diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/crossbeam-queue/src | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/crossbeam-queue/src')
-rw-r--r-- | third_party/rust/crossbeam-queue/src/array_queue.rs | 536 | ||||
-rw-r--r-- | third_party/rust/crossbeam-queue/src/lib.rs | 34 | ||||
-rw-r--r-- | third_party/rust/crossbeam-queue/src/seg_queue.rs | 547 |
3 files changed, 1117 insertions, 0 deletions
diff --git a/third_party/rust/crossbeam-queue/src/array_queue.rs b/third_party/rust/crossbeam-queue/src/array_queue.rs new file mode 100644 index 0000000000..e07fde8a8a --- /dev/null +++ b/third_party/rust/crossbeam-queue/src/array_queue.rs @@ -0,0 +1,536 @@ +//! The implementation is based on Dmitry Vyukov's bounded MPMC queue. +//! +//! Source: +//! - <http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue> + +use alloc::boxed::Box; +use core::cell::UnsafeCell; +use core::fmt; +use core::mem::MaybeUninit; +use core::sync::atomic::{self, AtomicUsize, Ordering}; + +use crossbeam_utils::{Backoff, CachePadded}; + +/// A slot in a queue. +struct Slot<T> { + /// The current stamp. + /// + /// If the stamp equals the tail, this node will be next written to. If it equals head + 1, + /// this node will be next read from. + stamp: AtomicUsize, + + /// The value in this slot. + value: UnsafeCell<MaybeUninit<T>>, +} + +/// A bounded multi-producer multi-consumer queue. +/// +/// This queue allocates a fixed-capacity buffer on construction, which is used to store pushed +/// elements. The queue cannot hold more elements than the buffer allows. Attempting to push an +/// element into a full queue will fail. Alternatively, [`force_push`] makes it possible for +/// this queue to be used as a ring-buffer. Having a buffer allocated upfront makes this queue +/// a bit faster than [`SegQueue`]. +/// +/// [`force_push`]: ArrayQueue::force_push +/// [`SegQueue`]: super::SegQueue +/// +/// # Examples +/// +/// ``` +/// use crossbeam_queue::ArrayQueue; +/// +/// let q = ArrayQueue::new(2); +/// +/// assert_eq!(q.push('a'), Ok(())); +/// assert_eq!(q.push('b'), Ok(())); +/// assert_eq!(q.push('c'), Err('c')); +/// assert_eq!(q.pop(), Some('a')); +/// ``` +pub struct ArrayQueue<T> { + /// The head of the queue. + /// + /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a + /// single `usize`. The lower bits represent the index, while the upper bits represent the lap. + /// + /// Elements are popped from the head of the queue. + head: CachePadded<AtomicUsize>, + + /// The tail of the queue. + /// + /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a + /// single `usize`. The lower bits represent the index, while the upper bits represent the lap. + /// + /// Elements are pushed into the tail of the queue. + tail: CachePadded<AtomicUsize>, + + /// The buffer holding slots. + buffer: Box<[Slot<T>]>, + + /// The queue capacity. + cap: usize, + + /// A stamp with the value of `{ lap: 1, index: 0 }`. + one_lap: usize, +} + +unsafe impl<T: Send> Sync for ArrayQueue<T> {} +unsafe impl<T: Send> Send for ArrayQueue<T> {} + +impl<T> ArrayQueue<T> { + /// Creates a new bounded queue with the given capacity. + /// + /// # Panics + /// + /// Panics if the capacity is zero. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::ArrayQueue; + /// + /// let q = ArrayQueue::<i32>::new(100); + /// ``` + pub fn new(cap: usize) -> ArrayQueue<T> { + assert!(cap > 0, "capacity must be non-zero"); + + // Head is initialized to `{ lap: 0, index: 0 }`. + // Tail is initialized to `{ lap: 0, index: 0 }`. + let head = 0; + let tail = 0; + + // Allocate a buffer of `cap` slots initialized + // with stamps. + let buffer: Box<[Slot<T>]> = (0..cap) + .map(|i| { + // Set the stamp to `{ lap: 0, index: i }`. + Slot { + stamp: AtomicUsize::new(i), + value: UnsafeCell::new(MaybeUninit::uninit()), + } + }) + .collect(); + + // One lap is the smallest power of two greater than `cap`. + let one_lap = (cap + 1).next_power_of_two(); + + ArrayQueue { + buffer, + cap, + one_lap, + head: CachePadded::new(AtomicUsize::new(head)), + tail: CachePadded::new(AtomicUsize::new(tail)), + } + } + + fn push_or_else<F>(&self, mut value: T, f: F) -> Result<(), T> + where + F: Fn(T, usize, usize, &Slot<T>) -> Result<T, T>, + { + let backoff = Backoff::new(); + let mut tail = self.tail.load(Ordering::Relaxed); + + loop { + // Deconstruct the tail. + let index = tail & (self.one_lap - 1); + let lap = tail & !(self.one_lap - 1); + + let new_tail = if index + 1 < self.cap { + // Same lap, incremented index. + // Set to `{ lap: lap, index: index + 1 }`. + tail + 1 + } else { + // One lap forward, index wraps around to zero. + // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. + lap.wrapping_add(self.one_lap) + }; + + // Inspect the corresponding slot. + debug_assert!(index < self.buffer.len()); + let slot = unsafe { self.buffer.get_unchecked(index) }; + let stamp = slot.stamp.load(Ordering::Acquire); + + // If the tail and the stamp match, we may attempt to push. + if tail == stamp { + // Try moving the tail. + match self.tail.compare_exchange_weak( + tail, + new_tail, + Ordering::SeqCst, + Ordering::Relaxed, + ) { + Ok(_) => { + // Write the value into the slot and update the stamp. + unsafe { + slot.value.get().write(MaybeUninit::new(value)); + } + slot.stamp.store(tail + 1, Ordering::Release); + return Ok(()); + } + Err(t) => { + tail = t; + backoff.spin(); + } + } + } else if stamp.wrapping_add(self.one_lap) == tail + 1 { + atomic::fence(Ordering::SeqCst); + value = f(value, tail, new_tail, slot)?; + backoff.spin(); + tail = self.tail.load(Ordering::Relaxed); + } else { + // Snooze because we need to wait for the stamp to get updated. + backoff.snooze(); + tail = self.tail.load(Ordering::Relaxed); + } + } + } + + /// Attempts to push an element into the queue. + /// + /// If the queue is full, the element is returned back as an error. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::ArrayQueue; + /// + /// let q = ArrayQueue::new(1); + /// + /// assert_eq!(q.push(10), Ok(())); + /// assert_eq!(q.push(20), Err(20)); + /// ``` + pub fn push(&self, value: T) -> Result<(), T> { + self.push_or_else(value, |v, tail, _, _| { + let head = self.head.load(Ordering::Relaxed); + + // If the head lags one lap behind the tail as well... + if head.wrapping_add(self.one_lap) == tail { + // ...then the queue is full. + Err(v) + } else { + Ok(v) + } + }) + } + + /// Pushes an element into the queue, replacing the oldest element if necessary. + /// + /// If the queue is full, the oldest element is replaced and returned, + /// otherwise `None` is returned. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::ArrayQueue; + /// + /// let q = ArrayQueue::new(2); + /// + /// assert_eq!(q.force_push(10), None); + /// assert_eq!(q.force_push(20), None); + /// assert_eq!(q.force_push(30), Some(10)); + /// assert_eq!(q.pop(), Some(20)); + /// ``` + pub fn force_push(&self, value: T) -> Option<T> { + self.push_or_else(value, |v, tail, new_tail, slot| { + let head = tail.wrapping_sub(self.one_lap); + let new_head = new_tail.wrapping_sub(self.one_lap); + + // Try moving the head. + if self + .head + .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Relaxed) + .is_ok() + { + // Move the tail. + self.tail.store(new_tail, Ordering::SeqCst); + + // Swap the previous value. + let old = unsafe { slot.value.get().replace(MaybeUninit::new(v)).assume_init() }; + + // Update the stamp. + slot.stamp.store(tail + 1, Ordering::Release); + + Err(old) + } else { + Ok(v) + } + }) + .err() + } + + /// Attempts to pop an element from the queue. + /// + /// If the queue is empty, `None` is returned. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::ArrayQueue; + /// + /// let q = ArrayQueue::new(1); + /// assert_eq!(q.push(10), Ok(())); + /// + /// assert_eq!(q.pop(), Some(10)); + /// assert!(q.pop().is_none()); + /// ``` + pub fn pop(&self) -> Option<T> { + let backoff = Backoff::new(); + let mut head = self.head.load(Ordering::Relaxed); + + loop { + // Deconstruct the head. + let index = head & (self.one_lap - 1); + let lap = head & !(self.one_lap - 1); + + // Inspect the corresponding slot. + debug_assert!(index < self.buffer.len()); + let slot = unsafe { self.buffer.get_unchecked(index) }; + let stamp = slot.stamp.load(Ordering::Acquire); + + // If the the stamp is ahead of the head by 1, we may attempt to pop. + if head + 1 == stamp { + let new = if index + 1 < self.cap { + // Same lap, incremented index. + // Set to `{ lap: lap, index: index + 1 }`. + head + 1 + } else { + // One lap forward, index wraps around to zero. + // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. + lap.wrapping_add(self.one_lap) + }; + + // Try moving the head. + match self.head.compare_exchange_weak( + head, + new, + Ordering::SeqCst, + Ordering::Relaxed, + ) { + Ok(_) => { + // Read the value from the slot and update the stamp. + let msg = unsafe { slot.value.get().read().assume_init() }; + slot.stamp + .store(head.wrapping_add(self.one_lap), Ordering::Release); + return Some(msg); + } + Err(h) => { + head = h; + backoff.spin(); + } + } + } else if stamp == head { + atomic::fence(Ordering::SeqCst); + let tail = self.tail.load(Ordering::Relaxed); + + // If the tail equals the head, that means the channel is empty. + if tail == head { + return None; + } + + backoff.spin(); + head = self.head.load(Ordering::Relaxed); + } else { + // Snooze because we need to wait for the stamp to get updated. + backoff.snooze(); + head = self.head.load(Ordering::Relaxed); + } + } + } + + /// Returns the capacity of the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::ArrayQueue; + /// + /// let q = ArrayQueue::<i32>::new(100); + /// + /// assert_eq!(q.capacity(), 100); + /// ``` + pub fn capacity(&self) -> usize { + self.cap + } + + /// Returns `true` if the queue is empty. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::ArrayQueue; + /// + /// let q = ArrayQueue::new(100); + /// + /// assert!(q.is_empty()); + /// q.push(1).unwrap(); + /// assert!(!q.is_empty()); + /// ``` + pub fn is_empty(&self) -> bool { + let head = self.head.load(Ordering::SeqCst); + let tail = self.tail.load(Ordering::SeqCst); + + // Is the tail lagging one lap behind head? + // Is the tail equal to the head? + // + // Note: If the head changes just before we load the tail, that means there was a moment + // when the channel was not empty, so it is safe to just return `false`. + tail == head + } + + /// Returns `true` if the queue is full. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::ArrayQueue; + /// + /// let q = ArrayQueue::new(1); + /// + /// assert!(!q.is_full()); + /// q.push(1).unwrap(); + /// assert!(q.is_full()); + /// ``` + pub fn is_full(&self) -> bool { + let tail = self.tail.load(Ordering::SeqCst); + let head = self.head.load(Ordering::SeqCst); + + // Is the head lagging one lap behind tail? + // + // Note: If the tail changes just before we load the head, that means there was a moment + // when the queue was not full, so it is safe to just return `false`. + head.wrapping_add(self.one_lap) == tail + } + + /// Returns the number of elements in the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::ArrayQueue; + /// + /// let q = ArrayQueue::new(100); + /// assert_eq!(q.len(), 0); + /// + /// q.push(10).unwrap(); + /// assert_eq!(q.len(), 1); + /// + /// q.push(20).unwrap(); + /// assert_eq!(q.len(), 2); + /// ``` + pub fn len(&self) -> usize { + loop { + // Load the tail, then load the head. + let tail = self.tail.load(Ordering::SeqCst); + let head = self.head.load(Ordering::SeqCst); + + // If the tail didn't change, we've got consistent values to work with. + if self.tail.load(Ordering::SeqCst) == tail { + let hix = head & (self.one_lap - 1); + let tix = tail & (self.one_lap - 1); + + return if hix < tix { + tix - hix + } else if hix > tix { + self.cap - hix + tix + } else if tail == head { + 0 + } else { + self.cap + }; + } + } + } +} + +impl<T> Drop for ArrayQueue<T> { + fn drop(&mut self) { + // Get the index of the head. + let head = *self.head.get_mut(); + let tail = *self.tail.get_mut(); + + let hix = head & (self.one_lap - 1); + let tix = tail & (self.one_lap - 1); + + let len = if hix < tix { + tix - hix + } else if hix > tix { + self.cap - hix + tix + } else if tail == head { + 0 + } else { + self.cap + }; + + // Loop over all slots that hold a message and drop them. + for i in 0..len { + // Compute the index of the next slot holding a message. + let index = if hix + i < self.cap { + hix + i + } else { + hix + i - self.cap + }; + + unsafe { + debug_assert!(index < self.buffer.len()); + let slot = self.buffer.get_unchecked_mut(index); + let value = &mut *slot.value.get(); + value.as_mut_ptr().drop_in_place(); + } + } + } +} + +impl<T> fmt::Debug for ArrayQueue<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.pad("ArrayQueue { .. }") + } +} + +impl<T> IntoIterator for ArrayQueue<T> { + type Item = T; + + type IntoIter = IntoIter<T>; + + fn into_iter(self) -> Self::IntoIter { + IntoIter { value: self } + } +} + +#[derive(Debug)] +pub struct IntoIter<T> { + value: ArrayQueue<T>, +} + +impl<T> Iterator for IntoIter<T> { + type Item = T; + + fn next(&mut self) -> Option<Self::Item> { + let value = &mut self.value; + let head = *value.head.get_mut(); + if value.head.get_mut() != value.tail.get_mut() { + let index = head & (value.one_lap - 1); + let lap = head & !(value.one_lap - 1); + // SAFETY: We have mutable access to this, so we can read without + // worrying about concurrency. Furthermore, we know this is + // initialized because it is the value pointed at by `value.head` + // and this is a non-empty queue. + let val = unsafe { + debug_assert!(index < value.buffer.len()); + let slot = value.buffer.get_unchecked_mut(index); + slot.value.get().read().assume_init() + }; + let new = if index + 1 < value.cap { + // Same lap, incremented index. + // Set to `{ lap: lap, index: index + 1 }`. + head + 1 + } else { + // One lap forward, index wraps around to zero. + // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. + lap.wrapping_add(value.one_lap) + }; + *value.head.get_mut() = new; + Option::Some(val) + } else { + Option::None + } + } +} diff --git a/third_party/rust/crossbeam-queue/src/lib.rs b/third_party/rust/crossbeam-queue/src/lib.rs new file mode 100644 index 0000000000..846d7c2e1b --- /dev/null +++ b/third_party/rust/crossbeam-queue/src/lib.rs @@ -0,0 +1,34 @@ +//! Concurrent queues. +//! +//! This crate provides concurrent queues that can be shared among threads: +//! +//! * [`ArrayQueue`], a bounded MPMC queue that allocates a fixed-capacity buffer on construction. +//! * [`SegQueue`], an unbounded MPMC queue that allocates small buffers, segments, on demand. + +#![doc(test( + no_crate_inject, + attr( + deny(warnings, rust_2018_idioms), + allow(dead_code, unused_assignments, unused_variables) + ) +))] +#![warn( + missing_docs, + missing_debug_implementations, + rust_2018_idioms, + unreachable_pub +)] +#![cfg_attr(not(feature = "std"), no_std)] + +#[cfg(not(crossbeam_no_atomic_cas))] +cfg_if::cfg_if! { + if #[cfg(feature = "alloc")] { + extern crate alloc; + + mod array_queue; + mod seg_queue; + + pub use self::array_queue::ArrayQueue; + pub use self::seg_queue::SegQueue; + } +} diff --git a/third_party/rust/crossbeam-queue/src/seg_queue.rs b/third_party/rust/crossbeam-queue/src/seg_queue.rs new file mode 100644 index 0000000000..2761dc07cd --- /dev/null +++ b/third_party/rust/crossbeam-queue/src/seg_queue.rs @@ -0,0 +1,547 @@ +use alloc::boxed::Box; +use core::cell::UnsafeCell; +use core::fmt; +use core::marker::PhantomData; +use core::mem::MaybeUninit; +use core::ptr; +use core::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering}; + +use crossbeam_utils::{Backoff, CachePadded}; + +// Bits indicating the state of a slot: +// * If a value has been written into the slot, `WRITE` is set. +// * If a value has been read from the slot, `READ` is set. +// * If the block is being destroyed, `DESTROY` is set. +const WRITE: usize = 1; +const READ: usize = 2; +const DESTROY: usize = 4; + +// Each block covers one "lap" of indices. +const LAP: usize = 32; +// The maximum number of values a block can hold. +const BLOCK_CAP: usize = LAP - 1; +// How many lower bits are reserved for metadata. +const SHIFT: usize = 1; +// Indicates that the block is not the last one. +const HAS_NEXT: usize = 1; + +/// A slot in a block. +struct Slot<T> { + /// The value. + value: UnsafeCell<MaybeUninit<T>>, + + /// The state of the slot. + state: AtomicUsize, +} + +impl<T> Slot<T> { + const UNINIT: Self = Self { + value: UnsafeCell::new(MaybeUninit::uninit()), + state: AtomicUsize::new(0), + }; + + /// Waits until a value is written into the slot. + fn wait_write(&self) { + let backoff = Backoff::new(); + while self.state.load(Ordering::Acquire) & WRITE == 0 { + backoff.snooze(); + } + } +} + +/// A block in a linked list. +/// +/// Each block in the list can hold up to `BLOCK_CAP` values. +struct Block<T> { + /// The next block in the linked list. + next: AtomicPtr<Block<T>>, + + /// Slots for values. + slots: [Slot<T>; BLOCK_CAP], +} + +impl<T> Block<T> { + /// Creates an empty block that starts at `start_index`. + fn new() -> Block<T> { + Self { + next: AtomicPtr::new(ptr::null_mut()), + slots: [Slot::UNINIT; BLOCK_CAP], + } + } + + /// Waits until the next pointer is set. + fn wait_next(&self) -> *mut Block<T> { + let backoff = Backoff::new(); + loop { + let next = self.next.load(Ordering::Acquire); + if !next.is_null() { + return next; + } + backoff.snooze(); + } + } + + /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block. + unsafe fn destroy(this: *mut Block<T>, start: usize) { + // It is not necessary to set the `DESTROY` bit in the last slot because that slot has + // begun destruction of the block. + for i in start..BLOCK_CAP - 1 { + let slot = (*this).slots.get_unchecked(i); + + // Mark the `DESTROY` bit if a thread is still using the slot. + if slot.state.load(Ordering::Acquire) & READ == 0 + && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0 + { + // If a thread is still using the slot, it will continue destruction of the block. + return; + } + } + + // No thread is using the block, now it is safe to destroy it. + drop(Box::from_raw(this)); + } +} + +/// A position in a queue. +struct Position<T> { + /// The index in the queue. + index: AtomicUsize, + + /// The block in the linked list. + block: AtomicPtr<Block<T>>, +} + +/// An unbounded multi-producer multi-consumer queue. +/// +/// This queue is implemented as a linked list of segments, where each segment is a small buffer +/// that can hold a handful of elements. There is no limit to how many elements can be in the queue +/// at a time. However, since segments need to be dynamically allocated as elements get pushed, +/// this queue is somewhat slower than [`ArrayQueue`]. +/// +/// [`ArrayQueue`]: super::ArrayQueue +/// +/// # Examples +/// +/// ``` +/// use crossbeam_queue::SegQueue; +/// +/// let q = SegQueue::new(); +/// +/// q.push('a'); +/// q.push('b'); +/// +/// assert_eq!(q.pop(), Some('a')); +/// assert_eq!(q.pop(), Some('b')); +/// assert!(q.pop().is_none()); +/// ``` +pub struct SegQueue<T> { + /// The head of the queue. + head: CachePadded<Position<T>>, + + /// The tail of the queue. + tail: CachePadded<Position<T>>, + + /// Indicates that dropping a `SegQueue<T>` may drop values of type `T`. + _marker: PhantomData<T>, +} + +unsafe impl<T: Send> Send for SegQueue<T> {} +unsafe impl<T: Send> Sync for SegQueue<T> {} + +impl<T> SegQueue<T> { + /// Creates a new unbounded queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::<i32>::new(); + /// ``` + pub const fn new() -> SegQueue<T> { + SegQueue { + head: CachePadded::new(Position { + block: AtomicPtr::new(ptr::null_mut()), + index: AtomicUsize::new(0), + }), + tail: CachePadded::new(Position { + block: AtomicPtr::new(ptr::null_mut()), + index: AtomicUsize::new(0), + }), + _marker: PhantomData, + } + } + + /// Pushes an element into the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::new(); + /// + /// q.push(10); + /// q.push(20); + /// ``` + pub fn push(&self, value: T) { + let backoff = Backoff::new(); + let mut tail = self.tail.index.load(Ordering::Acquire); + let mut block = self.tail.block.load(Ordering::Acquire); + let mut next_block = None; + + loop { + // Calculate the offset of the index into the block. + let offset = (tail >> SHIFT) % LAP; + + // If we reached the end of the block, wait until the next one is installed. + if offset == BLOCK_CAP { + backoff.snooze(); + tail = self.tail.index.load(Ordering::Acquire); + block = self.tail.block.load(Ordering::Acquire); + continue; + } + + // If we're going to have to install the next block, allocate it in advance in order to + // make the wait for other threads as short as possible. + if offset + 1 == BLOCK_CAP && next_block.is_none() { + next_block = Some(Box::new(Block::<T>::new())); + } + + // If this is the first push operation, we need to allocate the first block. + if block.is_null() { + let new = Box::into_raw(Box::new(Block::<T>::new())); + + if self + .tail + .block + .compare_exchange(block, new, Ordering::Release, Ordering::Relaxed) + .is_ok() + { + self.head.block.store(new, Ordering::Release); + block = new; + } else { + next_block = unsafe { Some(Box::from_raw(new)) }; + tail = self.tail.index.load(Ordering::Acquire); + block = self.tail.block.load(Ordering::Acquire); + continue; + } + } + + let new_tail = tail + (1 << SHIFT); + + // Try advancing the tail forward. + match self.tail.index.compare_exchange_weak( + tail, + new_tail, + Ordering::SeqCst, + Ordering::Acquire, + ) { + Ok(_) => unsafe { + // If we've reached the end of the block, install the next one. + if offset + 1 == BLOCK_CAP { + let next_block = Box::into_raw(next_block.unwrap()); + let next_index = new_tail.wrapping_add(1 << SHIFT); + + self.tail.block.store(next_block, Ordering::Release); + self.tail.index.store(next_index, Ordering::Release); + (*block).next.store(next_block, Ordering::Release); + } + + // Write the value into the slot. + let slot = (*block).slots.get_unchecked(offset); + slot.value.get().write(MaybeUninit::new(value)); + slot.state.fetch_or(WRITE, Ordering::Release); + + return; + }, + Err(t) => { + tail = t; + block = self.tail.block.load(Ordering::Acquire); + backoff.spin(); + } + } + } + } + + /// Pops an element from the queue. + /// + /// If the queue is empty, `None` is returned. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::new(); + /// + /// q.push(10); + /// assert_eq!(q.pop(), Some(10)); + /// assert!(q.pop().is_none()); + /// ``` + pub fn pop(&self) -> Option<T> { + let backoff = Backoff::new(); + let mut head = self.head.index.load(Ordering::Acquire); + let mut block = self.head.block.load(Ordering::Acquire); + + loop { + // Calculate the offset of the index into the block. + let offset = (head >> SHIFT) % LAP; + + // If we reached the end of the block, wait until the next one is installed. + if offset == BLOCK_CAP { + backoff.snooze(); + head = self.head.index.load(Ordering::Acquire); + block = self.head.block.load(Ordering::Acquire); + continue; + } + + let mut new_head = head + (1 << SHIFT); + + if new_head & HAS_NEXT == 0 { + atomic::fence(Ordering::SeqCst); + let tail = self.tail.index.load(Ordering::Relaxed); + + // If the tail equals the head, that means the queue is empty. + if head >> SHIFT == tail >> SHIFT { + return None; + } + + // If head and tail are not in the same block, set `HAS_NEXT` in head. + if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { + new_head |= HAS_NEXT; + } + } + + // The block can be null here only if the first push operation is in progress. In that + // case, just wait until it gets initialized. + if block.is_null() { + backoff.snooze(); + head = self.head.index.load(Ordering::Acquire); + block = self.head.block.load(Ordering::Acquire); + continue; + } + + // Try moving the head index forward. + match self.head.index.compare_exchange_weak( + head, + new_head, + Ordering::SeqCst, + Ordering::Acquire, + ) { + Ok(_) => unsafe { + // If we've reached the end of the block, move to the next one. + if offset + 1 == BLOCK_CAP { + let next = (*block).wait_next(); + let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); + if !(*next).next.load(Ordering::Relaxed).is_null() { + next_index |= HAS_NEXT; + } + + self.head.block.store(next, Ordering::Release); + self.head.index.store(next_index, Ordering::Release); + } + + // Read the value. + let slot = (*block).slots.get_unchecked(offset); + slot.wait_write(); + let value = slot.value.get().read().assume_init(); + + // Destroy the block if we've reached the end, or if another thread wanted to + // destroy but couldn't because we were busy reading from the slot. + if offset + 1 == BLOCK_CAP { + Block::destroy(block, 0); + } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { + Block::destroy(block, offset + 1); + } + + return Some(value); + }, + Err(h) => { + head = h; + block = self.head.block.load(Ordering::Acquire); + backoff.spin(); + } + } + } + } + + /// Returns `true` if the queue is empty. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::new(); + /// + /// assert!(q.is_empty()); + /// q.push(1); + /// assert!(!q.is_empty()); + /// ``` + pub fn is_empty(&self) -> bool { + let head = self.head.index.load(Ordering::SeqCst); + let tail = self.tail.index.load(Ordering::SeqCst); + head >> SHIFT == tail >> SHIFT + } + + /// Returns the number of elements in the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::new(); + /// assert_eq!(q.len(), 0); + /// + /// q.push(10); + /// assert_eq!(q.len(), 1); + /// + /// q.push(20); + /// assert_eq!(q.len(), 2); + /// ``` + pub fn len(&self) -> usize { + loop { + // Load the tail index, then load the head index. + let mut tail = self.tail.index.load(Ordering::SeqCst); + let mut head = self.head.index.load(Ordering::SeqCst); + + // If the tail index didn't change, we've got consistent indices to work with. + if self.tail.index.load(Ordering::SeqCst) == tail { + // Erase the lower bits. + tail &= !((1 << SHIFT) - 1); + head &= !((1 << SHIFT) - 1); + + // Fix up indices if they fall onto block ends. + if (tail >> SHIFT) & (LAP - 1) == LAP - 1 { + tail = tail.wrapping_add(1 << SHIFT); + } + if (head >> SHIFT) & (LAP - 1) == LAP - 1 { + head = head.wrapping_add(1 << SHIFT); + } + + // Rotate indices so that head falls into the first block. + let lap = (head >> SHIFT) / LAP; + tail = tail.wrapping_sub((lap * LAP) << SHIFT); + head = head.wrapping_sub((lap * LAP) << SHIFT); + + // Remove the lower bits. + tail >>= SHIFT; + head >>= SHIFT; + + // Return the difference minus the number of blocks between tail and head. + return tail - head - tail / LAP; + } + } + } +} + +impl<T> Drop for SegQueue<T> { + fn drop(&mut self) { + let mut head = *self.head.index.get_mut(); + let mut tail = *self.tail.index.get_mut(); + let mut block = *self.head.block.get_mut(); + + // Erase the lower bits. + head &= !((1 << SHIFT) - 1); + tail &= !((1 << SHIFT) - 1); + + unsafe { + // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks. + while head != tail { + let offset = (head >> SHIFT) % LAP; + + if offset < BLOCK_CAP { + // Drop the value in the slot. + let slot = (*block).slots.get_unchecked(offset); + let p = &mut *slot.value.get(); + p.as_mut_ptr().drop_in_place(); + } else { + // Deallocate the block and move to the next one. + let next = *(*block).next.get_mut(); + drop(Box::from_raw(block)); + block = next; + } + + head = head.wrapping_add(1 << SHIFT); + } + + // Deallocate the last remaining block. + if !block.is_null() { + drop(Box::from_raw(block)); + } + } + } +} + +impl<T> fmt::Debug for SegQueue<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.pad("SegQueue { .. }") + } +} + +impl<T> Default for SegQueue<T> { + fn default() -> SegQueue<T> { + SegQueue::new() + } +} + +impl<T> IntoIterator for SegQueue<T> { + type Item = T; + + type IntoIter = IntoIter<T>; + + fn into_iter(self) -> Self::IntoIter { + IntoIter { value: self } + } +} + +#[derive(Debug)] +pub struct IntoIter<T> { + value: SegQueue<T>, +} + +impl<T> Iterator for IntoIter<T> { + type Item = T; + + fn next(&mut self) -> Option<Self::Item> { + let value = &mut self.value; + let head = *value.head.index.get_mut(); + let tail = *value.tail.index.get_mut(); + if head >> SHIFT == tail >> SHIFT { + None + } else { + let block = *value.head.block.get_mut(); + let offset = (head >> SHIFT) % LAP; + + // SAFETY: We have mutable access to this, so we can read without + // worrying about concurrency. Furthermore, we know this is + // initialized because it is the value pointed at by `value.head` + // and this is a non-empty queue. + let item = unsafe { + let slot = (*block).slots.get_unchecked(offset); + let p = &mut *slot.value.get(); + p.as_mut_ptr().read() + }; + if offset + 1 == BLOCK_CAP { + // Deallocate the block and move to the next one. + // SAFETY: The block is initialized because we've been reading + // from it this entire time. We can drop it b/c everything has + // been read out of it, so nothing is pointing to it anymore. + unsafe { + let next = *(*block).next.get_mut(); + drop(Box::from_raw(block)); + *value.head.block.get_mut() = next; + } + // The last value in a block is empty, so skip it + *value.head.index.get_mut() = head.wrapping_add(2 << SHIFT); + // Double-check that we're pointing to the first item in a block. + debug_assert_eq!((*value.head.index.get_mut() >> SHIFT) % LAP, 0); + } else { + *value.head.index.get_mut() = head.wrapping_add(1 << SHIFT); + } + Some(item) + } + } +} |