregister(&self, oper: Operation) {
+ (**self).unregister(oper);
+ }
+
+ fn accept(&self, token: &mut Token, cx: &Context) -> bool {
+ (**self).accept(token, cx)
+ }
+
+ fn is_ready(&self) -> bool {
+ (**self).is_ready()
+ }
+
+ fn watch(&self, oper: Operation, cx: &Context) -> bool {
+ (**self).watch(oper, cx)
+ }
+
+ fn unwatch(&self, oper: Operation) {
+ (**self).unwatch(oper)
+ }
+}
+
+/// Determines when a select operation should time out.
+#[derive(Clone, Copy, Eq, PartialEq)]
+enum Timeout {
+ /// No blocking.
+ Now,
+
+ /// Block forever.
+ Never,
+
+ /// Time out after the time instant.
+ At(Instant),
+}
+
+/// Runs until one of the operations is selected, potentially blocking the current thread.
+///
+/// Successful receive operations will have to be followed up by `channel::read()` and successful
+/// send operations by `channel::write()`.
+fn run_select(
+ handles: &mut [(&dyn SelectHandle, usize, *const u8)],
+ timeout: Timeout,
+) -> Option<(Token, usize, *const u8)> {
+ if handles.is_empty() {
+ // Wait until the timeout and return.
+ match timeout {
+ Timeout::Now => return None,
+ Timeout::Never => {
+ utils::sleep_until(None);
+ unreachable!();
+ }
+ Timeout::At(when) => {
+ utils::sleep_until(Some(when));
+ return None;
+ }
+ }
+ }
+
+ // Shuffle the operations for fairness.
+ utils::shuffle(handles);
+
+ // Create a token, which serves as a temporary variable that gets initialized in this function
+ // and is later used by a call to `channel::read()` or `channel::write()` that completes the
+ // selected operation.
+ let mut token = Token::default();
+
+ // Try selecting one of the operations without blocking.
+ for &(handle, i, ptr) in handles.iter() {
+ if handle.try_select(&mut token) {
+ return Some((token, i, ptr));
+ }
+ }
+
+ loop {
+ // Prepare for blocking.
+ let res = Context::with(|cx| {
+ let mut sel = Selected::Waiting;
+ let mut registered_count = 0;
+ let mut index_ready = None;
+
+ if let Timeout::Now = timeout {
+ cx.try_select(Selected::Aborted).unwrap();
+ }
+
+ // Register all operations.
+ for (handle, i, _) in handles.iter_mut() {
+ registered_count += 1;
+
+ // If registration returns `false`, that means the operation has just become ready.
+ if handle.register(Operation::hook::<&dyn SelectHandle>(handle), cx) {
+ // Try aborting select.
+ sel = match cx.try_select(Selected::Aborted) {
+ Ok(()) => {
+ index_ready = Some(*i);
+ Selected::Aborted
+ }
+ Err(s) => s,
+ };
+ break;
+ }
+
+ // If another thread has already selected one of the operations, stop registration.
+ sel = cx.selected();
+ if sel != Selected::Waiting {
+ break;
+ }
+ }
+
+ if sel == Selected::Waiting {
+ // Check with each operation for how long we're allowed to block, and compute the
+ // earliest deadline.
+ let mut deadline: Option<Instant> = match timeout {
+ Timeout::Now => return None,
+ Timeout::Never => None,
+ Timeout::At(when) => Some(when),
+ };
+ for &(handle, _, _) in handles.iter() {
+ if let Some(x) = handle.deadline() {
+ deadline = deadline.map(|y| x.min(y)).or(Some(x));
+ }
+ }
+
+ // Block the current thread.
+ sel = cx.wait_until(deadline);
+ }
+
+ // Unregister all registered operations.
+ for (handle, _, _) in handles.iter_mut().take(registered_count) {
+ handle.unregister(Operation::hook::<&dyn SelectHandle>(handle));
+ }
+
+ match sel {
+ Selected::Waiting => unreachable!(),
+ Selected::Aborted => {
+ // If an operation became ready during registration, try selecting it.
+ if let Some(index_ready) = index_ready {
+ for &(handle, i, ptr) in handles.iter() {
+ if i == index_ready && handle.try_select(&mut token) {
+ return Some((i, ptr));
+ }
+ }
+ }
+ }
+ Selected::Disconnected => {}
+ Selected::Operation(_) => {
+ // Find the selected operation.
+ for (handle, i, ptr) in handles.iter_mut() {
+ // Is this the selected operation?
+ if sel == Selected::Operation(Operation::hook::<&dyn SelectHandle>(handle))
+ {
+ // Try selecting this operation.
+ if handle.accept(&mut token, cx) {
+ return Some((*i, *ptr));
+ }
+ }
+ }
+ }
+ }
+
+ None
+ });
+
+ // Return if an operation was selected.
+ if let Some((i, ptr)) = res {
+ return Some((token, i, ptr));
+ }
+
+ // Try selecting one of the operations without blocking.
+ for &(handle, i, ptr) in handles.iter() {
+ if handle.try_select(&mut token) {
+ return Some((token, i, ptr));
+ }
+ }
+
+ match timeout {
+ Timeout::Now => return None,
+ Timeout::Never => {}
+ Timeout::At(when) => {
+ if Instant::now() >= when {
+ return None;
+ }
+ }
+ }
+ }
+}
+
+/// Runs until one of the operations becomes ready, potentially blocking the current thread.
+fn run_ready(
+ handles: &mut [(&dyn SelectHandle, usize, *const u8)],
+ timeout: Timeout,
+) -> Option<usize> {
+ if handles.is_empty() {
+ // Wait until the timeout and return.
+ match timeout {
+ Timeout::Now => return None,
+ Timeout::Never => {
+ utils::sleep_until(None);
+ unreachable!();
+ }
+ Timeout::At(when) => {
+ utils::sleep_until(Some(when));
+ return None;
+ }
+ }
+ }
+
+ // Shuffle the operations for fairness.
+ utils::shuffle(handles);
+
+ loop {
+ let backoff = Backoff::new();
+ loop {
+ // Check operations for readiness.
+ for &(handle, i, _) in handles.iter() {
+ if handle.is_ready() {
+ return Some(i);
+ }
+ }
+
+ if backoff.is_completed() {
+ break;
+ } else {
+ backoff.snooze();
+ }
+ }
+
+ // Check for timeout.
+ match timeout {
+ Timeout::Now => return None,
+ Timeout::Never => {}
+ Timeout::At(when) => {
+ if Instant::now() >= when {
+ return None;
+ }
+ }
+ }
+
+ // Prepare for blocking.
+ let res = Context::with(|cx| {
+ let mut sel = Selected::Waiting;
+ let mut registered_count = 0;
+
+ // Begin watching all operations.
+ for (handle, _, _) in handles.iter_mut() {
+ registered_count += 1;
+ let oper = Operation::hook::<&dyn SelectHandle>(handle);
+
+ // If registration returns `false`, that means the operation has just become ready.
+ if handle.watch(oper, cx) {
+ sel = match cx.try_select(Selected::Operation(oper)) {
+ Ok(()) => Selected::Operation(oper),
+ Err(s) => s,
+ };
+ break;
+ }
+
+ // If another thread has already chosen one of the operations, stop registration.
+ sel = cx.selected();
+ if sel != Selected::Waiting {
+ break;
+ }
+ }
+
+ if sel == Selected::Waiting {
+ // Check with each operation for how long we're allowed to block, and compute the
+ // earliest deadline.
+ let mut deadline: Option<Instant> = match timeout {
+ Timeout::Now => unreachable!(),
+ Timeout::Never => None,
+ Timeout::At(when) => Some(when),
+ };
+ for &(handle, _, _) in handles.iter() {
+ if let Some(x) = handle.deadline() {
+ deadline = deadline.map(|y| x.min(y)).or(Some(x));
+ }
+ }
+
+ // Block the current thread.
+ sel = cx.wait_until(deadline);
+ }
+
+ // Unwatch all operations.
+ for (handle, _, _) in handles.iter_mut().take(registered_count) {
+ handle.unwatch(Operation::hook::<&dyn SelectHandle>(handle));
+ }
+
+ match sel {
+ Selected::Waiting => unreachable!(),
+ Selected::Aborted => {}
+ Selected::Disconnected => {}
+ Selected::Operation(_) => {
+ for (handle, i, _) in handles.iter_mut() {
+ let oper = Operation::hook::<&dyn SelectHandle>(handle);
+ if sel == Selected::Operation(oper) {
+ return Some(*i);
+ }
+ }
+ }
+ }
+
+ None
+ });
+
+ // Return if an operation became ready.
+ if res.is_some() {
+ return res;
+ }
+ }
+}
+
+/// Attempts to select one of the operations without blocking.
+// This is a private API (exposed inside crossbeam_channel::internal module) that is used by the select macro.
+#[inline]
+pub fn try_select<'a>(
+ handles: &mut [(&'a dyn SelectHandle, usize, *const u8)],
+) -> Result<SelectedOperation<'a>, TrySelectError> {
+ match run_select(handles, Timeout::Now) {
+ None => Err(TrySelectError),
+ Some((token, index, ptr)) => Ok(SelectedOperation {
+ token,
+ index,
+ ptr,
+ _marker: PhantomData,
+ }),
+ }
+}
+
+/// Blocks until one of the operations becomes ready and selects it.
+// This is a private API (exposed inside crossbeam_channel::internal module) that is used by the select macro.
+#[inline]
+pub fn select<'a>(
+ handles: &mut [(&'a dyn SelectHandle, usize, *const u8)],
+) -> SelectedOperation<'a> {
+ if handles.is_empty() {
+ panic!("no operations have been added to `Select`");
+ }
+
+ let (token, index, ptr) = run_select(handles, Timeout::Never).unwrap();
+ SelectedOperation {
+ token,
+ index,
+ ptr,
+ _marker: PhantomData,
+ }
+}
+
+/// Blocks for a limited time until one of the operations becomes ready and selects it.
+// This is a private API (exposed inside crossbeam_channel::internal module) that is used by the select macro.
+#[inline]
+pub fn select_timeout<'a>(
+ handles: &mut [(&'a dyn SelectHandle, usize, *const u8)],
+ timeout: Duration,
+) -> Result<SelectedOperation<'a>, SelectTimeoutError> {
+ select_deadline(handles, utils::convert_timeout_to_deadline(timeout))
+}
+
+/// Blocks until a given deadline, or until one of the operations becomes ready and selects it.
+#[inline]
+pub(crate) fn select_deadline<'a>(
+ handles: &mut [(&'a dyn SelectHandle, usize, *const u8)],
+ deadline: Instant,
+) -> Result<SelectedOperation<'a>, SelectTimeoutError> {
+ match run_select(handles, Timeout::At(deadline)) {
+ None => Err(SelectTimeoutError),
+ Some((token, index, ptr)) => Ok(SelectedOperation {
+ token,
+ index,
+ ptr,
+ _marker: PhantomData,
+ }),
+ }
+}
+
+/// Selects from a set of channel operations.
+///
+/// `Select` allows you to define a set of channel operations, wait until any one of them becomes
+/// ready, and finally execute it. If multiple operations are ready at the same time, a random one
+/// among them is selected.
+///
+/// An operation is considered to be ready if it doesn't have to block. Note that it is ready even
+/// when it will simply return an error because the channel is disconnected.
+///
+/// The [`select!`] macro is a convenience wrapper around `Select`. However, it cannot select over a
+/// dynamically created list of channel operations.
+///
+/// [`select!`]: crate::select!
+///
+/// Once a list of operations has been built with `Select`, there are two different ways of
+/// proceeding:
+///
+/// * Select an operation with [`try_select`], [`select`], or [`select_timeout`]. If successful,
+/// the returned selected operation has already begun and **must** be completed. If we don't
+/// complete it, a panic will occur.
+///
+/// * Wait for an operation to become ready with [`try_ready`], [`ready`], or [`ready_timeout`]. If
+/// successful, we may attempt to execute the operation, but are not obliged to. In fact, it's
+/// possible for another thread to make the operation not ready just before we try executing it,
+/// so it's wise to use a retry loop. However, note that these methods might return with success
+/// spuriously, so it's a good idea to always double check if the operation is really ready.
+///
+/// # Examples
+///
+/// Use [`select`] to receive a message from a list of receivers:
+///
+/// ```
+/// use crossbeam_channel::{Receiver, RecvError, Select};
+///
+/// fn recv_multiple<T>(rs: &[Receiver<T>]) -> Result<T, RecvError> {
+/// // Build a list of operations.
+/// let mut sel = Select::new();
+/// for r in rs {
+/// sel.recv(r);
+/// }
+///
+/// // Complete the selected operation.
+/// let oper = sel.select();
+/// let index = oper.index();
+/// oper.recv(&rs[index])
+/// }
+/// ```
+///
+/// Use [`ready`] to receive a message from a list of receivers:
+///
+/// ```
+/// use crossbeam_channel::{Receiver, RecvError, Select};
+///
+/// fn recv_multiple<T>(rs: &[Receiver<T>]) -> Result<T, RecvError> {
+/// // Build a list of operations.
+/// let mut sel = Select::new();
+/// for r in rs {
+/// sel.recv(r);
+/// }
+///
+/// loop {
+/// // Wait until a receive operation becomes ready and try executing it.
+/// let index = sel.ready();
+/// let res = rs[index].try_recv();
+///
+/// // If the operation turns out not to be ready, retry.
+/// if let Err(e) = res {
+/// if e.is_empty() {
+/// continue;
+/// }
+/// }
+///
+/// // Success!
+/// return res.map_err(|_| RecvError);
+/// }
+/// }
+/// ```
+///
+/// [`try_select`]: Select::try_select
+/// [`select`]: Select::select
+/// [`select_timeout`]: Select::select_timeout
+/// [`try_ready`]: Select::try_ready
+/// [`ready`]: Select::ready
+/// [`ready_timeout`]: Select::ready_timeout
+pub struct Select<'a> {
+ /// A list of senders and receivers participating in selection.
+ handles: Vec<(&'a dyn SelectHandle, usize, *const u8)>,
+
+ /// The next index to assign to an operation.
+ next_index: usize,
+}
+
+unsafe impl Send for Select<'_> {}
+unsafe impl Sync for Select<'_> {}
+
+impl<'a> Select<'a> {
+ /// Creates an empty list of channel operations for selection.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::Select;
+ ///
+ /// let mut sel = Select::new();
+ ///
+ /// // The list of operations is empty, which means no operation can be selected.
+ /// assert!(sel.try_select().is_err());
+ /// ```
+ pub fn new() -> Select<'a> {
+ Select {
+ handles: Vec::with_capacity(4),
+ next_index: 0,
+ }
+ }
+
+ /// Adds a send operation.
+ ///
+ /// Returns the index of the added operation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s, r) = unbounded::<i32>();
+ ///
+ /// let mut sel = Select::new();
+ /// let index = sel.send(&s);
+ /// ```
+ pub fn send<T>(&mut self, s: &'a Sender<T>) -> usize {
+ let i = self.next_index;
+ let ptr = s as *const Sender<_> as *const u8;
+ self.handles.push((s, i, ptr));
+ self.next_index += 1;
+ i
+ }
+
+ /// Adds a receive operation.
+ ///
+ /// Returns the index of the added operation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s, r) = unbounded::<i32>();
+ ///
+ /// let mut sel = Select::new();
+ /// let index = sel.recv(&r);
+ /// ```
+ pub fn recv<T>(&mut self, r: &'a Receiver<T>) -> usize {
+ let i = self.next_index;
+ let ptr = r as *const Receiver<_> as *const u8;
+ self.handles.push((r, i, ptr));
+ self.next_index += 1;
+ i
+ }
+
+ /// Removes a previously added operation.
+ ///
+ /// This is useful when an operation is selected because the channel got disconnected and we
+ /// want to try again to select a different operation instead.
+ ///
+ /// If new operations are added after removing some, the indices of removed operations will not
+ /// be reused.
+ ///
+ /// # Panics
+ ///
+ /// An attempt to remove a non-existing or already removed operation will panic.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s1, r1) = unbounded::<i32>();
+ /// let (_, r2) = unbounded::<i32>();
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// // Both operations are initially ready, so a random one will be executed.
+ /// let oper = sel.select();
+ /// assert_eq!(oper.index(), oper2);
+ /// assert!(oper.recv(&r2).is_err());
+ /// sel.remove(oper2);
+ ///
+ /// s1.send(10).unwrap();
+ ///
+ /// let oper = sel.select();
+ /// assert_eq!(oper.index(), oper1);
+ /// assert_eq!(oper.recv(&r1), Ok(10));
+ /// ```
+ pub fn remove(&mut self, index: usize) {
+ assert!(
+ index < self.next_index,
+ "index out of bounds; {} >= {}",
+ index,
+ self.next_index,
+ );
+
+ let i = self
+ .handles
+ .iter()
+ .enumerate()
+ .find(|(_, (_, i, _))| *i == index)
+ .expect("no operation with this index")
+ .0;
+
+ self.handles.swap_remove(i);
+ }
+
+ /// Attempts to select one of the operations without blocking.
+ ///
+ /// If an operation is ready, it is selected and returned. If multiple operations are ready at
+ /// the same time, a random one among them is selected. If none of the operations are ready, an
+ /// error is returned.
+ ///
+ /// An operation is considered to be ready if it doesn't have to block. Note that it is ready
+ /// even when it will simply return an error because the channel is disconnected.
+ ///
+ /// The selected operation must be completed with [`SelectedOperation::send`]
+ /// or [`SelectedOperation::recv`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s1, r1) = unbounded();
+ /// let (s2, r2) = unbounded();
+ ///
+ /// s1.send(10).unwrap();
+ /// s2.send(20).unwrap();
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// // Both operations are initially ready, so a random one will be executed.
+ /// let oper = sel.try_select();
+ /// match oper {
+ /// Err(_) => panic!("both operations should be ready"),
+ /// Ok(oper) => match oper.index() {
+ /// i if i == oper1 => assert_eq!(oper.recv(&r1), Ok(10)),
+ /// i if i == oper2 => assert_eq!(oper.recv(&r2), Ok(20)),
+ /// _ => unreachable!(),
+ /// }
+ /// }
+ /// ```
+ pub fn try_select(&mut self) -> Result<SelectedOperation<'a>, TrySelectError> {
+ try_select(&mut self.handles)
+ }
+
+ /// Blocks until one of the operations becomes ready and selects it.
+ ///
+ /// Once an operation becomes ready, it is selected and returned. If multiple operations are
+ /// ready at the same time, a random one among them is selected.
+ ///
+ /// An operation is considered to be ready if it doesn't have to block. Note that it is ready
+ /// even when it will simply return an error because the channel is disconnected.
+ ///
+ /// The selected operation must be completed with [`SelectedOperation::send`]
+ /// or [`SelectedOperation::recv`].
+ ///
+ /// # Panics
+ ///
+ /// Panics if no operations have been added to `Select`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s1, r1) = unbounded();
+ /// let (s2, r2) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s1.send(10).unwrap();
+ /// });
+ /// thread::spawn(move || s2.send(20).unwrap());
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// // The second operation will be selected because it becomes ready first.
+ /// let oper = sel.select();
+ /// match oper.index() {
+ /// i if i == oper1 => assert_eq!(oper.recv(&r1), Ok(10)),
+ /// i if i == oper2 => assert_eq!(oper.recv(&r2), Ok(20)),
+ /// _ => unreachable!(),
+ /// }
+ /// ```
+ pub fn select(&mut self) -> SelectedOperation<'a> {
+ select(&mut self.handles)
+ }
+
+ /// Blocks for a limited time until one of the operations becomes ready and selects it.
+ ///
+ /// If an operation becomes ready, it is selected and returned. If multiple operations are
+ /// ready at the same time, a random one among them is selected. If none of the operations
+ /// become ready for the specified duration, an error is returned.
+ ///
+ /// An operation is considered to be ready if it doesn't have to block. Note that it is ready
+ /// even when it will simply return an error because the channel is disconnected.
+ ///
+ /// The selected operation must be completed with [`SelectedOperation::send`]
+ /// or [`SelectedOperation::recv`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s1, r1) = unbounded();
+ /// let (s2, r2) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s1.send(10).unwrap();
+ /// });
+ /// thread::spawn(move || s2.send(20).unwrap());
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// // The second operation will be selected because it becomes ready first.
+ /// let oper = sel.select_timeout(Duration::from_millis(500));
+ /// match oper {
+ /// Err(_) => panic!("should not have timed out"),
+ /// Ok(oper) => match oper.index() {
+ /// i if i == oper1 => assert_eq!(oper.recv(&r1), Ok(10)),
+ /// i if i == oper2 => assert_eq!(oper.recv(&r2), Ok(20)),
+ /// _ => unreachable!(),
+ /// }
+ /// }
+ /// ```
+ pub fn select_timeout(
+ &mut self,
+ timeout: Duration,
+ ) -> Result<SelectedOperation<'a>, SelectTimeoutError> {
+ select_timeout(&mut self.handles, timeout)
+ }
+
+ /// Blocks until a given deadline, or until one of the operations becomes ready and selects it.
+ ///
+ /// If an operation becomes ready, it is selected and returned. If multiple operations are
+ /// ready at the same time, a random one among them is selected. If none of the operations
+ /// become ready before the given deadline, an error is returned.
+ ///
+ /// An operation is considered to be ready if it doesn't have to block. Note that it is ready
+ /// even when it will simply return an error because the channel is disconnected.
+ ///
+ /// The selected operation must be completed with [`SelectedOperation::send`]
+ /// or [`SelectedOperation::recv`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::{Instant, Duration};
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s1, r1) = unbounded();
+ /// let (s2, r2) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s1.send(10).unwrap();
+ /// });
+ /// thread::spawn(move || s2.send(20).unwrap());
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// let deadline = Instant::now() + Duration::from_millis(500);
+ ///
+ /// // The second operation will be selected because it becomes ready first.
+ /// let oper = sel.select_deadline(deadline);
+ /// match oper {
+ /// Err(_) => panic!("should not have timed out"),
+ /// Ok(oper) => match oper.index() {
+ /// i if i == oper1 => assert_eq!(oper.recv(&r1), Ok(10)),
+ /// i if i == oper2 => assert_eq!(oper.recv(&r2), Ok(20)),
+ /// _ => unreachable!(),
+ /// }
+ /// }
+ /// ```
+ pub fn select_deadline(
+ &mut self,
+ deadline: Instant,
+ ) -> Result<SelectedOperation<'a>, SelectTimeoutError> {
+ select_deadline(&mut self.handles, deadline)
+ }
+
+ /// Attempts to find a ready operation without blocking.
+ ///
+ /// If an operation is ready, its index is returned. If multiple operations are ready at the
+ /// same time, a random one among them is chosen. If none of the operations are ready, an error
+ /// is returned.
+ ///
+ /// An operation is considered to be ready if it doesn't have to block. Note that it is ready
+ /// even when it will simply return an error because the channel is disconnected.
+ ///
+ /// Note that this method might return with success spuriously, so it's a good idea to always
+ /// double check if the operation is really ready.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s1, r1) = unbounded();
+ /// let (s2, r2) = unbounded();
+ ///
+ /// s1.send(10).unwrap();
+ /// s2.send(20).unwrap();
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// // Both operations are initially ready, so a random one will be chosen.
+ /// match sel.try_ready() {
+ /// Err(_) => panic!("both operations should be ready"),
+ /// Ok(i) if i == oper1 => assert_eq!(r1.try_recv(), Ok(10)),
+ /// Ok(i) if i == oper2 => assert_eq!(r2.try_recv(), Ok(20)),
+ /// Ok(_) => unreachable!(),
+ /// }
+ /// ```
+ pub fn try_ready(&mut self) -> Result<usize, TryReadyError> {
+ match run_ready(&mut self.handles, Timeout::Now) {
+ None => Err(TryReadyError),
+ Some(index) => Ok(index),
+ }
+ }
+
+ /// Blocks until one of the operations becomes ready.
+ ///
+ /// Once an operation becomes ready, its index is returned. If multiple operations are ready at
+ /// the same time, a random one among them is chosen.
+ ///
+ /// An operation is considered to be ready if it doesn't have to block. Note that it is ready
+ /// even when it will simply return an error because the channel is disconnected.
+ ///
+ /// Note that this method might return with success spuriously, so it's a good idea to always
+ /// double check if the operation is really ready.
+ ///
+ /// # Panics
+ ///
+ /// Panics if no operations have been added to `Select`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s1, r1) = unbounded();
+ /// let (s2, r2) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s1.send(10).unwrap();
+ /// });
+ /// thread::spawn(move || s2.send(20).unwrap());
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// // The second operation will be selected because it becomes ready first.
+ /// match sel.ready() {
+ /// i if i == oper1 => assert_eq!(r1.try_recv(), Ok(10)),
+ /// i if i == oper2 => assert_eq!(r2.try_recv(), Ok(20)),
+ /// _ => unreachable!(),
+ /// }
+ /// ```
+ pub fn ready(&mut self) -> usize {
+ if self.handles.is_empty() {
+ panic!("no operations have been added to `Select`");
+ }
+
+ run_ready(&mut self.handles, Timeout::Never).unwrap()
+ }
+
+ /// Blocks for a limited time until one of the operations becomes ready.
+ ///
+ /// If an operation becomes ready, its index is returned. If multiple operations are ready at
+ /// the same time, a random one among them is chosen. If none of the operations become ready
+ /// for the specified duration, an error is returned.
+ ///
+ /// An operation is considered to be ready if it doesn't have to block. Note that it is ready
+ /// even when it will simply return an error because the channel is disconnected.
+ ///
+ /// Note that this method might return with success spuriously, so it's a good idea to double
+ /// check if the operation is really ready.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::Duration;
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let (s1, r1) = unbounded();
+ /// let (s2, r2) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s1.send(10).unwrap();
+ /// });
+ /// thread::spawn(move || s2.send(20).unwrap());
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// // The second operation will be selected because it becomes ready first.
+ /// match sel.ready_timeout(Duration::from_millis(500)) {
+ /// Err(_) => panic!("should not have timed out"),
+ /// Ok(i) if i == oper1 => assert_eq!(r1.try_recv(), Ok(10)),
+ /// Ok(i) if i == oper2 => assert_eq!(r2.try_recv(), Ok(20)),
+ /// Ok(_) => unreachable!(),
+ /// }
+ /// ```
+ pub fn ready_timeout(&mut self, timeout: Duration) -> Result<usize, ReadyTimeoutError> {
+ self.ready_deadline(utils::convert_timeout_to_deadline(timeout))
+ }
+
+ /// Blocks until a given deadline, or until one of the operations becomes ready.
+ ///
+ /// If an operation becomes ready, its index is returned. If multiple operations are ready at
+ /// the same time, a random one among them is chosen. If none of the operations become ready
+ /// before the deadline, an error is returned.
+ ///
+ /// An operation is considered to be ready if it doesn't have to block. Note that it is ready
+ /// even when it will simply return an error because the channel is disconnected.
+ ///
+ /// Note that this method might return with success spuriously, so it's a good idea to double
+ /// check if the operation is really ready.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::thread;
+ /// use std::time::{Duration, Instant};
+ /// use crossbeam_channel::{unbounded, Select};
+ ///
+ /// let deadline = Instant::now() + Duration::from_millis(500);
+ ///
+ /// let (s1, r1) = unbounded();
+ /// let (s2, r2) = unbounded();
+ ///
+ /// thread::spawn(move || {
+ /// thread::sleep(Duration::from_secs(1));
+ /// s1.send(10).unwrap();
+ /// });
+ /// thread::spawn(move || s2.send(20).unwrap());
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r1);
+ /// let oper2 = sel.recv(&r2);
+ ///
+ /// // The second operation will be selected because it becomes ready first.
+ /// match sel.ready_deadline(deadline) {
+ /// Err(_) => panic!("should not have timed out"),
+ /// Ok(i) if i == oper1 => assert_eq!(r1.try_recv(), Ok(10)),
+ /// Ok(i) if i == oper2 => assert_eq!(r2.try_recv(), Ok(20)),
+ /// Ok(_) => unreachable!(),
+ /// }
+ /// ```
+ pub fn ready_deadline(&mut self, deadline: Instant) -> Result<usize, ReadyTimeoutError> {
+ match run_ready(&mut self.handles, Timeout::At(deadline)) {
+ None => Err(ReadyTimeoutError),
+ Some(index) => Ok(index),
+ }
+ }
+}
+
+impl<'a> Clone for Select<'a> {
+ fn clone(&self) -> Select<'a> {
+ Select {
+ handles: self.handles.clone(),
+ next_index: self.next_index,
+ }
+ }
+}
+
+impl<'a> Default for Select<'a> {
+ fn default() -> Select<'a> {
+ Select::new()
+ }
+}
+
+impl fmt::Debug for Select<'_> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Select { .. }")
+ }
+}
+
+/// A selected operation that needs to be completed.
+///
+/// To complete the operation, call [`send`] or [`recv`].
+///
+/// # Panics
+///
+/// Forgetting to complete the operation is an error and might lead to deadlocks. If a
+/// `SelectedOperation` is dropped without completion, a panic occurs.
+///
+/// [`send`]: SelectedOperation::send
+/// [`recv`]: SelectedOperation::recv
+#[must_use]
+pub struct SelectedOperation<'a> {
+ /// Token needed to complete the operation.
+ token: Token,
+
+ /// The index of the selected operation.
+ index: usize,
+
+ /// The address of the selected `Sender` or `Receiver`.
+ ptr: *const u8,
+
+ /// Indicates that `Sender`s and `Receiver`s are borrowed.
+ _marker: PhantomData<&'a ()>,
+}
+
+impl SelectedOperation<'_> {
+ /// Returns the index of the selected operation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{bounded, Select};
+ ///
+ /// let (s1, r1) = bounded::<()>(0);
+ /// let (s2, r2) = bounded::<()>(0);
+ /// let (s3, r3) = bounded::<()>(1);
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.send(&s1);
+ /// let oper2 = sel.recv(&r2);
+ /// let oper3 = sel.send(&s3);
+ ///
+ /// // Only the last operation is ready.
+ /// let oper = sel.select();
+ /// assert_eq!(oper.index(), 2);
+ /// assert_eq!(oper.index(), oper3);
+ ///
+ /// // Complete the operation.
+ /// oper.send(&s3, ()).unwrap();
+ /// ```
+ pub fn index(&self) -> usize {
+ self.index
+ }
+
+ /// Completes the send operation.
+ ///
+ /// The passed [`Sender`] reference must be the same one that was used in [`Select::send`]
+ /// when the operation was added.
+ ///
+ /// # Panics
+ ///
+ /// Panics if an incorrect [`Sender`] reference is passed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{bounded, Select, SendError};
+ ///
+ /// let (s, r) = bounded::<i32>(0);
+ /// drop(r);
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.send(&s);
+ ///
+ /// let oper = sel.select();
+ /// assert_eq!(oper.index(), oper1);
+ /// assert_eq!(oper.send(&s, 10), Err(SendError(10)));
+ /// ```
+ pub fn send<T>(mut self, s: &Sender<T>, msg: T) -> Result<(), SendError<T>> {
+ assert!(
+ s as *const Sender<T> as *const u8 == self.ptr,
+ "passed a sender that wasn't selected",
+ );
+ let res = unsafe { channel::write(s, &mut self.token, msg) };
+ mem::forget(self);
+ res.map_err(SendError)
+ }
+
+ /// Completes the receive operation.
+ ///
+ /// The passed [`Receiver`] reference must be the same one that was used in [`Select::recv`]
+ /// when the operation was added.
+ ///
+ /// # Panics
+ ///
+ /// Panics if an incorrect [`Receiver`] reference is passed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_channel::{bounded, Select, RecvError};
+ ///
+ /// let (s, r) = bounded::<i32>(0);
+ /// drop(s);
+ ///
+ /// let mut sel = Select::new();
+ /// let oper1 = sel.recv(&r);
+ ///
+ /// let oper = sel.select();
+ /// assert_eq!(oper.index(), oper1);
+ /// assert_eq!(oper.recv(&r), Err(RecvError));
+ /// ```
+ pub fn recv<T>(mut self, r: &Receiver<T>) -> Result<T, RecvError> {
+ assert!(
+ r as *const Receiver<T> as *const u8 == self.ptr,
+ "passed a receiver that wasn't selected",
+ );
+ let res = unsafe { channel::read(r, &mut self.token) };
+ mem::forget(self);
+ res.map_err(|_| RecvError)
+ }
+}
+
+impl fmt::Debug for SelectedOperation<'_> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("SelectedOperation { .. }")
+ }
+}
+
+impl Drop for SelectedOperation<'_> {
+ fn drop(&mut self) {
+ panic!("dropped `SelectedOperation` without completing the operation");
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/select_macro.rs b/third_party/rust/crossbeam-channel/src/select_macro.rs
new file mode 100644
index 0000000000..efe0ae4064
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/select_macro.rs
@@ -0,0 +1,1116 @@
+//! The `select!` macro.
+
+/// A helper macro for `select!` to hide the long list of macro patterns from the documentation.
+///
+/// The macro consists of two stages:
+/// 1. Parsing
+/// 2. Code generation
+///
+/// The parsing stage consists of these subparts:
+/// 1. `@list`: Turns a list of tokens into a list of cases.
+/// 2. `@list_errorN`: Diagnoses the syntax error.
+/// 3. `@case`: Parses a single case and verifies its argument list.
+///
+/// The codegen stage consists of these subparts:
+/// 1. `@init`: Attempts to optimize `select!` away and initializes the list of handles.
+/// 1. `@count`: Counts the listed cases.
+/// 3. `@add`: Adds send/receive operations to the list of handles and starts selection.
+/// 4. `@complete`: Completes the selected send/receive operation.
+///
+/// If the parsing stage encounters a syntax error or the codegen stage ends up with too many
+/// cases to process, the macro fails with a compile-time error.
+#[doc(hidden)]
+#[macro_export]
+macro_rules! crossbeam_channel_internal {
+ // The list is empty. Now check the arguments of each processed case.
+ (@list
+ ()
+ ($($head:tt)*)
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @case
+ ($($head)*)
+ ()
+ ()
+ )
+ };
+ // If necessary, insert an empty argument list after `default`.
+ (@list
+ (default => $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @list
+ (default() => $($tail)*)
+ ($($head)*)
+ )
+ };
+ // But print an error if `default` is followed by a `->`.
+ (@list
+ (default -> $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ compile_error!(
+ "expected `=>` after `default` case, found `->`"
+ )
+ };
+ // Print an error if there's an `->` after the argument list in the default case.
+ (@list
+ (default $args:tt -> $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ compile_error!(
+ "expected `=>` after `default` case, found `->`"
+ )
+ };
+ // Print an error if there is a missing result in a recv case.
+ (@list
+ (recv($($args:tt)*) => $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ compile_error!(
+ "expected `->` after `recv` case, found `=>`"
+ )
+ };
+ // Print an error if there is a missing result in a send case.
+ (@list
+ (send($($args:tt)*) => $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ compile_error!(
+ "expected `->` after `send` operation, found `=>`"
+ )
+ };
+ // Make sure the arrow and the result are not repeated.
+ (@list
+ ($case:ident $args:tt -> $res:tt -> $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ compile_error!("expected `=>`, found `->`")
+ };
+ // Print an error if there is a semicolon after the block.
+ (@list
+ ($case:ident $args:tt $(-> $res:pat)* => $body:block; $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ compile_error!(
+ "did you mean to put a comma instead of the semicolon after `}`?"
+ )
+ };
+ // The first case is separated by a comma.
+ (@list
+ ($case:ident ($($args:tt)*) $(-> $res:pat)* => $body:expr, $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @list
+ ($($tail)*)
+ ($($head)* $case ($($args)*) $(-> $res)* => { $body },)
+ )
+ };
+ // Don't require a comma after the case if it has a proper block.
+ (@list
+ ($case:ident ($($args:tt)*) $(-> $res:pat)* => $body:block $($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @list
+ ($($tail)*)
+ ($($head)* $case ($($args)*) $(-> $res)* => { $body },)
+ )
+ };
+ // Only one case remains.
+ (@list
+ ($case:ident ($($args:tt)*) $(-> $res:pat)* => $body:expr $(,)?)
+ ($($head:tt)*)
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @list
+ ()
+ ($($head)* $case ($($args)*) $(-> $res)* => { $body },)
+ )
+ };
+ // Diagnose and print an error.
+ (@list
+ ($($tail:tt)*)
+ ($($head:tt)*)
+ ) => {
+ $crate::crossbeam_channel_internal!(@list_error1 $($tail)*)
+ };
+ // Stage 1: check the case type.
+ (@list_error1 recv $($tail:tt)*) => {
+ $crate::crossbeam_channel_internal!(@list_error2 recv $($tail)*)
+ };
+ (@list_error1 send $($tail:tt)*) => {
+ $crate::crossbeam_channel_internal!(@list_error2 send $($tail)*)
+ };
+ (@list_error1 default $($tail:tt)*) => {
+ $crate::crossbeam_channel_internal!(@list_error2 default $($tail)*)
+ };
+ (@list_error1 $t:tt $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "expected one of `recv`, `send`, or `default`, found `",
+ stringify!($t),
+ "`",
+ )
+ )
+ };
+ (@list_error1 $($tail:tt)*) => {
+ $crate::crossbeam_channel_internal!(@list_error2 $($tail)*);
+ };
+ // Stage 2: check the argument list.
+ (@list_error2 $case:ident) => {
+ compile_error!(
+ concat!(
+ "missing argument list after `",
+ stringify!($case),
+ "`",
+ )
+ )
+ };
+ (@list_error2 $case:ident => $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "missing argument list after `",
+ stringify!($case),
+ "`",
+ )
+ )
+ };
+ (@list_error2 $($tail:tt)*) => {
+ $crate::crossbeam_channel_internal!(@list_error3 $($tail)*)
+ };
+ // Stage 3: check the `=>` and what comes after it.
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)*) => {
+ compile_error!(
+ concat!(
+ "missing `=>` after `",
+ stringify!($case),
+ "` case",
+ )
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* =>) => {
+ compile_error!(
+ "expected expression after `=>`"
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => $body:expr; $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "did you mean to put a comma instead of the semicolon after `",
+ stringify!($body),
+ "`?",
+ )
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => recv($($a:tt)*) $($tail:tt)*) => {
+ compile_error!(
+ "expected an expression after `=>`"
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => send($($a:tt)*) $($tail:tt)*) => {
+ compile_error!(
+ "expected an expression after `=>`"
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => default($($a:tt)*) $($tail:tt)*) => {
+ compile_error!(
+ "expected an expression after `=>`"
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => $f:ident($($a:tt)*) $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "did you mean to put a comma after `",
+ stringify!($f),
+ "(",
+ stringify!($($a)*),
+ ")`?",
+ )
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => $f:ident!($($a:tt)*) $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "did you mean to put a comma after `",
+ stringify!($f),
+ "!(",
+ stringify!($($a)*),
+ ")`?",
+ )
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => $f:ident![$($a:tt)*] $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "did you mean to put a comma after `",
+ stringify!($f),
+ "![",
+ stringify!($($a)*),
+ "]`?",
+ )
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => $f:ident!{$($a:tt)*} $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "did you mean to put a comma after `",
+ stringify!($f),
+ "!{",
+ stringify!($($a)*),
+ "}`?",
+ )
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) $(-> $r:pat)* => $body:tt $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "did you mean to put a comma after `",
+ stringify!($body),
+ "`?",
+ )
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) -> => $($tail:tt)*) => {
+ compile_error!("missing pattern after `->`")
+ };
+ (@list_error3 $case:ident($($args:tt)*) $t:tt $(-> $r:pat)* => $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "expected `->`, found `",
+ stringify!($t),
+ "`",
+ )
+ )
+ };
+ (@list_error3 $case:ident($($args:tt)*) -> $t:tt $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "expected a pattern, found `",
+ stringify!($t),
+ "`",
+ )
+ )
+ };
+ (@list_error3 recv($($args:tt)*) $t:tt $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "expected `->`, found `",
+ stringify!($t),
+ "`",
+ )
+ )
+ };
+ (@list_error3 send($($args:tt)*) $t:tt $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "expected `->`, found `",
+ stringify!($t),
+ "`",
+ )
+ )
+ };
+ (@list_error3 recv $args:tt $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "expected an argument list after `recv`, found `",
+ stringify!($args),
+ "`",
+ )
+ )
+ };
+ (@list_error3 send $args:tt $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "expected an argument list after `send`, found `",
+ stringify!($args),
+ "`",
+ )
+ )
+ };
+ (@list_error3 default $args:tt $($tail:tt)*) => {
+ compile_error!(
+ concat!(
+ "expected an argument list or `=>` after `default`, found `",
+ stringify!($args),
+ "`",
+ )
+ )
+ };
+ (@list_error3 $($tail:tt)*) => {
+ $crate::crossbeam_channel_internal!(@list_error4 $($tail)*)
+ };
+ // Stage 4: fail with a generic error message.
+ (@list_error4 $($tail:tt)*) => {
+ compile_error!("invalid syntax")
+ };
+
+ // Success! All cases were parsed.
+ (@case
+ ()
+ $cases:tt
+ $default:tt
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @init
+ $cases
+ $default
+ )
+ };
+
+ // Check the format of a recv case.
+ (@case
+ (recv($r:expr $(,)?) -> $res:pat => $body:tt, $($tail:tt)*)
+ ($($cases:tt)*)
+ $default:tt
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @case
+ ($($tail)*)
+ ($($cases)* recv($r) -> $res => $body,)
+ $default
+ )
+ };
+ // Print an error if the argument list is invalid.
+ (@case
+ (recv($($args:tt)*) -> $res:pat => $body:tt, $($tail:tt)*)
+ ($($cases:tt)*)
+ $default:tt
+ ) => {
+ compile_error!(
+ concat!(
+ "invalid argument list in `recv(",
+ stringify!($($args)*),
+ ")`",
+ )
+ )
+ };
+ // Print an error if there is no argument list.
+ (@case
+ (recv $t:tt $($tail:tt)*)
+ ($($cases:tt)*)
+ $default:tt
+ ) => {
+ compile_error!(
+ concat!(
+ "expected an argument list after `recv`, found `",
+ stringify!($t),
+ "`",
+ )
+ )
+ };
+
+ // Check the format of a send case.
+ (@case
+ (send($s:expr, $m:expr $(,)?) -> $res:pat => $body:tt, $($tail:tt)*)
+ ($($cases:tt)*)
+ $default:tt
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @case
+ ($($tail)*)
+ ($($cases)* send($s, $m) -> $res => $body,)
+ $default
+ )
+ };
+ // Print an error if the argument list is invalid.
+ (@case
+ (send($($args:tt)*) -> $res:pat => $body:tt, $($tail:tt)*)
+ ($($cases:tt)*)
+ $default:tt
+ ) => {
+ compile_error!(
+ concat!(
+ "invalid argument list in `send(",
+ stringify!($($args)*),
+ ")`",
+ )
+ )
+ };
+ // Print an error if there is no argument list.
+ (@case
+ (send $t:tt $($tail:tt)*)
+ ($($cases:tt)*)
+ $default:tt
+ ) => {
+ compile_error!(
+ concat!(
+ "expected an argument list after `send`, found `",
+ stringify!($t),
+ "`",
+ )
+ )
+ };
+
+ // Check the format of a default case.
+ (@case
+ (default() => $body:tt, $($tail:tt)*)
+ $cases:tt
+ ()
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @case
+ ($($tail)*)
+ $cases
+ (default() => $body,)
+ )
+ };
+ // Check the format of a default case with timeout.
+ (@case
+ (default($timeout:expr $(,)?) => $body:tt, $($tail:tt)*)
+ $cases:tt
+ ()
+ ) => {
+ $crate::crossbeam_channel_internal!(
+ @case
+ ($($tail)*)
+ $cases
+ (default($timeout) => $body,)
+ )
+ };
+ // Check for duplicate default cases...
+ (@case
+ (default $($tail:tt)*)
+ $cases:tt
+ ($($def:tt)+)
+ ) => {
+ compile_error!(
+ "there can be only one `default` case in a `select!` block"
+ )
+ };
+ // Print an error if the argument list is invalid.
+ (@case
+ (default($($args:tt)*) => $body:tt, $($tail:tt)*)
+ $cases:tt
+ $default:tt
+ ) => {
+ compile_error!(
+ concat!(
+ "invalid argument list in `default(",
+ stringify!($($args)*),
+ ")`",
+ )
+ )
+ };
+ // Print an error if there is an unexpected token after `default`.
+ (@case
+ (default $t:tt $($tail:tt)*)
+ $cases:tt
+ $default:tt
+ ) => {
+ compile_error!(
+ concat!(
+ "expected an argument list or `=>` after `default`, found `",
+ stringify!($t),
+ "`",
+ )
+ )
+ };
+
+ // The case was not consumed, therefore it must be invalid.
+ (@case
+ ($case:ident $($tail:tt)*)
+ $cases:tt
+ $default:tt
+ ) => {
+ compile_error!(
+ concat!(
+ "expected one of `recv`, `send`, or `default`, found `",
+ stringify!($case),
+ "`",
+ )
+ )
+ };
+
+ // Optimize `select!` into `try_recv()`.
+ (@init
+ (recv($r:expr) -> $res:pat => $recv_body:tt,)
+ (default() => $default_body:tt,)
+ ) => {{
+ match $r {
+ ref _r => {
+ let _r: &$crate::Receiver<_> = _r;
+ match _r.try_recv() {
+ ::std::result::Result::Err($crate::TryRecvError::Empty) => {
+ $default_body
+ }
+ _res => {
+ let _res = _res.map_err(|_| $crate::RecvError);
+ let $res = _res;
+ $recv_body
+ }
+ }
+ }
+ }
+ }};
+ // Optimize `select!` into `recv()`.
+ (@init
+ (recv($r:expr) -> $res:pat => $body:tt,)
+ ()
+ ) => {{
+ match $r {
+ ref _r => {
+ let _r: &$crate::Receiver<_> = _r;
+ let _res = _r.recv();
+ let $res = _res;
+ $body
+ }
+ }
+ }};
+ // Optimize `select!` into `recv_timeout()`.
+ (@init
+ (recv($r:expr) -> $res:pat => $recv_body:tt,)
+ (default($timeout:expr) => $default_body:tt,)
+ ) => {{
+ match $r {
+ ref _r => {
+ let _r: &$crate::Receiver<_> = _r;
+ match _r.recv_timeout($timeout) {
+ ::std::result::Result::Err($crate::RecvTimeoutError::Timeout) => {
+ $default_body
+ }
+ _res => {
+ let _res = _res.map_err(|_| $crate::RecvError);
+ let $res = _res;
+ $recv_body
+ }
+ }
+ }
+ }
+ }};
+
+ // // Optimize the non-blocking case with two receive operations.
+ // (@init
+ // (recv($r1:expr) -> $res1:pat => $recv_body1:tt,)
+ // (recv($r2:expr) -> $res2:pat => $recv_body2:tt,)
+ // (default() => $default_body:tt,)
+ // ) => {{
+ // match $r1 {
+ // ref _r1 => {
+ // let _r1: &$crate::Receiver<_> = _r1;
+ //
+ // match $r2 {
+ // ref _r2 => {
+ // let _r2: &$crate::Receiver<_> = _r2;
+ //
+ // // TODO(stjepang): Implement this optimization.
+ // }
+ // }
+ // }
+ // }
+ // }};
+ // // Optimize the blocking case with two receive operations.
+ // (@init
+ // (recv($r1:expr) -> $res1:pat => $body1:tt,)
+ // (recv($r2:expr) -> $res2:pat => $body2:tt,)
+ // ()
+ // ) => {{
+ // match $r1 {
+ // ref _r1 => {
+ // let _r1: &$crate::Receiver<_> = _r1;
+ //
+ // match $r2 {
+ // ref _r2 => {
+ // let _r2: &$crate::Receiver<_> = _r2;
+ //
+ // // TODO(stjepang): Implement this optimization.
+ // }
+ // }
+ // }
+ // }
+ // }};
+ // // Optimize the case with two receive operations and a timeout.
+ // (@init
+ // (recv($r1:expr) -> $res1:pat => $recv_body1:tt,)
+ // (recv($r2:expr) -> $res2:pat => $recv_body2:tt,)
+ // (default($timeout:expr) => $default_body:tt,)
+ // ) => {{
+ // match $r1 {
+ // ref _r1 => {
+ // let _r1: &$crate::Receiver<_> = _r1;
+ //
+ // match $r2 {
+ // ref _r2 => {
+ // let _r2: &$crate::Receiver<_> = _r2;
+ //
+ // // TODO(stjepang): Implement this optimization.
+ // }
+ // }
+ // }
+ // }
+ // }};
+
+ // // Optimize `select!` into `try_send()`.
+ // (@init
+ // (send($s:expr, $m:expr) -> $res:pat => $send_body:tt,)
+ // (default() => $default_body:tt,)
+ // ) => {{
+ // match $s {
+ // ref _s => {
+ // let _s: &$crate::Sender<_> = _s;
+ // // TODO(stjepang): Implement this optimization.
+ // }
+ // }
+ // }};
+ // // Optimize `select!` into `send()`.
+ // (@init
+ // (send($s:expr, $m:expr) -> $res:pat => $body:tt,)
+ // ()
+ // ) => {{
+ // match $s {
+ // ref _s => {
+ // let _s: &$crate::Sender<_> = _s;
+ // // TODO(stjepang): Implement this optimization.
+ // }
+ // }
+ // }};
+ // // Optimize `select!` into `send_timeout()`.
+ // (@init
+ // (send($s:expr, $m:expr) -> $res:pat => $body:tt,)
+ // (default($timeout:expr) => $body:tt,)
+ // ) => {{
+ // match $s {
+ // ref _s => {
+ // let _s: &$crate::Sender<_> = _s;
+ // // TODO(stjepang): Implement this optimization.
+ // }
+ // }
+ // }};
+
+ // Create the list of handles and add operations to it.
+ (@init
+ ($($cases:tt)*)
+ $default:tt
+ ) => {{
+ const _LEN: usize = $crate::crossbeam_channel_internal!(@count ($($cases)*));
+ let _handle: &$crate::internal::SelectHandle = &$crate::never::<()>();
+
+ #[allow(unused_mut)]
+ let mut _sel = [(_handle, 0, ::std::ptr::null()); _LEN];
+
+ $crate::crossbeam_channel_internal!(
+ @add
+ _sel
+ ($($cases)*)
+ $default
+ (
+ (0usize _oper0)
+ (1usize _oper1)
+ (2usize _oper2)
+ (3usize _oper3)
+ (4usize _oper4)
+ (5usize _oper5)
+ (6usize _oper6)
+ (7usize _oper7)
+ (8usize _oper8)
+ (9usize _oper9)
+ (10usize _oper10)
+ (11usize _oper11)
+ (12usize _oper12)
+ (13usize _oper13)
+ (14usize _oper14)
+ (15usize _oper15)
+ (16usize _oper16)
+ (17usize _oper17)
+ (18usize _oper18)
+ (19usize _oper19)
+ (20usize _oper20)
+ (21usize _oper21)
+ (22usize _oper22)
+ (23usize _oper23)
+ (24usize _oper24)
+ (25usize _oper25)
+ (26usize _oper26)
+ (27usize _oper27)
+ (28usize _oper28)
+ (29usize _oper29)
+ (30usize _oper30)
+ (31usize _oper31)
+ )
+ ()
+ )
+ }};
+
+ // Count the listed cases.
+ (@count ()) => {
+ 0
+ };
+ (@count ($oper:ident $args:tt -> $res:pat => $body:tt, $($cases:tt)*)) => {
+ 1 + $crate::crossbeam_channel_internal!(@count ($($cases)*))
+ };
+
+ // Run blocking selection.
+ (@add
+ $sel:ident
+ ()
+ ()
+ $labels:tt
+ $cases:tt
+ ) => {{
+ let _oper: $crate::SelectedOperation<'_> = {
+ let _oper = $crate::internal::select(&mut $sel);
+
+ // Erase the lifetime so that `sel` can be dropped early even without NLL.
+ unsafe { ::std::mem::transmute(_oper) }
+ };
+
+ $crate::crossbeam_channel_internal! {
+ @complete
+ $sel
+ _oper
+ $cases
+ }
+ }};
+ // Run non-blocking selection.
+ (@add
+ $sel:ident
+ ()
+ (default() => $body:tt,)
+ $labels:tt
+ $cases:tt
+ ) => {{
+ let _oper: ::std::option::Option<$crate::SelectedOperation<'_>> = {
+ let _oper = $crate::internal::try_select(&mut $sel);
+
+ // Erase the lifetime so that `sel` can be dropped early even without NLL.
+ unsafe { ::std::mem::transmute(_oper) }
+ };
+
+ match _oper {
+ None => {
+ { $sel };
+ $body
+ }
+ Some(_oper) => {
+ $crate::crossbeam_channel_internal! {
+ @complete
+ $sel
+ _oper
+ $cases
+ }
+ }
+ }
+ }};
+ // Run selection with a timeout.
+ (@add
+ $sel:ident
+ ()
+ (default($timeout:expr) => $body:tt,)
+ $labels:tt
+ $cases:tt
+ ) => {{
+ let _oper: ::std::option::Option<$crate::SelectedOperation<'_>> = {
+ let _oper = $crate::internal::select_timeout(&mut $sel, $timeout);
+
+ // Erase the lifetime so that `sel` can be dropped early even without NLL.
+ unsafe { ::std::mem::transmute(_oper) }
+ };
+
+ match _oper {
+ ::std::option::Option::None => {
+ { $sel };
+ $body
+ }
+ ::std::option::Option::Some(_oper) => {
+ $crate::crossbeam_channel_internal! {
+ @complete
+ $sel
+ _oper
+ $cases
+ }
+ }
+ }
+ }};
+ // Have we used up all labels?
+ (@add
+ $sel:ident
+ $input:tt
+ $default:tt
+ ()
+ $cases:tt
+ ) => {
+ compile_error!("too many operations in a `select!` block")
+ };
+ // Add a receive operation to `sel`.
+ (@add
+ $sel:ident
+ (recv($r:expr) -> $res:pat => $body:tt, $($tail:tt)*)
+ $default:tt
+ (($i:tt $var:ident) $($labels:tt)*)
+ ($($cases:tt)*)
+ ) => {{
+ match $r {
+ ref _r => {
+ let $var: &$crate::Receiver<_> = unsafe {
+ let _r: &$crate::Receiver<_> = _r;
+
+ // Erase the lifetime so that `sel` can be dropped early even without NLL.
+ unsafe fn unbind<'a, T>(x: &T) -> &'a T {
+ ::std::mem::transmute(x)
+ }
+ unbind(_r)
+ };
+ $sel[$i] = ($var, $i, $var as *const $crate::Receiver<_> as *const u8);
+
+ $crate::crossbeam_channel_internal!(
+ @add
+ $sel
+ ($($tail)*)
+ $default
+ ($($labels)*)
+ ($($cases)* [$i] recv($var) -> $res => $body,)
+ )
+ }
+ }
+ }};
+ // Add a send operation to `sel`.
+ (@add
+ $sel:ident
+ (send($s:expr, $m:expr) -> $res:pat => $body:tt, $($tail:tt)*)
+ $default:tt
+ (($i:tt $var:ident) $($labels:tt)*)
+ ($($cases:tt)*)
+ ) => {{
+ match $s {
+ ref _s => {
+ let $var: &$crate::Sender<_> = unsafe {
+ let _s: &$crate::Sender<_> = _s;
+
+ // Erase the lifetime so that `sel` can be dropped early even without NLL.
+ unsafe fn unbind<'a, T>(x: &T) -> &'a T {
+ ::std::mem::transmute(x)
+ }
+ unbind(_s)
+ };
+ $sel[$i] = ($var, $i, $var as *const $crate::Sender<_> as *const u8);
+
+ $crate::crossbeam_channel_internal!(
+ @add
+ $sel
+ ($($tail)*)
+ $default
+ ($($labels)*)
+ ($($cases)* [$i] send($var, $m) -> $res => $body,)
+ )
+ }
+ }
+ }};
+
+ // Complete a receive operation.
+ (@complete
+ $sel:ident
+ $oper:ident
+ ([$i:tt] recv($r:ident) -> $res:pat => $body:tt, $($tail:tt)*)
+ ) => {{
+ if $oper.index() == $i {
+ let _res = $oper.recv($r);
+ { $sel };
+
+ let $res = _res;
+ $body
+ } else {
+ $crate::crossbeam_channel_internal! {
+ @complete
+ $sel
+ $oper
+ ($($tail)*)
+ }
+ }
+ }};
+ // Complete a send operation.
+ (@complete
+ $sel:ident
+ $oper:ident
+ ([$i:tt] send($s:ident, $m:expr) -> $res:pat => $body:tt, $($tail:tt)*)
+ ) => {{
+ if $oper.index() == $i {
+ let _res = $oper.send($s, $m);
+ { $sel };
+
+ let $res = _res;
+ $body
+ } else {
+ $crate::crossbeam_channel_internal! {
+ @complete
+ $sel
+ $oper
+ ($($tail)*)
+ }
+ }
+ }};
+ // Panic if we don't identify the selected case, but this should never happen.
+ (@complete
+ $sel:ident
+ $oper:ident
+ ()
+ ) => {{
+ unreachable!(
+ "internal error in crossbeam-channel: invalid case"
+ )
+ }};
+
+ // Catches a bug within this macro (should not happen).
+ (@$($tokens:tt)*) => {
+ compile_error!(
+ concat!(
+ "internal error in crossbeam-channel: ",
+ stringify!(@$($tokens)*),
+ )
+ )
+ };
+
+ // The entry points.
+ () => {
+ compile_error!("empty `select!` block")
+ };
+ ($($case:ident $(($($args:tt)*))* => $body:expr $(,)*)*) => {
+ $crate::crossbeam_channel_internal!(
+ @list
+ ($($case $(($($args)*))* => { $body },)*)
+ ()
+ )
+ };
+ ($($tokens:tt)*) => {
+ $crate::crossbeam_channel_internal!(
+ @list
+ ($($tokens)*)
+ ()
+ )
+ };
+}
+
+/// Selects from a set of channel operations.
+///
+/// This macro allows you to define a set of channel operations, wait until any one of them becomes
+/// ready, and finally execute it. If multiple operations are ready at the same time, a random one
+/// among them is selected.
+///
+/// It is also possible to define a `default` case that gets executed if none of the operations are
+/// ready, either right away or for a certain duration of time.
+///
+/// An operation is considered to be ready if it doesn't have to block. Note that it is ready even
+/// when it will simply return an error because the channel is disconnected.
+///
+/// The `select!` macro is a convenience wrapper around [`Select`]. However, it cannot select over a
+/// dynamically created list of channel operations.
+///
+/// [`Select`]: super::Select
+///
+/// # Examples
+///
+/// Block until a send or a receive operation is selected:
+///
+/// ```
+/// use crossbeam_channel::{select, unbounded};
+///
+/// let (s1, r1) = unbounded();
+/// let (s2, r2) = unbounded();
+/// s1.send(10).unwrap();
+///
+/// // Since both operations are initially ready, a random one will be executed.
+/// select! {
+/// recv(r1) -> msg => assert_eq!(msg, Ok(10)),
+/// send(s2, 20) -> res => {
+/// assert_eq!(res, Ok(()));
+/// assert_eq!(r2.recv(), Ok(20));
+/// }
+/// }
+/// ```
+///
+/// Select from a set of operations without blocking:
+///
+/// ```
+/// use std::thread;
+/// use std::time::Duration;
+/// use crossbeam_channel::{select, unbounded};
+///
+/// let (s1, r1) = unbounded();
+/// let (s2, r2) = unbounded();
+///
+/// thread::spawn(move || {
+/// thread::sleep(Duration::from_secs(1));
+/// s1.send(10).unwrap();
+/// });
+/// thread::spawn(move || {
+/// thread::sleep(Duration::from_millis(500));
+/// s2.send(20).unwrap();
+/// });
+///
+/// // None of the operations are initially ready.
+/// select! {
+/// recv(r1) -> msg => panic!(),
+/// recv(r2) -> msg => panic!(),
+/// default => println!("not ready"),
+/// }
+/// ```
+///
+/// Select over a set of operations with a timeout:
+///
+/// ```
+/// use std::thread;
+/// use std::time::Duration;
+/// use crossbeam_channel::{select, unbounded};
+///
+/// let (s1, r1) = unbounded();
+/// let (s2, r2) = unbounded();
+///
+/// thread::spawn(move || {
+/// thread::sleep(Duration::from_secs(1));
+/// s1.send(10).unwrap();
+/// });
+/// thread::spawn(move || {
+/// thread::sleep(Duration::from_millis(500));
+/// s2.send(20).unwrap();
+/// });
+///
+/// // None of the two operations will become ready within 100 milliseconds.
+/// select! {
+/// recv(r1) -> msg => panic!(),
+/// recv(r2) -> msg => panic!(),
+/// default(Duration::from_millis(100)) => println!("timed out"),
+/// }
+/// ```
+///
+/// Optionally add a receive operation to `select!` using [`never`]:
+///
+/// ```
+/// use std::thread;
+/// use std::time::Duration;
+/// use crossbeam_channel::{select, never, unbounded};
+///
+/// let (s1, r1) = unbounded();
+/// let (s2, r2) = unbounded();
+///
+/// thread::spawn(move || {
+/// thread::sleep(Duration::from_secs(1));
+/// s1.send(10).unwrap();
+/// });
+/// thread::spawn(move || {
+/// thread::sleep(Duration::from_millis(500));
+/// s2.send(20).unwrap();
+/// });
+///
+/// // This receiver can be a `Some` or a `None`.
+/// let r2 = Some(&r2);
+///
+/// // None of the two operations will become ready within 100 milliseconds.
+/// select! {
+/// recv(r1) -> msg => panic!(),
+/// recv(r2.unwrap_or(&never())) -> msg => assert_eq!(msg, Ok(20)),
+/// }
+/// ```
+///
+/// To optionally add a timeout to `select!`, see the [example] for [`never`].
+///
+/// [`never`]: super::never
+/// [example]: super::never#examples
+#[macro_export]
+macro_rules! select {
+ ($($tokens:tt)*) => {
+ $crate::crossbeam_channel_internal!(
+ $($tokens)*
+ )
+ };
+}
diff --git a/third_party/rust/crossbeam-channel/src/utils.rs b/third_party/rust/crossbeam-channel/src/utils.rs
new file mode 100644
index 0000000000..9f14c8e654
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/utils.rs
@@ -0,0 +1,66 @@
+//! Miscellaneous utilities.
+
+use std::cell::Cell;
+use std::num::Wrapping;
+use std::thread;
+use std::time::{Duration, Instant};
+
+/// Randomly shuffles a slice.
+pub(crate) fn shuffle<T>(v: &mut [T]) {
+ let len = v.len();
+ if len <= 1 {
+ return;
+ }
+
+ thread_local! {
+ static RNG: Cell<Wrapping<u32>> = Cell::new(Wrapping(1_406_868_647));
+ }
+
+ let _ = RNG.try_with(|rng| {
+ for i in 1..len {
+ // This is the 32-bit variant of Xorshift.
+ //
+ // Source: https://en.wikipedia.org/wiki/Xorshift
+ let mut x = rng.get();
+ x ^= x << 13;
+ x ^= x >> 17;
+ x ^= x << 5;
+ rng.set(x);
+
+ let x = x.0;
+ let n = i + 1;
+
+ // This is a fast alternative to `let j = x % n`.
+ //
+ // Author: Daniel Lemire
+ // Source: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
+ let j = ((x as u64).wrapping_mul(n as u64) >> 32) as u32 as usize;
+
+ v.swap(i, j);
+ }
+ });
+}
+
+/// Sleeps until the deadline, or forever if the deadline isn't specified.
+pub(crate) fn sleep_until(deadline: Option<Instant>) {
+ loop {
+ match deadline {
+ None => thread::sleep(Duration::from_secs(1000)),
+ Some(d) => {
+ let now = Instant::now();
+ if now >= d {
+ break;
+ }
+ thread::sleep(d - now);
+ }
+ }
+ }
+}
+
+// https://github.com/crossbeam-rs/crossbeam/issues/795
+pub(crate) fn convert_timeout_to_deadline(timeout: Duration) -> Instant {
+ match Instant::now().checked_add(timeout) {
+ Some(deadline) => deadline,
+ None => Instant::now() + Duration::from_secs(86400 * 365 * 30),
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/src/waker.rs b/third_party/rust/crossbeam-channel/src/waker.rs
new file mode 100644
index 0000000000..7eb58ba7f3
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/src/waker.rs
@@ -0,0 +1,286 @@
+//! Waking mechanism for threads blocked on channel operations.
+
+use std::ptr;
+use std::sync::atomic::{AtomicBool, Ordering};
+use std::sync::Mutex;
+use std::thread::{self, ThreadId};
+
+use crate::context::Context;
+use crate::select::{Operation, Selected};
+
+/// Represents a thread blocked on a specific channel operation.
+pub(crate) struct Entry {
+ /// The operation.
+ pub(crate) oper: Operation,
+
+ /// Optional packet.
+ pub(crate) packet: *mut (),
+
+ /// Context associated with the thread owning this operation.
+ pub(crate) cx: Context,
+}
+
+/// A queue of threads blocked on channel operations.
+///
+/// This data structure is used by threads to register blocking operations and get woken up once
+/// an operation becomes ready.
+pub(crate) struct Waker {
+ /// A list of select operations.
+ selectors: Vec<Entry>,
+
+ /// A list of operations waiting to be ready.
+ observers: Vec<Entry>,
+}
+
+impl Waker {
+ /// Creates a new `Waker`.
+ #[inline]
+ pub(crate) fn new() -> Self {
+ Waker {
+ selectors: Vec::new(),
+ observers: Vec::new(),
+ }
+ }
+
+ /// Registers a select operation.
+ #[inline]
+ pub(crate) fn register(&mut self, oper: Operation, cx: &Context) {
+ self.register_with_packet(oper, ptr::null_mut(), cx);
+ }
+
+ /// Registers a select operation and a packet.
+ #[inline]
+ pub(crate) fn register_with_packet(&mut self, oper: Operation, packet: *mut (), cx: &Context) {
+ self.selectors.push(Entry {
+ oper,
+ packet,
+ cx: cx.clone(),
+ });
+ }
+
+ /// Unregisters a select operation.
+ #[inline]
+ pub(crate) fn unregister(&mut self, oper: Operation) -> Option<Entry> {
+ if let Some((i, _)) = self
+ .selectors
+ .iter()
+ .enumerate()
+ .find(|&(_, entry)| entry.oper == oper)
+ {
+ let entry = self.selectors.remove(i);
+ Some(entry)
+ } else {
+ None
+ }
+ }
+
+ /// Attempts to find another thread's entry, select the operation, and wake it up.
+ #[inline]
+ pub(crate) fn try_select(&mut self) -> Option<Entry> {
+ if self.selectors.is_empty() {
+ None
+ } else {
+ let thread_id = current_thread_id();
+
+ self.selectors
+ .iter()
+ .position(|selector| {
+ // Does the entry belong to a different thread?
+ selector.cx.thread_id() != thread_id
+ && selector // Try selecting this operation.
+ .cx
+ .try_select(Selected::Operation(selector.oper))
+ .is_ok()
+ && {
+ // Provide the packet.
+ selector.cx.store_packet(selector.packet);
+ // Wake the thread up.
+ selector.cx.unpark();
+ true
+ }
+ })
+ // Remove the entry from the queue to keep it clean and improve
+ // performance.
+ .map(|pos| self.selectors.remove(pos))
+ }
+ }
+
+ /// Returns `true` if there is an entry which can be selected by the current thread.
+ #[inline]
+ pub(crate) fn can_select(&self) -> bool {
+ if self.selectors.is_empty() {
+ false
+ } else {
+ let thread_id = current_thread_id();
+
+ self.selectors.iter().any(|entry| {
+ entry.cx.thread_id() != thread_id && entry.cx.selected() == Selected::Waiting
+ })
+ }
+ }
+
+ /// Registers an operation waiting to be ready.
+ #[inline]
+ pub(crate) fn watch(&mut self, oper: Operation, cx: &Context) {
+ self.observers.push(Entry {
+ oper,
+ packet: ptr::null_mut(),
+ cx: cx.clone(),
+ });
+ }
+
+ /// Unregisters an operation waiting to be ready.
+ #[inline]
+ pub(crate) fn unwatch(&mut self, oper: Operation) {
+ self.observers.retain(|e| e.oper != oper);
+ }
+
+ /// Notifies all operations waiting to be ready.
+ #[inline]
+ pub(crate) fn notify(&mut self) {
+ for entry in self.observers.drain(..) {
+ if entry.cx.try_select(Selected::Operation(entry.oper)).is_ok() {
+ entry.cx.unpark();
+ }
+ }
+ }
+
+ /// Notifies all registered operations that the channel is disconnected.
+ #[inline]
+ pub(crate) fn disconnect(&mut self) {
+ for entry in self.selectors.iter() {
+ if entry.cx.try_select(Selected::Disconnected).is_ok() {
+ // Wake the thread up.
+ //
+ // Here we don't remove the entry from the queue. Registered threads must
+ // unregister from the waker by themselves. They might also want to recover the
+ // packet value and destroy it, if necessary.
+ entry.cx.unpark();
+ }
+ }
+
+ self.notify();
+ }
+}
+
+impl Drop for Waker {
+ #[inline]
+ fn drop(&mut self) {
+ debug_assert_eq!(self.selectors.len(), 0);
+ debug_assert_eq!(self.observers.len(), 0);
+ }
+}
+
+/// A waker that can be shared among threads without locking.
+///
+/// This is a simple wrapper around `Waker` that internally uses a mutex for synchronization.
+pub(crate) struct SyncWaker {
+ /// The inner `Waker`.
+ inner: Mutex<Waker>,
+
+ /// `true` if the waker is empty.
+ is_empty: AtomicBool,
+}
+
+impl SyncWaker {
+ /// Creates a new `SyncWaker`.
+ #[inline]
+ pub(crate) fn new() -> Self {
+ SyncWaker {
+ inner: Mutex::new(Waker::new()),
+ is_empty: AtomicBool::new(true),
+ }
+ }
+
+ /// Registers the current thread with an operation.
+ #[inline]
+ pub(crate) fn register(&self, oper: Operation, cx: &Context) {
+ let mut inner = self.inner.lock().unwrap();
+ inner.register(oper, cx);
+ self.is_empty.store(
+ inner.selectors.is_empty() && inner.observers.is_empty(),
+ Ordering::SeqCst,
+ );
+ }
+
+ /// Unregisters an operation previously registered by the current thread.
+ #[inline]
+ pub(crate) fn unregister(&self, oper: Operation) -> Option<Entry> {
+ let mut inner = self.inner.lock().unwrap();
+ let entry = inner.unregister(oper);
+ self.is_empty.store(
+ inner.selectors.is_empty() && inner.observers.is_empty(),
+ Ordering::SeqCst,
+ );
+ entry
+ }
+
+ /// Attempts to find one thread (not the current one), select its operation, and wake it up.
+ #[inline]
+ pub(crate) fn notify(&self) {
+ if !self.is_empty.load(Ordering::SeqCst) {
+ let mut inner = self.inner.lock().unwrap();
+ if !self.is_empty.load(Ordering::SeqCst) {
+ inner.try_select();
+ inner.notify();
+ self.is_empty.store(
+ inner.selectors.is_empty() && inner.observers.is_empty(),
+ Ordering::SeqCst,
+ );
+ }
+ }
+ }
+
+ /// Registers an operation waiting to be ready.
+ #[inline]
+ pub(crate) fn watch(&self, oper: Operation, cx: &Context) {
+ let mut inner = self.inner.lock().unwrap();
+ inner.watch(oper, cx);
+ self.is_empty.store(
+ inner.selectors.is_empty() && inner.observers.is_empty(),
+ Ordering::SeqCst,
+ );
+ }
+
+ /// Unregisters an operation waiting to be ready.
+ #[inline]
+ pub(crate) fn unwatch(&self, oper: Operation) {
+ let mut inner = self.inner.lock().unwrap();
+ inner.unwatch(oper);
+ self.is_empty.store(
+ inner.selectors.is_empty() && inner.observers.is_empty(),
+ Ordering::SeqCst,
+ );
+ }
+
+ /// Notifies all threads that the channel is disconnected.
+ #[inline]
+ pub(crate) fn disconnect(&self) {
+ let mut inner = self.inner.lock().unwrap();
+ inner.disconnect();
+ self.is_empty.store(
+ inner.selectors.is_empty() && inner.observers.is_empty(),
+ Ordering::SeqCst,
+ );
+ }
+}
+
+impl Drop for SyncWaker {
+ #[inline]
+ fn drop(&mut self) {
+ debug_assert!(self.is_empty.load(Ordering::SeqCst));
+ }
+}
+
+/// Returns the id of the current thread.
+#[inline]
+fn current_thread_id() -> ThreadId {
+ thread_local! {
+ /// Cached thread-local id.
+ static THREAD_ID: ThreadId = thread::current().id();
+ }
+
+ THREAD_ID
+ .try_with(|id| *id)
+ .unwrap_or_else(|_| thread::current().id())
+}
diff --git a/third_party/rust/crossbeam-channel/tests/after.rs b/third_party/rust/crossbeam-channel/tests/after.rs
new file mode 100644
index 0000000000..678a8c679c
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/after.rs
@@ -0,0 +1,336 @@
+//! Tests for the after channel flavor.
+
+#![cfg(not(miri))] // TODO: many assertions failed due to Miri is slow
+
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering;
+use std::thread;
+use std::time::{Duration, Instant};
+
+use crossbeam_channel::{after, select, Select, TryRecvError};
+use crossbeam_utils::thread::scope;
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn fire() {
+ let start = Instant::now();
+ let r = after(ms(50));
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ thread::sleep(ms(100));
+
+ let fired = r.try_recv().unwrap();
+ assert!(start < fired);
+ assert!(fired - start >= ms(50));
+
+ let now = Instant::now();
+ assert!(fired < now);
+ assert!(now - fired >= ms(50));
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+
+ select! {
+ recv(r) -> _ => panic!(),
+ default => {}
+ }
+
+ select! {
+ recv(r) -> _ => panic!(),
+ recv(after(ms(200))) -> _ => {}
+ }
+}
+
+#[test]
+fn capacity() {
+ const COUNT: usize = 10;
+
+ for i in 0..COUNT {
+ let r = after(ms(i as u64));
+ assert_eq!(r.capacity(), Some(1));
+ }
+}
+
+#[test]
+fn len_empty_full() {
+ let r = after(ms(50));
+
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(!r.is_full());
+
+ thread::sleep(ms(100));
+
+ assert_eq!(r.len(), 1);
+ assert!(!r.is_empty());
+ assert!(r.is_full());
+
+ r.try_recv().unwrap();
+
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(!r.is_full());
+}
+
+#[test]
+fn try_recv() {
+ let r = after(ms(200));
+ assert!(r.try_recv().is_err());
+
+ thread::sleep(ms(100));
+ assert!(r.try_recv().is_err());
+
+ thread::sleep(ms(200));
+ assert!(r.try_recv().is_ok());
+ assert!(r.try_recv().is_err());
+
+ thread::sleep(ms(200));
+ assert!(r.try_recv().is_err());
+}
+
+#[test]
+fn recv() {
+ let start = Instant::now();
+ let r = after(ms(50));
+
+ let fired = r.recv().unwrap();
+ assert!(start < fired);
+ assert!(fired - start >= ms(50));
+
+ let now = Instant::now();
+ assert!(fired < now);
+ assert!(now - fired < fired - start);
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn recv_timeout() {
+ let start = Instant::now();
+ let r = after(ms(200));
+
+ assert!(r.recv_timeout(ms(100)).is_err());
+ let now = Instant::now();
+ assert!(now - start >= ms(100));
+ assert!(now - start <= ms(150));
+
+ let fired = r.recv_timeout(ms(200)).unwrap();
+ assert!(fired - start >= ms(200));
+ assert!(fired - start <= ms(250));
+
+ assert!(r.recv_timeout(ms(200)).is_err());
+ let now = Instant::now();
+ assert!(now - start >= ms(400));
+ assert!(now - start <= ms(450));
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn recv_two() {
+ let r1 = after(ms(50));
+ let r2 = after(ms(50));
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ select! {
+ recv(r1) -> _ => {}
+ recv(r2) -> _ => {}
+ }
+ });
+ scope.spawn(|_| {
+ select! {
+ recv(r1) -> _ => {}
+ recv(r2) -> _ => {}
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_race() {
+ select! {
+ recv(after(ms(50))) -> _ => {}
+ recv(after(ms(100))) -> _ => panic!(),
+ }
+
+ select! {
+ recv(after(ms(100))) -> _ => panic!(),
+ recv(after(ms(50))) -> _ => {}
+ }
+}
+
+#[test]
+fn stress_default() {
+ const COUNT: usize = 10;
+
+ for _ in 0..COUNT {
+ select! {
+ recv(after(ms(0))) -> _ => {}
+ default => panic!(),
+ }
+ }
+
+ for _ in 0..COUNT {
+ select! {
+ recv(after(ms(100))) -> _ => panic!(),
+ default => {}
+ }
+ }
+}
+
+#[test]
+fn select() {
+ const THREADS: usize = 4;
+ const COUNT: usize = 1000;
+ const TIMEOUT_MS: u64 = 100;
+
+ let v = (0..COUNT)
+ .map(|i| after(ms(i as u64 / TIMEOUT_MS / 2)))
+ .collect::<Vec<_>>();
+ let hits = AtomicUsize::new(0);
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ let v: Vec<&_> = v.iter().collect();
+
+ loop {
+ let timeout = after(ms(TIMEOUT_MS));
+ let mut sel = Select::new();
+ for r in &v {
+ sel.recv(r);
+ }
+ let oper_timeout = sel.recv(&timeout);
+
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper_timeout => {
+ oper.recv(&timeout).unwrap();
+ break;
+ }
+ i => {
+ oper.recv(v[i]).unwrap();
+ hits.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(hits.load(Ordering::SeqCst), COUNT);
+}
+
+#[test]
+fn ready() {
+ const THREADS: usize = 4;
+ const COUNT: usize = 1000;
+ const TIMEOUT_MS: u64 = 100;
+
+ let v = (0..COUNT)
+ .map(|i| after(ms(i as u64 / TIMEOUT_MS / 2)))
+ .collect::<Vec<_>>();
+ let hits = AtomicUsize::new(0);
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ let v: Vec<&_> = v.iter().collect();
+
+ loop {
+ let timeout = after(ms(TIMEOUT_MS));
+ let mut sel = Select::new();
+ for r in &v {
+ sel.recv(r);
+ }
+ let oper_timeout = sel.recv(&timeout);
+
+ loop {
+ let i = sel.ready();
+ if i == oper_timeout {
+ timeout.try_recv().unwrap();
+ return;
+ } else if v[i].try_recv().is_ok() {
+ hits.fetch_add(1, Ordering::SeqCst);
+ break;
+ }
+ }
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(hits.load(Ordering::SeqCst), COUNT);
+}
+
+#[test]
+fn stress_clone() {
+ const RUNS: usize = 1000;
+ const THREADS: usize = 10;
+ const COUNT: usize = 50;
+
+ for i in 0..RUNS {
+ let r = after(ms(i as u64));
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ let r = r.clone();
+ let _ = r.try_recv();
+
+ for _ in 0..COUNT {
+ drop(r.clone());
+ thread::yield_now();
+ }
+ });
+ }
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn fairness() {
+ const COUNT: usize = 1000;
+
+ for &dur in &[0, 1] {
+ let mut hits = [0usize; 2];
+
+ for _ in 0..COUNT {
+ select! {
+ recv(after(ms(dur))) -> _ => hits[0] += 1,
+ recv(after(ms(dur))) -> _ => hits[1] += 1,
+ }
+ }
+
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+ }
+}
+
+#[test]
+fn fairness_duplicates() {
+ const COUNT: usize = 1000;
+
+ for &dur in &[0, 1] {
+ let mut hits = [0usize; 5];
+
+ for _ in 0..COUNT {
+ let r = after(ms(dur));
+ select! {
+ recv(r) -> _ => hits[0] += 1,
+ recv(r) -> _ => hits[1] += 1,
+ recv(r) -> _ => hits[2] += 1,
+ recv(r) -> _ => hits[3] += 1,
+ recv(r) -> _ => hits[4] += 1,
+ }
+ }
+
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/tests/array.rs b/third_party/rust/crossbeam-channel/tests/array.rs
new file mode 100644
index 0000000000..6fd8ffcc67
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/array.rs
@@ -0,0 +1,744 @@
+//! Tests for the array channel flavor.
+
+use std::any::Any;
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering;
+use std::thread;
+use std::time::Duration;
+
+use crossbeam_channel::{bounded, select, Receiver};
+use crossbeam_channel::{RecvError, RecvTimeoutError, TryRecvError};
+use crossbeam_channel::{SendError, SendTimeoutError, TrySendError};
+use crossbeam_utils::thread::scope;
+use rand::{thread_rng, Rng};
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn smoke() {
+ let (s, r) = bounded(1);
+ s.send(7).unwrap();
+ assert_eq!(r.try_recv(), Ok(7));
+
+ s.send(8).unwrap();
+ assert_eq!(r.recv(), Ok(8));
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ assert_eq!(r.recv_timeout(ms(1000)), Err(RecvTimeoutError::Timeout));
+}
+
+#[test]
+fn capacity() {
+ for i in 1..10 {
+ let (s, r) = bounded::<()>(i);
+ assert_eq!(s.capacity(), Some(i));
+ assert_eq!(r.capacity(), Some(i));
+ }
+}
+
+#[test]
+fn len_empty_full() {
+ let (s, r) = bounded(2);
+
+ assert_eq!(s.len(), 0);
+ assert!(s.is_empty());
+ assert!(!s.is_full());
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(!r.is_full());
+
+ s.send(()).unwrap();
+
+ assert_eq!(s.len(), 1);
+ assert!(!s.is_empty());
+ assert!(!s.is_full());
+ assert_eq!(r.len(), 1);
+ assert!(!r.is_empty());
+ assert!(!r.is_full());
+
+ s.send(()).unwrap();
+
+ assert_eq!(s.len(), 2);
+ assert!(!s.is_empty());
+ assert!(s.is_full());
+ assert_eq!(r.len(), 2);
+ assert!(!r.is_empty());
+ assert!(r.is_full());
+
+ r.recv().unwrap();
+
+ assert_eq!(s.len(), 1);
+ assert!(!s.is_empty());
+ assert!(!s.is_full());
+ assert_eq!(r.len(), 1);
+ assert!(!r.is_empty());
+ assert!(!r.is_full());
+}
+
+#[test]
+fn try_recv() {
+ let (s, r) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ thread::sleep(ms(1500));
+ assert_eq!(r.try_recv(), Ok(7));
+ thread::sleep(ms(500));
+ assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ s.send(7).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv() {
+ let (s, r) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv(), Ok(7));
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(8));
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(9));
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ s.send(7).unwrap();
+ s.send(8).unwrap();
+ s.send(9).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_timeout() {
+ let (s, r) = bounded::<i32>(100);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv_timeout(ms(1000)), Err(RecvTimeoutError::Timeout));
+ assert_eq!(r.recv_timeout(ms(1000)), Ok(7));
+ assert_eq!(
+ r.recv_timeout(ms(1000)),
+ Err(RecvTimeoutError::Disconnected)
+ );
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ s.send(7).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn try_send() {
+ let (s, r) = bounded(1);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(s.try_send(1), Ok(()));
+ assert_eq!(s.try_send(2), Err(TrySendError::Full(2)));
+ thread::sleep(ms(1500));
+ assert_eq!(s.try_send(3), Ok(()));
+ thread::sleep(ms(500));
+ assert_eq!(s.try_send(4), Err(TrySendError::Disconnected(4)));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ assert_eq!(r.try_recv(), Ok(1));
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ assert_eq!(r.recv(), Ok(3));
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send() {
+ let (s, r) = bounded(1);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ s.send(7).unwrap();
+ thread::sleep(ms(1000));
+ s.send(8).unwrap();
+ thread::sleep(ms(1000));
+ s.send(9).unwrap();
+ thread::sleep(ms(1000));
+ s.send(10).unwrap();
+ });
+ scope.spawn(|_| {
+ thread::sleep(ms(1500));
+ assert_eq!(r.recv(), Ok(7));
+ assert_eq!(r.recv(), Ok(8));
+ assert_eq!(r.recv(), Ok(9));
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send_timeout() {
+ let (s, r) = bounded(2);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(s.send_timeout(1, ms(1000)), Ok(()));
+ assert_eq!(s.send_timeout(2, ms(1000)), Ok(()));
+ assert_eq!(
+ s.send_timeout(3, ms(500)),
+ Err(SendTimeoutError::Timeout(3))
+ );
+ thread::sleep(ms(1000));
+ assert_eq!(s.send_timeout(4, ms(1000)), Ok(()));
+ thread::sleep(ms(1000));
+ assert_eq!(s.send(5), Err(SendError(5)));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(1));
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(2));
+ assert_eq!(r.recv(), Ok(4));
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send_after_disconnect() {
+ let (s, r) = bounded(100);
+
+ s.send(1).unwrap();
+ s.send(2).unwrap();
+ s.send(3).unwrap();
+
+ drop(r);
+
+ assert_eq!(s.send(4), Err(SendError(4)));
+ assert_eq!(s.try_send(5), Err(TrySendError::Disconnected(5)));
+ assert_eq!(
+ s.send_timeout(6, ms(500)),
+ Err(SendTimeoutError::Disconnected(6))
+ );
+}
+
+#[test]
+fn recv_after_disconnect() {
+ let (s, r) = bounded(100);
+
+ s.send(1).unwrap();
+ s.send(2).unwrap();
+ s.send(3).unwrap();
+
+ drop(s);
+
+ assert_eq!(r.recv(), Ok(1));
+ assert_eq!(r.recv(), Ok(2));
+ assert_eq!(r.recv(), Ok(3));
+ assert_eq!(r.recv(), Err(RecvError));
+}
+
+#[test]
+fn len() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 25_000;
+ #[cfg(miri)]
+ const CAP: usize = 50;
+ #[cfg(not(miri))]
+ const CAP: usize = 1000;
+
+ let (s, r) = bounded(CAP);
+
+ assert_eq!(s.len(), 0);
+ assert_eq!(r.len(), 0);
+
+ for _ in 0..CAP / 10 {
+ for i in 0..50 {
+ s.send(i).unwrap();
+ assert_eq!(s.len(), i + 1);
+ }
+
+ for i in 0..50 {
+ r.recv().unwrap();
+ assert_eq!(r.len(), 50 - i - 1);
+ }
+ }
+
+ assert_eq!(s.len(), 0);
+ assert_eq!(r.len(), 0);
+
+ for i in 0..CAP {
+ s.send(i).unwrap();
+ assert_eq!(s.len(), i + 1);
+ }
+
+ for _ in 0..CAP {
+ r.recv().unwrap();
+ }
+
+ assert_eq!(s.len(), 0);
+ assert_eq!(r.len(), 0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ assert_eq!(r.recv(), Ok(i));
+ let len = r.len();
+ assert!(len <= CAP);
+ }
+ });
+
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s.send(i).unwrap();
+ let len = s.len();
+ assert!(len <= CAP);
+ }
+ });
+ })
+ .unwrap();
+
+ assert_eq!(s.len(), 0);
+ assert_eq!(r.len(), 0);
+}
+
+#[test]
+fn disconnect_wakes_sender() {
+ let (s, r) = bounded(1);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(s.send(()), Ok(()));
+ assert_eq!(s.send(()), Err(SendError(())));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ drop(r);
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn disconnect_wakes_receiver() {
+ let (s, r) = bounded::<()>(1);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ drop(s);
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn spsc() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ let (s, r) = bounded(3);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ for i in 0..COUNT {
+ assert_eq!(r.recv(), Ok(i));
+ }
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ for i in 0..COUNT {
+ s.send(i).unwrap();
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn mpmc() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 25_000;
+ const THREADS: usize = 4;
+
+ let (s, r) = bounded::<usize>(3);
+ let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ let n = r.recv().unwrap();
+ v[n].fetch_add(1, Ordering::SeqCst);
+ }
+ });
+ }
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s.send(i).unwrap();
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ for c in v {
+ assert_eq!(c.load(Ordering::SeqCst), THREADS);
+ }
+}
+
+#[test]
+fn stress_oneshot() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ for _ in 0..COUNT {
+ let (s, r) = bounded(1);
+
+ scope(|scope| {
+ scope.spawn(|_| r.recv().unwrap());
+ scope.spawn(|_| s.send(0).unwrap());
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn stress_iter() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ let (request_s, request_r) = bounded(1);
+ let (response_s, response_r) = bounded(1);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut count = 0;
+ loop {
+ for x in response_r.try_iter() {
+ count += x;
+ if count == COUNT {
+ return;
+ }
+ }
+ request_s.send(()).unwrap();
+ }
+ });
+
+ for _ in request_r.iter() {
+ if response_s.send(1).is_err() {
+ break;
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_timeout_two_threads() {
+ const COUNT: usize = 100;
+
+ let (s, r) = bounded(2);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(50));
+ }
+ loop {
+ if let Ok(()) = s.send_timeout(i, ms(10)) {
+ break;
+ }
+ }
+ }
+ });
+
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(50));
+ }
+ loop {
+ if let Ok(x) = r.recv_timeout(ms(10)) {
+ assert_eq!(x, i);
+ break;
+ }
+ }
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn drops() {
+ #[cfg(miri)]
+ const RUNS: usize = 10;
+ #[cfg(not(miri))]
+ const RUNS: usize = 100;
+ #[cfg(miri)]
+ const STEPS: usize = 100;
+ #[cfg(not(miri))]
+ const STEPS: usize = 10_000;
+
+ static DROPS: AtomicUsize = AtomicUsize::new(0);
+
+ #[derive(Debug, PartialEq)]
+ struct DropCounter;
+
+ impl Drop for DropCounter {
+ fn drop(&mut self) {
+ DROPS.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+
+ let mut rng = thread_rng();
+
+ for _ in 0..RUNS {
+ let steps = rng.gen_range(0..STEPS);
+ let additional = rng.gen_range(0..50);
+
+ DROPS.store(0, Ordering::SeqCst);
+ let (s, r) = bounded::<DropCounter>(50);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ });
+
+ scope.spawn(|_| {
+ for _ in 0..steps {
+ s.send(DropCounter).unwrap();
+ }
+ });
+ })
+ .unwrap();
+
+ for _ in 0..additional {
+ s.send(DropCounter).unwrap();
+ }
+
+ assert_eq!(DROPS.load(Ordering::SeqCst), steps);
+ drop(s);
+ drop(r);
+ assert_eq!(DROPS.load(Ordering::SeqCst), steps + additional);
+ }
+}
+
+#[test]
+fn linearizable() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 25_000;
+ const THREADS: usize = 4;
+
+ let (s, r) = bounded(THREADS);
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ s.send(0).unwrap();
+ r.try_recv().unwrap();
+ }
+ });
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn fairness() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded::<()>(COUNT);
+ let (s2, r2) = bounded::<()>(COUNT);
+
+ for _ in 0..COUNT {
+ s1.send(()).unwrap();
+ s2.send(()).unwrap();
+ }
+
+ let mut hits = [0usize; 2];
+ for _ in 0..COUNT {
+ select! {
+ recv(r1) -> _ => hits[0] += 1,
+ recv(r2) -> _ => hits[1] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+}
+
+#[test]
+fn fairness_duplicates() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s, r) = bounded::<()>(COUNT);
+
+ for _ in 0..COUNT {
+ s.send(()).unwrap();
+ }
+
+ let mut hits = [0usize; 5];
+ for _ in 0..COUNT {
+ select! {
+ recv(r) -> _ => hits[0] += 1,
+ recv(r) -> _ => hits[1] += 1,
+ recv(r) -> _ => hits[2] += 1,
+ recv(r) -> _ => hits[3] += 1,
+ recv(r) -> _ => hits[4] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+}
+
+#[test]
+fn recv_in_send() {
+ let (s, _r) = bounded(1);
+ s.send(()).unwrap();
+
+ #[allow(unreachable_code)]
+ {
+ select! {
+ send(s, panic!()) -> _ => panic!(),
+ default => {}
+ }
+ }
+
+ let (s, r) = bounded(2);
+ s.send(()).unwrap();
+
+ select! {
+ send(s, assert_eq!(r.recv(), Ok(()))) -> _ => {}
+ }
+}
+
+#[test]
+fn channel_through_channel() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ type T = Box<dyn Any + Send>;
+
+ let (s, r) = bounded::<T>(1);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut s = s;
+
+ for _ in 0..COUNT {
+ let (new_s, new_r) = bounded(1);
+ let new_r: T = Box::new(Some(new_r));
+
+ s.send(new_r).unwrap();
+ s = new_s;
+ }
+ });
+
+ scope.spawn(move |_| {
+ let mut r = r;
+
+ for _ in 0..COUNT {
+ r = r
+ .recv()
+ .unwrap()
+ .downcast_mut::<Option<Receiver<T>>>()
+ .unwrap()
+ .take()
+ .unwrap()
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn panic_on_drop() {
+ struct Msg1<'a>(&'a mut bool);
+ impl Drop for Msg1<'_> {
+ fn drop(&mut self) {
+ if *self.0 && !std::thread::panicking() {
+ panic!("double drop");
+ } else {
+ *self.0 = true;
+ }
+ }
+ }
+
+ struct Msg2<'a>(&'a mut bool);
+ impl Drop for Msg2<'_> {
+ fn drop(&mut self) {
+ if *self.0 {
+ panic!("double drop");
+ } else {
+ *self.0 = true;
+ panic!("first drop");
+ }
+ }
+ }
+
+ // normal
+ let (s, r) = bounded(2);
+ let (mut a, mut b) = (false, false);
+ s.send(Msg1(&mut a)).unwrap();
+ s.send(Msg1(&mut b)).unwrap();
+ drop(s);
+ drop(r);
+ assert!(a);
+ assert!(b);
+
+ // panic on drop
+ let (s, r) = bounded(2);
+ let (mut a, mut b) = (false, false);
+ s.send(Msg2(&mut a)).unwrap();
+ s.send(Msg2(&mut b)).unwrap();
+ drop(s);
+ let res = std::panic::catch_unwind(move || {
+ drop(r);
+ });
+ assert_eq!(
+ *res.unwrap_err().downcast_ref::<&str>().unwrap(),
+ "first drop"
+ );
+ assert!(a);
+ // Elements after the panicked element will leak.
+ assert!(!b);
+}
diff --git a/third_party/rust/crossbeam-channel/tests/golang.rs b/third_party/rust/crossbeam-channel/tests/golang.rs
new file mode 100644
index 0000000000..8050716c67
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/golang.rs
@@ -0,0 +1,2141 @@
+//! Tests copied from Go and manually rewritten in Rust.
+//!
+//! Source:
+//! - https://github.com/golang/go
+//!
+//! Copyright & License:
+//! - Copyright (c) 2009 The Go Authors
+//! - https://golang.org/AUTHORS
+//! - https://golang.org/LICENSE
+//! - https://golang.org/PATENTS
+
+#![allow(clippy::mutex_atomic, clippy::redundant_clone)]
+
+use std::alloc::{GlobalAlloc, Layout, System};
+use std::any::Any;
+use std::cell::Cell;
+use std::collections::HashMap;
+use std::sync::atomic::{AtomicI32, AtomicUsize, Ordering::SeqCst};
+use std::sync::{Arc, Condvar, Mutex};
+use std::thread;
+use std::time::Duration;
+
+use crossbeam_channel::{bounded, never, select, tick, unbounded, Receiver, Select, Sender};
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+struct Chan<T> {
+ inner: Arc<Mutex<ChanInner<T>>>,
+}
+
+struct ChanInner<T> {
+ s: Option<Sender<T>>,
+ r: Option<Receiver<T>>,
+ // Receiver to use when r is None (Go blocks on receiving from nil)
+ nil_r: Receiver<T>,
+ // Sender to use when s is None (Go blocks on sending to nil)
+ nil_s: Sender<T>,
+ // Hold this receiver to prevent nil sender channel from disconnection
+ _nil_sr: Receiver<T>,
+}
+
+impl<T> Clone for Chan<T> {
+ fn clone(&self) -> Chan<T> {
+ Chan {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+impl<T> Chan<T> {
+ fn send(&self, msg: T) {
+ let s = self
+ .inner
+ .lock()
+ .unwrap()
+ .s
+ .as_ref()
+ .expect("sending into closed channel")
+ .clone();
+ let _ = s.send(msg);
+ }
+
+ fn try_recv(&self) -> Option<T> {
+ let r = self.inner.lock().unwrap().r.as_ref().unwrap().clone();
+ r.try_recv().ok()
+ }
+
+ fn recv(&self) -> Option<T> {
+ let r = self.inner.lock().unwrap().r.as_ref().unwrap().clone();
+ r.recv().ok()
+ }
+
+ fn close_s(&self) {
+ self.inner
+ .lock()
+ .unwrap()
+ .s
+ .take()
+ .expect("channel sender already closed");
+ }
+
+ fn close_r(&self) {
+ self.inner
+ .lock()
+ .unwrap()
+ .r
+ .take()
+ .expect("channel receiver already closed");
+ }
+
+ fn has_rx(&self) -> bool {
+ self.inner.lock().unwrap().r.is_some()
+ }
+
+ fn has_tx(&self) -> bool {
+ self.inner.lock().unwrap().s.is_some()
+ }
+
+ fn rx(&self) -> Receiver<T> {
+ let inner = self.inner.lock().unwrap();
+ match inner.r.as_ref() {
+ None => inner.nil_r.clone(),
+ Some(r) => r.clone(),
+ }
+ }
+
+ fn tx(&self) -> Sender<T> {
+ let inner = self.inner.lock().unwrap();
+ match inner.s.as_ref() {
+ None => inner.nil_s.clone(),
+ Some(s) => s.clone(),
+ }
+ }
+}
+
+impl<T> Iterator for Chan<T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.recv()
+ }
+}
+
+impl<'a, T> IntoIterator for &'a Chan<T> {
+ type Item = T;
+ type IntoIter = Chan<T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.clone()
+ }
+}
+
+fn make<T>(cap: usize) -> Chan<T> {
+ let (s, r) = bounded(cap);
+ let (nil_s, _nil_sr) = bounded(0);
+ Chan {
+ inner: Arc::new(Mutex::new(ChanInner {
+ s: Some(s),
+ r: Some(r),
+ nil_r: never(),
+ nil_s,
+ _nil_sr,
+ })),
+ }
+}
+
+fn make_unbounded<T>() -> Chan<T> {
+ let (s, r) = unbounded();
+ let (nil_s, _nil_sr) = bounded(0);
+ Chan {
+ inner: Arc::new(Mutex::new(ChanInner {
+ s: Some(s),
+ r: Some(r),
+ nil_r: never(),
+ nil_s,
+ _nil_sr,
+ })),
+ }
+}
+
+#[derive(Clone)]
+struct WaitGroup(Arc<WaitGroupInner>);
+
+struct WaitGroupInner {
+ cond: Condvar,
+ count: Mutex<i32>,
+}
+
+impl WaitGroup {
+ fn new() -> WaitGroup {
+ WaitGroup(Arc::new(WaitGroupInner {
+ cond: Condvar::new(),
+ count: Mutex::new(0),
+ }))
+ }
+
+ fn add(&self, delta: i32) {
+ let mut count = self.0.count.lock().unwrap();
+ *count += delta;
+ assert!(*count >= 0);
+ self.0.cond.notify_all();
+ }
+
+ fn done(&self) {
+ self.add(-1);
+ }
+
+ fn wait(&self) {
+ let mut count = self.0.count.lock().unwrap();
+ while *count > 0 {
+ count = self.0.cond.wait(count).unwrap();
+ }
+ }
+}
+
+struct Defer<F: FnOnce()> {
+ f: Option<Box<F>>,
+}
+
+impl<F: FnOnce()> Drop for Defer<F> {
+ fn drop(&mut self) {
+ let f = self.f.take().unwrap();
+ let mut f = Some(f);
+ let mut f = move || f.take().unwrap()();
+ f();
+ }
+}
+
+struct Counter;
+
+static ALLOCATED: AtomicUsize = AtomicUsize::new(0);
+unsafe impl GlobalAlloc for Counter {
+ unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
+ let ret = System.alloc(layout);
+ if !ret.is_null() {
+ ALLOCATED.fetch_add(layout.size(), SeqCst);
+ }
+ ret
+ }
+
+ unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
+ System.dealloc(ptr, layout);
+ ALLOCATED.fetch_sub(layout.size(), SeqCst);
+ }
+}
+
+#[global_allocator]
+static A: Counter = Counter;
+
+macro_rules! defer {
+ ($body:expr) => {
+ let _defer = Defer {
+ f: Some(Box::new(|| $body)),
+ };
+ };
+}
+
+macro_rules! go {
+ (@parse $v:ident, $($tail:tt)*) => {{
+ let $v = $v.clone();
+ go!(@parse $($tail)*)
+ }};
+ (@parse $body:expr) => {
+ ::std::thread::spawn(move || {
+ let res = ::std::panic::catch_unwind(::std::panic::AssertUnwindSafe(|| {
+ $body
+ }));
+ if res.is_err() {
+ eprintln!("goroutine panicked: {:?}", res);
+ ::std::process::abort();
+ }
+ })
+ };
+ (@parse $($tail:tt)*) => {
+ compile_error!("invalid `go!` syntax")
+ };
+ ($($tail:tt)*) => {{
+ go!(@parse $($tail)*)
+ }};
+}
+
+// https://github.com/golang/go/blob/master/test/chan/doubleselect.go
+mod doubleselect {
+ use super::*;
+
+ #[cfg(miri)]
+ const ITERATIONS: i32 = 100;
+ #[cfg(not(miri))]
+ const ITERATIONS: i32 = 10_000;
+
+ fn sender(n: i32, c1: Chan<i32>, c2: Chan<i32>, c3: Chan<i32>, c4: Chan<i32>) {
+ defer! { c1.close_s() }
+ defer! { c2.close_s() }
+ defer! { c3.close_s() }
+ defer! { c4.close_s() }
+
+ for i in 0..n {
+ select! {
+ send(c1.tx(), i) -> _ => {}
+ send(c2.tx(), i) -> _ => {}
+ send(c3.tx(), i) -> _ => {}
+ send(c4.tx(), i) -> _ => {}
+ }
+ }
+ }
+
+ fn mux(out: Chan<i32>, inp: Chan<i32>, done: Chan<bool>) {
+ for v in inp {
+ out.send(v);
+ }
+ done.send(true);
+ }
+
+ fn recver(inp: Chan<i32>) {
+ let mut seen = HashMap::new();
+
+ for v in &inp {
+ if seen.contains_key(&v) {
+ panic!("got duplicate value for {}", v);
+ }
+ seen.insert(v, true);
+ }
+ }
+
+ #[test]
+ fn main() {
+ let c1 = make::<i32>(0);
+ let c2 = make::<i32>(0);
+ let c3 = make::<i32>(0);
+ let c4 = make::<i32>(0);
+ let done = make::<bool>(0);
+ let cmux = make::<i32>(0);
+
+ go!(c1, c2, c3, c4, sender(ITERATIONS, c1, c2, c3, c4));
+ go!(cmux, c1, done, mux(cmux, c1, done));
+ go!(cmux, c2, done, mux(cmux, c2, done));
+ go!(cmux, c3, done, mux(cmux, c3, done));
+ go!(cmux, c4, done, mux(cmux, c4, done));
+ go!(done, cmux, {
+ done.recv();
+ done.recv();
+ done.recv();
+ done.recv();
+ cmux.close_s();
+ });
+ recver(cmux);
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/fifo.go
+mod fifo {
+ use super::*;
+
+ const N: i32 = 10;
+
+ #[test]
+ fn asynch_fifo() {
+ let ch = make::<i32>(N as usize);
+ for i in 0..N {
+ ch.send(i);
+ }
+ for i in 0..N {
+ if ch.recv() != Some(i) {
+ panic!("bad receive");
+ }
+ }
+ }
+
+ fn chain(ch: Chan<i32>, val: i32, inp: Chan<i32>, out: Chan<i32>) {
+ inp.recv();
+ if ch.recv() != Some(val) {
+ panic!("{}", val);
+ }
+ out.send(1);
+ }
+
+ #[test]
+ fn synch_fifo() {
+ let ch = make::<i32>(0);
+ let mut inp = make::<i32>(0);
+ let start = inp.clone();
+
+ for i in 0..N {
+ let out = make::<i32>(0);
+ go!(ch, i, inp, out, chain(ch, i, inp, out));
+ inp = out;
+ }
+
+ start.send(0);
+ for i in 0..N {
+ ch.send(i);
+ }
+ inp.recv();
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/goroutines.go
+mod goroutines {
+ use super::*;
+
+ fn f(left: Chan<i32>, right: Chan<i32>) {
+ left.send(right.recv().unwrap());
+ }
+
+ #[test]
+ fn main() {
+ let n = 100i32;
+
+ let leftmost = make::<i32>(0);
+ let mut right = leftmost.clone();
+ let mut left = leftmost.clone();
+
+ for _ in 0..n {
+ right = make::<i32>(0);
+ go!(left, right, f(left, right));
+ left = right.clone();
+ }
+
+ go!(right, right.send(1));
+ leftmost.recv().unwrap();
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/nonblock.go
+mod nonblock {
+ use super::*;
+
+ fn i32receiver(c: Chan<i32>, strobe: Chan<bool>) {
+ if c.recv().unwrap() != 123 {
+ panic!("i32 value");
+ }
+ strobe.send(true);
+ }
+
+ fn i32sender(c: Chan<i32>, strobe: Chan<bool>) {
+ c.send(234);
+ strobe.send(true);
+ }
+
+ fn i64receiver(c: Chan<i64>, strobe: Chan<bool>) {
+ if c.recv().unwrap() != 123456 {
+ panic!("i64 value");
+ }
+ strobe.send(true);
+ }
+
+ fn i64sender(c: Chan<i64>, strobe: Chan<bool>) {
+ c.send(234567);
+ strobe.send(true);
+ }
+
+ fn breceiver(c: Chan<bool>, strobe: Chan<bool>) {
+ if !c.recv().unwrap() {
+ panic!("b value");
+ }
+ strobe.send(true);
+ }
+
+ fn bsender(c: Chan<bool>, strobe: Chan<bool>) {
+ c.send(true);
+ strobe.send(true);
+ }
+
+ fn sreceiver(c: Chan<String>, strobe: Chan<bool>) {
+ if c.recv().unwrap() != "hello" {
+ panic!("x value");
+ }
+ strobe.send(true);
+ }
+
+ fn ssender(c: Chan<String>, strobe: Chan<bool>) {
+ c.send("hello again".to_string());
+ strobe.send(true);
+ }
+
+ const MAX_TRIES: usize = 10000; // Up to 100ms per test.
+
+ #[test]
+ fn main() {
+ let ticker = tick(Duration::new(0, 10_000)); // 10 us
+ let sleep = || {
+ ticker.recv().unwrap();
+ ticker.recv().unwrap();
+ thread::yield_now();
+ thread::yield_now();
+ thread::yield_now();
+ };
+
+ let sync = make::<bool>(0);
+
+ for buffer in 0..2 {
+ let c32 = make::<i32>(buffer);
+ let c64 = make::<i64>(buffer);
+ let cb = make::<bool>(buffer);
+ let cs = make::<String>(buffer);
+
+ select! {
+ recv(c32.rx()) -> _ => panic!("blocked i32sender"),
+ default => {}
+ }
+
+ select! {
+ recv(c64.rx()) -> _ => panic!("blocked i64sender"),
+ default => {}
+ }
+
+ select! {
+ recv(cb.rx()) -> _ => panic!("blocked bsender"),
+ default => {}
+ }
+
+ select! {
+ recv(cs.rx()) -> _ => panic!("blocked ssender"),
+ default => {}
+ }
+
+ go!(c32, sync, i32receiver(c32, sync));
+ let mut r#try = 0;
+ loop {
+ select! {
+ send(c32.tx(), 123) -> _ => break,
+ default => {
+ r#try += 1;
+ if r#try > MAX_TRIES {
+ println!("i32receiver buffer={}", buffer);
+ panic!("fail")
+ }
+ sleep();
+ }
+ }
+ }
+ sync.recv();
+ go!(c32, sync, i32sender(c32, sync));
+ if buffer > 0 {
+ sync.recv();
+ }
+ let mut r#try = 0;
+ loop {
+ select! {
+ recv(c32.rx()) -> v => {
+ if v != Ok(234) {
+ panic!("i32sender value");
+ }
+ break;
+ }
+ default => {
+ r#try += 1;
+ if r#try > MAX_TRIES {
+ println!("i32sender buffer={}", buffer);
+ panic!("fail");
+ }
+ sleep();
+ }
+ }
+ }
+ if buffer == 0 {
+ sync.recv();
+ }
+
+ go!(c64, sync, i64receiver(c64, sync));
+ let mut r#try = 0;
+ loop {
+ select! {
+ send(c64.tx(), 123456) -> _ => break,
+ default => {
+ r#try += 1;
+ if r#try > MAX_TRIES {
+ println!("i64receiver buffer={}", buffer);
+ panic!("fail")
+ }
+ sleep();
+ }
+ }
+ }
+ sync.recv();
+ go!(c64, sync, i64sender(c64, sync));
+ if buffer > 0 {
+ sync.recv();
+ }
+ let mut r#try = 0;
+ loop {
+ select! {
+ recv(c64.rx()) -> v => {
+ if v != Ok(234567) {
+ panic!("i64sender value");
+ }
+ break;
+ }
+ default => {
+ r#try += 1;
+ if r#try > MAX_TRIES {
+ println!("i64sender buffer={}", buffer);
+ panic!("fail");
+ }
+ sleep();
+ }
+ }
+ }
+ if buffer == 0 {
+ sync.recv();
+ }
+
+ go!(cb, sync, breceiver(cb, sync));
+ let mut r#try = 0;
+ loop {
+ select! {
+ send(cb.tx(), true) -> _ => break,
+ default => {
+ r#try += 1;
+ if r#try > MAX_TRIES {
+ println!("breceiver buffer={}", buffer);
+ panic!("fail")
+ }
+ sleep();
+ }
+ }
+ }
+ sync.recv();
+ go!(cb, sync, bsender(cb, sync));
+ if buffer > 0 {
+ sync.recv();
+ }
+ let mut r#try = 0;
+ loop {
+ select! {
+ recv(cb.rx()) -> v => {
+ if v != Ok(true) {
+ panic!("bsender value");
+ }
+ break;
+ }
+ default => {
+ r#try += 1;
+ if r#try > MAX_TRIES {
+ println!("bsender buffer={}", buffer);
+ panic!("fail");
+ }
+ sleep();
+ }
+ }
+ }
+ if buffer == 0 {
+ sync.recv();
+ }
+
+ go!(cs, sync, sreceiver(cs, sync));
+ let mut r#try = 0;
+ loop {
+ select! {
+ send(cs.tx(), "hello".to_string()) -> _ => break,
+ default => {
+ r#try += 1;
+ if r#try > MAX_TRIES {
+ println!("sreceiver buffer={}", buffer);
+ panic!("fail")
+ }
+ sleep();
+ }
+ }
+ }
+ sync.recv();
+ go!(cs, sync, ssender(cs, sync));
+ if buffer > 0 {
+ sync.recv();
+ }
+ let mut r#try = 0;
+ loop {
+ select! {
+ recv(cs.rx()) -> v => {
+ if v != Ok("hello again".to_string()) {
+ panic!("ssender value");
+ }
+ break;
+ }
+ default => {
+ r#try += 1;
+ if r#try > MAX_TRIES {
+ println!("ssender buffer={}", buffer);
+ panic!("fail");
+ }
+ sleep();
+ }
+ }
+ }
+ if buffer == 0 {
+ sync.recv();
+ }
+ }
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/select.go
+mod select {
+ use super::*;
+
+ #[test]
+ fn main() {
+ let shift = Cell::new(0);
+ let counter = Cell::new(0);
+
+ let get_value = || {
+ counter.set(counter.get() + 1);
+ 1 << shift.get()
+ };
+
+ let send = |mut a: Option<&Chan<u32>>, mut b: Option<&Chan<u32>>| {
+ let mut i = 0;
+ let never = make::<u32>(0);
+ loop {
+ let nil1 = never.tx();
+ let nil2 = never.tx();
+ let v1 = get_value();
+ let v2 = get_value();
+ select! {
+ send(a.map(|c| c.tx()).unwrap_or(nil1), v1) -> _ => {
+ i += 1;
+ a = None;
+ }
+ send(b.map(|c| c.tx()).unwrap_or(nil2), v2) -> _ => {
+ i += 1;
+ b = None;
+ }
+ default => break,
+ }
+ shift.set(shift.get() + 1);
+ }
+ i
+ };
+
+ let a = make::<u32>(1);
+ let b = make::<u32>(1);
+
+ assert_eq!(send(Some(&a), Some(&b)), 2);
+
+ let av = a.recv().unwrap();
+ let bv = b.recv().unwrap();
+ assert_eq!(av | bv, 3);
+
+ assert_eq!(send(Some(&a), None), 1);
+ assert_eq!(counter.get(), 10);
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/select2.go
+mod select2 {
+ use super::*;
+
+ #[cfg(miri)]
+ const N: i32 = 200;
+ #[cfg(not(miri))]
+ const N: i32 = 100000;
+
+ #[test]
+ fn main() {
+ fn sender(c: &Chan<i32>, n: i32) {
+ for _ in 0..n {
+ c.send(1);
+ }
+ }
+
+ fn receiver(c: &Chan<i32>, dummy: &Chan<i32>, n: i32) {
+ for _ in 0..n {
+ select! {
+ recv(c.rx()) -> _ => {}
+ recv(dummy.rx()) -> _ => {
+ panic!("dummy");
+ }
+ }
+ }
+ }
+
+ let c = make_unbounded::<i32>();
+ let dummy = make_unbounded::<i32>();
+
+ ALLOCATED.store(0, SeqCst);
+
+ go!(c, sender(&c, N));
+ receiver(&c, &dummy, N);
+
+ let alloc = ALLOCATED.load(SeqCst);
+
+ go!(c, sender(&c, N));
+ receiver(&c, &dummy, N);
+
+ assert!(
+ !(ALLOCATED.load(SeqCst) > alloc
+ && (ALLOCATED.load(SeqCst) - alloc) > (N as usize + 10000))
+ )
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/select3.go
+mod select3 {
+ // TODO
+}
+
+// https://github.com/golang/go/blob/master/test/chan/select4.go
+mod select4 {
+ use super::*;
+
+ #[test]
+ fn main() {
+ let c = make::<i32>(1);
+ let c1 = make::<i32>(0);
+ c.send(42);
+ select! {
+ recv(c1.rx()) -> _ => panic!("BUG"),
+ recv(c.rx()) -> v => assert_eq!(v, Ok(42)),
+ }
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/select6.go
+mod select6 {
+ use super::*;
+
+ #[test]
+ fn main() {
+ let c1 = make::<bool>(0);
+ let c2 = make::<bool>(0);
+ let c3 = make::<bool>(0);
+
+ go!(c1, c1.recv());
+ go!(c1, c2, c3, {
+ select! {
+ recv(c1.rx()) -> _ => panic!("dummy"),
+ recv(c2.rx()) -> _ => c3.send(true),
+ }
+ c1.recv();
+ });
+ go!(c2, c2.send(true));
+
+ c3.recv();
+ c1.send(true);
+ c1.send(true);
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/select7.go
+mod select7 {
+ use super::*;
+
+ fn recv1(c: Chan<i32>) {
+ c.recv().unwrap();
+ }
+
+ fn recv2(c: Chan<i32>) {
+ select! {
+ recv(c.rx()) -> _ => ()
+ }
+ }
+
+ fn recv3(c: Chan<i32>) {
+ let c2 = make::<i32>(1);
+ select! {
+ recv(c.rx()) -> _ => (),
+ recv(c2.rx()) -> _ => ()
+ }
+ }
+
+ fn send1(recv: fn(Chan<i32>)) {
+ let c = make::<i32>(1);
+ go!(c, recv(c));
+ thread::yield_now();
+ c.send(1);
+ }
+
+ fn send2(recv: fn(Chan<i32>)) {
+ let c = make::<i32>(1);
+ go!(c, recv(c));
+ thread::yield_now();
+ select! {
+ send(c.tx(), 1) -> _ => ()
+ }
+ }
+
+ fn send3(recv: fn(Chan<i32>)) {
+ let c = make::<i32>(1);
+ go!(c, recv(c));
+ thread::yield_now();
+ let c2 = make::<i32>(1);
+ select! {
+ send(c.tx(), 1) -> _ => (),
+ send(c2.tx(), 1) -> _ => ()
+ }
+ }
+
+ #[test]
+ fn main() {
+ send1(recv1);
+ send2(recv1);
+ send3(recv1);
+ send1(recv2);
+ send2(recv2);
+ send3(recv2);
+ send1(recv3);
+ send2(recv3);
+ send3(recv3);
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/sieve1.go
+mod sieve1 {
+ use super::*;
+
+ fn generate(ch: Chan<i32>) {
+ let mut i = 2;
+ loop {
+ ch.send(i);
+ i += 1;
+ }
+ }
+
+ fn filter(in_ch: Chan<i32>, out_ch: Chan<i32>, prime: i32) {
+ for i in in_ch {
+ if i % prime != 0 {
+ out_ch.send(i);
+ }
+ }
+ }
+
+ fn sieve(primes: Chan<i32>) {
+ let mut ch = make::<i32>(1);
+ go!(ch, generate(ch));
+ loop {
+ let prime = ch.recv().unwrap();
+ primes.send(prime);
+
+ let ch1 = make::<i32>(1);
+ go!(ch, ch1, prime, filter(ch, ch1, prime));
+ ch = ch1;
+ }
+ }
+
+ #[test]
+ fn main() {
+ let primes = make::<i32>(1);
+ go!(primes, sieve(primes));
+
+ let a = [
+ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97,
+ ];
+ #[cfg(miri)]
+ let a = &a[..10];
+
+ for item in a.iter() {
+ let x = primes.recv().unwrap();
+ if x != *item {
+ println!("{} != {}", x, item);
+ panic!("fail");
+ }
+ }
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/chan/zerosize.go
+mod zerosize {
+ use super::*;
+
+ #[test]
+ fn zero_size_struct() {
+ struct ZeroSize;
+ let _ = make::<ZeroSize>(0);
+ }
+
+ #[test]
+ fn zero_size_array() {
+ let _ = make::<[u8; 0]>(0);
+ }
+}
+
+// https://github.com/golang/go/blob/master/src/runtime/chan_test.go
+mod chan_test {
+ use super::*;
+
+ #[test]
+ fn test_chan() {
+ #[cfg(miri)]
+ const N: i32 = 12;
+ #[cfg(not(miri))]
+ const N: i32 = 200;
+
+ #[cfg(miri)]
+ const MESSAGES_COUNT: i32 = 20;
+ #[cfg(not(miri))]
+ const MESSAGES_COUNT: i32 = 100;
+
+ for cap in 0..N {
+ {
+ // Ensure that receive from empty chan blocks.
+ let c = make::<i32>(cap as usize);
+
+ let recv1 = Arc::new(Mutex::new(false));
+ go!(c, recv1, {
+ c.recv();
+ *recv1.lock().unwrap() = true;
+ });
+
+ let recv2 = Arc::new(Mutex::new(false));
+ go!(c, recv2, {
+ c.recv();
+ *recv2.lock().unwrap() = true;
+ });
+
+ thread::sleep(ms(1));
+
+ if *recv1.lock().unwrap() || *recv2.lock().unwrap() {
+ panic!();
+ }
+
+ // Ensure that non-blocking receive does not block.
+ select! {
+ recv(c.rx()) -> _ => panic!(),
+ default => {}
+ }
+ select! {
+ recv(c.rx()) -> _ => panic!(),
+ default => {}
+ }
+
+ c.send(0);
+ c.send(0);
+ }
+
+ {
+ // Ensure that send to full chan blocks.
+ let c = make::<i32>(cap as usize);
+ for i in 0..cap {
+ c.send(i);
+ }
+
+ let sent = Arc::new(Mutex::new(0));
+ go!(sent, c, {
+ c.send(0);
+ *sent.lock().unwrap() = 1;
+ });
+
+ thread::sleep(ms(1));
+
+ if *sent.lock().unwrap() != 0 {
+ panic!();
+ }
+
+ // Ensure that non-blocking send does not block.
+ select! {
+ send(c.tx(), 0) -> _ => panic!(),
+ default => {}
+ }
+ c.recv();
+ }
+
+ {
+ // Ensure that we receive 0 from closed chan.
+ let c = make::<i32>(cap as usize);
+ for i in 0..cap {
+ c.send(i);
+ }
+ c.close_s();
+
+ for i in 0..cap {
+ let v = c.recv();
+ if v != Some(i) {
+ panic!();
+ }
+ }
+
+ if c.recv() != None {
+ panic!();
+ }
+ if c.try_recv() != None {
+ panic!();
+ }
+ }
+
+ {
+ // Ensure that close unblocks receive.
+ let c = make::<i32>(cap as usize);
+ let done = make::<bool>(0);
+
+ go!(c, done, {
+ let v = c.try_recv();
+ done.send(v.is_none());
+ });
+
+ thread::sleep(ms(1));
+ c.close_s();
+
+ if !done.recv().unwrap() {
+ panic!();
+ }
+ }
+
+ {
+ // Send many integers,
+ // ensure that we receive them non-corrupted in FIFO order.
+ let c = make::<i32>(cap as usize);
+ go!(c, {
+ for i in 0..MESSAGES_COUNT {
+ c.send(i);
+ }
+ });
+ for i in 0..MESSAGES_COUNT {
+ if c.recv() != Some(i) {
+ panic!();
+ }
+ }
+
+ // Same, but using recv2.
+ go!(c, {
+ for i in 0..MESSAGES_COUNT {
+ c.send(i);
+ }
+ });
+ for i in 0..MESSAGES_COUNT {
+ if c.recv() != Some(i) {
+ panic!();
+ }
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_nonblock_recv_race() {
+ #[cfg(miri)]
+ const N: usize = 100;
+ #[cfg(not(miri))]
+ const N: usize = 1000;
+
+ for _ in 0..N {
+ let c = make::<i32>(1);
+ c.send(1);
+
+ let t = go!(c, {
+ select! {
+ recv(c.rx()) -> _ => {}
+ default => panic!("chan is not ready"),
+ }
+ });
+
+ c.close_s();
+ c.recv();
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn test_nonblock_select_race() {
+ #[cfg(miri)]
+ const N: usize = 100;
+ #[cfg(not(miri))]
+ const N: usize = 1000;
+
+ let done = make::<bool>(1);
+ for _ in 0..N {
+ let c1 = make::<i32>(1);
+ let c2 = make::<i32>(1);
+ c1.send(1);
+
+ go!(c1, c2, done, {
+ select! {
+ recv(c1.rx()) -> _ => {}
+ recv(c2.rx()) -> _ => {}
+ default => {
+ done.send(false);
+ return;
+ }
+ }
+ done.send(true);
+ });
+
+ c2.send(1);
+ select! {
+ recv(c1.rx()) -> _ => {}
+ default => {}
+ }
+ if !done.recv().unwrap() {
+ panic!("no chan is ready");
+ }
+ }
+ }
+
+ #[test]
+ fn test_nonblock_select_race2() {
+ #[cfg(miri)]
+ const N: usize = 100;
+ #[cfg(not(miri))]
+ const N: usize = 1000;
+
+ let done = make::<bool>(1);
+ for _ in 0..N {
+ let c1 = make::<i32>(1);
+ let c2 = make::<i32>(0);
+ c1.send(1);
+
+ go!(c1, c2, done, {
+ select! {
+ recv(c1.rx()) -> _ => {}
+ recv(c2.rx()) -> _ => {}
+ default => {
+ done.send(false);
+ return;
+ }
+ }
+ done.send(true);
+ });
+
+ c2.close_s();
+ select! {
+ recv(c1.rx()) -> _ => {}
+ default => {}
+ }
+ if !done.recv().unwrap() {
+ panic!("no chan is ready");
+ }
+ }
+ }
+
+ #[test]
+ fn test_self_select() {
+ // Ensure that send/recv on the same chan in select
+ // does not crash nor deadlock.
+
+ #[cfg(miri)]
+ const N: usize = 100;
+ #[cfg(not(miri))]
+ const N: usize = 1000;
+
+ for &cap in &[0, 10] {
+ let wg = WaitGroup::new();
+ wg.add(2);
+ let c = make::<i32>(cap);
+
+ for p in 0..2 {
+ let p = p;
+ go!(wg, p, c, {
+ defer! { wg.done() }
+ for i in 0..N {
+ if p == 0 || i % 2 == 0 {
+ select! {
+ send(c.tx(), p) -> _ => {}
+ recv(c.rx()) -> v => {
+ if cap == 0 && v.ok() == Some(p) {
+ panic!("self receive");
+ }
+ }
+ }
+ } else {
+ select! {
+ recv(c.rx()) -> v => {
+ if cap == 0 && v.ok() == Some(p) {
+ panic!("self receive");
+ }
+ }
+ send(c.tx(), p) -> _ => {}
+ }
+ }
+ }
+ });
+ }
+ wg.wait();
+ }
+ }
+
+ #[test]
+ fn test_select_stress() {
+ #[cfg(miri)]
+ const N: usize = 100;
+ #[cfg(not(miri))]
+ const N: usize = 10000;
+
+ let c = vec![
+ make::<i32>(0),
+ make::<i32>(0),
+ make::<i32>(2),
+ make::<i32>(3),
+ ];
+
+ // There are 4 goroutines that send N values on each of the chans,
+ // + 4 goroutines that receive N values on each of the chans,
+ // + 1 goroutine that sends N values on each of the chans in a single select,
+ // + 1 goroutine that receives N values on each of the chans in a single select.
+ // All these sends, receives and selects interact chaotically at runtime,
+ // but we are careful that this whole construct does not deadlock.
+ let wg = WaitGroup::new();
+ wg.add(10);
+
+ for k in 0..4 {
+ go!(k, c, wg, {
+ for _ in 0..N {
+ c[k].send(0);
+ }
+ wg.done();
+ });
+ go!(k, c, wg, {
+ for _ in 0..N {
+ c[k].recv();
+ }
+ wg.done();
+ });
+ }
+
+ go!(c, wg, {
+ let mut n = [0; 4];
+ let mut c1 = c.iter().map(|c| Some(c.rx().clone())).collect::<Vec<_>>();
+
+ for _ in 0..4 * N {
+ let index = {
+ let mut sel = Select::new();
+ let mut opers = [!0; 4];
+ for &i in &[3, 2, 0, 1] {
+ if let Some(c) = &c1[i] {
+ opers[i] = sel.recv(c);
+ }
+ }
+
+ let oper = sel.select();
+ let mut index = !0;
+ for i in 0..4 {
+ if opers[i] == oper.index() {
+ index = i;
+ let _ = oper.recv(c1[i].as_ref().unwrap());
+ break;
+ }
+ }
+ index
+ };
+
+ n[index] += 1;
+ if n[index] == N {
+ c1[index] = None;
+ }
+ }
+ wg.done();
+ });
+
+ go!(c, wg, {
+ let mut n = [0; 4];
+ let mut c1 = c.iter().map(|c| Some(c.tx().clone())).collect::<Vec<_>>();
+
+ for _ in 0..4 * N {
+ let index = {
+ let mut sel = Select::new();
+ let mut opers = [!0; 4];
+ for &i in &[0, 1, 2, 3] {
+ if let Some(c) = &c1[i] {
+ opers[i] = sel.send(c);
+ }
+ }
+
+ let oper = sel.select();
+ let mut index = !0;
+ for i in 0..4 {
+ if opers[i] == oper.index() {
+ index = i;
+ let _ = oper.send(c1[i].as_ref().unwrap(), 0);
+ break;
+ }
+ }
+ index
+ };
+
+ n[index] += 1;
+ if n[index] == N {
+ c1[index] = None;
+ }
+ }
+ wg.done();
+ });
+
+ wg.wait();
+ }
+
+ #[test]
+ fn test_select_fairness() {
+ #[cfg(miri)]
+ const TRIALS: usize = 100;
+ #[cfg(not(miri))]
+ const TRIALS: usize = 10000;
+
+ let c1 = make::<u8>(TRIALS + 1);
+ let c2 = make::<u8>(TRIALS + 1);
+
+ for _ in 0..TRIALS + 1 {
+ c1.send(1);
+ c2.send(2);
+ }
+
+ let c3 = make::<u8>(0);
+ let c4 = make::<u8>(0);
+ let out = make::<u8>(0);
+ let done = make::<u8>(0);
+ let wg = WaitGroup::new();
+
+ wg.add(1);
+ go!(wg, c1, c2, c3, c4, out, done, {
+ defer! { wg.done() };
+ loop {
+ let b;
+ select! {
+ recv(c3.rx()) -> m => b = m.unwrap(),
+ recv(c4.rx()) -> m => b = m.unwrap(),
+ recv(c1.rx()) -> m => b = m.unwrap(),
+ recv(c2.rx()) -> m => b = m.unwrap(),
+ }
+ select! {
+ send(out.tx(), b) -> _ => {}
+ recv(done.rx()) -> _ => return,
+ }
+ }
+ });
+
+ let (mut cnt1, mut cnt2) = (0, 0);
+ for _ in 0..TRIALS {
+ match out.recv() {
+ Some(1) => cnt1 += 1,
+ Some(2) => cnt2 += 1,
+ b => panic!("unexpected value {:?} on channel", b),
+ }
+ }
+
+ // If the select in the goroutine is fair,
+ // cnt1 and cnt2 should be about the same value.
+ // With 10,000 trials, the expected margin of error at
+ // a confidence level of five nines is 4.4172 / (2 * Sqrt(10000)).
+
+ let r = cnt1 as f64 / TRIALS as f64;
+ let e = (r - 0.5).abs();
+
+ if e > 4.4172 / (2.0 * (TRIALS as f64).sqrt()) {
+ panic!(
+ "unfair select: in {} trials, results were {}, {}",
+ TRIALS, cnt1, cnt2,
+ );
+ }
+
+ done.close_s();
+ wg.wait();
+ }
+
+ #[test]
+ fn test_chan_send_interface() {
+ struct Mt;
+
+ let c = make::<Box<dyn Any>>(1);
+ c.send(Box::new(Mt));
+
+ select! {
+ send(c.tx(), Box::new(Mt)) -> _ => {}
+ default => {}
+ }
+
+ select! {
+ send(c.tx(), Box::new(Mt)) -> _ => {}
+ send(c.tx(), Box::new(Mt)) -> _ => {}
+ default => {}
+ }
+ }
+
+ #[test]
+ fn test_pseudo_random_send() {
+ #[cfg(miri)]
+ const N: usize = 20;
+ #[cfg(not(miri))]
+ const N: usize = 100;
+
+ for cap in 0..N {
+ let c = make::<i32>(cap);
+ let l = Arc::new(Mutex::new(vec![0i32; N]));
+ let done = make::<bool>(0);
+
+ go!(c, done, l, {
+ let mut l = l.lock().unwrap();
+ for i in 0..N {
+ thread::yield_now();
+ l[i] = c.recv().unwrap();
+ }
+ done.send(true);
+ });
+
+ for _ in 0..N {
+ select! {
+ send(c.tx(), 1) -> _ => {}
+ send(c.tx(), 0) -> _ => {}
+ }
+ }
+ done.recv();
+
+ let mut n0 = 0;
+ let mut n1 = 0;
+ for &i in l.lock().unwrap().iter() {
+ n0 += (i + 1) % 2;
+ n1 += i;
+ }
+
+ if n0 <= N as i32 / 10 || n1 <= N as i32 / 10 {
+ panic!(
+ "Want pseudorandom, got {} zeros and {} ones (chan cap {})",
+ n0, n1, cap,
+ );
+ }
+ }
+ }
+
+ #[test]
+ fn test_multi_consumer() {
+ const NWORK: usize = 23;
+ #[cfg(miri)]
+ const NITER: usize = 50;
+ #[cfg(not(miri))]
+ const NITER: usize = 271828;
+
+ let pn = [2, 3, 7, 11, 13, 17, 19, 23, 27, 31];
+
+ let q = make::<i32>(NWORK * 3);
+ let r = make::<i32>(NWORK * 3);
+
+ let wg = WaitGroup::new();
+ for i in 0..NWORK {
+ wg.add(1);
+ let w = i;
+ go!(q, r, wg, pn, {
+ for v in &q {
+ if pn[w % pn.len()] == v {
+ thread::yield_now();
+ }
+ r.send(v);
+ }
+ wg.done();
+ });
+ }
+
+ let expect = Arc::new(Mutex::new(0));
+ go!(q, r, expect, wg, pn, {
+ for i in 0..NITER {
+ let v = pn[i % pn.len()];
+ *expect.lock().unwrap() += v;
+ q.send(v);
+ }
+ q.close_s();
+ wg.wait();
+ r.close_s();
+ });
+
+ let mut n = 0;
+ let mut s = 0;
+ for v in &r {
+ n += 1;
+ s += v;
+ }
+
+ if n != NITER || s != *expect.lock().unwrap() {
+ panic!();
+ }
+ }
+
+ #[test]
+ fn test_select_duplicate_channel() {
+ // This test makes sure we can queue a G on
+ // the same channel multiple times.
+ let c = make::<i32>(0);
+ let d = make::<i32>(0);
+ let e = make::<i32>(0);
+
+ go!(c, d, e, {
+ select! {
+ recv(c.rx()) -> _ => {}
+ recv(d.rx()) -> _ => {}
+ recv(e.rx()) -> _ => {}
+ }
+ e.send(9);
+ });
+ thread::sleep(ms(1));
+
+ go!(c, c.recv());
+ thread::sleep(ms(1));
+
+ d.send(7);
+ e.recv();
+ c.send(8);
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/closedchan.go
+mod closedchan {
+ // TODO
+}
+
+// https://github.com/golang/go/blob/master/src/runtime/chanbarrier_test.go
+mod chanbarrier_test {
+ // TODO
+}
+
+// https://github.com/golang/go/blob/master/src/runtime/race/testdata/chan_test.go
+mod race_chan_test {
+ // TODO
+}
+
+// https://github.com/golang/go/blob/master/test/ken/chan.go
+mod chan {
+ use super::*;
+
+ const MESSAGES_PER_CHANEL: u32 = 76;
+ const MESSAGES_RANGE_LEN: u32 = 100;
+ const END: i32 = 10000;
+
+ struct ChanWithVals {
+ chan: Chan<i32>,
+ /// Next value to send
+ sv: Arc<AtomicI32>,
+ /// Next value to receive
+ rv: Arc<AtomicI32>,
+ }
+
+ struct Totals {
+ /// Total sent messages
+ tots: u32,
+ /// Total received messages
+ totr: u32,
+ }
+
+ struct Context {
+ nproc: Arc<Mutex<i32>>,
+ cval: Arc<Mutex<i32>>,
+ tot: Arc<Mutex<Totals>>,
+ nc: ChanWithVals,
+ randx: Arc<Mutex<i32>>,
+ }
+
+ impl ChanWithVals {
+ fn with_capacity(capacity: usize) -> Self {
+ ChanWithVals {
+ chan: make(capacity),
+ sv: Arc::new(AtomicI32::new(0)),
+ rv: Arc::new(AtomicI32::new(0)),
+ }
+ }
+
+ fn closed() -> Self {
+ let ch = ChanWithVals::with_capacity(0);
+ ch.chan.close_r();
+ ch.chan.close_s();
+ ch
+ }
+
+ fn rv(&self) -> i32 {
+ self.rv.load(SeqCst)
+ }
+
+ fn sv(&self) -> i32 {
+ self.sv.load(SeqCst)
+ }
+
+ fn send(&mut self, tot: &Mutex<Totals>) -> bool {
+ {
+ let mut tot = tot.lock().unwrap();
+ tot.tots += 1
+ }
+ let esv = expect(self.sv(), self.sv());
+ self.sv.store(esv, SeqCst);
+ if self.sv() == END {
+ self.chan.close_s();
+ return true;
+ }
+ false
+ }
+
+ fn recv(&mut self, v: i32, tot: &Mutex<Totals>) -> bool {
+ {
+ let mut tot = tot.lock().unwrap();
+ tot.totr += 1
+ }
+ let erv = expect(self.rv(), v);
+ self.rv.store(erv, SeqCst);
+ if self.rv() == END {
+ self.chan.close_r();
+ return true;
+ }
+ false
+ }
+ }
+
+ impl Clone for ChanWithVals {
+ fn clone(&self) -> Self {
+ ChanWithVals {
+ chan: self.chan.clone(),
+ sv: self.sv.clone(),
+ rv: self.rv.clone(),
+ }
+ }
+ }
+
+ impl Context {
+ fn nproc(&self) -> &Mutex<i32> {
+ self.nproc.as_ref()
+ }
+
+ fn cval(&self) -> &Mutex<i32> {
+ self.cval.as_ref()
+ }
+
+ fn tot(&self) -> &Mutex<Totals> {
+ self.tot.as_ref()
+ }
+
+ fn randx(&self) -> &Mutex<i32> {
+ self.randx.as_ref()
+ }
+ }
+
+ impl Clone for Context {
+ fn clone(&self) -> Self {
+ Context {
+ nproc: self.nproc.clone(),
+ cval: self.cval.clone(),
+ tot: self.tot.clone(),
+ nc: self.nc.clone(),
+ randx: self.randx.clone(),
+ }
+ }
+ }
+
+ fn nrand(n: i32, randx: &Mutex<i32>) -> i32 {
+ let mut randx = randx.lock().unwrap();
+ *randx += 10007;
+ if *randx >= 1000000 {
+ *randx -= 1000000
+ }
+ *randx % n
+ }
+
+ fn change_nproc(adjust: i32, nproc: &Mutex<i32>) -> i32 {
+ let mut nproc = nproc.lock().unwrap();
+ *nproc += adjust;
+ *nproc
+ }
+
+ fn mkchan(c: usize, n: usize, cval: &Mutex<i32>) -> Vec<ChanWithVals> {
+ let mut ca = Vec::<ChanWithVals>::with_capacity(n);
+ let mut cval = cval.lock().unwrap();
+ for _ in 0..n {
+ *cval += MESSAGES_RANGE_LEN as i32;
+ let chl = ChanWithVals::with_capacity(c);
+ chl.sv.store(*cval, SeqCst);
+ chl.rv.store(*cval, SeqCst);
+ ca.push(chl);
+ }
+ ca
+ }
+
+ fn expect(v: i32, v0: i32) -> i32 {
+ if v == v0 {
+ return if v % MESSAGES_RANGE_LEN as i32 == MESSAGES_PER_CHANEL as i32 - 1 {
+ END
+ } else {
+ v + 1
+ };
+ }
+ panic!("got {}, expected {}", v, v0 + 1);
+ }
+
+ fn send(mut c: ChanWithVals, ctx: Context) {
+ loop {
+ for _ in 0..=nrand(10, ctx.randx()) {
+ thread::yield_now();
+ }
+ c.chan.tx().send(c.sv()).unwrap();
+ if c.send(ctx.tot()) {
+ break;
+ }
+ }
+ change_nproc(-1, ctx.nproc());
+ }
+
+ fn recv(mut c: ChanWithVals, ctx: Context) {
+ loop {
+ for _ in (0..nrand(10, ctx.randx())).rev() {
+ thread::yield_now();
+ }
+ let v = c.chan.rx().recv().unwrap();
+ if c.recv(v, ctx.tot()) {
+ break;
+ }
+ }
+ change_nproc(-1, ctx.nproc());
+ }
+
+ #[allow(clippy::too_many_arguments)]
+ fn sel(
+ mut r0: ChanWithVals,
+ mut r1: ChanWithVals,
+ mut r2: ChanWithVals,
+ mut r3: ChanWithVals,
+ mut s0: ChanWithVals,
+ mut s1: ChanWithVals,
+ mut s2: ChanWithVals,
+ mut s3: ChanWithVals,
+ ctx: Context,
+ ) {
+ let mut a = 0; // local chans running
+
+ if r0.chan.has_rx() {
+ a += 1;
+ }
+ if r1.chan.has_rx() {
+ a += 1;
+ }
+ if r2.chan.has_rx() {
+ a += 1;
+ }
+ if r3.chan.has_rx() {
+ a += 1;
+ }
+ if s0.chan.has_tx() {
+ a += 1;
+ }
+ if s1.chan.has_tx() {
+ a += 1;
+ }
+ if s2.chan.has_tx() {
+ a += 1;
+ }
+ if s3.chan.has_tx() {
+ a += 1;
+ }
+
+ loop {
+ for _ in 0..=nrand(5, ctx.randx()) {
+ thread::yield_now();
+ }
+ select! {
+ recv(r0.chan.rx()) -> v => if r0.recv(v.unwrap(), ctx.tot()) { a -= 1 },
+ recv(r1.chan.rx()) -> v => if r1.recv(v.unwrap(), ctx.tot()) { a -= 1 },
+ recv(r2.chan.rx()) -> v => if r2.recv(v.unwrap(), ctx.tot()) { a -= 1 },
+ recv(r3.chan.rx()) -> v => if r3.recv(v.unwrap(), ctx.tot()) { a -= 1 },
+ send(s0.chan.tx(), s0.sv()) -> _ => if s0.send(ctx.tot()) { a -= 1 },
+ send(s1.chan.tx(), s1.sv()) -> _ => if s1.send(ctx.tot()) { a -= 1 },
+ send(s2.chan.tx(), s2.sv()) -> _ => if s2.send(ctx.tot()) { a -= 1 },
+ send(s3.chan.tx(), s3.sv()) -> _ => if s3.send(ctx.tot()) { a -= 1 },
+ }
+ if a == 0 {
+ break;
+ }
+ }
+ change_nproc(-1, ctx.nproc());
+ }
+
+ fn get(vec: &[ChanWithVals], idx: usize) -> ChanWithVals {
+ vec.get(idx).unwrap().clone()
+ }
+
+ /// Direct send to direct recv
+ fn test1(c: ChanWithVals, ctx: &mut Context) {
+ change_nproc(2, ctx.nproc());
+ go!(c, ctx, send(c, ctx));
+ go!(c, ctx, recv(c, ctx));
+ }
+
+ /// Direct send to select recv
+ fn test2(c: usize, ctx: &mut Context) {
+ let ca = mkchan(c, 4, ctx.cval());
+
+ change_nproc(4, ctx.nproc());
+ go!(ca, ctx, send(get(&ca, 0), ctx));
+ go!(ca, ctx, send(get(&ca, 1), ctx));
+ go!(ca, ctx, send(get(&ca, 2), ctx));
+ go!(ca, ctx, send(get(&ca, 3), ctx));
+
+ change_nproc(1, ctx.nproc());
+ go!(
+ ca,
+ ctx,
+ sel(
+ get(&ca, 0),
+ get(&ca, 1),
+ get(&ca, 2),
+ get(&ca, 3),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx,
+ )
+ );
+ }
+
+ /// Select send to direct recv
+ fn test3(c: usize, ctx: &mut Context) {
+ let ca = mkchan(c, 4, ctx.cval());
+
+ change_nproc(4, ctx.nproc());
+ go!(ca, ctx, recv(get(&ca, 0), ctx));
+ go!(ca, ctx, recv(get(&ca, 1), ctx));
+ go!(ca, ctx, recv(get(&ca, 2), ctx));
+ go!(ca, ctx, recv(get(&ca, 3), ctx));
+
+ change_nproc(1, ctx.nproc());
+ go!(
+ ca,
+ ctx,
+ sel(
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ get(&ca, 0),
+ get(&ca, 1),
+ get(&ca, 2),
+ get(&ca, 3),
+ ctx,
+ )
+ );
+ }
+
+ /// Select send to select recv, 4 channels
+ fn test4(c: usize, ctx: &mut Context) {
+ let ca = mkchan(c, 4, ctx.cval());
+
+ change_nproc(2, ctx.nproc());
+ go!(
+ ca,
+ ctx,
+ sel(
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ get(&ca, 0),
+ get(&ca, 1),
+ get(&ca, 2),
+ get(&ca, 3),
+ ctx,
+ )
+ );
+ go!(
+ ca,
+ ctx,
+ sel(
+ get(&ca, 0),
+ get(&ca, 1),
+ get(&ca, 2),
+ get(&ca, 3),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx.nc.clone(),
+ ctx,
+ )
+ );
+ }
+
+ /// Select send to select recv, 8 channels
+ fn test5(c: usize, ctx: &mut Context) {
+ let ca = mkchan(c, 8, ctx.cval());
+
+ change_nproc(2, ctx.nproc());
+ go!(
+ ca,
+ ctx,
+ sel(
+ get(&ca, 4),
+ get(&ca, 5),
+ get(&ca, 6),
+ get(&ca, 7),
+ get(&ca, 0),
+ get(&ca, 1),
+ get(&ca, 2),
+ get(&ca, 3),
+ ctx,
+ )
+ );
+ go!(
+ ca,
+ ctx,
+ sel(
+ get(&ca, 0),
+ get(&ca, 1),
+ get(&ca, 2),
+ get(&ca, 3),
+ get(&ca, 4),
+ get(&ca, 5),
+ get(&ca, 6),
+ get(&ca, 7),
+ ctx,
+ )
+ );
+ }
+
+ // Direct and select send to direct and select recv
+ fn test6(c: usize, ctx: &mut Context) {
+ let ca = mkchan(c, 12, ctx.cval());
+
+ change_nproc(4, ctx.nproc());
+ go!(ca, ctx, send(get(&ca, 4), ctx));
+ go!(ca, ctx, send(get(&ca, 5), ctx));
+ go!(ca, ctx, send(get(&ca, 6), ctx));
+ go!(ca, ctx, send(get(&ca, 7), ctx));
+
+ change_nproc(4, ctx.nproc());
+ go!(ca, ctx, recv(get(&ca, 8), ctx));
+ go!(ca, ctx, recv(get(&ca, 9), ctx));
+ go!(ca, ctx, recv(get(&ca, 10), ctx));
+ go!(ca, ctx, recv(get(&ca, 11), ctx));
+
+ change_nproc(2, ctx.nproc());
+ go!(
+ ca,
+ ctx,
+ sel(
+ get(&ca, 4),
+ get(&ca, 5),
+ get(&ca, 6),
+ get(&ca, 7),
+ get(&ca, 0),
+ get(&ca, 1),
+ get(&ca, 2),
+ get(&ca, 3),
+ ctx,
+ )
+ );
+ go!(
+ ca,
+ ctx,
+ sel(
+ get(&ca, 0),
+ get(&ca, 1),
+ get(&ca, 2),
+ get(&ca, 3),
+ get(&ca, 8),
+ get(&ca, 9),
+ get(&ca, 10),
+ get(&ca, 11),
+ ctx,
+ )
+ );
+ }
+
+ fn wait(ctx: &mut Context) {
+ thread::yield_now();
+ while change_nproc(0, ctx.nproc()) != 0 {
+ thread::yield_now();
+ }
+ }
+
+ fn tests(c: usize, ctx: &mut Context) {
+ let ca = mkchan(c, 4, ctx.cval());
+ test1(get(&ca, 0), ctx);
+ test1(get(&ca, 1), ctx);
+ test1(get(&ca, 2), ctx);
+ test1(get(&ca, 3), ctx);
+ wait(ctx);
+
+ test2(c, ctx);
+ wait(ctx);
+
+ test3(c, ctx);
+ wait(ctx);
+
+ test4(c, ctx);
+ wait(ctx);
+
+ test5(c, ctx);
+ wait(ctx);
+
+ test6(c, ctx);
+ wait(ctx);
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn main() {
+ let mut ctx = Context {
+ nproc: Arc::new(Mutex::new(0)),
+ cval: Arc::new(Mutex::new(0)),
+ tot: Arc::new(Mutex::new(Totals { tots: 0, totr: 0 })),
+ nc: ChanWithVals::closed(),
+ randx: Arc::new(Mutex::new(0)),
+ };
+
+ tests(0, &mut ctx);
+ tests(1, &mut ctx);
+ tests(10, &mut ctx);
+ tests(100, &mut ctx);
+
+ #[rustfmt::skip]
+ let t = 4 * // buffer sizes
+ (4*4 + // tests 1,2,3,4 channels
+ 8 + // test 5 channels
+ 12) * // test 6 channels
+ MESSAGES_PER_CHANEL; // sends/recvs on a channel
+
+ let tot = ctx.tot.lock().unwrap();
+ if tot.tots != t || tot.totr != t {
+ panic!("tots={} totr={} sb={}", tot.tots, tot.totr, t);
+ }
+ }
+}
+
+// https://github.com/golang/go/blob/master/test/ken/chan1.go
+mod chan1 {
+ use super::*;
+
+ // sent messages
+ #[cfg(miri)]
+ const N: usize = 20;
+ #[cfg(not(miri))]
+ const N: usize = 1000;
+ // receiving "goroutines"
+ const M: usize = 10;
+ // channel buffering
+ const W: usize = 2;
+
+ fn r(c: Chan<usize>, m: usize, h: Arc<Mutex<[usize; N]>>) {
+ loop {
+ select! {
+ recv(c.rx()) -> rr => {
+ let r = rr.unwrap();
+ let mut data = h.lock().unwrap();
+ if data[r] != 1 {
+ println!("r\nm={}\nr={}\nh={}\n", m, r, data[r]);
+ panic!("fail")
+ }
+ data[r] = 2;
+ }
+ }
+ }
+ }
+
+ fn s(c: Chan<usize>, h: Arc<Mutex<[usize; N]>>) {
+ for n in 0..N {
+ let r = n;
+ let mut data = h.lock().unwrap();
+ if data[r] != 0 {
+ println!("s");
+ panic!("fail");
+ }
+ data[r] = 1;
+ // https://github.com/crossbeam-rs/crossbeam/pull/615#discussion_r550281094
+ drop(data);
+ c.send(r);
+ }
+ }
+
+ #[test]
+ fn main() {
+ let h = Arc::new(Mutex::new([0usize; N]));
+ let c = make::<usize>(W);
+ for m in 0..M {
+ go!(c, h, {
+ r(c, m, h);
+ });
+ thread::yield_now();
+ }
+ thread::yield_now();
+ thread::yield_now();
+ s(c, h);
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/tests/iter.rs b/third_party/rust/crossbeam-channel/tests/iter.rs
new file mode 100644
index 0000000000..463f3b0436
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/iter.rs
@@ -0,0 +1,110 @@
+//! Tests for iteration over receivers.
+
+use crossbeam_channel::unbounded;
+use crossbeam_utils::thread::scope;
+
+#[test]
+fn nested_recv_iter() {
+ let (s, r) = unbounded::<i32>();
+ let (total_s, total_r) = unbounded::<i32>();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut acc = 0;
+ for x in r.iter() {
+ acc += x;
+ }
+ total_s.send(acc).unwrap();
+ });
+
+ s.send(3).unwrap();
+ s.send(1).unwrap();
+ s.send(2).unwrap();
+ drop(s);
+ assert_eq!(total_r.recv().unwrap(), 6);
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_iter_break() {
+ let (s, r) = unbounded::<i32>();
+ let (count_s, count_r) = unbounded();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut count = 0;
+ for x in r.iter() {
+ if count >= 3 {
+ break;
+ } else {
+ count += x;
+ }
+ }
+ count_s.send(count).unwrap();
+ });
+
+ s.send(2).unwrap();
+ s.send(2).unwrap();
+ s.send(2).unwrap();
+ let _ = s.send(2);
+ drop(s);
+ assert_eq!(count_r.recv().unwrap(), 4);
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_try_iter() {
+ let (request_s, request_r) = unbounded();
+ let (response_s, response_r) = unbounded();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut count = 0;
+ loop {
+ for x in response_r.try_iter() {
+ count += x;
+ if count == 6 {
+ return;
+ }
+ }
+ request_s.send(()).unwrap();
+ }
+ });
+
+ for _ in request_r.iter() {
+ if response_s.send(2).is_err() {
+ break;
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_into_iter_owned() {
+ let mut iter = {
+ let (s, r) = unbounded::<i32>();
+ s.send(1).unwrap();
+ s.send(2).unwrap();
+ r.into_iter()
+ };
+
+ assert_eq!(iter.next().unwrap(), 1);
+ assert_eq!(iter.next().unwrap(), 2);
+ assert!(iter.next().is_none());
+}
+
+#[test]
+fn recv_into_iter_borrowed() {
+ let (s, r) = unbounded::<i32>();
+ s.send(1).unwrap();
+ s.send(2).unwrap();
+ drop(s);
+
+ let mut iter = (&r).into_iter();
+ assert_eq!(iter.next().unwrap(), 1);
+ assert_eq!(iter.next().unwrap(), 2);
+ assert!(iter.next().is_none());
+}
diff --git a/third_party/rust/crossbeam-channel/tests/list.rs b/third_party/rust/crossbeam-channel/tests/list.rs
new file mode 100644
index 0000000000..ebe6f6f85f
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/list.rs
@@ -0,0 +1,582 @@
+//! Tests for the list channel flavor.
+
+use std::any::Any;
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering;
+use std::thread;
+use std::time::Duration;
+
+use crossbeam_channel::{select, unbounded, Receiver};
+use crossbeam_channel::{RecvError, RecvTimeoutError, TryRecvError};
+use crossbeam_channel::{SendError, SendTimeoutError, TrySendError};
+use crossbeam_utils::thread::scope;
+use rand::{thread_rng, Rng};
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn smoke() {
+ let (s, r) = unbounded();
+ s.try_send(7).unwrap();
+ assert_eq!(r.try_recv(), Ok(7));
+
+ s.send(8).unwrap();
+ assert_eq!(r.recv(), Ok(8));
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ assert_eq!(r.recv_timeout(ms(1000)), Err(RecvTimeoutError::Timeout));
+}
+
+#[test]
+fn capacity() {
+ let (s, r) = unbounded::<()>();
+ assert_eq!(s.capacity(), None);
+ assert_eq!(r.capacity(), None);
+}
+
+#[test]
+fn len_empty_full() {
+ let (s, r) = unbounded();
+
+ assert_eq!(s.len(), 0);
+ assert!(s.is_empty());
+ assert!(!s.is_full());
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(!r.is_full());
+
+ s.send(()).unwrap();
+
+ assert_eq!(s.len(), 1);
+ assert!(!s.is_empty());
+ assert!(!s.is_full());
+ assert_eq!(r.len(), 1);
+ assert!(!r.is_empty());
+ assert!(!r.is_full());
+
+ r.recv().unwrap();
+
+ assert_eq!(s.len(), 0);
+ assert!(s.is_empty());
+ assert!(!s.is_full());
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(!r.is_full());
+}
+
+#[test]
+#[cfg_attr(miri, ignore)] // this test makes timing assumptions, but Miri is so slow it violates them
+fn try_recv() {
+ let (s, r) = unbounded();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ thread::sleep(ms(1500));
+ assert_eq!(r.try_recv(), Ok(7));
+ thread::sleep(ms(500));
+ assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ s.send(7).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv() {
+ let (s, r) = unbounded();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv(), Ok(7));
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(8));
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(9));
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ s.send(7).unwrap();
+ s.send(8).unwrap();
+ s.send(9).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_timeout() {
+ let (s, r) = unbounded::<i32>();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv_timeout(ms(1000)), Err(RecvTimeoutError::Timeout));
+ assert_eq!(r.recv_timeout(ms(1000)), Ok(7));
+ assert_eq!(
+ r.recv_timeout(ms(1000)),
+ Err(RecvTimeoutError::Disconnected)
+ );
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ s.send(7).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn try_send() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ let (s, r) = unbounded();
+ for i in 0..COUNT {
+ assert_eq!(s.try_send(i), Ok(()));
+ }
+
+ drop(r);
+ assert_eq!(s.try_send(777), Err(TrySendError::Disconnected(777)));
+}
+
+#[test]
+fn send() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ let (s, r) = unbounded();
+ for i in 0..COUNT {
+ assert_eq!(s.send(i), Ok(()));
+ }
+
+ drop(r);
+ assert_eq!(s.send(777), Err(SendError(777)));
+}
+
+#[test]
+fn send_timeout() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ let (s, r) = unbounded();
+ for i in 0..COUNT {
+ assert_eq!(s.send_timeout(i, ms(i as u64)), Ok(()));
+ }
+
+ drop(r);
+ assert_eq!(
+ s.send_timeout(777, ms(0)),
+ Err(SendTimeoutError::Disconnected(777))
+ );
+}
+
+#[test]
+fn send_after_disconnect() {
+ let (s, r) = unbounded();
+
+ s.send(1).unwrap();
+ s.send(2).unwrap();
+ s.send(3).unwrap();
+
+ drop(r);
+
+ assert_eq!(s.send(4), Err(SendError(4)));
+ assert_eq!(s.try_send(5), Err(TrySendError::Disconnected(5)));
+ assert_eq!(
+ s.send_timeout(6, ms(0)),
+ Err(SendTimeoutError::Disconnected(6))
+ );
+}
+
+#[test]
+fn recv_after_disconnect() {
+ let (s, r) = unbounded();
+
+ s.send(1).unwrap();
+ s.send(2).unwrap();
+ s.send(3).unwrap();
+
+ drop(s);
+
+ assert_eq!(r.recv(), Ok(1));
+ assert_eq!(r.recv(), Ok(2));
+ assert_eq!(r.recv(), Ok(3));
+ assert_eq!(r.recv(), Err(RecvError));
+}
+
+#[test]
+fn len() {
+ let (s, r) = unbounded();
+
+ assert_eq!(s.len(), 0);
+ assert_eq!(r.len(), 0);
+
+ for i in 0..50 {
+ s.send(i).unwrap();
+ assert_eq!(s.len(), i + 1);
+ }
+
+ for i in 0..50 {
+ r.recv().unwrap();
+ assert_eq!(r.len(), 50 - i - 1);
+ }
+
+ assert_eq!(s.len(), 0);
+ assert_eq!(r.len(), 0);
+}
+
+#[test]
+fn disconnect_wakes_receiver() {
+ let (s, r) = unbounded::<()>();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ drop(s);
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn spsc() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ let (s, r) = unbounded();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ for i in 0..COUNT {
+ assert_eq!(r.recv(), Ok(i));
+ }
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ for i in 0..COUNT {
+ s.send(i).unwrap();
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn mpmc() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 25_000;
+ const THREADS: usize = 4;
+
+ let (s, r) = unbounded::<usize>();
+ let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ let n = r.recv().unwrap();
+ v[n].fetch_add(1, Ordering::SeqCst);
+ }
+ });
+ }
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s.send(i).unwrap();
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+
+ for c in v {
+ assert_eq!(c.load(Ordering::SeqCst), THREADS);
+ }
+}
+
+#[test]
+fn stress_oneshot() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ for _ in 0..COUNT {
+ let (s, r) = unbounded();
+
+ scope(|scope| {
+ scope.spawn(|_| r.recv().unwrap());
+ scope.spawn(|_| s.send(0).unwrap());
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn stress_iter() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ let (request_s, request_r) = unbounded();
+ let (response_s, response_r) = unbounded();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut count = 0;
+ loop {
+ for x in response_r.try_iter() {
+ count += x;
+ if count == COUNT {
+ return;
+ }
+ }
+ request_s.send(()).unwrap();
+ }
+ });
+
+ for _ in request_r.iter() {
+ if response_s.send(1).is_err() {
+ break;
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_timeout_two_threads() {
+ const COUNT: usize = 100;
+
+ let (s, r) = unbounded();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(50));
+ }
+ s.send(i).unwrap();
+ }
+ });
+
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(50));
+ }
+ loop {
+ if let Ok(x) = r.recv_timeout(ms(10)) {
+ assert_eq!(x, i);
+ break;
+ }
+ }
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn drops() {
+ #[cfg(miri)]
+ const RUNS: usize = 20;
+ #[cfg(not(miri))]
+ const RUNS: usize = 100;
+ #[cfg(miri)]
+ const STEPS: usize = 100;
+ #[cfg(not(miri))]
+ const STEPS: usize = 10_000;
+
+ static DROPS: AtomicUsize = AtomicUsize::new(0);
+
+ #[derive(Debug, PartialEq)]
+ struct DropCounter;
+
+ impl Drop for DropCounter {
+ fn drop(&mut self) {
+ DROPS.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+
+ let mut rng = thread_rng();
+
+ for _ in 0..RUNS {
+ let steps = rng.gen_range(0..STEPS);
+ let additional = rng.gen_range(0..STEPS / 10);
+
+ DROPS.store(0, Ordering::SeqCst);
+ let (s, r) = unbounded::<DropCounter>();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ });
+
+ scope.spawn(|_| {
+ for _ in 0..steps {
+ s.send(DropCounter).unwrap();
+ }
+ });
+ })
+ .unwrap();
+
+ for _ in 0..additional {
+ s.try_send(DropCounter).unwrap();
+ }
+
+ assert_eq!(DROPS.load(Ordering::SeqCst), steps);
+ drop(s);
+ drop(r);
+ assert_eq!(DROPS.load(Ordering::SeqCst), steps + additional);
+ }
+}
+
+#[test]
+fn linearizable() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 25_000;
+ const THREADS: usize = 4;
+
+ let (s, r) = unbounded();
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ s.send(0).unwrap();
+ r.try_recv().unwrap();
+ }
+ });
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn fairness() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = unbounded::<()>();
+ let (s2, r2) = unbounded::<()>();
+
+ for _ in 0..COUNT {
+ s1.send(()).unwrap();
+ s2.send(()).unwrap();
+ }
+
+ let mut hits = [0usize; 2];
+ for _ in 0..COUNT {
+ select! {
+ recv(r1) -> _ => hits[0] += 1,
+ recv(r2) -> _ => hits[1] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+}
+
+#[test]
+fn fairness_duplicates() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s, r) = unbounded();
+
+ for _ in 0..COUNT {
+ s.send(()).unwrap();
+ }
+
+ let mut hits = [0usize; 5];
+ for _ in 0..COUNT {
+ select! {
+ recv(r) -> _ => hits[0] += 1,
+ recv(r) -> _ => hits[1] += 1,
+ recv(r) -> _ => hits[2] += 1,
+ recv(r) -> _ => hits[3] += 1,
+ recv(r) -> _ => hits[4] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+}
+
+#[test]
+fn recv_in_send() {
+ let (s, r) = unbounded();
+ s.send(()).unwrap();
+
+ select! {
+ send(s, assert_eq!(r.recv(), Ok(()))) -> _ => {}
+ }
+}
+
+#[test]
+fn channel_through_channel() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ type T = Box<dyn Any + Send>;
+
+ let (s, r) = unbounded::<T>();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut s = s;
+
+ for _ in 0..COUNT {
+ let (new_s, new_r) = unbounded();
+ let new_r: T = Box::new(Some(new_r));
+
+ s.send(new_r).unwrap();
+ s = new_s;
+ }
+ });
+
+ scope.spawn(move |_| {
+ let mut r = r;
+
+ for _ in 0..COUNT {
+ r = r
+ .recv()
+ .unwrap()
+ .downcast_mut::<Option<Receiver<T>>>()
+ .unwrap()
+ .take()
+ .unwrap()
+ }
+ });
+ })
+ .unwrap();
+}
diff --git a/third_party/rust/crossbeam-channel/tests/mpsc.rs b/third_party/rust/crossbeam-channel/tests/mpsc.rs
new file mode 100644
index 0000000000..d7cc8e25f4
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/mpsc.rs
@@ -0,0 +1,2129 @@
+//! Tests copied from `std::sync::mpsc`.
+//!
+//! This is a copy of tests for the `std::sync::mpsc` channels from the standard library, but
+//! modified to work with `crossbeam-channel` instead.
+//!
+//! Minor tweaks were needed to make the tests compile:
+//!
+//! - Replace `box` syntax with `Box::new`.
+//! - Replace all uses of `Select` with `select!`.
+//! - Change the imports.
+//! - Join all spawned threads.
+//! - Removed assertion from oneshot_multi_thread_send_close_stress tests.
+//!
+//! Source:
+//! - https://github.com/rust-lang/rust/tree/master/src/libstd/sync/mpsc
+//!
+//! Copyright & License:
+//! - Copyright 2013-2014 The Rust Project Developers
+//! - Apache License, Version 2.0 or MIT license, at your option
+//! - https://github.com/rust-lang/rust/blob/master/COPYRIGHT
+//! - https://www.rust-lang.org/en-US/legal.html
+
+#![allow(
+ clippy::drop_copy,
+ clippy::match_single_binding,
+ clippy::redundant_clone
+)]
+
+use std::sync::mpsc::{RecvError, RecvTimeoutError, TryRecvError};
+use std::sync::mpsc::{SendError, TrySendError};
+use std::thread::JoinHandle;
+use std::time::Duration;
+
+use crossbeam_channel as cc;
+
+pub struct Sender<T> {
+ pub inner: cc::Sender<T>,
+}
+
+impl<T> Sender<T> {
+ pub fn send(&self, t: T) -> Result<(), SendError<T>> {
+ self.inner.send(t).map_err(|cc::SendError(m)| SendError(m))
+ }
+}
+
+impl<T> Clone for Sender<T> {
+ fn clone(&self) -> Sender<T> {
+ Sender {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+pub struct SyncSender<T> {
+ pub inner: cc::Sender<T>,
+}
+
+impl<T> SyncSender<T> {
+ pub fn send(&self, t: T) -> Result<(), SendError<T>> {
+ self.inner.send(t).map_err(|cc::SendError(m)| SendError(m))
+ }
+
+ pub fn try_send(&self, t: T) -> Result<(), TrySendError<T>> {
+ self.inner.try_send(t).map_err(|err| match err {
+ cc::TrySendError::Full(m) => TrySendError::Full(m),
+ cc::TrySendError::Disconnected(m) => TrySendError::Disconnected(m),
+ })
+ }
+}
+
+impl<T> Clone for SyncSender<T> {
+ fn clone(&self) -> SyncSender<T> {
+ SyncSender {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+pub struct Receiver<T> {
+ pub inner: cc::Receiver<T>,
+}
+
+impl<T> Receiver<T> {
+ pub fn try_recv(&self) -> Result<T, TryRecvError> {
+ self.inner.try_recv().map_err(|err| match err {
+ cc::TryRecvError::Empty => TryRecvError::Empty,
+ cc::TryRecvError::Disconnected => TryRecvError::Disconnected,
+ })
+ }
+
+ pub fn recv(&self) -> Result<T, RecvError> {
+ self.inner.recv().map_err(|_| RecvError)
+ }
+
+ pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
+ self.inner.recv_timeout(timeout).map_err(|err| match err {
+ cc::RecvTimeoutError::Timeout => RecvTimeoutError::Timeout,
+ cc::RecvTimeoutError::Disconnected => RecvTimeoutError::Disconnected,
+ })
+ }
+
+ pub fn iter(&self) -> Iter<T> {
+ Iter { inner: self }
+ }
+
+ pub fn try_iter(&self) -> TryIter<T> {
+ TryIter { inner: self }
+ }
+}
+
+impl<'a, T> IntoIterator for &'a Receiver<T> {
+ type Item = T;
+ type IntoIter = Iter<'a, T>;
+
+ fn into_iter(self) -> Iter<'a, T> {
+ self.iter()
+ }
+}
+
+impl<T> IntoIterator for Receiver<T> {
+ type Item = T;
+ type IntoIter = IntoIter<T>;
+
+ fn into_iter(self) -> IntoIter<T> {
+ IntoIter { inner: self }
+ }
+}
+
+pub struct TryIter<'a, T: 'a> {
+ inner: &'a Receiver<T>,
+}
+
+impl<'a, T> Iterator for TryIter<'a, T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ self.inner.try_recv().ok()
+ }
+}
+
+pub struct Iter<'a, T: 'a> {
+ inner: &'a Receiver<T>,
+}
+
+impl<'a, T> Iterator for Iter<'a, T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ self.inner.recv().ok()
+ }
+}
+
+pub struct IntoIter<T> {
+ inner: Receiver<T>,
+}
+
+impl<T> Iterator for IntoIter<T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ self.inner.recv().ok()
+ }
+}
+
+pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
+ let (s, r) = cc::unbounded();
+ let s = Sender { inner: s };
+ let r = Receiver { inner: r };
+ (s, r)
+}
+
+pub fn sync_channel<T>(bound: usize) -> (SyncSender<T>, Receiver<T>) {
+ let (s, r) = cc::bounded(bound);
+ let s = SyncSender { inner: s };
+ let r = Receiver { inner: r };
+ (s, r)
+}
+
+macro_rules! select {
+ (
+ $($name:pat = $rx:ident.$meth:ident() => $code:expr),+
+ ) => ({
+ cc::crossbeam_channel_internal! {
+ $(
+ $meth(($rx).inner) -> res => {
+ let $name = res.map_err(|_| ::std::sync::mpsc::RecvError);
+ $code
+ }
+ )+
+ }
+ })
+}
+
+// Source: https://github.com/rust-lang/rust/blob/master/src/libstd/sync/mpsc/mod.rs
+mod channel_tests {
+ use super::*;
+
+ use std::env;
+ use std::thread;
+ use std::time::{Duration, Instant};
+
+ pub fn stress_factor() -> usize {
+ match env::var("RUST_TEST_STRESS") {
+ Ok(val) => val.parse().unwrap(),
+ Err(..) => 1,
+ }
+ }
+
+ #[test]
+ fn smoke() {
+ let (tx, rx) = channel::<i32>();
+ tx.send(1).unwrap();
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+
+ #[test]
+ fn drop_full() {
+ let (tx, _rx) = channel::<Box<isize>>();
+ tx.send(Box::new(1)).unwrap();
+ }
+
+ #[test]
+ fn drop_full_shared() {
+ let (tx, _rx) = channel::<Box<isize>>();
+ drop(tx.clone());
+ drop(tx.clone());
+ tx.send(Box::new(1)).unwrap();
+ }
+
+ #[test]
+ fn smoke_shared() {
+ let (tx, rx) = channel::<i32>();
+ tx.send(1).unwrap();
+ assert_eq!(rx.recv().unwrap(), 1);
+ let tx = tx.clone();
+ tx.send(1).unwrap();
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+
+ #[test]
+ fn smoke_threads() {
+ let (tx, rx) = channel::<i32>();
+ let t = thread::spawn(move || {
+ tx.send(1).unwrap();
+ });
+ assert_eq!(rx.recv().unwrap(), 1);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn smoke_port_gone() {
+ let (tx, rx) = channel::<i32>();
+ drop(rx);
+ assert!(tx.send(1).is_err());
+ }
+
+ #[test]
+ fn smoke_shared_port_gone() {
+ let (tx, rx) = channel::<i32>();
+ drop(rx);
+ assert!(tx.send(1).is_err())
+ }
+
+ #[test]
+ fn smoke_shared_port_gone2() {
+ let (tx, rx) = channel::<i32>();
+ drop(rx);
+ let tx2 = tx.clone();
+ drop(tx);
+ assert!(tx2.send(1).is_err());
+ }
+
+ #[test]
+ fn port_gone_concurrent() {
+ let (tx, rx) = channel::<i32>();
+ let t = thread::spawn(move || {
+ rx.recv().unwrap();
+ });
+ while tx.send(1).is_ok() {}
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn port_gone_concurrent_shared() {
+ let (tx, rx) = channel::<i32>();
+ let tx2 = tx.clone();
+ let t = thread::spawn(move || {
+ rx.recv().unwrap();
+ });
+ while tx.send(1).is_ok() && tx2.send(1).is_ok() {}
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn smoke_chan_gone() {
+ let (tx, rx) = channel::<i32>();
+ drop(tx);
+ assert!(rx.recv().is_err());
+ }
+
+ #[test]
+ fn smoke_chan_gone_shared() {
+ let (tx, rx) = channel::<()>();
+ let tx2 = tx.clone();
+ drop(tx);
+ drop(tx2);
+ assert!(rx.recv().is_err());
+ }
+
+ #[test]
+ fn chan_gone_concurrent() {
+ let (tx, rx) = channel::<i32>();
+ let t = thread::spawn(move || {
+ tx.send(1).unwrap();
+ tx.send(1).unwrap();
+ });
+ while rx.recv().is_ok() {}
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn stress() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10000;
+
+ let (tx, rx) = channel::<i32>();
+ let t = thread::spawn(move || {
+ for _ in 0..COUNT {
+ tx.send(1).unwrap();
+ }
+ });
+ for _ in 0..COUNT {
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+ t.join().ok().unwrap();
+ }
+
+ #[test]
+ fn stress_shared() {
+ let amt: u32 = if cfg!(miri) { 100 } else { 10_000 };
+ let nthreads: u32 = if cfg!(miri) { 4 } else { 8 };
+ let (tx, rx) = channel::<i32>();
+
+ let t = thread::spawn(move || {
+ for _ in 0..amt * nthreads {
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+ assert!(rx.try_recv().is_err());
+ });
+
+ let mut ts = Vec::with_capacity(nthreads as usize);
+ for _ in 0..nthreads {
+ let tx = tx.clone();
+ let t = thread::spawn(move || {
+ for _ in 0..amt {
+ tx.send(1).unwrap();
+ }
+ });
+ ts.push(t);
+ }
+ drop(tx);
+ t.join().ok().unwrap();
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn send_from_outside_runtime() {
+ let (tx1, rx1) = channel::<()>();
+ let (tx2, rx2) = channel::<i32>();
+ let t1 = thread::spawn(move || {
+ tx1.send(()).unwrap();
+ for _ in 0..40 {
+ assert_eq!(rx2.recv().unwrap(), 1);
+ }
+ });
+ rx1.recv().unwrap();
+ let t2 = thread::spawn(move || {
+ for _ in 0..40 {
+ tx2.send(1).unwrap();
+ }
+ });
+ t1.join().ok().unwrap();
+ t2.join().ok().unwrap();
+ }
+
+ #[test]
+ fn recv_from_outside_runtime() {
+ let (tx, rx) = channel::<i32>();
+ let t = thread::spawn(move || {
+ for _ in 0..40 {
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+ });
+ for _ in 0..40 {
+ tx.send(1).unwrap();
+ }
+ t.join().ok().unwrap();
+ }
+
+ #[test]
+ fn no_runtime() {
+ let (tx1, rx1) = channel::<i32>();
+ let (tx2, rx2) = channel::<i32>();
+ let t1 = thread::spawn(move || {
+ assert_eq!(rx1.recv().unwrap(), 1);
+ tx2.send(2).unwrap();
+ });
+ let t2 = thread::spawn(move || {
+ tx1.send(1).unwrap();
+ assert_eq!(rx2.recv().unwrap(), 2);
+ });
+ t1.join().ok().unwrap();
+ t2.join().ok().unwrap();
+ }
+
+ #[test]
+ fn oneshot_single_thread_close_port_first() {
+ // Simple test of closing without sending
+ let (_tx, rx) = channel::<i32>();
+ drop(rx);
+ }
+
+ #[test]
+ fn oneshot_single_thread_close_chan_first() {
+ // Simple test of closing without sending
+ let (tx, _rx) = channel::<i32>();
+ drop(tx);
+ }
+
+ #[test]
+ fn oneshot_single_thread_send_port_close() {
+ // Testing that the sender cleans up the payload if receiver is closed
+ let (tx, rx) = channel::<Box<i32>>();
+ drop(rx);
+ assert!(tx.send(Box::new(0)).is_err());
+ }
+
+ #[test]
+ fn oneshot_single_thread_recv_chan_close() {
+ let (tx, rx) = channel::<i32>();
+ drop(tx);
+ assert_eq!(rx.recv(), Err(RecvError));
+ }
+
+ #[test]
+ fn oneshot_single_thread_send_then_recv() {
+ let (tx, rx) = channel::<Box<i32>>();
+ tx.send(Box::new(10)).unwrap();
+ assert!(*rx.recv().unwrap() == 10);
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_send_open() {
+ let (tx, rx) = channel::<i32>();
+ assert!(tx.send(10).is_ok());
+ assert!(rx.recv().unwrap() == 10);
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_send_closed() {
+ let (tx, rx) = channel::<i32>();
+ drop(rx);
+ assert!(tx.send(10).is_err());
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_recv_open() {
+ let (tx, rx) = channel::<i32>();
+ tx.send(10).unwrap();
+ assert!(rx.recv() == Ok(10));
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_recv_closed() {
+ let (tx, rx) = channel::<i32>();
+ drop(tx);
+ assert!(rx.recv().is_err());
+ }
+
+ #[test]
+ fn oneshot_single_thread_peek_data() {
+ let (tx, rx) = channel::<i32>();
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Empty));
+ tx.send(10).unwrap();
+ assert_eq!(rx.try_recv(), Ok(10));
+ }
+
+ #[test]
+ fn oneshot_single_thread_peek_close() {
+ let (tx, rx) = channel::<i32>();
+ drop(tx);
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
+ }
+
+ #[test]
+ fn oneshot_single_thread_peek_open() {
+ let (_tx, rx) = channel::<i32>();
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Empty));
+ }
+
+ #[test]
+ fn oneshot_multi_task_recv_then_send() {
+ let (tx, rx) = channel::<Box<i32>>();
+ let t = thread::spawn(move || {
+ assert!(*rx.recv().unwrap() == 10);
+ });
+
+ tx.send(Box::new(10)).unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn oneshot_multi_task_recv_then_close() {
+ let (tx, rx) = channel::<Box<i32>>();
+ let t = thread::spawn(move || {
+ drop(tx);
+ });
+ thread::spawn(move || {
+ assert_eq!(rx.recv(), Err(RecvError));
+ })
+ .join()
+ .unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn oneshot_multi_thread_close_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = channel::<i32>();
+ let t = thread::spawn(move || {
+ drop(rx);
+ });
+ ts.push(t);
+ drop(tx);
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn oneshot_multi_thread_send_close_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(2 * stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = channel::<i32>();
+ let t = thread::spawn(move || {
+ drop(rx);
+ });
+ ts.push(t);
+ thread::spawn(move || {
+ let _ = tx.send(1);
+ })
+ .join()
+ .unwrap();
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn oneshot_multi_thread_recv_close_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(2 * stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = channel::<i32>();
+ let t = thread::spawn(move || {
+ thread::spawn(move || {
+ assert_eq!(rx.recv(), Err(RecvError));
+ })
+ .join()
+ .unwrap();
+ });
+ ts.push(t);
+ let t2 = thread::spawn(move || {
+ let t = thread::spawn(move || {
+ drop(tx);
+ });
+ t.join().unwrap();
+ });
+ ts.push(t2);
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn oneshot_multi_thread_send_recv_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = channel::<Box<isize>>();
+ let t = thread::spawn(move || {
+ tx.send(Box::new(10)).unwrap();
+ });
+ ts.push(t);
+ assert!(*rx.recv().unwrap() == 10);
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn stream_send_recv_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(2 * stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = channel();
+
+ if let Some(t) = send(tx, 0) {
+ ts.push(t);
+ }
+ if let Some(t2) = recv(rx, 0) {
+ ts.push(t2);
+ }
+
+ fn send(tx: Sender<Box<i32>>, i: i32) -> Option<JoinHandle<()>> {
+ if i == 10 {
+ return None;
+ }
+
+ Some(thread::spawn(move || {
+ tx.send(Box::new(i)).unwrap();
+ send(tx, i + 1);
+ }))
+ }
+
+ fn recv(rx: Receiver<Box<i32>>, i: i32) -> Option<JoinHandle<()>> {
+ if i == 10 {
+ return None;
+ }
+
+ Some(thread::spawn(move || {
+ assert!(*rx.recv().unwrap() == i);
+ recv(rx, i + 1);
+ }))
+ }
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn oneshot_single_thread_recv_timeout() {
+ let (tx, rx) = channel();
+ tx.send(()).unwrap();
+ assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Ok(()));
+ assert_eq!(
+ rx.recv_timeout(Duration::from_millis(1)),
+ Err(RecvTimeoutError::Timeout)
+ );
+ tx.send(()).unwrap();
+ assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Ok(()));
+ }
+
+ #[test]
+ fn stress_recv_timeout_two_threads() {
+ let (tx, rx) = channel();
+ let stress = stress_factor() + 100;
+ let timeout = Duration::from_millis(100);
+
+ let t = thread::spawn(move || {
+ for i in 0..stress {
+ if i % 2 == 0 {
+ thread::sleep(timeout * 2);
+ }
+ tx.send(1usize).unwrap();
+ }
+ });
+
+ let mut recv_count = 0;
+ loop {
+ match rx.recv_timeout(timeout) {
+ Ok(n) => {
+ assert_eq!(n, 1usize);
+ recv_count += 1;
+ }
+ Err(RecvTimeoutError::Timeout) => continue,
+ Err(RecvTimeoutError::Disconnected) => break,
+ }
+ }
+
+ assert_eq!(recv_count, stress);
+ t.join().unwrap()
+ }
+
+ #[test]
+ fn recv_timeout_upgrade() {
+ let (tx, rx) = channel::<()>();
+ let timeout = Duration::from_millis(1);
+ let _tx_clone = tx.clone();
+
+ let start = Instant::now();
+ assert_eq!(rx.recv_timeout(timeout), Err(RecvTimeoutError::Timeout));
+ assert!(Instant::now() >= start + timeout);
+ }
+
+ #[test]
+ fn stress_recv_timeout_shared() {
+ let (tx, rx) = channel();
+ let stress = stress_factor() + 100;
+
+ let mut ts = Vec::with_capacity(stress);
+ for i in 0..stress {
+ let tx = tx.clone();
+ let t = thread::spawn(move || {
+ thread::sleep(Duration::from_millis(i as u64 * 10));
+ tx.send(1usize).unwrap();
+ });
+ ts.push(t);
+ }
+
+ drop(tx);
+
+ let mut recv_count = 0;
+ loop {
+ match rx.recv_timeout(Duration::from_millis(10)) {
+ Ok(n) => {
+ assert_eq!(n, 1usize);
+ recv_count += 1;
+ }
+ Err(RecvTimeoutError::Timeout) => continue,
+ Err(RecvTimeoutError::Disconnected) => break,
+ }
+ }
+
+ assert_eq!(recv_count, stress);
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn recv_a_lot() {
+ #[cfg(miri)]
+ const N: usize = 50;
+ #[cfg(not(miri))]
+ const N: usize = 10000;
+
+ // Regression test that we don't run out of stack in scheduler context
+ let (tx, rx) = channel();
+ for _ in 0..N {
+ tx.send(()).unwrap();
+ }
+ for _ in 0..N {
+ rx.recv().unwrap();
+ }
+ }
+
+ #[test]
+ fn shared_recv_timeout() {
+ let (tx, rx) = channel();
+ let total = 5;
+ let mut ts = Vec::with_capacity(total);
+ for _ in 0..total {
+ let tx = tx.clone();
+ let t = thread::spawn(move || {
+ tx.send(()).unwrap();
+ });
+ ts.push(t);
+ }
+
+ for _ in 0..total {
+ rx.recv().unwrap();
+ }
+
+ assert_eq!(
+ rx.recv_timeout(Duration::from_millis(1)),
+ Err(RecvTimeoutError::Timeout)
+ );
+ tx.send(()).unwrap();
+ assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Ok(()));
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn shared_chan_stress() {
+ let (tx, rx) = channel();
+ let total = stress_factor() + 100;
+ let mut ts = Vec::with_capacity(total);
+ for _ in 0..total {
+ let tx = tx.clone();
+ let t = thread::spawn(move || {
+ tx.send(()).unwrap();
+ });
+ ts.push(t);
+ }
+
+ for _ in 0..total {
+ rx.recv().unwrap();
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn test_nested_recv_iter() {
+ let (tx, rx) = channel::<i32>();
+ let (total_tx, total_rx) = channel::<i32>();
+
+ let t = thread::spawn(move || {
+ let mut acc = 0;
+ for x in rx.iter() {
+ acc += x;
+ }
+ total_tx.send(acc).unwrap();
+ });
+
+ tx.send(3).unwrap();
+ tx.send(1).unwrap();
+ tx.send(2).unwrap();
+ drop(tx);
+ assert_eq!(total_rx.recv().unwrap(), 6);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn test_recv_iter_break() {
+ let (tx, rx) = channel::<i32>();
+ let (count_tx, count_rx) = channel();
+
+ let t = thread::spawn(move || {
+ let mut count = 0;
+ for x in rx.iter() {
+ if count >= 3 {
+ break;
+ } else {
+ count += x;
+ }
+ }
+ count_tx.send(count).unwrap();
+ });
+
+ tx.send(2).unwrap();
+ tx.send(2).unwrap();
+ tx.send(2).unwrap();
+ let _ = tx.send(2);
+ drop(tx);
+ assert_eq!(count_rx.recv().unwrap(), 4);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn test_recv_try_iter() {
+ let (request_tx, request_rx) = channel();
+ let (response_tx, response_rx) = channel();
+
+ // Request `x`s until we have `6`.
+ let t = thread::spawn(move || {
+ let mut count = 0;
+ loop {
+ for x in response_rx.try_iter() {
+ count += x;
+ if count == 6 {
+ return count;
+ }
+ }
+ request_tx.send(()).unwrap();
+ }
+ });
+
+ for _ in request_rx.iter() {
+ if response_tx.send(2).is_err() {
+ break;
+ }
+ }
+
+ assert_eq!(t.join().unwrap(), 6);
+ }
+
+ #[test]
+ fn test_recv_into_iter_owned() {
+ let mut iter = {
+ let (tx, rx) = channel::<i32>();
+ tx.send(1).unwrap();
+ tx.send(2).unwrap();
+
+ rx.into_iter()
+ };
+ assert_eq!(iter.next().unwrap(), 1);
+ assert_eq!(iter.next().unwrap(), 2);
+ assert!(iter.next().is_none());
+ }
+
+ #[test]
+ fn test_recv_into_iter_borrowed() {
+ let (tx, rx) = channel::<i32>();
+ tx.send(1).unwrap();
+ tx.send(2).unwrap();
+ drop(tx);
+ let mut iter = (&rx).into_iter();
+ assert_eq!(iter.next().unwrap(), 1);
+ assert_eq!(iter.next().unwrap(), 2);
+ assert!(iter.next().is_none());
+ }
+
+ #[test]
+ fn try_recv_states() {
+ let (tx1, rx1) = channel::<i32>();
+ let (tx2, rx2) = channel::<()>();
+ let (tx3, rx3) = channel::<()>();
+ let t = thread::spawn(move || {
+ rx2.recv().unwrap();
+ tx1.send(1).unwrap();
+ tx3.send(()).unwrap();
+ rx2.recv().unwrap();
+ drop(tx1);
+ tx3.send(()).unwrap();
+ });
+
+ assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
+ tx2.send(()).unwrap();
+ rx3.recv().unwrap();
+ assert_eq!(rx1.try_recv(), Ok(1));
+ assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
+ tx2.send(()).unwrap();
+ rx3.recv().unwrap();
+ assert_eq!(rx1.try_recv(), Err(TryRecvError::Disconnected));
+ t.join().unwrap();
+ }
+
+ // This bug used to end up in a livelock inside of the Receiver destructor
+ // because the internal state of the Shared packet was corrupted
+ #[test]
+ fn destroy_upgraded_shared_port_when_sender_still_active() {
+ let (tx, rx) = channel();
+ let (tx2, rx2) = channel();
+ let t = thread::spawn(move || {
+ rx.recv().unwrap(); // wait on a oneshot
+ drop(rx); // destroy a shared
+ tx2.send(()).unwrap();
+ });
+ // make sure the other thread has gone to sleep
+ for _ in 0..5000 {
+ thread::yield_now();
+ }
+
+ // upgrade to a shared chan and send a message
+ let tx2 = tx.clone();
+ drop(tx);
+ tx2.send(()).unwrap();
+
+ // wait for the child thread to exit before we exit
+ rx2.recv().unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn issue_32114() {
+ let (tx, _) = channel();
+ let _ = tx.send(123);
+ assert_eq!(tx.send(123), Err(SendError(123)));
+ }
+}
+
+// Source: https://github.com/rust-lang/rust/blob/master/src/libstd/sync/mpsc/mod.rs
+mod sync_channel_tests {
+ use super::*;
+
+ use std::env;
+ use std::thread;
+ use std::time::Duration;
+
+ pub fn stress_factor() -> usize {
+ match env::var("RUST_TEST_STRESS") {
+ Ok(val) => val.parse().unwrap(),
+ Err(..) => 1,
+ }
+ }
+
+ #[test]
+ fn smoke() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ tx.send(1).unwrap();
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+
+ #[test]
+ fn drop_full() {
+ let (tx, _rx) = sync_channel::<Box<isize>>(1);
+ tx.send(Box::new(1)).unwrap();
+ }
+
+ #[test]
+ fn smoke_shared() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ tx.send(1).unwrap();
+ assert_eq!(rx.recv().unwrap(), 1);
+ let tx = tx.clone();
+ tx.send(1).unwrap();
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+
+ #[test]
+ fn recv_timeout() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ assert_eq!(
+ rx.recv_timeout(Duration::from_millis(1)),
+ Err(RecvTimeoutError::Timeout)
+ );
+ tx.send(1).unwrap();
+ assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Ok(1));
+ }
+
+ #[test]
+ fn smoke_threads() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ tx.send(1).unwrap();
+ });
+ assert_eq!(rx.recv().unwrap(), 1);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn smoke_port_gone() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ drop(rx);
+ assert!(tx.send(1).is_err());
+ }
+
+ #[test]
+ fn smoke_shared_port_gone2() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ drop(rx);
+ let tx2 = tx.clone();
+ drop(tx);
+ assert!(tx2.send(1).is_err());
+ }
+
+ #[test]
+ fn port_gone_concurrent() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ rx.recv().unwrap();
+ });
+ while tx.send(1).is_ok() {}
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn port_gone_concurrent_shared() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let tx2 = tx.clone();
+ let t = thread::spawn(move || {
+ rx.recv().unwrap();
+ });
+ while tx.send(1).is_ok() && tx2.send(1).is_ok() {}
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn smoke_chan_gone() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ drop(tx);
+ assert!(rx.recv().is_err());
+ }
+
+ #[test]
+ fn smoke_chan_gone_shared() {
+ let (tx, rx) = sync_channel::<()>(0);
+ let tx2 = tx.clone();
+ drop(tx);
+ drop(tx2);
+ assert!(rx.recv().is_err());
+ }
+
+ #[test]
+ fn chan_gone_concurrent() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ tx.send(1).unwrap();
+ tx.send(1).unwrap();
+ });
+ while rx.recv().is_ok() {}
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn stress() {
+ #[cfg(miri)]
+ const N: usize = 100;
+ #[cfg(not(miri))]
+ const N: usize = 10000;
+
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ for _ in 0..N {
+ tx.send(1).unwrap();
+ }
+ });
+ for _ in 0..N {
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn stress_recv_timeout_two_threads() {
+ #[cfg(miri)]
+ const N: usize = 100;
+ #[cfg(not(miri))]
+ const N: usize = 10000;
+
+ let (tx, rx) = sync_channel::<i32>(0);
+
+ let t = thread::spawn(move || {
+ for _ in 0..N {
+ tx.send(1).unwrap();
+ }
+ });
+
+ let mut recv_count = 0;
+ loop {
+ match rx.recv_timeout(Duration::from_millis(1)) {
+ Ok(v) => {
+ assert_eq!(v, 1);
+ recv_count += 1;
+ }
+ Err(RecvTimeoutError::Timeout) => continue,
+ Err(RecvTimeoutError::Disconnected) => break,
+ }
+ }
+
+ assert_eq!(recv_count, N);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn stress_recv_timeout_shared() {
+ #[cfg(miri)]
+ const AMT: u32 = 100;
+ #[cfg(not(miri))]
+ const AMT: u32 = 1000;
+ const NTHREADS: u32 = 8;
+ let (tx, rx) = sync_channel::<i32>(0);
+ let (dtx, drx) = sync_channel::<()>(0);
+
+ let t = thread::spawn(move || {
+ let mut recv_count = 0;
+ loop {
+ match rx.recv_timeout(Duration::from_millis(10)) {
+ Ok(v) => {
+ assert_eq!(v, 1);
+ recv_count += 1;
+ }
+ Err(RecvTimeoutError::Timeout) => continue,
+ Err(RecvTimeoutError::Disconnected) => break,
+ }
+ }
+
+ assert_eq!(recv_count, AMT * NTHREADS);
+ assert!(rx.try_recv().is_err());
+
+ dtx.send(()).unwrap();
+ });
+
+ let mut ts = Vec::with_capacity(NTHREADS as usize);
+ for _ in 0..NTHREADS {
+ let tx = tx.clone();
+ let t = thread::spawn(move || {
+ for _ in 0..AMT {
+ tx.send(1).unwrap();
+ }
+ });
+ ts.push(t);
+ }
+
+ drop(tx);
+
+ drx.recv().unwrap();
+ for t in ts {
+ t.join().unwrap();
+ }
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn stress_shared() {
+ #[cfg(miri)]
+ const AMT: u32 = 100;
+ #[cfg(not(miri))]
+ const AMT: u32 = 1000;
+ const NTHREADS: u32 = 8;
+ let (tx, rx) = sync_channel::<i32>(0);
+ let (dtx, drx) = sync_channel::<()>(0);
+
+ let t = thread::spawn(move || {
+ for _ in 0..AMT * NTHREADS {
+ assert_eq!(rx.recv().unwrap(), 1);
+ }
+ assert!(rx.try_recv().is_err());
+ dtx.send(()).unwrap();
+ });
+
+ let mut ts = Vec::with_capacity(NTHREADS as usize);
+ for _ in 0..NTHREADS {
+ let tx = tx.clone();
+ let t = thread::spawn(move || {
+ for _ in 0..AMT {
+ tx.send(1).unwrap();
+ }
+ });
+ ts.push(t);
+ }
+ drop(tx);
+ drx.recv().unwrap();
+ for t in ts {
+ t.join().unwrap();
+ }
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn oneshot_single_thread_close_port_first() {
+ // Simple test of closing without sending
+ let (_tx, rx) = sync_channel::<i32>(0);
+ drop(rx);
+ }
+
+ #[test]
+ fn oneshot_single_thread_close_chan_first() {
+ // Simple test of closing without sending
+ let (tx, _rx) = sync_channel::<i32>(0);
+ drop(tx);
+ }
+
+ #[test]
+ fn oneshot_single_thread_send_port_close() {
+ // Testing that the sender cleans up the payload if receiver is closed
+ let (tx, rx) = sync_channel::<Box<i32>>(0);
+ drop(rx);
+ assert!(tx.send(Box::new(0)).is_err());
+ }
+
+ #[test]
+ fn oneshot_single_thread_recv_chan_close() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ drop(tx);
+ assert_eq!(rx.recv(), Err(RecvError));
+ }
+
+ #[test]
+ fn oneshot_single_thread_send_then_recv() {
+ let (tx, rx) = sync_channel::<Box<i32>>(1);
+ tx.send(Box::new(10)).unwrap();
+ assert!(*rx.recv().unwrap() == 10);
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_send_open() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ assert_eq!(tx.try_send(10), Ok(()));
+ assert!(rx.recv().unwrap() == 10);
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_send_closed() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ drop(rx);
+ assert_eq!(tx.try_send(10), Err(TrySendError::Disconnected(10)));
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_send_closed2() {
+ let (tx, _rx) = sync_channel::<i32>(0);
+ assert_eq!(tx.try_send(10), Err(TrySendError::Full(10)));
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_recv_open() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ tx.send(10).unwrap();
+ assert!(rx.recv() == Ok(10));
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_recv_closed() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ drop(tx);
+ assert!(rx.recv().is_err());
+ }
+
+ #[test]
+ fn oneshot_single_thread_try_recv_closed_with_data() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ tx.send(10).unwrap();
+ drop(tx);
+ assert_eq!(rx.try_recv(), Ok(10));
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
+ }
+
+ #[test]
+ fn oneshot_single_thread_peek_data() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Empty));
+ tx.send(10).unwrap();
+ assert_eq!(rx.try_recv(), Ok(10));
+ }
+
+ #[test]
+ fn oneshot_single_thread_peek_close() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ drop(tx);
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
+ }
+
+ #[test]
+ fn oneshot_single_thread_peek_open() {
+ let (_tx, rx) = sync_channel::<i32>(0);
+ assert_eq!(rx.try_recv(), Err(TryRecvError::Empty));
+ }
+
+ #[test]
+ fn oneshot_multi_task_recv_then_send() {
+ let (tx, rx) = sync_channel::<Box<i32>>(0);
+ let t = thread::spawn(move || {
+ assert!(*rx.recv().unwrap() == 10);
+ });
+
+ tx.send(Box::new(10)).unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn oneshot_multi_task_recv_then_close() {
+ let (tx, rx) = sync_channel::<Box<i32>>(0);
+ let t = thread::spawn(move || {
+ drop(tx);
+ });
+ thread::spawn(move || {
+ assert_eq!(rx.recv(), Err(RecvError));
+ })
+ .join()
+ .unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn oneshot_multi_thread_close_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ drop(rx);
+ });
+ ts.push(t);
+ drop(tx);
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn oneshot_multi_thread_send_close_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ drop(rx);
+ });
+ ts.push(t);
+ thread::spawn(move || {
+ let _ = tx.send(1);
+ })
+ .join()
+ .unwrap();
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn oneshot_multi_thread_recv_close_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(2 * stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ thread::spawn(move || {
+ assert_eq!(rx.recv(), Err(RecvError));
+ })
+ .join()
+ .unwrap();
+ });
+ ts.push(t);
+ let t2 = thread::spawn(move || {
+ thread::spawn(move || {
+ drop(tx);
+ });
+ });
+ ts.push(t2);
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn oneshot_multi_thread_send_recv_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = sync_channel::<Box<i32>>(0);
+ let t = thread::spawn(move || {
+ tx.send(Box::new(10)).unwrap();
+ });
+ ts.push(t);
+ assert!(*rx.recv().unwrap() == 10);
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn stream_send_recv_stress() {
+ let stress_factor = stress_factor();
+ let mut ts = Vec::with_capacity(2 * stress_factor);
+ for _ in 0..stress_factor {
+ let (tx, rx) = sync_channel::<Box<i32>>(0);
+
+ if let Some(t) = send(tx, 0) {
+ ts.push(t);
+ }
+ if let Some(t) = recv(rx, 0) {
+ ts.push(t);
+ }
+
+ fn send(tx: SyncSender<Box<i32>>, i: i32) -> Option<JoinHandle<()>> {
+ if i == 10 {
+ return None;
+ }
+
+ Some(thread::spawn(move || {
+ tx.send(Box::new(i)).unwrap();
+ send(tx, i + 1);
+ }))
+ }
+
+ fn recv(rx: Receiver<Box<i32>>, i: i32) -> Option<JoinHandle<()>> {
+ if i == 10 {
+ return None;
+ }
+
+ Some(thread::spawn(move || {
+ assert!(*rx.recv().unwrap() == i);
+ recv(rx, i + 1);
+ }))
+ }
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn recv_a_lot() {
+ #[cfg(miri)]
+ const N: usize = 100;
+ #[cfg(not(miri))]
+ const N: usize = 10000;
+
+ // Regression test that we don't run out of stack in scheduler context
+ let (tx, rx) = sync_channel(N);
+ for _ in 0..N {
+ tx.send(()).unwrap();
+ }
+ for _ in 0..N {
+ rx.recv().unwrap();
+ }
+ }
+
+ #[test]
+ fn shared_chan_stress() {
+ let (tx, rx) = sync_channel(0);
+ let total = stress_factor() + 100;
+ let mut ts = Vec::with_capacity(total);
+ for _ in 0..total {
+ let tx = tx.clone();
+ let t = thread::spawn(move || {
+ tx.send(()).unwrap();
+ });
+ ts.push(t);
+ }
+
+ for _ in 0..total {
+ rx.recv().unwrap();
+ }
+ for t in ts {
+ t.join().unwrap();
+ }
+ }
+
+ #[test]
+ fn test_nested_recv_iter() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let (total_tx, total_rx) = sync_channel::<i32>(0);
+
+ let t = thread::spawn(move || {
+ let mut acc = 0;
+ for x in rx.iter() {
+ acc += x;
+ }
+ total_tx.send(acc).unwrap();
+ });
+
+ tx.send(3).unwrap();
+ tx.send(1).unwrap();
+ tx.send(2).unwrap();
+ drop(tx);
+ assert_eq!(total_rx.recv().unwrap(), 6);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn test_recv_iter_break() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let (count_tx, count_rx) = sync_channel(0);
+
+ let t = thread::spawn(move || {
+ let mut count = 0;
+ for x in rx.iter() {
+ if count >= 3 {
+ break;
+ } else {
+ count += x;
+ }
+ }
+ count_tx.send(count).unwrap();
+ });
+
+ tx.send(2).unwrap();
+ tx.send(2).unwrap();
+ tx.send(2).unwrap();
+ let _ = tx.try_send(2);
+ drop(tx);
+ assert_eq!(count_rx.recv().unwrap(), 4);
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn try_recv_states() {
+ let (tx1, rx1) = sync_channel::<i32>(1);
+ let (tx2, rx2) = sync_channel::<()>(1);
+ let (tx3, rx3) = sync_channel::<()>(1);
+ let t = thread::spawn(move || {
+ rx2.recv().unwrap();
+ tx1.send(1).unwrap();
+ tx3.send(()).unwrap();
+ rx2.recv().unwrap();
+ drop(tx1);
+ tx3.send(()).unwrap();
+ });
+
+ assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
+ tx2.send(()).unwrap();
+ rx3.recv().unwrap();
+ assert_eq!(rx1.try_recv(), Ok(1));
+ assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
+ tx2.send(()).unwrap();
+ rx3.recv().unwrap();
+ assert_eq!(rx1.try_recv(), Err(TryRecvError::Disconnected));
+ t.join().unwrap();
+ }
+
+ // This bug used to end up in a livelock inside of the Receiver destructor
+ // because the internal state of the Shared packet was corrupted
+ #[test]
+ fn destroy_upgraded_shared_port_when_sender_still_active() {
+ let (tx, rx) = sync_channel::<()>(0);
+ let (tx2, rx2) = sync_channel::<()>(0);
+ let t = thread::spawn(move || {
+ rx.recv().unwrap(); // wait on a oneshot
+ drop(rx); // destroy a shared
+ tx2.send(()).unwrap();
+ });
+ // make sure the other thread has gone to sleep
+ for _ in 0..5000 {
+ thread::yield_now();
+ }
+
+ // upgrade to a shared chan and send a message
+ let tx2 = tx.clone();
+ drop(tx);
+ tx2.send(()).unwrap();
+
+ // wait for the child thread to exit before we exit
+ rx2.recv().unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn send1() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ rx.recv().unwrap();
+ });
+ assert_eq!(tx.send(1), Ok(()));
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn send2() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ drop(rx);
+ });
+ assert!(tx.send(1).is_err());
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn send3() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ assert_eq!(tx.send(1), Ok(()));
+ let t = thread::spawn(move || {
+ drop(rx);
+ });
+ assert!(tx.send(1).is_err());
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn send4() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let tx2 = tx.clone();
+ let (done, donerx) = channel();
+ let done2 = done.clone();
+ let t = thread::spawn(move || {
+ assert!(tx.send(1).is_err());
+ done.send(()).unwrap();
+ });
+ let t2 = thread::spawn(move || {
+ assert!(tx2.send(2).is_err());
+ done2.send(()).unwrap();
+ });
+ drop(rx);
+ donerx.recv().unwrap();
+ donerx.recv().unwrap();
+ t.join().unwrap();
+ t2.join().unwrap();
+ }
+
+ #[test]
+ fn try_send1() {
+ let (tx, _rx) = sync_channel::<i32>(0);
+ assert_eq!(tx.try_send(1), Err(TrySendError::Full(1)));
+ }
+
+ #[test]
+ fn try_send2() {
+ let (tx, _rx) = sync_channel::<i32>(1);
+ assert_eq!(tx.try_send(1), Ok(()));
+ assert_eq!(tx.try_send(1), Err(TrySendError::Full(1)));
+ }
+
+ #[test]
+ fn try_send3() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ assert_eq!(tx.try_send(1), Ok(()));
+ drop(rx);
+ assert_eq!(tx.try_send(1), Err(TrySendError::Disconnected(1)));
+ }
+
+ #[test]
+ fn issue_15761() {
+ fn repro() {
+ let (tx1, rx1) = sync_channel::<()>(3);
+ let (tx2, rx2) = sync_channel::<()>(3);
+
+ let _t = thread::spawn(move || {
+ rx1.recv().unwrap();
+ tx2.try_send(()).unwrap();
+ });
+
+ tx1.try_send(()).unwrap();
+ rx2.recv().unwrap();
+ }
+
+ for _ in 0..100 {
+ repro()
+ }
+ }
+}
+
+// Source: https://github.com/rust-lang/rust/blob/master/src/libstd/sync/mpsc/select.rs
+mod select_tests {
+ use super::*;
+
+ use std::thread;
+
+ #[test]
+ fn smoke() {
+ let (tx1, rx1) = channel::<i32>();
+ let (tx2, rx2) = channel::<i32>();
+ tx1.send(1).unwrap();
+ select! {
+ foo = rx1.recv() => assert_eq!(foo.unwrap(), 1),
+ _bar = rx2.recv() => panic!()
+ }
+ tx2.send(2).unwrap();
+ select! {
+ _foo = rx1.recv() => panic!(),
+ bar = rx2.recv() => assert_eq!(bar.unwrap(), 2)
+ }
+ drop(tx1);
+ select! {
+ foo = rx1.recv() => assert!(foo.is_err()),
+ _bar = rx2.recv() => panic!()
+ }
+ drop(tx2);
+ select! {
+ bar = rx2.recv() => assert!(bar.is_err())
+ }
+ }
+
+ #[test]
+ fn smoke2() {
+ let (_tx1, rx1) = channel::<i32>();
+ let (_tx2, rx2) = channel::<i32>();
+ let (_tx3, rx3) = channel::<i32>();
+ let (_tx4, rx4) = channel::<i32>();
+ let (tx5, rx5) = channel::<i32>();
+ tx5.send(4).unwrap();
+ select! {
+ _foo = rx1.recv() => panic!("1"),
+ _foo = rx2.recv() => panic!("2"),
+ _foo = rx3.recv() => panic!("3"),
+ _foo = rx4.recv() => panic!("4"),
+ foo = rx5.recv() => assert_eq!(foo.unwrap(), 4)
+ }
+ }
+
+ #[test]
+ fn closed() {
+ let (_tx1, rx1) = channel::<i32>();
+ let (tx2, rx2) = channel::<i32>();
+ drop(tx2);
+
+ select! {
+ _a1 = rx1.recv() => panic!(),
+ a2 = rx2.recv() => assert!(a2.is_err())
+ }
+ }
+
+ #[test]
+ fn unblocks() {
+ let (tx1, rx1) = channel::<i32>();
+ let (_tx2, rx2) = channel::<i32>();
+ let (tx3, rx3) = channel::<i32>();
+
+ let t = thread::spawn(move || {
+ for _ in 0..20 {
+ thread::yield_now();
+ }
+ tx1.send(1).unwrap();
+ rx3.recv().unwrap();
+ for _ in 0..20 {
+ thread::yield_now();
+ }
+ });
+
+ select! {
+ a = rx1.recv() => assert_eq!(a.unwrap(), 1),
+ _b = rx2.recv() => panic!()
+ }
+ tx3.send(1).unwrap();
+ select! {
+ a = rx1.recv() => assert!(a.is_err()),
+ _b = rx2.recv() => panic!()
+ }
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn both_ready() {
+ let (tx1, rx1) = channel::<i32>();
+ let (tx2, rx2) = channel::<i32>();
+ let (tx3, rx3) = channel::<()>();
+
+ let t = thread::spawn(move || {
+ for _ in 0..20 {
+ thread::yield_now();
+ }
+ tx1.send(1).unwrap();
+ tx2.send(2).unwrap();
+ rx3.recv().unwrap();
+ });
+
+ select! {
+ a = rx1.recv() => { assert_eq!(a.unwrap(), 1); },
+ a = rx2.recv() => { assert_eq!(a.unwrap(), 2); }
+ }
+ select! {
+ a = rx1.recv() => { assert_eq!(a.unwrap(), 1); },
+ a = rx2.recv() => { assert_eq!(a.unwrap(), 2); }
+ }
+ assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
+ assert_eq!(rx2.try_recv(), Err(TryRecvError::Empty));
+ tx3.send(()).unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn stress() {
+ #[cfg(miri)]
+ const AMT: i32 = 100;
+ #[cfg(not(miri))]
+ const AMT: i32 = 10000;
+
+ let (tx1, rx1) = channel::<i32>();
+ let (tx2, rx2) = channel::<i32>();
+ let (tx3, rx3) = channel::<()>();
+
+ let t = thread::spawn(move || {
+ for i in 0..AMT {
+ if i % 2 == 0 {
+ tx1.send(i).unwrap();
+ } else {
+ tx2.send(i).unwrap();
+ }
+ rx3.recv().unwrap();
+ }
+ });
+
+ for i in 0..AMT {
+ select! {
+ i1 = rx1.recv() => { assert!(i % 2 == 0 && i == i1.unwrap()); },
+ i2 = rx2.recv() => { assert!(i % 2 == 1 && i == i2.unwrap()); }
+ }
+ tx3.send(()).unwrap();
+ }
+ t.join().unwrap();
+ }
+
+ #[allow(unused_must_use)]
+ #[test]
+ fn cloning() {
+ let (tx1, rx1) = channel::<i32>();
+ let (_tx2, rx2) = channel::<i32>();
+ let (tx3, rx3) = channel::<()>();
+
+ let t = thread::spawn(move || {
+ rx3.recv().unwrap();
+ tx1.clone();
+ assert_eq!(rx3.try_recv(), Err(TryRecvError::Empty));
+ tx1.send(2).unwrap();
+ rx3.recv().unwrap();
+ });
+
+ tx3.send(()).unwrap();
+ select! {
+ _i1 = rx1.recv() => {},
+ _i2 = rx2.recv() => panic!()
+ }
+ tx3.send(()).unwrap();
+ t.join().unwrap();
+ }
+
+ #[allow(unused_must_use)]
+ #[test]
+ fn cloning2() {
+ let (tx1, rx1) = channel::<i32>();
+ let (_tx2, rx2) = channel::<i32>();
+ let (tx3, rx3) = channel::<()>();
+
+ let t = thread::spawn(move || {
+ rx3.recv().unwrap();
+ tx1.clone();
+ assert_eq!(rx3.try_recv(), Err(TryRecvError::Empty));
+ tx1.send(2).unwrap();
+ rx3.recv().unwrap();
+ });
+
+ tx3.send(()).unwrap();
+ select! {
+ _i1 = rx1.recv() => {},
+ _i2 = rx2.recv() => panic!()
+ }
+ tx3.send(()).unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn cloning3() {
+ let (tx1, rx1) = channel::<()>();
+ let (tx2, rx2) = channel::<()>();
+ let (tx3, rx3) = channel::<()>();
+ let t = thread::spawn(move || {
+ select! {
+ _ = rx1.recv() => panic!(),
+ _ = rx2.recv() => {}
+ }
+ tx3.send(()).unwrap();
+ });
+
+ for _ in 0..1000 {
+ thread::yield_now();
+ }
+ drop(tx1.clone());
+ tx2.send(()).unwrap();
+ rx3.recv().unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn preflight1() {
+ let (tx, rx) = channel();
+ tx.send(()).unwrap();
+ select! {
+ _n = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn preflight2() {
+ let (tx, rx) = channel();
+ tx.send(()).unwrap();
+ tx.send(()).unwrap();
+ select! {
+ _n = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn preflight3() {
+ let (tx, rx) = channel();
+ drop(tx.clone());
+ tx.send(()).unwrap();
+ select! {
+ _n = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn preflight4() {
+ let (tx, rx) = channel();
+ tx.send(()).unwrap();
+ select! {
+ _ = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn preflight5() {
+ let (tx, rx) = channel();
+ tx.send(()).unwrap();
+ tx.send(()).unwrap();
+ select! {
+ _ = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn preflight6() {
+ let (tx, rx) = channel();
+ drop(tx.clone());
+ tx.send(()).unwrap();
+ select! {
+ _ = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn preflight7() {
+ let (tx, rx) = channel::<()>();
+ drop(tx);
+ select! {
+ _ = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn preflight8() {
+ let (tx, rx) = channel();
+ tx.send(()).unwrap();
+ drop(tx);
+ rx.recv().unwrap();
+ select! {
+ _ = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn preflight9() {
+ let (tx, rx) = channel();
+ drop(tx.clone());
+ tx.send(()).unwrap();
+ drop(tx);
+ rx.recv().unwrap();
+ select! {
+ _ = rx.recv() => {}
+ }
+ }
+
+ #[test]
+ fn oneshot_data_waiting() {
+ let (tx1, rx1) = channel();
+ let (tx2, rx2) = channel();
+ let t = thread::spawn(move || {
+ select! {
+ _n = rx1.recv() => {}
+ }
+ tx2.send(()).unwrap();
+ });
+
+ for _ in 0..100 {
+ thread::yield_now()
+ }
+ tx1.send(()).unwrap();
+ rx2.recv().unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn stream_data_waiting() {
+ let (tx1, rx1) = channel();
+ let (tx2, rx2) = channel();
+ tx1.send(()).unwrap();
+ tx1.send(()).unwrap();
+ rx1.recv().unwrap();
+ rx1.recv().unwrap();
+ let t = thread::spawn(move || {
+ select! {
+ _n = rx1.recv() => {}
+ }
+ tx2.send(()).unwrap();
+ });
+
+ for _ in 0..100 {
+ thread::yield_now()
+ }
+ tx1.send(()).unwrap();
+ rx2.recv().unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn shared_data_waiting() {
+ let (tx1, rx1) = channel();
+ let (tx2, rx2) = channel();
+ drop(tx1.clone());
+ tx1.send(()).unwrap();
+ rx1.recv().unwrap();
+ let t = thread::spawn(move || {
+ select! {
+ _n = rx1.recv() => {}
+ }
+ tx2.send(()).unwrap();
+ });
+
+ for _ in 0..100 {
+ thread::yield_now()
+ }
+ tx1.send(()).unwrap();
+ rx2.recv().unwrap();
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn sync1() {
+ let (tx, rx) = sync_channel::<i32>(1);
+ tx.send(1).unwrap();
+ select! {
+ n = rx.recv() => { assert_eq!(n.unwrap(), 1); }
+ }
+ }
+
+ #[test]
+ fn sync2() {
+ let (tx, rx) = sync_channel::<i32>(0);
+ let t = thread::spawn(move || {
+ for _ in 0..100 {
+ thread::yield_now()
+ }
+ tx.send(1).unwrap();
+ });
+ select! {
+ n = rx.recv() => { assert_eq!(n.unwrap(), 1); }
+ }
+ t.join().unwrap();
+ }
+
+ #[test]
+ fn sync3() {
+ let (tx1, rx1) = sync_channel::<i32>(0);
+ let (tx2, rx2): (Sender<i32>, Receiver<i32>) = channel();
+ let t = thread::spawn(move || {
+ tx1.send(1).unwrap();
+ });
+ let t2 = thread::spawn(move || {
+ tx2.send(2).unwrap();
+ });
+ select! {
+ n = rx1.recv() => {
+ let n = n.unwrap();
+ assert_eq!(n, 1);
+ assert_eq!(rx2.recv().unwrap(), 2);
+ },
+ n = rx2.recv() => {
+ let n = n.unwrap();
+ assert_eq!(n, 2);
+ assert_eq!(rx1.recv().unwrap(), 1);
+ }
+ }
+ t.join().unwrap();
+ t2.join().unwrap();
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/tests/never.rs b/third_party/rust/crossbeam-channel/tests/never.rs
new file mode 100644
index 0000000000..f275126f7d
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/never.rs
@@ -0,0 +1,95 @@
+//! Tests for the never channel flavor.
+
+use std::thread;
+use std::time::{Duration, Instant};
+
+use crossbeam_channel::{never, select, tick, unbounded};
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn smoke() {
+ select! {
+ recv(never::<i32>()) -> _ => panic!(),
+ default => {}
+ }
+}
+
+#[test]
+fn optional() {
+ let (s, r) = unbounded::<i32>();
+ s.send(1).unwrap();
+ s.send(2).unwrap();
+
+ let mut r = Some(&r);
+ select! {
+ recv(r.unwrap_or(&never())) -> _ => {}
+ default => panic!(),
+ }
+
+ r = None;
+ select! {
+ recv(r.unwrap_or(&never())) -> _ => panic!(),
+ default => {}
+ }
+}
+
+#[test]
+fn tick_n() {
+ let mut r = tick(ms(100));
+ let mut step = 0;
+
+ loop {
+ select! {
+ recv(r) -> _ => step += 1,
+ default(ms(500)) => break,
+ }
+
+ if step == 10 {
+ r = never();
+ }
+ }
+
+ assert_eq!(step, 10);
+}
+
+#[test]
+fn capacity() {
+ let r = never::<i32>();
+ assert_eq!(r.capacity(), Some(0));
+}
+
+#[test]
+fn len_empty_full() {
+ let r = never::<i32>();
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(r.is_full());
+}
+
+#[test]
+fn try_recv() {
+ let r = never::<i32>();
+ assert!(r.try_recv().is_err());
+
+ thread::sleep(ms(100));
+ assert!(r.try_recv().is_err());
+}
+
+#[test]
+fn recv_timeout() {
+ let start = Instant::now();
+ let r = never::<i32>();
+
+ assert!(r.recv_timeout(ms(100)).is_err());
+ let now = Instant::now();
+ assert!(now - start >= ms(100));
+ assert!(now - start <= ms(150));
+
+ assert!(r.recv_timeout(ms(100)).is_err());
+ let now = Instant::now();
+ assert!(now - start >= ms(200));
+ assert!(now - start <= ms(250));
+}
diff --git a/third_party/rust/crossbeam-channel/tests/ready.rs b/third_party/rust/crossbeam-channel/tests/ready.rs
new file mode 100644
index 0000000000..d8dd6ceb50
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/ready.rs
@@ -0,0 +1,852 @@
+//! Tests for channel readiness using the `Select` struct.
+
+#![allow(clippy::drop_copy)]
+
+use std::any::Any;
+use std::cell::Cell;
+use std::thread;
+use std::time::{Duration, Instant};
+
+use crossbeam_channel::{after, bounded, tick, unbounded};
+use crossbeam_channel::{Receiver, Select, TryRecvError, TrySendError};
+use crossbeam_utils::thread::scope;
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn smoke1() {
+ let (s1, r1) = unbounded::<usize>();
+ let (s2, r2) = unbounded::<usize>();
+
+ s1.send(1).unwrap();
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ assert_eq!(sel.ready(), 0);
+ assert_eq!(r1.try_recv(), Ok(1));
+
+ s2.send(2).unwrap();
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ assert_eq!(sel.ready(), 1);
+ assert_eq!(r2.try_recv(), Ok(2));
+}
+
+#[test]
+fn smoke2() {
+ let (_s1, r1) = unbounded::<i32>();
+ let (_s2, r2) = unbounded::<i32>();
+ let (_s3, r3) = unbounded::<i32>();
+ let (_s4, r4) = unbounded::<i32>();
+ let (s5, r5) = unbounded::<i32>();
+
+ s5.send(5).unwrap();
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ sel.recv(&r3);
+ sel.recv(&r4);
+ sel.recv(&r5);
+ assert_eq!(sel.ready(), 4);
+ assert_eq!(r5.try_recv(), Ok(5));
+}
+
+#[test]
+fn disconnected() {
+ let (s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ drop(s1);
+ thread::sleep(ms(500));
+ s2.send(5).unwrap();
+ });
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ match sel.ready_timeout(ms(1000)) {
+ Ok(0) => assert_eq!(r1.try_recv(), Err(TryRecvError::Disconnected)),
+ _ => panic!(),
+ }
+
+ r2.recv().unwrap();
+ })
+ .unwrap();
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ match sel.ready_timeout(ms(1000)) {
+ Ok(0) => assert_eq!(r1.try_recv(), Err(TryRecvError::Disconnected)),
+ _ => panic!(),
+ }
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ drop(s2);
+ });
+
+ let mut sel = Select::new();
+ sel.recv(&r2);
+ match sel.ready_timeout(ms(1000)) {
+ Ok(0) => assert_eq!(r2.try_recv(), Err(TryRecvError::Disconnected)),
+ _ => panic!(),
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn default() {
+ let (s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ assert!(sel.try_ready().is_err());
+
+ drop(s1);
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ match sel.try_ready() {
+ Ok(0) => assert!(r1.try_recv().is_err()),
+ _ => panic!(),
+ }
+
+ s2.send(2).unwrap();
+
+ let mut sel = Select::new();
+ sel.recv(&r2);
+ match sel.try_ready() {
+ Ok(0) => assert_eq!(r2.try_recv(), Ok(2)),
+ _ => panic!(),
+ }
+
+ let mut sel = Select::new();
+ sel.recv(&r2);
+ assert!(sel.try_ready().is_err());
+
+ let mut sel = Select::new();
+ assert!(sel.try_ready().is_err());
+}
+
+#[test]
+fn timeout() {
+ let (_s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(1500));
+ s2.send(2).unwrap();
+ });
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ assert!(sel.ready_timeout(ms(1000)).is_err());
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ match sel.ready_timeout(ms(1000)) {
+ Ok(1) => assert_eq!(r2.try_recv(), Ok(2)),
+ _ => panic!(),
+ }
+ })
+ .unwrap();
+
+ scope(|scope| {
+ let (s, r) = unbounded::<i32>();
+
+ scope.spawn(move |_| {
+ thread::sleep(ms(500));
+ drop(s);
+ });
+
+ let mut sel = Select::new();
+ assert!(sel.ready_timeout(ms(1000)).is_err());
+
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.try_ready() {
+ Ok(0) => assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected)),
+ _ => panic!(),
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn default_when_disconnected() {
+ let (_, r) = unbounded::<i32>();
+
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.try_ready() {
+ Ok(0) => assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected)),
+ _ => panic!(),
+ }
+
+ let (_, r) = unbounded::<i32>();
+
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.ready_timeout(ms(1000)) {
+ Ok(0) => assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected)),
+ _ => panic!(),
+ }
+
+ let (s, _) = bounded::<i32>(0);
+
+ let mut sel = Select::new();
+ sel.send(&s);
+ match sel.try_ready() {
+ Ok(0) => assert_eq!(s.try_send(0), Err(TrySendError::Disconnected(0))),
+ _ => panic!(),
+ }
+
+ let (s, _) = bounded::<i32>(0);
+
+ let mut sel = Select::new();
+ sel.send(&s);
+ match sel.ready_timeout(ms(1000)) {
+ Ok(0) => assert_eq!(s.try_send(0), Err(TrySendError::Disconnected(0))),
+ _ => panic!(),
+ }
+}
+
+#[test]
+fn default_only() {
+ let start = Instant::now();
+
+ let mut sel = Select::new();
+ assert!(sel.try_ready().is_err());
+ let now = Instant::now();
+ assert!(now - start <= ms(50));
+
+ let start = Instant::now();
+ let mut sel = Select::new();
+ assert!(sel.ready_timeout(ms(500)).is_err());
+ let now = Instant::now();
+ assert!(now - start >= ms(450));
+ assert!(now - start <= ms(550));
+}
+
+#[test]
+fn unblocks() {
+ let (s1, r1) = bounded::<i32>(0);
+ let (s2, r2) = bounded::<i32>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ s2.send(2).unwrap();
+ });
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ match sel.ready_timeout(ms(1000)) {
+ Ok(1) => assert_eq!(r2.try_recv(), Ok(2)),
+ _ => panic!(),
+ }
+ })
+ .unwrap();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ assert_eq!(r1.recv().unwrap(), 1);
+ });
+
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s1);
+ let oper2 = sel.send(&s2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => oper.send(&s1, 1).unwrap(),
+ i if i == oper2 => panic!(),
+ _ => unreachable!(),
+ },
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn both_ready() {
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ s1.send(1).unwrap();
+ assert_eq!(r2.recv().unwrap(), 2);
+ });
+
+ for _ in 0..2 {
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.send(&s2);
+ match sel.ready() {
+ 0 => assert_eq!(r1.try_recv(), Ok(1)),
+ 1 => s2.try_send(2).unwrap(),
+ _ => panic!(),
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn cloning1() {
+ scope(|scope| {
+ let (s1, r1) = unbounded::<i32>();
+ let (_s2, r2) = unbounded::<i32>();
+ let (s3, r3) = unbounded::<()>();
+
+ scope.spawn(move |_| {
+ r3.recv().unwrap();
+ drop(s1.clone());
+ assert!(r3.try_recv().is_err());
+ s1.send(1).unwrap();
+ r3.recv().unwrap();
+ });
+
+ s3.send(()).unwrap();
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ match sel.ready() {
+ 0 => drop(r1.try_recv()),
+ 1 => drop(r2.try_recv()),
+ _ => panic!(),
+ }
+
+ s3.send(()).unwrap();
+ })
+ .unwrap();
+}
+
+#[test]
+fn cloning2() {
+ let (s1, r1) = unbounded::<()>();
+ let (s2, r2) = unbounded::<()>();
+ let (_s3, _r3) = unbounded::<()>();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ match sel.ready() {
+ 0 => panic!(),
+ 1 => drop(r2.try_recv()),
+ _ => panic!(),
+ }
+ });
+
+ thread::sleep(ms(500));
+ drop(s1.clone());
+ s2.send(()).unwrap();
+ })
+ .unwrap();
+}
+
+#[test]
+fn preflight1() {
+ let (s, r) = unbounded();
+ s.send(()).unwrap();
+
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.ready() {
+ 0 => drop(r.try_recv()),
+ _ => panic!(),
+ }
+}
+
+#[test]
+fn preflight2() {
+ let (s, r) = unbounded();
+ drop(s.clone());
+ s.send(()).unwrap();
+ drop(s);
+
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.ready() {
+ 0 => assert_eq!(r.try_recv(), Ok(())),
+ _ => panic!(),
+ }
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
+}
+
+#[test]
+fn preflight3() {
+ let (s, r) = unbounded();
+ drop(s.clone());
+ s.send(()).unwrap();
+ drop(s);
+ r.recv().unwrap();
+
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.ready() {
+ 0 => assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected)),
+ _ => panic!(),
+ }
+}
+
+#[test]
+fn duplicate_operations() {
+ let (s, r) = unbounded::<i32>();
+ let hit = vec![Cell::new(false); 4];
+
+ while hit.iter().map(|h| h.get()).any(|hit| !hit) {
+ let mut sel = Select::new();
+ sel.recv(&r);
+ sel.recv(&r);
+ sel.send(&s);
+ sel.send(&s);
+ match sel.ready() {
+ 0 => {
+ assert!(r.try_recv().is_ok());
+ hit[0].set(true);
+ }
+ 1 => {
+ assert!(r.try_recv().is_ok());
+ hit[1].set(true);
+ }
+ 2 => {
+ assert!(s.try_send(0).is_ok());
+ hit[2].set(true);
+ }
+ 3 => {
+ assert!(s.try_send(0).is_ok());
+ hit[3].set(true);
+ }
+ _ => panic!(),
+ }
+ }
+}
+
+#[test]
+fn nesting() {
+ let (s, r) = unbounded::<i32>();
+
+ let mut sel = Select::new();
+ sel.send(&s);
+ match sel.ready() {
+ 0 => {
+ assert!(s.try_send(0).is_ok());
+
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.ready() {
+ 0 => {
+ assert_eq!(r.try_recv(), Ok(0));
+
+ let mut sel = Select::new();
+ sel.send(&s);
+ match sel.ready() {
+ 0 => {
+ assert!(s.try_send(1).is_ok());
+
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.ready() {
+ 0 => {
+ assert_eq!(r.try_recv(), Ok(1));
+ }
+ _ => panic!(),
+ }
+ }
+ _ => panic!(),
+ }
+ }
+ _ => panic!(),
+ }
+ }
+ _ => panic!(),
+ }
+}
+
+#[test]
+fn stress_recv() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = unbounded();
+ let (s2, r2) = bounded(5);
+ let (s3, r3) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s1.send(i).unwrap();
+ r3.recv().unwrap();
+
+ s2.send(i).unwrap();
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ match sel.ready() {
+ 0 => assert_eq!(r1.try_recv(), Ok(i)),
+ 1 => assert_eq!(r2.try_recv(), Ok(i)),
+ _ => panic!(),
+ }
+
+ s3.send(()).unwrap();
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_send() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ assert_eq!(r1.recv().unwrap(), i);
+ assert_eq!(r2.recv().unwrap(), i);
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ let mut sel = Select::new();
+ sel.send(&s1);
+ sel.send(&s2);
+ match sel.ready() {
+ 0 => assert!(s1.try_send(i).is_ok()),
+ 1 => assert!(s2.try_send(i).is_ok()),
+ _ => panic!(),
+ }
+ }
+ s3.send(()).unwrap();
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_mixed() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s1.send(i).unwrap();
+ assert_eq!(r2.recv().unwrap(), i);
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.send(&s2);
+ match sel.ready() {
+ 0 => assert_eq!(r1.try_recv(), Ok(i)),
+ 1 => assert!(s2.try_send(i).is_ok()),
+ _ => panic!(),
+ }
+ }
+ s3.send(()).unwrap();
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_timeout_two_threads() {
+ const COUNT: usize = 20;
+
+ let (s, r) = bounded(2);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(500));
+ }
+
+ loop {
+ let mut sel = Select::new();
+ sel.send(&s);
+ match sel.ready_timeout(ms(100)) {
+ Err(_) => {}
+ Ok(0) => {
+ assert!(s.try_send(i).is_ok());
+ break;
+ }
+ Ok(_) => panic!(),
+ }
+ }
+ }
+ });
+
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(500));
+ }
+
+ loop {
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.ready_timeout(ms(100)) {
+ Err(_) => {}
+ Ok(0) => {
+ assert_eq!(r.try_recv(), Ok(i));
+ break;
+ }
+ Ok(_) => panic!(),
+ }
+ }
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send_recv_same_channel() {
+ let (s, r) = bounded::<i32>(0);
+ let mut sel = Select::new();
+ sel.send(&s);
+ sel.recv(&r);
+ assert!(sel.ready_timeout(ms(100)).is_err());
+
+ let (s, r) = unbounded::<i32>();
+ let mut sel = Select::new();
+ sel.send(&s);
+ sel.recv(&r);
+ match sel.ready_timeout(ms(100)) {
+ Err(_) => panic!(),
+ Ok(0) => assert!(s.try_send(0).is_ok()),
+ Ok(_) => panic!(),
+ }
+}
+
+#[test]
+fn channel_through_channel() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ type T = Box<dyn Any + Send>;
+
+ for cap in 1..4 {
+ let (s, r) = bounded::<T>(cap);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut s = s;
+
+ for _ in 0..COUNT {
+ let (new_s, new_r) = bounded(cap);
+ let new_r: T = Box::new(Some(new_r));
+
+ {
+ let mut sel = Select::new();
+ sel.send(&s);
+ match sel.ready() {
+ 0 => assert!(s.try_send(new_r).is_ok()),
+ _ => panic!(),
+ }
+ }
+
+ s = new_s;
+ }
+ });
+
+ scope.spawn(move |_| {
+ let mut r = r;
+
+ for _ in 0..COUNT {
+ let new = {
+ let mut sel = Select::new();
+ sel.recv(&r);
+ match sel.ready() {
+ 0 => r
+ .try_recv()
+ .unwrap()
+ .downcast_mut::<Option<Receiver<T>>>()
+ .unwrap()
+ .take()
+ .unwrap(),
+ _ => panic!(),
+ }
+ };
+ r = new;
+ }
+ });
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn fairness1() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded::<()>(COUNT);
+ let (s2, r2) = unbounded::<()>();
+
+ for _ in 0..COUNT {
+ s1.send(()).unwrap();
+ s2.send(()).unwrap();
+ }
+
+ let hits = vec![Cell::new(0usize); 4];
+ for _ in 0..COUNT {
+ let after = after(ms(0));
+ let tick = tick(ms(0));
+
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ sel.recv(&after);
+ sel.recv(&tick);
+ match sel.ready() {
+ 0 => {
+ r1.try_recv().unwrap();
+ hits[0].set(hits[0].get() + 1);
+ }
+ 1 => {
+ r2.try_recv().unwrap();
+ hits[1].set(hits[1].get() + 1);
+ }
+ 2 => {
+ after.try_recv().unwrap();
+ hits[2].set(hits[2].get() + 1);
+ }
+ 3 => {
+ tick.try_recv().unwrap();
+ hits[3].set(hits[3].get() + 1);
+ }
+ _ => panic!(),
+ }
+ }
+ assert!(hits.iter().all(|x| x.get() >= COUNT / hits.len() / 2));
+}
+
+#[test]
+fn fairness2() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ let (s1, r1) = unbounded::<()>();
+ let (s2, r2) = bounded::<()>(1);
+ let (s3, r3) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ let mut sel = Select::new();
+ let mut oper1 = None;
+ let mut oper2 = None;
+ if s1.is_empty() {
+ oper1 = Some(sel.send(&s1));
+ }
+ if s2.is_empty() {
+ oper2 = Some(sel.send(&s2));
+ }
+ let oper3 = sel.send(&s3);
+ let oper = sel.select();
+ match oper.index() {
+ i if Some(i) == oper1 => assert!(oper.send(&s1, ()).is_ok()),
+ i if Some(i) == oper2 => assert!(oper.send(&s2, ()).is_ok()),
+ i if i == oper3 => assert!(oper.send(&s3, ()).is_ok()),
+ _ => unreachable!(),
+ }
+ }
+ });
+
+ let hits = vec![Cell::new(0usize); 3];
+ for _ in 0..COUNT {
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ sel.recv(&r3);
+ loop {
+ match sel.ready() {
+ 0 => {
+ if r1.try_recv().is_ok() {
+ hits[0].set(hits[0].get() + 1);
+ break;
+ }
+ }
+ 1 => {
+ if r2.try_recv().is_ok() {
+ hits[1].set(hits[1].get() + 1);
+ break;
+ }
+ }
+ 2 => {
+ if r3.try_recv().is_ok() {
+ hits[2].set(hits[2].get() + 1);
+ break;
+ }
+ }
+ _ => unreachable!(),
+ }
+ }
+ }
+ assert!(hits.iter().all(|x| x.get() > 0));
+ })
+ .unwrap();
+}
diff --git a/third_party/rust/crossbeam-channel/tests/same_channel.rs b/third_party/rust/crossbeam-channel/tests/same_channel.rs
new file mode 100644
index 0000000000..da4c8f3e70
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/same_channel.rs
@@ -0,0 +1,112 @@
+use std::time::Duration;
+
+use crossbeam_channel::{after, bounded, never, tick, unbounded};
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn after_same_channel() {
+ let r = after(ms(50));
+
+ let r2 = r.clone();
+ assert!(r.same_channel(&r2));
+
+ let r3 = after(ms(50));
+ assert!(!r.same_channel(&r3));
+ assert!(!r2.same_channel(&r3));
+
+ let r4 = after(ms(100));
+ assert!(!r.same_channel(&r4));
+ assert!(!r2.same_channel(&r4));
+}
+
+#[test]
+fn array_same_channel() {
+ let (s, r) = bounded::<usize>(1);
+
+ let s2 = s.clone();
+ assert!(s.same_channel(&s2));
+
+ let r2 = r.clone();
+ assert!(r.same_channel(&r2));
+
+ let (s3, r3) = bounded::<usize>(1);
+ assert!(!s.same_channel(&s3));
+ assert!(!s2.same_channel(&s3));
+ assert!(!r.same_channel(&r3));
+ assert!(!r2.same_channel(&r3));
+}
+
+#[test]
+fn list_same_channel() {
+ let (s, r) = unbounded::<usize>();
+
+ let s2 = s.clone();
+ assert!(s.same_channel(&s2));
+
+ let r2 = r.clone();
+ assert!(r.same_channel(&r2));
+
+ let (s3, r3) = unbounded::<usize>();
+ assert!(!s.same_channel(&s3));
+ assert!(!s2.same_channel(&s3));
+ assert!(!r.same_channel(&r3));
+ assert!(!r2.same_channel(&r3));
+}
+
+#[test]
+fn never_same_channel() {
+ let r = never::<usize>();
+
+ let r2 = r.clone();
+ assert!(r.same_channel(&r2));
+
+ // Never channel are always equal to one another.
+ let r3 = never::<usize>();
+ assert!(r.same_channel(&r3));
+ assert!(r2.same_channel(&r3));
+}
+
+#[test]
+fn tick_same_channel() {
+ let r = tick(ms(50));
+
+ let r2 = r.clone();
+ assert!(r.same_channel(&r2));
+
+ let r3 = tick(ms(50));
+ assert!(!r.same_channel(&r3));
+ assert!(!r2.same_channel(&r3));
+
+ let r4 = tick(ms(100));
+ assert!(!r.same_channel(&r4));
+ assert!(!r2.same_channel(&r4));
+}
+
+#[test]
+fn zero_same_channel() {
+ let (s, r) = bounded::<usize>(0);
+
+ let s2 = s.clone();
+ assert!(s.same_channel(&s2));
+
+ let r2 = r.clone();
+ assert!(r.same_channel(&r2));
+
+ let (s3, r3) = bounded::<usize>(0);
+ assert!(!s.same_channel(&s3));
+ assert!(!s2.same_channel(&s3));
+ assert!(!r.same_channel(&r3));
+ assert!(!r2.same_channel(&r3));
+}
+
+#[test]
+fn different_flavors_same_channel() {
+ let (s1, r1) = bounded::<usize>(0);
+ let (s2, r2) = unbounded::<usize>();
+
+ assert!(!s1.same_channel(&s2));
+ assert!(!r1.same_channel(&r2));
+}
diff --git a/third_party/rust/crossbeam-channel/tests/select.rs b/third_party/rust/crossbeam-channel/tests/select.rs
new file mode 100644
index 0000000000..bc5824daba
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/select.rs
@@ -0,0 +1,1328 @@
+//! Tests for channel selection using the `Select` struct.
+
+#![allow(clippy::drop_copy)]
+
+use std::any::Any;
+use std::cell::Cell;
+use std::thread;
+use std::time::{Duration, Instant};
+
+use crossbeam_channel::{after, bounded, tick, unbounded, Receiver, Select, TryRecvError};
+use crossbeam_utils::thread::scope;
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn smoke1() {
+ let (s1, r1) = unbounded::<usize>();
+ let (s2, r2) = unbounded::<usize>();
+
+ s1.send(1).unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => assert_eq!(oper.recv(&r1), Ok(1)),
+ i if i == oper2 => panic!(),
+ _ => unreachable!(),
+ }
+
+ s2.send(2).unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => panic!(),
+ i if i == oper2 => assert_eq!(oper.recv(&r2), Ok(2)),
+ _ => unreachable!(),
+ }
+}
+
+#[test]
+fn smoke2() {
+ let (_s1, r1) = unbounded::<i32>();
+ let (_s2, r2) = unbounded::<i32>();
+ let (_s3, r3) = unbounded::<i32>();
+ let (_s4, r4) = unbounded::<i32>();
+ let (s5, r5) = unbounded::<i32>();
+
+ s5.send(5).unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper3 = sel.recv(&r3);
+ let oper4 = sel.recv(&r4);
+ let oper5 = sel.recv(&r5);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => panic!(),
+ i if i == oper2 => panic!(),
+ i if i == oper3 => panic!(),
+ i if i == oper4 => panic!(),
+ i if i == oper5 => assert_eq!(oper.recv(&r5), Ok(5)),
+ _ => unreachable!(),
+ }
+}
+
+#[test]
+fn disconnected() {
+ let (s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ drop(s1);
+ thread::sleep(ms(500));
+ s2.send(5).unwrap();
+ });
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.recv(&r1).is_err()),
+ i if i == oper2 => panic!(),
+ _ => unreachable!(),
+ },
+ }
+
+ r2.recv().unwrap();
+ })
+ .unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.recv(&r1).is_err()),
+ i if i == oper2 => panic!(),
+ _ => unreachable!(),
+ },
+ }
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ drop(s2);
+ });
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.recv(&r2).is_err()),
+ _ => unreachable!(),
+ },
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn default() {
+ let (s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ let mut sel = Select::new();
+ let _oper1 = sel.recv(&r1);
+ let _oper2 = sel.recv(&r2);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => {}
+ Ok(_) => panic!(),
+ }
+
+ drop(s1);
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.recv(&r1).is_err()),
+ i if i == oper2 => panic!(),
+ _ => unreachable!(),
+ },
+ }
+
+ s2.send(2).unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r2);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert_eq!(oper.recv(&r2), Ok(2)),
+ _ => unreachable!(),
+ },
+ }
+
+ let mut sel = Select::new();
+ let _oper1 = sel.recv(&r2);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => {}
+ Ok(_) => panic!(),
+ }
+
+ let mut sel = Select::new();
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => {}
+ Ok(_) => panic!(),
+ }
+}
+
+#[test]
+fn timeout() {
+ let (_s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(1500));
+ s2.send(2).unwrap();
+ });
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => {}
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => panic!(),
+ i if i == oper2 => panic!(),
+ _ => unreachable!(),
+ },
+ }
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => panic!(),
+ i if i == oper2 => assert_eq!(oper.recv(&r2), Ok(2)),
+ _ => unreachable!(),
+ },
+ }
+ })
+ .unwrap();
+
+ scope(|scope| {
+ let (s, r) = unbounded::<i32>();
+
+ scope.spawn(move |_| {
+ thread::sleep(ms(500));
+ drop(s);
+ });
+
+ let mut sel = Select::new();
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.recv(&r).is_err()),
+ _ => unreachable!(),
+ },
+ }
+ }
+ Ok(_) => unreachable!(),
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn default_when_disconnected() {
+ let (_, r) = unbounded::<i32>();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.recv(&r).is_err()),
+ _ => unreachable!(),
+ },
+ }
+
+ let (_, r) = unbounded::<i32>();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.recv(&r).is_err()),
+ _ => unreachable!(),
+ },
+ }
+
+ let (s, _) = bounded::<i32>(0);
+
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.send(&s, 0).is_err()),
+ _ => unreachable!(),
+ },
+ }
+
+ let (s, _) = bounded::<i32>(0);
+
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert!(oper.send(&s, 0).is_err()),
+ _ => unreachable!(),
+ },
+ }
+}
+
+#[test]
+fn default_only() {
+ let start = Instant::now();
+
+ let mut sel = Select::new();
+ let oper = sel.try_select();
+ assert!(oper.is_err());
+ let now = Instant::now();
+ assert!(now - start <= ms(50));
+
+ let start = Instant::now();
+ let mut sel = Select::new();
+ let oper = sel.select_timeout(ms(500));
+ assert!(oper.is_err());
+ let now = Instant::now();
+ assert!(now - start >= ms(450));
+ assert!(now - start <= ms(550));
+}
+
+#[test]
+fn unblocks() {
+ let (s1, r1) = bounded::<i32>(0);
+ let (s2, r2) = bounded::<i32>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ s2.send(2).unwrap();
+ });
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => panic!(),
+ i if i == oper2 => assert_eq!(oper.recv(&r2), Ok(2)),
+ _ => unreachable!(),
+ },
+ }
+ })
+ .unwrap();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ assert_eq!(r1.recv().unwrap(), 1);
+ });
+
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s1);
+ let oper2 = sel.send(&s2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => oper.send(&s1, 1).unwrap(),
+ i if i == oper2 => panic!(),
+ _ => unreachable!(),
+ },
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn both_ready() {
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ s1.send(1).unwrap();
+ assert_eq!(r2.recv().unwrap(), 2);
+ });
+
+ for _ in 0..2 {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.send(&s2);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => assert_eq!(oper.recv(&r1), Ok(1)),
+ i if i == oper2 => oper.send(&s2, 2).unwrap(),
+ _ => unreachable!(),
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn loop_try() {
+ const RUNS: usize = 20;
+
+ for _ in 0..RUNS {
+ let (s1, r1) = bounded::<i32>(0);
+ let (s2, r2) = bounded::<i32>(0);
+ let (s_end, r_end) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| loop {
+ let mut done = false;
+
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s1);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => {}
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => {
+ let _ = oper.send(&s1, 1);
+ done = true;
+ }
+ _ => unreachable!(),
+ },
+ }
+ if done {
+ break;
+ }
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r_end);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => {}
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => {
+ let _ = oper.recv(&r_end);
+ done = true;
+ }
+ _ => unreachable!(),
+ },
+ }
+ if done {
+ break;
+ }
+ });
+
+ scope.spawn(|_| loop {
+ if let Ok(x) = r2.try_recv() {
+ assert_eq!(x, 2);
+ break;
+ }
+
+ let mut done = false;
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r_end);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => {}
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => {
+ let _ = oper.recv(&r_end);
+ done = true;
+ }
+ _ => unreachable!(),
+ },
+ }
+ if done {
+ break;
+ }
+ });
+
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.send(&s2);
+ let oper = sel.select_timeout(ms(1000));
+ match oper {
+ Err(_) => {}
+ Ok(oper) => match oper.index() {
+ i if i == oper1 => assert_eq!(oper.recv(&r1), Ok(1)),
+ i if i == oper2 => assert!(oper.send(&s2, 2).is_ok()),
+ _ => unreachable!(),
+ },
+ }
+
+ drop(s_end);
+ });
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn cloning1() {
+ scope(|scope| {
+ let (s1, r1) = unbounded::<i32>();
+ let (_s2, r2) = unbounded::<i32>();
+ let (s3, r3) = unbounded::<()>();
+
+ scope.spawn(move |_| {
+ r3.recv().unwrap();
+ drop(s1.clone());
+ assert!(r3.try_recv().is_err());
+ s1.send(1).unwrap();
+ r3.recv().unwrap();
+ });
+
+ s3.send(()).unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => drop(oper.recv(&r1)),
+ i if i == oper2 => drop(oper.recv(&r2)),
+ _ => unreachable!(),
+ }
+
+ s3.send(()).unwrap();
+ })
+ .unwrap();
+}
+
+#[test]
+fn cloning2() {
+ let (s1, r1) = unbounded::<()>();
+ let (s2, r2) = unbounded::<()>();
+ let (_s3, _r3) = unbounded::<()>();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => panic!(),
+ i if i == oper2 => drop(oper.recv(&r2)),
+ _ => unreachable!(),
+ }
+ });
+
+ thread::sleep(ms(500));
+ drop(s1.clone());
+ s2.send(()).unwrap();
+ })
+ .unwrap();
+}
+
+#[test]
+fn preflight1() {
+ let (s, r) = unbounded();
+ s.send(()).unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => drop(oper.recv(&r)),
+ _ => unreachable!(),
+ }
+}
+
+#[test]
+fn preflight2() {
+ let (s, r) = unbounded();
+ drop(s.clone());
+ s.send(()).unwrap();
+ drop(s);
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => assert_eq!(oper.recv(&r), Ok(())),
+ _ => unreachable!(),
+ }
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
+}
+
+#[test]
+fn preflight3() {
+ let (s, r) = unbounded();
+ drop(s.clone());
+ s.send(()).unwrap();
+ drop(s);
+ r.recv().unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => assert!(oper.recv(&r).is_err()),
+ _ => unreachable!(),
+ }
+}
+
+#[test]
+fn duplicate_operations() {
+ let (s, r) = unbounded::<i32>();
+ let hit = vec![Cell::new(false); 4];
+
+ while hit.iter().map(|h| h.get()).any(|hit| !hit) {
+ let mut sel = Select::new();
+ let oper0 = sel.recv(&r);
+ let oper1 = sel.recv(&r);
+ let oper2 = sel.send(&s);
+ let oper3 = sel.send(&s);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper0 => {
+ assert!(oper.recv(&r).is_ok());
+ hit[0].set(true);
+ }
+ i if i == oper1 => {
+ assert!(oper.recv(&r).is_ok());
+ hit[1].set(true);
+ }
+ i if i == oper2 => {
+ assert!(oper.send(&s, 0).is_ok());
+ hit[2].set(true);
+ }
+ i if i == oper3 => {
+ assert!(oper.send(&s, 0).is_ok());
+ hit[3].set(true);
+ }
+ _ => unreachable!(),
+ }
+ }
+}
+
+#[test]
+fn nesting() {
+ let (s, r) = unbounded::<i32>();
+
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => {
+ assert!(oper.send(&s, 0).is_ok());
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => {
+ assert_eq!(oper.recv(&r), Ok(0));
+
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => {
+ assert!(oper.send(&s, 1).is_ok());
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => {
+ assert_eq!(oper.recv(&r), Ok(1));
+ }
+ _ => unreachable!(),
+ }
+ }
+ _ => unreachable!(),
+ }
+ }
+ _ => unreachable!(),
+ }
+ }
+ _ => unreachable!(),
+ }
+}
+
+#[test]
+fn stress_recv() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = unbounded();
+ let (s2, r2) = bounded(5);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s1.send(i).unwrap();
+ r3.recv().unwrap();
+
+ s2.send(i).unwrap();
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert_eq!(oper.recv(&r1), Ok(i)),
+ ix if ix == oper2 => assert_eq!(oper.recv(&r2), Ok(i)),
+ _ => unreachable!(),
+ }
+
+ s3.send(()).unwrap();
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_send() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ assert_eq!(r1.recv().unwrap(), i);
+ assert_eq!(r2.recv().unwrap(), i);
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s1);
+ let oper2 = sel.send(&s2);
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert!(oper.send(&s1, i).is_ok()),
+ ix if ix == oper2 => assert!(oper.send(&s2, i).is_ok()),
+ _ => unreachable!(),
+ }
+ }
+ s3.send(()).unwrap();
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_mixed() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s1.send(i).unwrap();
+ assert_eq!(r2.recv().unwrap(), i);
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.send(&s2);
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert_eq!(oper.recv(&r1), Ok(i)),
+ ix if ix == oper2 => assert!(oper.send(&s2, i).is_ok()),
+ _ => unreachable!(),
+ }
+ }
+ s3.send(()).unwrap();
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_timeout_two_threads() {
+ const COUNT: usize = 20;
+
+ let (s, r) = bounded(2);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(500));
+ }
+
+ loop {
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s);
+ let oper = sel.select_timeout(ms(100));
+ match oper {
+ Err(_) => {}
+ Ok(oper) => match oper.index() {
+ ix if ix == oper1 => {
+ assert!(oper.send(&s, i).is_ok());
+ break;
+ }
+ _ => unreachable!(),
+ },
+ }
+ }
+ }
+ });
+
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(500));
+ }
+
+ loop {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.select_timeout(ms(100));
+ match oper {
+ Err(_) => {}
+ Ok(oper) => match oper.index() {
+ ix if ix == oper1 => {
+ assert_eq!(oper.recv(&r), Ok(i));
+ break;
+ }
+ _ => unreachable!(),
+ },
+ }
+ }
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send_recv_same_channel() {
+ let (s, r) = bounded::<i32>(0);
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s);
+ let oper2 = sel.recv(&r);
+ let oper = sel.select_timeout(ms(100));
+ match oper {
+ Err(_) => {}
+ Ok(oper) => match oper.index() {
+ ix if ix == oper1 => panic!(),
+ ix if ix == oper2 => panic!(),
+ _ => unreachable!(),
+ },
+ }
+
+ let (s, r) = unbounded::<i32>();
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s);
+ let oper2 = sel.recv(&r);
+ let oper = sel.select_timeout(ms(100));
+ match oper {
+ Err(_) => panic!(),
+ Ok(oper) => match oper.index() {
+ ix if ix == oper1 => assert!(oper.send(&s, 0).is_ok()),
+ ix if ix == oper2 => panic!(),
+ _ => unreachable!(),
+ },
+ }
+}
+
+#[test]
+fn matching() {
+ const THREADS: usize = 44;
+
+ let (s, r) = &bounded::<usize>(0);
+
+ scope(|scope| {
+ for i in 0..THREADS {
+ scope.spawn(move |_| {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(r);
+ let oper2 = sel.send(s);
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert_ne!(oper.recv(r), Ok(i)),
+ ix if ix == oper2 => assert!(oper.send(s, i).is_ok()),
+ _ => unreachable!(),
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn matching_with_leftover() {
+ const THREADS: usize = 55;
+
+ let (s, r) = &bounded::<usize>(0);
+
+ scope(|scope| {
+ for i in 0..THREADS {
+ scope.spawn(move |_| {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(r);
+ let oper2 = sel.send(s);
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert_ne!(oper.recv(r), Ok(i)),
+ ix if ix == oper2 => assert!(oper.send(s, i).is_ok()),
+ _ => unreachable!(),
+ }
+ });
+ }
+ s.send(!0).unwrap();
+ })
+ .unwrap();
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn channel_through_channel() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ type T = Box<dyn Any + Send>;
+
+ for cap in 0..3 {
+ let (s, r) = bounded::<T>(cap);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut s = s;
+
+ for _ in 0..COUNT {
+ let (new_s, new_r) = bounded(cap);
+ let new_r: T = Box::new(Some(new_r));
+
+ {
+ let mut sel = Select::new();
+ let oper1 = sel.send(&s);
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert!(oper.send(&s, new_r).is_ok()),
+ _ => unreachable!(),
+ }
+ }
+
+ s = new_s;
+ }
+ });
+
+ scope.spawn(move |_| {
+ let mut r = r;
+
+ for _ in 0..COUNT {
+ let new = {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r);
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => oper
+ .recv(&r)
+ .unwrap()
+ .downcast_mut::<Option<Receiver<T>>>()
+ .unwrap()
+ .take()
+ .unwrap(),
+ _ => unreachable!(),
+ }
+ };
+ r = new;
+ }
+ });
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn linearizable_try() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ for step in 0..2 {
+ let (start_s, start_r) = bounded::<()>(0);
+ let (end_s, end_r) = bounded::<()>(0);
+
+ let ((s1, r1), (s2, r2)) = if step == 0 {
+ (bounded::<i32>(1), bounded::<i32>(1))
+ } else {
+ (unbounded::<i32>(), unbounded::<i32>())
+ };
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ start_s.send(()).unwrap();
+
+ s1.send(1).unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.try_select();
+ match oper {
+ Err(_) => unreachable!(),
+ Ok(oper) => match oper.index() {
+ ix if ix == oper1 => assert!(oper.recv(&r1).is_ok()),
+ ix if ix == oper2 => assert!(oper.recv(&r2).is_ok()),
+ _ => unreachable!(),
+ },
+ }
+
+ end_s.send(()).unwrap();
+ let _ = r2.try_recv();
+ }
+ });
+
+ for _ in 0..COUNT {
+ start_r.recv().unwrap();
+
+ s2.send(1).unwrap();
+ let _ = r1.try_recv();
+
+ end_r.recv().unwrap();
+ }
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn linearizable_timeout() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ for step in 0..2 {
+ let (start_s, start_r) = bounded::<()>(0);
+ let (end_s, end_r) = bounded::<()>(0);
+
+ let ((s1, r1), (s2, r2)) = if step == 0 {
+ (bounded::<i32>(1), bounded::<i32>(1))
+ } else {
+ (unbounded::<i32>(), unbounded::<i32>())
+ };
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ start_s.send(()).unwrap();
+
+ s1.send(1).unwrap();
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper = sel.select_timeout(ms(0));
+ match oper {
+ Err(_) => unreachable!(),
+ Ok(oper) => match oper.index() {
+ ix if ix == oper1 => assert!(oper.recv(&r1).is_ok()),
+ ix if ix == oper2 => assert!(oper.recv(&r2).is_ok()),
+ _ => unreachable!(),
+ },
+ }
+
+ end_s.send(()).unwrap();
+ let _ = r2.try_recv();
+ }
+ });
+
+ for _ in 0..COUNT {
+ start_r.recv().unwrap();
+
+ s2.send(1).unwrap();
+ let _ = r1.try_recv();
+
+ end_r.recv().unwrap();
+ }
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn fairness1() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded::<()>(COUNT);
+ let (s2, r2) = unbounded::<()>();
+
+ for _ in 0..COUNT {
+ s1.send(()).unwrap();
+ s2.send(()).unwrap();
+ }
+
+ let hits = vec![Cell::new(0usize); 4];
+ for _ in 0..COUNT {
+ let after = after(ms(0));
+ let tick = tick(ms(0));
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper3 = sel.recv(&after);
+ let oper4 = sel.recv(&tick);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => {
+ oper.recv(&r1).unwrap();
+ hits[0].set(hits[0].get() + 1);
+ }
+ i if i == oper2 => {
+ oper.recv(&r2).unwrap();
+ hits[1].set(hits[1].get() + 1);
+ }
+ i if i == oper3 => {
+ oper.recv(&after).unwrap();
+ hits[2].set(hits[2].get() + 1);
+ }
+ i if i == oper4 => {
+ oper.recv(&tick).unwrap();
+ hits[3].set(hits[3].get() + 1);
+ }
+ _ => unreachable!(),
+ }
+ }
+ assert!(hits.iter().all(|x| x.get() >= COUNT / hits.len() / 2));
+}
+
+#[test]
+fn fairness2() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = unbounded::<()>();
+ let (s2, r2) = bounded::<()>(1);
+ let (s3, r3) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ let mut sel = Select::new();
+ let mut oper1 = None;
+ let mut oper2 = None;
+ if s1.is_empty() {
+ oper1 = Some(sel.send(&s1));
+ }
+ if s2.is_empty() {
+ oper2 = Some(sel.send(&s2));
+ }
+ let oper3 = sel.send(&s3);
+ let oper = sel.select();
+ match oper.index() {
+ i if Some(i) == oper1 => assert!(oper.send(&s1, ()).is_ok()),
+ i if Some(i) == oper2 => assert!(oper.send(&s2, ()).is_ok()),
+ i if i == oper3 => assert!(oper.send(&s3, ()).is_ok()),
+ _ => unreachable!(),
+ }
+ }
+ });
+
+ let hits = vec![Cell::new(0usize); 3];
+ for _ in 0..COUNT {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper3 = sel.recv(&r3);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => {
+ oper.recv(&r1).unwrap();
+ hits[0].set(hits[0].get() + 1);
+ }
+ i if i == oper2 => {
+ oper.recv(&r2).unwrap();
+ hits[1].set(hits[1].get() + 1);
+ }
+ i if i == oper3 => {
+ oper.recv(&r3).unwrap();
+ hits[2].set(hits[2].get() + 1);
+ }
+ _ => unreachable!(),
+ }
+ }
+ assert!(hits.iter().all(|x| x.get() >= COUNT / hits.len() / 50));
+ })
+ .unwrap();
+}
+
+#[test]
+fn sync_and_clone() {
+ const THREADS: usize = 20;
+
+ let (s, r) = &bounded::<usize>(0);
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(r);
+ let oper2 = sel.send(s);
+ let sel = &sel;
+
+ scope(|scope| {
+ for i in 0..THREADS {
+ scope.spawn(move |_| {
+ let mut sel = sel.clone();
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert_ne!(oper.recv(r), Ok(i)),
+ ix if ix == oper2 => assert!(oper.send(s, i).is_ok()),
+ _ => unreachable!(),
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn send_and_clone() {
+ const THREADS: usize = 20;
+
+ let (s, r) = &bounded::<usize>(0);
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(r);
+ let oper2 = sel.send(s);
+
+ scope(|scope| {
+ for i in 0..THREADS {
+ let mut sel = sel.clone();
+ scope.spawn(move |_| {
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert_ne!(oper.recv(r), Ok(i)),
+ ix if ix == oper2 => assert!(oper.send(s, i).is_ok()),
+ _ => unreachable!(),
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn reuse() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s1.send(i).unwrap();
+ assert_eq!(r2.recv().unwrap(), i);
+ r3.recv().unwrap();
+ }
+ });
+
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.send(&s2);
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ let oper = sel.select();
+ match oper.index() {
+ ix if ix == oper1 => assert_eq!(oper.recv(&r1), Ok(i)),
+ ix if ix == oper2 => assert!(oper.send(&s2, i).is_ok()),
+ _ => unreachable!(),
+ }
+ }
+ s3.send(()).unwrap();
+ }
+ })
+ .unwrap();
+}
diff --git a/third_party/rust/crossbeam-channel/tests/select_macro.rs b/third_party/rust/crossbeam-channel/tests/select_macro.rs
new file mode 100644
index 0000000000..119454cd68
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/select_macro.rs
@@ -0,0 +1,1480 @@
+//! Tests for the `select!` macro.
+
+#![forbid(unsafe_code)] // select! is safe.
+#![allow(clippy::drop_copy, clippy::match_single_binding)]
+
+use std::any::Any;
+use std::cell::Cell;
+use std::ops::Deref;
+use std::thread;
+use std::time::{Duration, Instant};
+
+use crossbeam_channel::{after, bounded, never, select, tick, unbounded};
+use crossbeam_channel::{Receiver, RecvError, SendError, Sender, TryRecvError};
+use crossbeam_utils::thread::scope;
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn smoke1() {
+ let (s1, r1) = unbounded::<usize>();
+ let (s2, r2) = unbounded::<usize>();
+
+ s1.send(1).unwrap();
+
+ select! {
+ recv(r1) -> v => assert_eq!(v, Ok(1)),
+ recv(r2) -> _ => panic!(),
+ }
+
+ s2.send(2).unwrap();
+
+ select! {
+ recv(r1) -> _ => panic!(),
+ recv(r2) -> v => assert_eq!(v, Ok(2)),
+ }
+}
+
+#[test]
+fn smoke2() {
+ let (_s1, r1) = unbounded::<i32>();
+ let (_s2, r2) = unbounded::<i32>();
+ let (_s3, r3) = unbounded::<i32>();
+ let (_s4, r4) = unbounded::<i32>();
+ let (s5, r5) = unbounded::<i32>();
+
+ s5.send(5).unwrap();
+
+ select! {
+ recv(r1) -> _ => panic!(),
+ recv(r2) -> _ => panic!(),
+ recv(r3) -> _ => panic!(),
+ recv(r4) -> _ => panic!(),
+ recv(r5) -> v => assert_eq!(v, Ok(5)),
+ }
+}
+
+#[test]
+fn disconnected() {
+ let (s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ drop(s1);
+ thread::sleep(ms(500));
+ s2.send(5).unwrap();
+ });
+
+ select! {
+ recv(r1) -> v => assert!(v.is_err()),
+ recv(r2) -> _ => panic!(),
+ default(ms(1000)) => panic!(),
+ }
+
+ r2.recv().unwrap();
+ })
+ .unwrap();
+
+ select! {
+ recv(r1) -> v => assert!(v.is_err()),
+ recv(r2) -> _ => panic!(),
+ default(ms(1000)) => panic!(),
+ }
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ drop(s2);
+ });
+
+ select! {
+ recv(r2) -> v => assert!(v.is_err()),
+ default(ms(1000)) => panic!(),
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn default() {
+ let (s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ select! {
+ recv(r1) -> _ => panic!(),
+ recv(r2) -> _ => panic!(),
+ default => {}
+ }
+
+ drop(s1);
+
+ select! {
+ recv(r1) -> v => assert!(v.is_err()),
+ recv(r2) -> _ => panic!(),
+ default => panic!(),
+ }
+
+ s2.send(2).unwrap();
+
+ select! {
+ recv(r2) -> v => assert_eq!(v, Ok(2)),
+ default => panic!(),
+ }
+
+ select! {
+ recv(r2) -> _ => panic!(),
+ default => {},
+ }
+
+ select! {
+ default => {},
+ }
+}
+
+#[test]
+fn timeout() {
+ let (_s1, r1) = unbounded::<i32>();
+ let (s2, r2) = unbounded::<i32>();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(1500));
+ s2.send(2).unwrap();
+ });
+
+ select! {
+ recv(r1) -> _ => panic!(),
+ recv(r2) -> _ => panic!(),
+ default(ms(1000)) => {},
+ }
+
+ select! {
+ recv(r1) -> _ => panic!(),
+ recv(r2) -> v => assert_eq!(v, Ok(2)),
+ default(ms(1000)) => panic!(),
+ }
+ })
+ .unwrap();
+
+ scope(|scope| {
+ let (s, r) = unbounded::<i32>();
+
+ scope.spawn(move |_| {
+ thread::sleep(ms(500));
+ drop(s);
+ });
+
+ select! {
+ default(ms(1000)) => {
+ select! {
+ recv(r) -> v => assert!(v.is_err()),
+ default => panic!(),
+ }
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn default_when_disconnected() {
+ let (_, r) = unbounded::<i32>();
+
+ select! {
+ recv(r) -> res => assert!(res.is_err()),
+ default => panic!(),
+ }
+
+ let (_, r) = unbounded::<i32>();
+
+ select! {
+ recv(r) -> res => assert!(res.is_err()),
+ default(ms(1000)) => panic!(),
+ }
+
+ let (s, _) = bounded::<i32>(0);
+
+ select! {
+ send(s, 0) -> res => assert!(res.is_err()),
+ default => panic!(),
+ }
+
+ let (s, _) = bounded::<i32>(0);
+
+ select! {
+ send(s, 0) -> res => assert!(res.is_err()),
+ default(ms(1000)) => panic!(),
+ }
+}
+
+#[test]
+fn default_only() {
+ let start = Instant::now();
+ select! {
+ default => {}
+ }
+ let now = Instant::now();
+ assert!(now - start <= ms(50));
+
+ let start = Instant::now();
+ select! {
+ default(ms(500)) => {}
+ }
+ let now = Instant::now();
+ assert!(now - start >= ms(450));
+ assert!(now - start <= ms(550));
+}
+
+#[test]
+fn unblocks() {
+ let (s1, r1) = bounded::<i32>(0);
+ let (s2, r2) = bounded::<i32>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ s2.send(2).unwrap();
+ });
+
+ select! {
+ recv(r1) -> _ => panic!(),
+ recv(r2) -> v => assert_eq!(v, Ok(2)),
+ default(ms(1000)) => panic!(),
+ }
+ })
+ .unwrap();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ assert_eq!(r1.recv().unwrap(), 1);
+ });
+
+ select! {
+ send(s1, 1) -> _ => {},
+ send(s2, 2) -> _ => panic!(),
+ default(ms(1000)) => panic!(),
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn both_ready() {
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ s1.send(1).unwrap();
+ assert_eq!(r2.recv().unwrap(), 2);
+ });
+
+ for _ in 0..2 {
+ select! {
+ recv(r1) -> v => assert_eq!(v, Ok(1)),
+ send(s2, 2) -> _ => {},
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn loop_try() {
+ const RUNS: usize = 20;
+
+ for _ in 0..RUNS {
+ let (s1, r1) = bounded::<i32>(0);
+ let (s2, r2) = bounded::<i32>(0);
+ let (s_end, r_end) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| loop {
+ select! {
+ send(s1, 1) -> _ => break,
+ default => {}
+ }
+
+ select! {
+ recv(r_end) -> _ => break,
+ default => {}
+ }
+ });
+
+ scope.spawn(|_| loop {
+ if let Ok(x) = r2.try_recv() {
+ assert_eq!(x, 2);
+ break;
+ }
+
+ select! {
+ recv(r_end) -> _ => break,
+ default => {}
+ }
+ });
+
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+
+ select! {
+ recv(r1) -> v => assert_eq!(v, Ok(1)),
+ send(s2, 2) -> _ => {},
+ default(ms(500)) => panic!(),
+ }
+
+ drop(s_end);
+ });
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn cloning1() {
+ scope(|scope| {
+ let (s1, r1) = unbounded::<i32>();
+ let (_s2, r2) = unbounded::<i32>();
+ let (s3, r3) = unbounded::<()>();
+
+ scope.spawn(move |_| {
+ r3.recv().unwrap();
+ drop(s1.clone());
+ assert_eq!(r3.try_recv(), Err(TryRecvError::Empty));
+ s1.send(1).unwrap();
+ r3.recv().unwrap();
+ });
+
+ s3.send(()).unwrap();
+
+ select! {
+ recv(r1) -> _ => {},
+ recv(r2) -> _ => {},
+ }
+
+ s3.send(()).unwrap();
+ })
+ .unwrap();
+}
+
+#[test]
+fn cloning2() {
+ let (s1, r1) = unbounded::<()>();
+ let (s2, r2) = unbounded::<()>();
+ let (_s3, _r3) = unbounded::<()>();
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ recv(r1) -> _ => panic!(),
+ recv(r2) -> _ => {},
+ }
+ });
+
+ thread::sleep(ms(500));
+ drop(s1.clone());
+ s2.send(()).unwrap();
+ })
+ .unwrap();
+}
+
+#[test]
+fn preflight1() {
+ let (s, r) = unbounded();
+ s.send(()).unwrap();
+
+ select! {
+ recv(r) -> _ => {}
+ }
+}
+
+#[test]
+fn preflight2() {
+ let (s, r) = unbounded();
+ drop(s.clone());
+ s.send(()).unwrap();
+ drop(s);
+
+ select! {
+ recv(r) -> v => assert!(v.is_ok()),
+ }
+ assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
+}
+
+#[test]
+fn preflight3() {
+ let (s, r) = unbounded();
+ drop(s.clone());
+ s.send(()).unwrap();
+ drop(s);
+ r.recv().unwrap();
+
+ select! {
+ recv(r) -> v => assert!(v.is_err())
+ }
+}
+
+#[test]
+fn duplicate_operations() {
+ let (s, r) = unbounded::<i32>();
+ let mut hit = [false; 4];
+
+ while hit.iter().any(|hit| !hit) {
+ select! {
+ recv(r) -> _ => hit[0] = true,
+ recv(r) -> _ => hit[1] = true,
+ send(s, 0) -> _ => hit[2] = true,
+ send(s, 0) -> _ => hit[3] = true,
+ }
+ }
+}
+
+#[test]
+fn nesting() {
+ let (s, r) = unbounded::<i32>();
+
+ select! {
+ send(s, 0) -> _ => {
+ select! {
+ recv(r) -> v => {
+ assert_eq!(v, Ok(0));
+ select! {
+ send(s, 1) -> _ => {
+ select! {
+ recv(r) -> v => {
+ assert_eq!(v, Ok(1));
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+#[test]
+#[should_panic(expected = "send panicked")]
+fn panic_sender() {
+ fn get() -> Sender<i32> {
+ panic!("send panicked")
+ }
+
+ #[allow(unreachable_code)]
+ {
+ select! {
+ send(get(), panic!()) -> _ => {}
+ }
+ }
+}
+
+#[test]
+#[should_panic(expected = "recv panicked")]
+fn panic_receiver() {
+ fn get() -> Receiver<i32> {
+ panic!("recv panicked")
+ }
+
+ select! {
+ recv(get()) -> _ => {}
+ }
+}
+
+#[test]
+fn stress_recv() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = unbounded();
+ let (s2, r2) = bounded(5);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s1.send(i).unwrap();
+ r3.recv().unwrap();
+
+ s2.send(i).unwrap();
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ select! {
+ recv(r1) -> v => assert_eq!(v, Ok(i)),
+ recv(r2) -> v => assert_eq!(v, Ok(i)),
+ }
+
+ s3.send(()).unwrap();
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_send() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ assert_eq!(r1.recv().unwrap(), i);
+ assert_eq!(r2.recv().unwrap(), i);
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ select! {
+ send(s1, i) -> _ => {},
+ send(s2, i) -> _ => {},
+ }
+ }
+ s3.send(()).unwrap();
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_mixed() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded(0);
+ let (s2, r2) = bounded(0);
+ let (s3, r3) = bounded(100);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s1.send(i).unwrap();
+ assert_eq!(r2.recv().unwrap(), i);
+ r3.recv().unwrap();
+ }
+ });
+
+ for i in 0..COUNT {
+ for _ in 0..2 {
+ select! {
+ recv(r1) -> v => assert_eq!(v, Ok(i)),
+ send(s2, i) -> _ => {},
+ }
+ }
+ s3.send(()).unwrap();
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_timeout_two_threads() {
+ const COUNT: usize = 20;
+
+ let (s, r) = bounded(2);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(500));
+ }
+
+ loop {
+ select! {
+ send(s, i) -> _ => break,
+ default(ms(100)) => {}
+ }
+ }
+ }
+ });
+
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(500));
+ }
+
+ loop {
+ select! {
+ recv(r) -> v => {
+ assert_eq!(v, Ok(i));
+ break;
+ }
+ default(ms(100)) => {}
+ }
+ }
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send_recv_same_channel() {
+ let (s, r) = bounded::<i32>(0);
+ select! {
+ send(s, 0) -> _ => panic!(),
+ recv(r) -> _ => panic!(),
+ default(ms(500)) => {}
+ }
+
+ let (s, r) = unbounded::<i32>();
+ select! {
+ send(s, 0) -> _ => {},
+ recv(r) -> _ => panic!(),
+ default(ms(500)) => panic!(),
+ }
+}
+
+#[test]
+fn matching() {
+ const THREADS: usize = 44;
+
+ let (s, r) = &bounded::<usize>(0);
+
+ scope(|scope| {
+ for i in 0..THREADS {
+ scope.spawn(move |_| {
+ select! {
+ recv(r) -> v => assert_ne!(v.unwrap(), i),
+ send(s, i) -> _ => {},
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn matching_with_leftover() {
+ const THREADS: usize = 55;
+
+ let (s, r) = &bounded::<usize>(0);
+
+ scope(|scope| {
+ for i in 0..THREADS {
+ scope.spawn(move |_| {
+ select! {
+ recv(r) -> v => assert_ne!(v.unwrap(), i),
+ send(s, i) -> _ => {},
+ }
+ });
+ }
+ s.send(!0).unwrap();
+ })
+ .unwrap();
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn channel_through_channel() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ type T = Box<dyn Any + Send>;
+
+ for cap in 0..3 {
+ let (s, r) = bounded::<T>(cap);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut s = s;
+
+ for _ in 0..COUNT {
+ let (new_s, new_r) = bounded(cap);
+ let new_r: T = Box::new(Some(new_r));
+
+ select! {
+ send(s, new_r) -> _ => {}
+ }
+
+ s = new_s;
+ }
+ });
+
+ scope.spawn(move |_| {
+ let mut r = r;
+
+ for _ in 0..COUNT {
+ r = select! {
+ recv(r) -> msg => {
+ msg.unwrap()
+ .downcast_mut::<Option<Receiver<T>>>()
+ .unwrap()
+ .take()
+ .unwrap()
+ }
+ }
+ }
+ });
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn linearizable_default() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ for step in 0..2 {
+ let (start_s, start_r) = bounded::<()>(0);
+ let (end_s, end_r) = bounded::<()>(0);
+
+ let ((s1, r1), (s2, r2)) = if step == 0 {
+ (bounded::<i32>(1), bounded::<i32>(1))
+ } else {
+ (unbounded::<i32>(), unbounded::<i32>())
+ };
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ start_s.send(()).unwrap();
+
+ s1.send(1).unwrap();
+ select! {
+ recv(r1) -> _ => {}
+ recv(r2) -> _ => {}
+ default => unreachable!()
+ }
+
+ end_s.send(()).unwrap();
+ let _ = r2.try_recv();
+ }
+ });
+
+ for _ in 0..COUNT {
+ start_r.recv().unwrap();
+
+ s2.send(1).unwrap();
+ let _ = r1.try_recv();
+
+ end_r.recv().unwrap();
+ }
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn linearizable_timeout() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ for step in 0..2 {
+ let (start_s, start_r) = bounded::<()>(0);
+ let (end_s, end_r) = bounded::<()>(0);
+
+ let ((s1, r1), (s2, r2)) = if step == 0 {
+ (bounded::<i32>(1), bounded::<i32>(1))
+ } else {
+ (unbounded::<i32>(), unbounded::<i32>())
+ };
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ start_s.send(()).unwrap();
+
+ s1.send(1).unwrap();
+ select! {
+ recv(r1) -> _ => {}
+ recv(r2) -> _ => {}
+ default(ms(0)) => unreachable!()
+ }
+
+ end_s.send(()).unwrap();
+ let _ = r2.try_recv();
+ }
+ });
+
+ for _ in 0..COUNT {
+ start_r.recv().unwrap();
+
+ s2.send(1).unwrap();
+ let _ = r1.try_recv();
+
+ end_r.recv().unwrap();
+ }
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn fairness1() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded::<()>(COUNT);
+ let (s2, r2) = unbounded::<()>();
+
+ for _ in 0..COUNT {
+ s1.send(()).unwrap();
+ s2.send(()).unwrap();
+ }
+
+ let mut hits = [0usize; 4];
+ for _ in 0..COUNT {
+ select! {
+ recv(r1) -> _ => hits[0] += 1,
+ recv(r2) -> _ => hits[1] += 1,
+ recv(after(ms(0))) -> _ => hits[2] += 1,
+ recv(tick(ms(0))) -> _ => hits[3] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+}
+
+#[test]
+fn fairness2() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = unbounded::<()>();
+ let (s2, r2) = bounded::<()>(1);
+ let (s3, r3) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ let (hole, _r) = bounded(0);
+
+ for _ in 0..COUNT {
+ let s1 = if s1.is_empty() { &s1 } else { &hole };
+ let s2 = if s2.is_empty() { &s2 } else { &hole };
+
+ select! {
+ send(s1, ()) -> res => assert!(res.is_ok()),
+ send(s2, ()) -> res => assert!(res.is_ok()),
+ send(s3, ()) -> res => assert!(res.is_ok()),
+ }
+ }
+ });
+
+ let hits = vec![Cell::new(0usize); 3];
+ for _ in 0..COUNT {
+ select! {
+ recv(r1) -> _ => hits[0].set(hits[0].get() + 1),
+ recv(r2) -> _ => hits[1].set(hits[1].get() + 1),
+ recv(r3) -> _ => hits[2].set(hits[2].get() + 1),
+ }
+ }
+ assert!(hits.iter().all(|x| x.get() >= COUNT / hits.len() / 50));
+ })
+ .unwrap();
+}
+
+#[test]
+fn fairness_recv() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded::<()>(COUNT);
+ let (s2, r2) = unbounded::<()>();
+
+ for _ in 0..COUNT {
+ s1.send(()).unwrap();
+ s2.send(()).unwrap();
+ }
+
+ let mut hits = [0usize; 2];
+ while hits[0] + hits[1] < COUNT {
+ select! {
+ recv(r1) -> _ => hits[0] += 1,
+ recv(r2) -> _ => hits[1] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / 4));
+}
+
+#[test]
+fn fairness_send() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, _r1) = bounded::<()>(COUNT);
+ let (s2, _r2) = unbounded::<()>();
+
+ let mut hits = [0usize; 2];
+ for _ in 0..COUNT {
+ select! {
+ send(s1, ()) -> _ => hits[0] += 1,
+ send(s2, ()) -> _ => hits[1] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / 4));
+}
+
+#[allow(clippy::or_fun_call)] // This is intentional.
+#[test]
+fn references() {
+ let (s, r) = unbounded::<i32>();
+ select! {
+ send(s, 0) -> _ => {}
+ recv(r) -> _ => {}
+ }
+ select! {
+ send(&&&&s, 0) -> _ => {}
+ recv(&&&&r) -> _ => {}
+ }
+ select! {
+ recv(Some(&r).unwrap_or(&never())) -> _ => {},
+ default => {}
+ }
+ select! {
+ recv(Some(r).unwrap_or(never())) -> _ => {},
+ default => {}
+ }
+}
+
+#[test]
+fn case_blocks() {
+ let (s, r) = unbounded::<i32>();
+
+ select! {
+ recv(r) -> _ => 3.0,
+ recv(r) -> _ => loop {
+ unreachable!()
+ },
+ recv(r) -> _ => match 7 + 3 {
+ _ => unreachable!()
+ },
+ default => 7.
+ };
+
+ select! {
+ recv(r) -> msg => if msg.is_ok() {
+ unreachable!()
+ },
+ default => ()
+ }
+
+ drop(s);
+}
+
+#[allow(clippy::redundant_closure_call)] // This is intentional.
+#[test]
+fn move_handles() {
+ let (s, r) = unbounded::<i32>();
+ select! {
+ recv((move || r)()) -> _ => {}
+ send((move || s)(), 0) -> _ => {}
+ }
+}
+
+#[test]
+fn infer_types() {
+ let (s, r) = unbounded();
+ select! {
+ recv(r) -> _ => {}
+ default => {}
+ }
+ s.send(()).unwrap();
+
+ let (s, r) = unbounded();
+ select! {
+ send(s, ()) -> _ => {}
+ }
+ r.recv().unwrap();
+}
+
+#[test]
+fn default_syntax() {
+ let (s, r) = bounded::<i32>(0);
+
+ select! {
+ recv(r) -> _ => panic!(),
+ default => {}
+ }
+ select! {
+ send(s, 0) -> _ => panic!(),
+ default() => {}
+ }
+ select! {
+ default => {}
+ }
+ select! {
+ default() => {}
+ }
+}
+
+#[test]
+fn same_variable_name() {
+ let (_, r) = unbounded::<i32>();
+ select! {
+ recv(r) -> r => assert!(r.is_err()),
+ }
+}
+
+#[test]
+fn handles_on_heap() {
+ let (s, r) = unbounded::<i32>();
+ let (s, r) = (Box::new(s), Box::new(r));
+
+ select! {
+ send(*s, 0) -> _ => {}
+ recv(*r) -> _ => {}
+ default => {}
+ }
+
+ drop(s);
+ drop(r);
+}
+
+#[test]
+fn once_blocks() {
+ let (s, r) = unbounded::<i32>();
+
+ let once = Box::new(());
+ select! {
+ send(s, 0) -> _ => drop(once),
+ }
+
+ let once = Box::new(());
+ select! {
+ recv(r) -> _ => drop(once),
+ }
+
+ let once1 = Box::new(());
+ let once2 = Box::new(());
+ select! {
+ send(s, 0) -> _ => drop(once1),
+ default => drop(once2),
+ }
+
+ let once1 = Box::new(());
+ let once2 = Box::new(());
+ select! {
+ recv(r) -> _ => drop(once1),
+ default => drop(once2),
+ }
+
+ let once1 = Box::new(());
+ let once2 = Box::new(());
+ select! {
+ recv(r) -> _ => drop(once1),
+ send(s, 0) -> _ => drop(once2),
+ }
+}
+
+#[test]
+fn once_receiver() {
+ let (_, r) = unbounded::<i32>();
+
+ let once = Box::new(());
+ let get = move || {
+ drop(once);
+ r
+ };
+
+ select! {
+ recv(get()) -> _ => {}
+ }
+}
+
+#[test]
+fn once_sender() {
+ let (s, _) = unbounded::<i32>();
+
+ let once = Box::new(());
+ let get = move || {
+ drop(once);
+ s
+ };
+
+ select! {
+ send(get(), 5) -> _ => {}
+ }
+}
+
+#[test]
+fn parse_nesting() {
+ let (_, r) = unbounded::<i32>();
+
+ select! {
+ recv(r) -> _ => {}
+ recv(r) -> _ => {
+ select! {
+ recv(r) -> _ => {}
+ recv(r) -> _ => {
+ select! {
+ recv(r) -> _ => {}
+ recv(r) -> _ => {
+ select! {
+ default => {}
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+#[test]
+fn evaluate() {
+ let (s, r) = unbounded::<i32>();
+
+ let v = select! {
+ recv(r) -> _ => "foo".into(),
+ send(s, 0) -> _ => "bar".to_owned(),
+ default => "baz".to_string(),
+ };
+ assert_eq!(v, "bar");
+
+ let v = select! {
+ recv(r) -> _ => "foo".into(),
+ default => "baz".to_string(),
+ };
+ assert_eq!(v, "foo");
+
+ let v = select! {
+ recv(r) -> _ => "foo".into(),
+ default => "baz".to_string(),
+ };
+ assert_eq!(v, "baz");
+}
+
+#[test]
+fn deref() {
+ use crossbeam_channel as cc;
+
+ struct Sender<T>(cc::Sender<T>);
+ struct Receiver<T>(cc::Receiver<T>);
+
+ impl<T> Deref for Receiver<T> {
+ type Target = cc::Receiver<T>;
+
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+ }
+
+ impl<T> Deref for Sender<T> {
+ type Target = cc::Sender<T>;
+
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+ }
+
+ let (s, r) = bounded::<i32>(0);
+ let (s, r) = (Sender(s), Receiver(r));
+
+ select! {
+ send(s, 0) -> _ => panic!(),
+ recv(r) -> _ => panic!(),
+ default => {}
+ }
+}
+
+#[test]
+fn result_types() {
+ let (s, _) = bounded::<i32>(0);
+ let (_, r) = bounded::<i32>(0);
+
+ select! {
+ recv(r) -> res => drop::<Result<i32, RecvError>>(res),
+ }
+ select! {
+ recv(r) -> res => drop::<Result<i32, RecvError>>(res),
+ default => {}
+ }
+ select! {
+ recv(r) -> res => drop::<Result<i32, RecvError>>(res),
+ default(ms(0)) => {}
+ }
+
+ select! {
+ send(s, 0) -> res => drop::<Result<(), SendError<i32>>>(res),
+ }
+ select! {
+ send(s, 0) -> res => drop::<Result<(), SendError<i32>>>(res),
+ default => {}
+ }
+ select! {
+ send(s, 0) -> res => drop::<Result<(), SendError<i32>>>(res),
+ default(ms(0)) => {}
+ }
+
+ select! {
+ send(s, 0) -> res => drop::<Result<(), SendError<i32>>>(res),
+ recv(r) -> res => drop::<Result<i32, RecvError>>(res),
+ }
+}
+
+#[test]
+fn try_recv() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ recv(r) -> _ => panic!(),
+ default => {}
+ }
+ thread::sleep(ms(1500));
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(7)),
+ default => panic!(),
+ }
+ thread::sleep(ms(500));
+ select! {
+ recv(r) -> v => assert_eq!(v, Err(RecvError)),
+ default => panic!(),
+ }
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ select! {
+ send(s, 7) -> res => res.unwrap(),
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(7)),
+ }
+ thread::sleep(ms(1000));
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(8)),
+ }
+ thread::sleep(ms(1000));
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(9)),
+ }
+ select! {
+ recv(r) -> v => assert_eq!(v, Err(RecvError)),
+ }
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ select! {
+ send(s, 7) -> res => res.unwrap(),
+ }
+ select! {
+ send(s, 8) -> res => res.unwrap(),
+ }
+ select! {
+ send(s, 9) -> res => res.unwrap(),
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_timeout() {
+ let (s, r) = bounded::<i32>(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ recv(r) -> _ => panic!(),
+ default(ms(1000)) => {}
+ }
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(7)),
+ default(ms(1000)) => panic!(),
+ }
+ select! {
+ recv(r) -> v => assert_eq!(v, Err(RecvError)),
+ default(ms(1000)) => panic!(),
+ }
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ select! {
+ send(s, 7) -> res => res.unwrap(),
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn try_send() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ send(s, 7) -> _ => panic!(),
+ default => {}
+ }
+ thread::sleep(ms(1500));
+ select! {
+ send(s, 8) -> res => res.unwrap(),
+ default => panic!(),
+ }
+ thread::sleep(ms(500));
+ select! {
+ send(s, 8) -> res => assert_eq!(res, Err(SendError(8))),
+ default => panic!(),
+ }
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(8)),
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ send(s, 7) -> res => res.unwrap(),
+ }
+ thread::sleep(ms(1000));
+ select! {
+ send(s, 8) -> res => res.unwrap(),
+ }
+ thread::sleep(ms(1000));
+ select! {
+ send(s, 9) -> res => res.unwrap(),
+ }
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(7)),
+ }
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(8)),
+ }
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(9)),
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send_timeout() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ send(s, 7) -> _ => panic!(),
+ default(ms(1000)) => {}
+ }
+ select! {
+ send(s, 8) -> res => res.unwrap(),
+ default(ms(1000)) => panic!(),
+ }
+ select! {
+ send(s, 9) -> res => assert_eq!(res, Err(SendError(9))),
+ default(ms(1000)) => panic!(),
+ }
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ select! {
+ recv(r) -> v => assert_eq!(v, Ok(8)),
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn disconnect_wakes_sender() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ send(s, ()) -> res => assert_eq!(res, Err(SendError(()))),
+ }
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ drop(r);
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn disconnect_wakes_receiver() {
+ let (s, r) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ select! {
+ recv(r) -> res => assert_eq!(res, Err(RecvError)),
+ }
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ drop(s);
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn trailing_comma() {
+ let (s, r) = unbounded::<usize>();
+
+ select! {
+ send(s, 1,) -> _ => {},
+ recv(r,) -> _ => {},
+ default(ms(1000),) => {},
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/tests/thread_locals.rs b/third_party/rust/crossbeam-channel/tests/thread_locals.rs
new file mode 100644
index 0000000000..fb4e577f29
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/thread_locals.rs
@@ -0,0 +1,53 @@
+//! Tests that make sure accessing thread-locals while exiting the thread doesn't cause panics.
+
+#![cfg(not(miri))] // Miri detects that this test is buggy: the destructor of `FOO` uses `std::thread::current()`!
+
+use std::thread;
+use std::time::Duration;
+
+use crossbeam_channel::{select, unbounded};
+use crossbeam_utils::thread::scope;
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+#[cfg_attr(target_os = "macos", ignore = "TLS is destroyed too early on macOS")]
+fn use_while_exiting() {
+ struct Foo;
+
+ impl Drop for Foo {
+ fn drop(&mut self) {
+ // A blocking operation after the thread-locals have been dropped. This will attempt to
+ // use the thread-locals and must not panic.
+ let (_s, r) = unbounded::<()>();
+ select! {
+ recv(r) -> _ => {}
+ default(ms(100)) => {}
+ }
+ }
+ }
+
+ thread_local! {
+ static FOO: Foo = Foo;
+ }
+
+ let (s, r) = unbounded::<()>();
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ // First initialize `FOO`, then the thread-locals related to crossbeam-channel.
+ FOO.with(|_| ());
+ r.recv().unwrap();
+ // At thread exit, thread-locals related to crossbeam-channel get dropped first and
+ // `FOO` is dropped last.
+ });
+
+ scope.spawn(|_| {
+ thread::sleep(ms(100));
+ s.send(()).unwrap();
+ });
+ })
+ .unwrap();
+}
diff --git a/third_party/rust/crossbeam-channel/tests/tick.rs b/third_party/rust/crossbeam-channel/tests/tick.rs
new file mode 100644
index 0000000000..23bbb1f184
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/tick.rs
@@ -0,0 +1,352 @@
+//! Tests for the tick channel flavor.
+
+#![cfg(not(miri))] // TODO: many assertions failed due to Miri is slow
+
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering;
+use std::thread;
+use std::time::{Duration, Instant};
+
+use crossbeam_channel::{after, select, tick, Select, TryRecvError};
+use crossbeam_utils::thread::scope;
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn fire() {
+ let start = Instant::now();
+ let r = tick(ms(50));
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ thread::sleep(ms(100));
+
+ let fired = r.try_recv().unwrap();
+ assert!(start < fired);
+ assert!(fired - start >= ms(50));
+
+ let now = Instant::now();
+ assert!(fired < now);
+ assert!(now - fired >= ms(50));
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+
+ select! {
+ recv(r) -> _ => panic!(),
+ default => {}
+ }
+
+ select! {
+ recv(r) -> _ => {}
+ recv(tick(ms(200))) -> _ => panic!(),
+ }
+}
+
+#[test]
+fn intervals() {
+ let start = Instant::now();
+ let r = tick(ms(50));
+
+ let t1 = r.recv().unwrap();
+ assert!(start + ms(50) <= t1);
+ assert!(start + ms(100) > t1);
+
+ thread::sleep(ms(300));
+ let t2 = r.try_recv().unwrap();
+ assert!(start + ms(100) <= t2);
+ assert!(start + ms(150) > t2);
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ let t3 = r.recv().unwrap();
+ assert!(start + ms(400) <= t3);
+ assert!(start + ms(450) > t3);
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn capacity() {
+ const COUNT: usize = 10;
+
+ for i in 0..COUNT {
+ let r = tick(ms(i as u64));
+ assert_eq!(r.capacity(), Some(1));
+ }
+}
+
+#[test]
+fn len_empty_full() {
+ let r = tick(ms(50));
+
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(!r.is_full());
+
+ thread::sleep(ms(100));
+
+ assert_eq!(r.len(), 1);
+ assert!(!r.is_empty());
+ assert!(r.is_full());
+
+ r.try_recv().unwrap();
+
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(!r.is_full());
+}
+
+#[test]
+fn try_recv() {
+ let r = tick(ms(200));
+ assert!(r.try_recv().is_err());
+
+ thread::sleep(ms(100));
+ assert!(r.try_recv().is_err());
+
+ thread::sleep(ms(200));
+ assert!(r.try_recv().is_ok());
+ assert!(r.try_recv().is_err());
+
+ thread::sleep(ms(200));
+ assert!(r.try_recv().is_ok());
+ assert!(r.try_recv().is_err());
+}
+
+#[test]
+fn recv() {
+ let start = Instant::now();
+ let r = tick(ms(50));
+
+ let fired = r.recv().unwrap();
+ assert!(start < fired);
+ assert!(fired - start >= ms(50));
+
+ let now = Instant::now();
+ assert!(fired < now);
+ assert!(now - fired < fired - start);
+
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[cfg(not(crossbeam_sanitize))] // TODO: assertions failed due to tsan is slow
+#[test]
+fn recv_timeout() {
+ let start = Instant::now();
+ let r = tick(ms(200));
+
+ assert!(r.recv_timeout(ms(100)).is_err());
+ let now = Instant::now();
+ assert!(now - start >= ms(100));
+ assert!(now - start <= ms(150));
+
+ let fired = r.recv_timeout(ms(200)).unwrap();
+ assert!(fired - start >= ms(200));
+ assert!(fired - start <= ms(250));
+
+ assert!(r.recv_timeout(ms(100)).is_err());
+ let now = Instant::now();
+ assert!(now - start >= ms(300));
+ assert!(now - start <= ms(350));
+
+ let fired = r.recv_timeout(ms(200)).unwrap();
+ assert!(fired - start >= ms(400));
+ assert!(fired - start <= ms(450));
+}
+
+#[test]
+fn recv_two() {
+ let r1 = tick(ms(50));
+ let r2 = tick(ms(50));
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..10 {
+ select! {
+ recv(r1) -> _ => {}
+ recv(r2) -> _ => {}
+ }
+ }
+ });
+ scope.spawn(|_| {
+ for _ in 0..10 {
+ select! {
+ recv(r1) -> _ => {}
+ recv(r2) -> _ => {}
+ }
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_race() {
+ select! {
+ recv(tick(ms(50))) -> _ => {}
+ recv(tick(ms(100))) -> _ => panic!(),
+ }
+
+ select! {
+ recv(tick(ms(100))) -> _ => panic!(),
+ recv(tick(ms(50))) -> _ => {}
+ }
+}
+
+#[test]
+fn stress_default() {
+ const COUNT: usize = 10;
+
+ for _ in 0..COUNT {
+ select! {
+ recv(tick(ms(0))) -> _ => {}
+ default => panic!(),
+ }
+ }
+
+ for _ in 0..COUNT {
+ select! {
+ recv(tick(ms(100))) -> _ => panic!(),
+ default => {}
+ }
+ }
+}
+
+#[test]
+fn select() {
+ const THREADS: usize = 4;
+
+ let hits = AtomicUsize::new(0);
+ let r1 = tick(ms(200));
+ let r2 = tick(ms(300));
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ let timeout = after(ms(1100));
+ loop {
+ let mut sel = Select::new();
+ let oper1 = sel.recv(&r1);
+ let oper2 = sel.recv(&r2);
+ let oper3 = sel.recv(&timeout);
+ let oper = sel.select();
+ match oper.index() {
+ i if i == oper1 => {
+ oper.recv(&r1).unwrap();
+ hits.fetch_add(1, Ordering::SeqCst);
+ }
+ i if i == oper2 => {
+ oper.recv(&r2).unwrap();
+ hits.fetch_add(1, Ordering::SeqCst);
+ }
+ i if i == oper3 => {
+ oper.recv(&timeout).unwrap();
+ break;
+ }
+ _ => unreachable!(),
+ }
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(hits.load(Ordering::SeqCst), 8);
+}
+
+#[cfg(not(crossbeam_sanitize))] // TODO: assertions failed due to tsan is slow
+#[test]
+fn ready() {
+ const THREADS: usize = 4;
+
+ let hits = AtomicUsize::new(0);
+ let r1 = tick(ms(200));
+ let r2 = tick(ms(300));
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ let timeout = after(ms(1100));
+ 'outer: loop {
+ let mut sel = Select::new();
+ sel.recv(&r1);
+ sel.recv(&r2);
+ sel.recv(&timeout);
+ loop {
+ match sel.ready() {
+ 0 => {
+ if r1.try_recv().is_ok() {
+ hits.fetch_add(1, Ordering::SeqCst);
+ break;
+ }
+ }
+ 1 => {
+ if r2.try_recv().is_ok() {
+ hits.fetch_add(1, Ordering::SeqCst);
+ break;
+ }
+ }
+ 2 => {
+ if timeout.try_recv().is_ok() {
+ break 'outer;
+ }
+ }
+ _ => unreachable!(),
+ }
+ }
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ assert_eq!(hits.load(Ordering::SeqCst), 8);
+}
+
+#[test]
+fn fairness() {
+ const COUNT: usize = 30;
+
+ for &dur in &[0, 1] {
+ let mut hits = [0usize; 2];
+
+ for _ in 0..COUNT {
+ let r1 = tick(ms(dur));
+ let r2 = tick(ms(dur));
+
+ for _ in 0..COUNT {
+ select! {
+ recv(r1) -> _ => hits[0] += 1,
+ recv(r2) -> _ => hits[1] += 1,
+ }
+ }
+ }
+
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+ }
+}
+
+#[test]
+fn fairness_duplicates() {
+ const COUNT: usize = 30;
+
+ for &dur in &[0, 1] {
+ let mut hits = [0usize; 5];
+
+ for _ in 0..COUNT {
+ let r = tick(ms(dur));
+
+ for _ in 0..COUNT {
+ select! {
+ recv(r) -> _ => hits[0] += 1,
+ recv(r) -> _ => hits[1] += 1,
+ recv(r) -> _ => hits[2] += 1,
+ recv(r) -> _ => hits[3] += 1,
+ recv(r) -> _ => hits[4] += 1,
+ }
+ }
+ }
+
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+ }
+}
diff --git a/third_party/rust/crossbeam-channel/tests/zero.rs b/third_party/rust/crossbeam-channel/tests/zero.rs
new file mode 100644
index 0000000000..74c9a3e102
--- /dev/null
+++ b/third_party/rust/crossbeam-channel/tests/zero.rs
@@ -0,0 +1,587 @@
+//! Tests for the zero channel flavor.
+
+use std::any::Any;
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering;
+use std::thread;
+use std::time::Duration;
+
+use crossbeam_channel::{bounded, select, Receiver};
+use crossbeam_channel::{RecvError, RecvTimeoutError, TryRecvError};
+use crossbeam_channel::{SendError, SendTimeoutError, TrySendError};
+use crossbeam_utils::thread::scope;
+use rand::{thread_rng, Rng};
+
+fn ms(ms: u64) -> Duration {
+ Duration::from_millis(ms)
+}
+
+#[test]
+fn smoke() {
+ let (s, r) = bounded(0);
+ assert_eq!(s.try_send(7), Err(TrySendError::Full(7)));
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+}
+
+#[test]
+fn capacity() {
+ let (s, r) = bounded::<()>(0);
+ assert_eq!(s.capacity(), Some(0));
+ assert_eq!(r.capacity(), Some(0));
+}
+
+#[test]
+fn len_empty_full() {
+ let (s, r) = bounded(0);
+
+ assert_eq!(s.len(), 0);
+ assert!(s.is_empty());
+ assert!(s.is_full());
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(r.is_full());
+
+ scope(|scope| {
+ scope.spawn(|_| s.send(0).unwrap());
+ scope.spawn(|_| r.recv().unwrap());
+ })
+ .unwrap();
+
+ assert_eq!(s.len(), 0);
+ assert!(s.is_empty());
+ assert!(s.is_full());
+ assert_eq!(r.len(), 0);
+ assert!(r.is_empty());
+ assert!(r.is_full());
+}
+
+#[test]
+fn try_recv() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
+ thread::sleep(ms(1500));
+ assert_eq!(r.try_recv(), Ok(7));
+ thread::sleep(ms(500));
+ assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ s.send(7).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv(), Ok(7));
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(8));
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(9));
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ s.send(7).unwrap();
+ s.send(8).unwrap();
+ s.send(9).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_timeout() {
+ let (s, r) = bounded::<i32>(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv_timeout(ms(1000)), Err(RecvTimeoutError::Timeout));
+ assert_eq!(r.recv_timeout(ms(1000)), Ok(7));
+ assert_eq!(
+ r.recv_timeout(ms(1000)),
+ Err(RecvTimeoutError::Disconnected)
+ );
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ s.send(7).unwrap();
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn try_send() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(s.try_send(7), Err(TrySendError::Full(7)));
+ thread::sleep(ms(1500));
+ assert_eq!(s.try_send(8), Ok(()));
+ thread::sleep(ms(500));
+ assert_eq!(s.try_send(9), Err(TrySendError::Disconnected(9)));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ assert_eq!(r.recv(), Ok(8));
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ s.send(7).unwrap();
+ thread::sleep(ms(1000));
+ s.send(8).unwrap();
+ thread::sleep(ms(1000));
+ s.send(9).unwrap();
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ assert_eq!(r.recv(), Ok(7));
+ assert_eq!(r.recv(), Ok(8));
+ assert_eq!(r.recv(), Ok(9));
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn send_timeout() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(
+ s.send_timeout(7, ms(1000)),
+ Err(SendTimeoutError::Timeout(7))
+ );
+ assert_eq!(s.send_timeout(8, ms(1000)), Ok(()));
+ assert_eq!(
+ s.send_timeout(9, ms(1000)),
+ Err(SendTimeoutError::Disconnected(9))
+ );
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1500));
+ assert_eq!(r.recv(), Ok(8));
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn len() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 25_000;
+
+ let (s, r) = bounded(0);
+
+ assert_eq!(s.len(), 0);
+ assert_eq!(r.len(), 0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ assert_eq!(r.recv(), Ok(i));
+ assert_eq!(r.len(), 0);
+ }
+ });
+
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s.send(i).unwrap();
+ assert_eq!(s.len(), 0);
+ }
+ });
+ })
+ .unwrap();
+
+ assert_eq!(s.len(), 0);
+ assert_eq!(r.len(), 0);
+}
+
+#[test]
+fn disconnect_wakes_sender() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(s.send(()), Err(SendError(())));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ drop(r);
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn disconnect_wakes_receiver() {
+ let (s, r) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ thread::sleep(ms(1000));
+ drop(s);
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn spsc() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 100_000;
+
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ for i in 0..COUNT {
+ assert_eq!(r.recv(), Ok(i));
+ }
+ assert_eq!(r.recv(), Err(RecvError));
+ });
+ scope.spawn(move |_| {
+ for i in 0..COUNT {
+ s.send(i).unwrap();
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn mpmc() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 25_000;
+ const THREADS: usize = 4;
+
+ let (s, r) = bounded::<usize>(0);
+ let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
+
+ scope(|scope| {
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ for _ in 0..COUNT {
+ let n = r.recv().unwrap();
+ v[n].fetch_add(1, Ordering::SeqCst);
+ }
+ });
+ }
+ for _ in 0..THREADS {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ s.send(i).unwrap();
+ }
+ });
+ }
+ })
+ .unwrap();
+
+ for c in v {
+ assert_eq!(c.load(Ordering::SeqCst), THREADS);
+ }
+}
+
+#[test]
+fn stress_oneshot() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ for _ in 0..COUNT {
+ let (s, r) = bounded(1);
+
+ scope(|scope| {
+ scope.spawn(|_| r.recv().unwrap());
+ scope.spawn(|_| s.send(0).unwrap());
+ })
+ .unwrap();
+ }
+}
+
+#[test]
+fn stress_iter() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ let (request_s, request_r) = bounded(0);
+ let (response_s, response_r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut count = 0;
+ loop {
+ for x in response_r.try_iter() {
+ count += x;
+ if count == COUNT {
+ return;
+ }
+ }
+ let _ = request_s.try_send(());
+ }
+ });
+
+ for _ in request_r.iter() {
+ if response_s.send(1).is_err() {
+ break;
+ }
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn stress_timeout_two_threads() {
+ const COUNT: usize = 100;
+
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(50));
+ }
+ loop {
+ if let Ok(()) = s.send_timeout(i, ms(10)) {
+ break;
+ }
+ }
+ }
+ });
+
+ scope.spawn(|_| {
+ for i in 0..COUNT {
+ if i % 2 == 0 {
+ thread::sleep(ms(50));
+ }
+ loop {
+ if let Ok(x) = r.recv_timeout(ms(10)) {
+ assert_eq!(x, i);
+ break;
+ }
+ }
+ }
+ });
+ })
+ .unwrap();
+}
+
+#[test]
+fn drops() {
+ #[cfg(miri)]
+ const RUNS: usize = 20;
+ #[cfg(not(miri))]
+ const RUNS: usize = 100;
+ #[cfg(miri)]
+ const STEPS: usize = 100;
+ #[cfg(not(miri))]
+ const STEPS: usize = 10_000;
+
+ static DROPS: AtomicUsize = AtomicUsize::new(0);
+
+ #[derive(Debug, PartialEq)]
+ struct DropCounter;
+
+ impl Drop for DropCounter {
+ fn drop(&mut self) {
+ DROPS.fetch_add(1, Ordering::SeqCst);
+ }
+ }
+
+ let mut rng = thread_rng();
+
+ for _ in 0..RUNS {
+ let steps = rng.gen_range(0..STEPS);
+
+ DROPS.store(0, Ordering::SeqCst);
+ let (s, r) = bounded::<DropCounter>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ for _ in 0..steps {
+ r.recv().unwrap();
+ }
+ });
+
+ scope.spawn(|_| {
+ for _ in 0..steps {
+ s.send(DropCounter).unwrap();
+ }
+ });
+ })
+ .unwrap();
+
+ assert_eq!(DROPS.load(Ordering::SeqCst), steps);
+ drop(s);
+ drop(r);
+ assert_eq!(DROPS.load(Ordering::SeqCst), steps);
+ }
+}
+
+#[test]
+fn fairness() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s1, r1) = bounded::<()>(0);
+ let (s2, r2) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ let mut hits = [0usize; 2];
+ for _ in 0..COUNT {
+ select! {
+ recv(r1) -> _ => hits[0] += 1,
+ recv(r2) -> _ => hits[1] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+ });
+
+ let mut hits = [0usize; 2];
+ for _ in 0..COUNT {
+ select! {
+ send(s1, ()) -> _ => hits[0] += 1,
+ send(s2, ()) -> _ => hits[1] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+ })
+ .unwrap();
+}
+
+#[test]
+fn fairness_duplicates() {
+ #[cfg(miri)]
+ const COUNT: usize = 100;
+ #[cfg(not(miri))]
+ const COUNT: usize = 10_000;
+
+ let (s, r) = bounded::<()>(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ let mut hits = [0usize; 5];
+ for _ in 0..COUNT {
+ select! {
+ recv(r) -> _ => hits[0] += 1,
+ recv(r) -> _ => hits[1] += 1,
+ recv(r) -> _ => hits[2] += 1,
+ recv(r) -> _ => hits[3] += 1,
+ recv(r) -> _ => hits[4] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+ });
+
+ let mut hits = [0usize; 5];
+ for _ in 0..COUNT {
+ select! {
+ send(s, ()) -> _ => hits[0] += 1,
+ send(s, ()) -> _ => hits[1] += 1,
+ send(s, ()) -> _ => hits[2] += 1,
+ send(s, ()) -> _ => hits[3] += 1,
+ send(s, ()) -> _ => hits[4] += 1,
+ }
+ }
+ assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2));
+ })
+ .unwrap();
+}
+
+#[test]
+fn recv_in_send() {
+ let (s, r) = bounded(0);
+
+ scope(|scope| {
+ scope.spawn(|_| {
+ thread::sleep(ms(100));
+ r.recv()
+ });
+
+ scope.spawn(|_| {
+ thread::sleep(ms(500));
+ s.send(()).unwrap();
+ });
+
+ select! {
+ send(s, r.recv().unwrap()) -> _ => {}
+ }
+ })
+ .unwrap();
+}
+
+#[test]
+fn channel_through_channel() {
+ #[cfg(miri)]
+ const COUNT: usize = 50;
+ #[cfg(not(miri))]
+ const COUNT: usize = 1000;
+
+ type T = Box<dyn Any + Send>;
+
+ let (s, r) = bounded::<T>(0);
+
+ scope(|scope| {
+ scope.spawn(move |_| {
+ let mut s = s;
+
+ for _ in 0..COUNT {
+ let (new_s, new_r) = bounded(0);
+ let new_r: T = Box::new(Some(new_r));
+
+ s.send(new_r).unwrap();
+ s = new_s;
+ }
+ });
+
+ scope.spawn(move |_| {
+ let mut r = r;
+
+ for _ in 0..COUNT {
+ r = r
+ .recv()
+ .unwrap()
+ .downcast_mut::<Option<Receiver<T>>>()
+ .unwrap()
+ .take()
+ .unwrap()
+ }
+ });
+ })
+ .unwrap();
+}