summaryrefslogtreecommitdiffstats
path: root/third_party/rust/euclid/src/rect.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/euclid/src/rect.rs
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/euclid/src/rect.rs')
-rw-r--r--third_party/rust/euclid/src/rect.rs931
1 files changed, 931 insertions, 0 deletions
diff --git a/third_party/rust/euclid/src/rect.rs b/third_party/rust/euclid/src/rect.rs
new file mode 100644
index 0000000000..04721db811
--- /dev/null
+++ b/third_party/rust/euclid/src/rect.rs
@@ -0,0 +1,931 @@
+// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+use super::UnknownUnit;
+use crate::box2d::Box2D;
+use crate::num::*;
+use crate::point::Point2D;
+use crate::scale::Scale;
+use crate::side_offsets::SideOffsets2D;
+use crate::size::Size2D;
+use crate::vector::Vector2D;
+
+use num_traits::{NumCast, Float};
+#[cfg(feature = "serde")]
+use serde::{Deserialize, Serialize};
+#[cfg(feature = "bytemuck")]
+use bytemuck::{Zeroable, Pod};
+
+use core::borrow::Borrow;
+use core::cmp::PartialOrd;
+use core::fmt;
+use core::hash::{Hash, Hasher};
+use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Range, Sub};
+
+/// A 2d Rectangle optionally tagged with a unit.
+///
+/// # Representation
+///
+/// `Rect` is represented by an origin point and a size.
+///
+/// See [`Box2D`] for a rectangle represented by two endpoints.
+///
+/// # Empty rectangle
+///
+/// A rectangle is considered empty (see [`is_empty`]) if any of the following is true:
+/// - it's area is empty,
+/// - it's area is negative (`size.x < 0` or `size.y < 0`),
+/// - it contains NaNs.
+///
+/// [`is_empty`]: #method.is_empty
+/// [`Box2D`]: struct.Box2D.html
+#[repr(C)]
+#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
+#[cfg_attr(
+ feature = "serde",
+ serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
+)]
+pub struct Rect<T, U> {
+ pub origin: Point2D<T, U>,
+ pub size: Size2D<T, U>,
+}
+
+#[cfg(feature = "arbitrary")]
+impl<'a, T, U> arbitrary::Arbitrary<'a> for Rect<T, U>
+where
+ T: arbitrary::Arbitrary<'a>,
+{
+ fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self>
+ {
+ let (origin, size) = arbitrary::Arbitrary::arbitrary(u)?;
+ Ok(Rect {
+ origin,
+ size,
+ })
+ }
+}
+
+#[cfg(feature = "bytemuck")]
+unsafe impl<T: Zeroable, U> Zeroable for Rect<T, U> {}
+
+#[cfg(feature = "bytemuck")]
+unsafe impl<T: Pod, U: 'static> Pod for Rect<T, U> {}
+
+impl<T: Hash, U> Hash for Rect<T, U> {
+ fn hash<H: Hasher>(&self, h: &mut H) {
+ self.origin.hash(h);
+ self.size.hash(h);
+ }
+}
+
+impl<T: Copy, U> Copy for Rect<T, U> {}
+
+impl<T: Clone, U> Clone for Rect<T, U> {
+ fn clone(&self) -> Self {
+ Self::new(self.origin.clone(), self.size.clone())
+ }
+}
+
+impl<T: PartialEq, U> PartialEq for Rect<T, U> {
+ fn eq(&self, other: &Self) -> bool {
+ self.origin.eq(&other.origin) && self.size.eq(&other.size)
+ }
+}
+
+impl<T: Eq, U> Eq for Rect<T, U> {}
+
+impl<T: fmt::Debug, U> fmt::Debug for Rect<T, U> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "Rect(")?;
+ fmt::Debug::fmt(&self.size, f)?;
+ write!(f, " at ")?;
+ fmt::Debug::fmt(&self.origin, f)?;
+ write!(f, ")")
+ }
+}
+
+impl<T: Default, U> Default for Rect<T, U> {
+ fn default() -> Self {
+ Rect::new(Default::default(), Default::default())
+ }
+}
+
+impl<T, U> Rect<T, U> {
+ /// Constructor.
+ #[inline]
+ pub const fn new(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self {
+ Rect { origin, size }
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Zero,
+{
+ /// Constructor, setting all sides to zero.
+ #[inline]
+ pub fn zero() -> Self {
+ Rect::new(Point2D::origin(), Size2D::zero())
+ }
+
+ /// Creates a rect of the given size, at offset zero.
+ #[inline]
+ pub fn from_size(size: Size2D<T, U>) -> Self {
+ Rect {
+ origin: Point2D::zero(),
+ size,
+ }
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + Add<T, Output = T>,
+{
+ #[inline]
+ pub fn min(&self) -> Point2D<T, U> {
+ self.origin
+ }
+
+ #[inline]
+ pub fn max(&self) -> Point2D<T, U> {
+ self.origin + self.size
+ }
+
+ #[inline]
+ pub fn max_x(&self) -> T {
+ self.origin.x + self.size.width
+ }
+
+ #[inline]
+ pub fn min_x(&self) -> T {
+ self.origin.x
+ }
+
+ #[inline]
+ pub fn max_y(&self) -> T {
+ self.origin.y + self.size.height
+ }
+
+ #[inline]
+ pub fn min_y(&self) -> T {
+ self.origin.y
+ }
+
+ #[inline]
+ pub fn width(&self) -> T {
+ self.size.width
+ }
+
+ #[inline]
+ pub fn height(&self) -> T {
+ self.size.height
+ }
+
+ #[inline]
+ pub fn x_range(&self) -> Range<T> {
+ self.min_x()..self.max_x()
+ }
+
+ #[inline]
+ pub fn y_range(&self) -> Range<T> {
+ self.min_y()..self.max_y()
+ }
+
+ /// Returns the same rectangle, translated by a vector.
+ #[inline]
+ #[must_use]
+ pub fn translate(&self, by: Vector2D<T, U>) -> Self {
+ Self::new(self.origin + by, self.size)
+ }
+
+ #[inline]
+ pub fn to_box2d(&self) -> Box2D<T, U> {
+ Box2D {
+ min: self.min(),
+ max: self.max(),
+ }
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + PartialOrd + Add<T, Output = T>,
+{
+ /// Returns true if this rectangle contains the point. Points are considered
+ /// in the rectangle if they are on the left or top edge, but outside if they
+ /// are on the right or bottom edge.
+ #[inline]
+ pub fn contains(&self, p: Point2D<T, U>) -> bool {
+ self.to_box2d().contains(p)
+ }
+
+ #[inline]
+ pub fn intersects(&self, other: &Self) -> bool {
+ self.to_box2d().intersects(&other.to_box2d())
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
+{
+ #[inline]
+ pub fn intersection(&self, other: &Self) -> Option<Self> {
+ let box2d = self.to_box2d().intersection_unchecked(&other.to_box2d());
+
+ if box2d.is_empty() {
+ return None;
+ }
+
+ Some(box2d.to_rect())
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
+{
+ #[inline]
+ #[must_use]
+ pub fn inflate(&self, width: T, height: T) -> Self {
+ Rect::new(
+ Point2D::new(self.origin.x - width, self.origin.y - height),
+ Size2D::new(
+ self.size.width + width + width,
+ self.size.height + height + height,
+ ),
+ )
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + Zero + PartialOrd + Add<T, Output = T>,
+{
+ /// Returns true if this rectangle contains the interior of rect. Always
+ /// returns true if rect is empty, and always returns false if rect is
+ /// nonempty but this rectangle is empty.
+ #[inline]
+ pub fn contains_rect(&self, rect: &Self) -> bool {
+ rect.is_empty()
+ || (self.min_x() <= rect.min_x()
+ && rect.max_x() <= self.max_x()
+ && self.min_y() <= rect.min_y()
+ && rect.max_y() <= self.max_y())
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + Zero + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
+{
+ /// Calculate the size and position of an inner rectangle.
+ ///
+ /// Subtracts the side offsets from all sides. The horizontal and vertical
+ /// offsets must not be larger than the original side length.
+ /// This method assumes y oriented downward.
+ pub fn inner_rect(&self, offsets: SideOffsets2D<T, U>) -> Self {
+ let rect = Rect::new(
+ Point2D::new(self.origin.x + offsets.left, self.origin.y + offsets.top),
+ Size2D::new(
+ self.size.width - offsets.horizontal(),
+ self.size.height - offsets.vertical(),
+ ),
+ );
+ debug_assert!(rect.size.width >= Zero::zero());
+ debug_assert!(rect.size.height >= Zero::zero());
+ rect
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
+{
+ /// Calculate the size and position of an outer rectangle.
+ ///
+ /// Add the offsets to all sides. The expanded rectangle is returned.
+ /// This method assumes y oriented downward.
+ pub fn outer_rect(&self, offsets: SideOffsets2D<T, U>) -> Self {
+ Rect::new(
+ Point2D::new(self.origin.x - offsets.left, self.origin.y - offsets.top),
+ Size2D::new(
+ self.size.width + offsets.horizontal(),
+ self.size.height + offsets.vertical(),
+ ),
+ )
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + Zero + PartialOrd + Sub<T, Output = T>,
+{
+ /// Returns the smallest rectangle defined by the top/bottom/left/right-most
+ /// points provided as parameter.
+ ///
+ /// Note: This function has a behavior that can be surprising because
+ /// the right-most and bottom-most points are exactly on the edge
+ /// of the rectangle while the `contains` function is has exclusive
+ /// semantic on these edges. This means that the right-most and bottom-most
+ /// points provided to `from_points` will count as not contained by the rect.
+ /// This behavior may change in the future.
+ pub fn from_points<I>(points: I) -> Self
+ where
+ I: IntoIterator,
+ I::Item: Borrow<Point2D<T, U>>,
+ {
+ Box2D::from_points(points).to_rect()
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
+{
+ /// Linearly interpolate between this rectangle and another rectangle.
+ #[inline]
+ pub fn lerp(&self, other: Self, t: T) -> Self {
+ Self::new(
+ self.origin.lerp(other.origin, t),
+ self.size.lerp(other.size, t),
+ )
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + One + Add<Output = T> + Div<Output = T>,
+{
+ pub fn center(&self) -> Point2D<T, U> {
+ let two = T::one() + T::one();
+ self.origin + self.size.to_vector() / two
+ }
+}
+
+impl<T, U> Rect<T, U>
+where
+ T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T> + Zero,
+{
+ #[inline]
+ pub fn union(&self, other: &Self) -> Self {
+ self.to_box2d().union(&other.to_box2d()).to_rect()
+ }
+}
+
+impl<T, U> Rect<T, U> {
+ #[inline]
+ pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
+ where
+ T: Copy + Mul<S, Output = T>,
+ {
+ Rect::new(
+ Point2D::new(self.origin.x * x, self.origin.y * y),
+ Size2D::new(self.size.width * x, self.size.height * y),
+ )
+ }
+}
+
+impl<T: Copy + Mul<T, Output = T>, U> Rect<T, U> {
+ #[inline]
+ pub fn area(&self) -> T {
+ self.size.area()
+ }
+}
+
+impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> {
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.size.is_empty()
+ }
+}
+
+impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> {
+ #[inline]
+ pub fn to_non_empty(&self) -> Option<Self> {
+ if self.is_empty() {
+ return None;
+ }
+
+ Some(*self)
+ }
+}
+
+impl<T: Copy + Mul, U> Mul<T> for Rect<T, U> {
+ type Output = Rect<T::Output, U>;
+
+ #[inline]
+ fn mul(self, scale: T) -> Self::Output {
+ Rect::new(self.origin * scale, self.size * scale)
+ }
+}
+
+impl<T: Copy + MulAssign, U> MulAssign<T> for Rect<T, U> {
+ #[inline]
+ fn mul_assign(&mut self, scale: T) {
+ *self *= Scale::new(scale);
+ }
+}
+
+impl<T: Copy + Div, U> Div<T> for Rect<T, U> {
+ type Output = Rect<T::Output, U>;
+
+ #[inline]
+ fn div(self, scale: T) -> Self::Output {
+ Rect::new(self.origin / scale.clone(), self.size / scale)
+ }
+}
+
+impl<T: Copy + DivAssign, U> DivAssign<T> for Rect<T, U> {
+ #[inline]
+ fn div_assign(&mut self, scale: T) {
+ *self /= Scale::new(scale);
+ }
+}
+
+impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Rect<T, U1> {
+ type Output = Rect<T::Output, U2>;
+
+ #[inline]
+ fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
+ Rect::new(self.origin * scale.clone(), self.size * scale)
+ }
+}
+
+impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Rect<T, U> {
+ #[inline]
+ fn mul_assign(&mut self, scale: Scale<T, U, U>) {
+ self.origin *= scale.clone();
+ self.size *= scale;
+ }
+}
+
+impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Rect<T, U2> {
+ type Output = Rect<T::Output, U1>;
+
+ #[inline]
+ fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
+ Rect::new(self.origin / scale.clone(), self.size / scale)
+ }
+}
+
+impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Rect<T, U> {
+ #[inline]
+ fn div_assign(&mut self, scale: Scale<T, U, U>) {
+ self.origin /= scale.clone();
+ self.size /= scale;
+ }
+}
+
+impl<T: Copy, U> Rect<T, U> {
+ /// Drop the units, preserving only the numeric value.
+ #[inline]
+ pub fn to_untyped(&self) -> Rect<T, UnknownUnit> {
+ Rect::new(self.origin.to_untyped(), self.size.to_untyped())
+ }
+
+ /// Tag a unitless value with units.
+ #[inline]
+ pub fn from_untyped(r: &Rect<T, UnknownUnit>) -> Rect<T, U> {
+ Rect::new(
+ Point2D::from_untyped(r.origin),
+ Size2D::from_untyped(r.size),
+ )
+ }
+
+ /// Cast the unit
+ #[inline]
+ pub fn cast_unit<V>(&self) -> Rect<T, V> {
+ Rect::new(self.origin.cast_unit(), self.size.cast_unit())
+ }
+}
+
+impl<T: NumCast + Copy, U> Rect<T, U> {
+ /// Cast from one numeric representation to another, preserving the units.
+ ///
+ /// When casting from floating point to integer coordinates, the decimals are truncated
+ /// as one would expect from a simple cast, but this behavior does not always make sense
+ /// geometrically. Consider using round(), round_in or round_out() before casting.
+ #[inline]
+ pub fn cast<NewT: NumCast>(&self) -> Rect<NewT, U> {
+ Rect::new(self.origin.cast(), self.size.cast())
+ }
+
+ /// Fallible cast from one numeric representation to another, preserving the units.
+ ///
+ /// When casting from floating point to integer coordinates, the decimals are truncated
+ /// as one would expect from a simple cast, but this behavior does not always make sense
+ /// geometrically. Consider using round(), round_in or round_out() before casting.
+ pub fn try_cast<NewT: NumCast>(&self) -> Option<Rect<NewT, U>> {
+ match (self.origin.try_cast(), self.size.try_cast()) {
+ (Some(origin), Some(size)) => Some(Rect::new(origin, size)),
+ _ => None,
+ }
+ }
+
+ // Convenience functions for common casts
+
+ /// Cast into an `f32` rectangle.
+ #[inline]
+ pub fn to_f32(&self) -> Rect<f32, U> {
+ self.cast()
+ }
+
+ /// Cast into an `f64` rectangle.
+ #[inline]
+ pub fn to_f64(&self) -> Rect<f64, U> {
+ self.cast()
+ }
+
+ /// Cast into an `usize` rectangle, truncating decimals if any.
+ ///
+ /// When casting from floating point rectangles, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_usize(&self) -> Rect<usize, U> {
+ self.cast()
+ }
+
+ /// Cast into an `u32` rectangle, truncating decimals if any.
+ ///
+ /// When casting from floating point rectangles, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_u32(&self) -> Rect<u32, U> {
+ self.cast()
+ }
+
+ /// Cast into an `u64` rectangle, truncating decimals if any.
+ ///
+ /// When casting from floating point rectangles, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_u64(&self) -> Rect<u64, U> {
+ self.cast()
+ }
+
+ /// Cast into an `i32` rectangle, truncating decimals if any.
+ ///
+ /// When casting from floating point rectangles, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_i32(&self) -> Rect<i32, U> {
+ self.cast()
+ }
+
+ /// Cast into an `i64` rectangle, truncating decimals if any.
+ ///
+ /// When casting from floating point rectangles, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_i64(&self) -> Rect<i64, U> {
+ self.cast()
+ }
+}
+
+impl<T: Float, U> Rect<T, U> {
+ /// Returns true if all members are finite.
+ #[inline]
+ pub fn is_finite(self) -> bool {
+ self.origin.is_finite() && self.size.is_finite()
+ }
+}
+
+impl<T: Floor + Ceil + Round + Add<T, Output = T> + Sub<T, Output = T>, U> Rect<T, U> {
+ /// Return a rectangle with edges rounded to integer coordinates, such that
+ /// the returned rectangle has the same set of pixel centers as the original
+ /// one.
+ /// Edges at offset 0.5 round up.
+ /// Suitable for most places where integral device coordinates
+ /// are needed, but note that any translation should be applied first to
+ /// avoid pixel rounding errors.
+ /// Note that this is *not* rounding to nearest integer if the values are negative.
+ /// They are always rounding as floor(n + 0.5).
+ ///
+ /// # Usage notes
+ /// Note, that when using with floating-point `T` types that method can significantly
+ /// loose precision for large values, so if you need to call this method very often it
+ /// is better to use [`Box2D`].
+ ///
+ /// [`Box2D`]: struct.Box2D.html
+ #[must_use]
+ pub fn round(&self) -> Self {
+ self.to_box2d().round().to_rect()
+ }
+
+ /// Return a rectangle with edges rounded to integer coordinates, such that
+ /// the original rectangle contains the resulting rectangle.
+ ///
+ /// # Usage notes
+ /// Note, that when using with floating-point `T` types that method can significantly
+ /// loose precision for large values, so if you need to call this method very often it
+ /// is better to use [`Box2D`].
+ ///
+ /// [`Box2D`]: struct.Box2D.html
+ #[must_use]
+ pub fn round_in(&self) -> Self {
+ self.to_box2d().round_in().to_rect()
+ }
+
+ /// Return a rectangle with edges rounded to integer coordinates, such that
+ /// the original rectangle is contained in the resulting rectangle.
+ ///
+ /// # Usage notes
+ /// Note, that when using with floating-point `T` types that method can significantly
+ /// loose precision for large values, so if you need to call this method very often it
+ /// is better to use [`Box2D`].
+ ///
+ /// [`Box2D`]: struct.Box2D.html
+ #[must_use]
+ pub fn round_out(&self) -> Self {
+ self.to_box2d().round_out().to_rect()
+ }
+}
+
+impl<T, U> From<Size2D<T, U>> for Rect<T, U>
+where
+ T: Zero,
+{
+ fn from(size: Size2D<T, U>) -> Self {
+ Self::from_size(size)
+ }
+}
+
+/// Shorthand for `Rect::new(Point2D::new(x, y), Size2D::new(w, h))`.
+pub const fn rect<T, U>(x: T, y: T, w: T, h: T) -> Rect<T, U> {
+ Rect::new(Point2D::new(x, y), Size2D::new(w, h))
+}
+
+#[cfg(test)]
+mod tests {
+ use crate::default::{Point2D, Rect, Size2D};
+ use crate::side_offsets::SideOffsets2D;
+ use crate::{point2, rect, size2, vec2};
+
+ #[test]
+ fn test_translate() {
+ let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
+ let pp = p.translate(vec2(10, 15));
+
+ assert!(pp.size.width == 50);
+ assert!(pp.size.height == 40);
+ assert!(pp.origin.x == 10);
+ assert!(pp.origin.y == 15);
+
+ let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
+ let rr = r.translate(vec2(0, -10));
+
+ assert!(rr.size.width == 50);
+ assert!(rr.size.height == 40);
+ assert!(rr.origin.x == -10);
+ assert!(rr.origin.y == -15);
+ }
+
+ #[test]
+ fn test_union() {
+ let p = Rect::new(Point2D::new(0, 0), Size2D::new(50, 40));
+ let q = Rect::new(Point2D::new(20, 20), Size2D::new(5, 5));
+ let r = Rect::new(Point2D::new(-15, -30), Size2D::new(200, 15));
+ let s = Rect::new(Point2D::new(20, -15), Size2D::new(250, 200));
+
+ let pq = p.union(&q);
+ assert!(pq.origin == Point2D::new(0, 0));
+ assert!(pq.size == Size2D::new(50, 40));
+
+ let pr = p.union(&r);
+ assert!(pr.origin == Point2D::new(-15, -30));
+ assert!(pr.size == Size2D::new(200, 70));
+
+ let ps = p.union(&s);
+ assert!(ps.origin == Point2D::new(0, -15));
+ assert!(ps.size == Size2D::new(270, 200));
+ }
+
+ #[test]
+ fn test_intersection() {
+ let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));
+ let q = Rect::new(Point2D::new(5, 15), Size2D::new(10, 10));
+ let r = Rect::new(Point2D::new(-5, -5), Size2D::new(8, 8));
+
+ let pq = p.intersection(&q);
+ assert!(pq.is_some());
+ let pq = pq.unwrap();
+ assert!(pq.origin == Point2D::new(5, 15));
+ assert!(pq.size == Size2D::new(5, 5));
+
+ let pr = p.intersection(&r);
+ assert!(pr.is_some());
+ let pr = pr.unwrap();
+ assert!(pr.origin == Point2D::new(0, 0));
+ assert!(pr.size == Size2D::new(3, 3));
+
+ let qr = q.intersection(&r);
+ assert!(qr.is_none());
+ }
+
+ #[test]
+ fn test_intersection_overflow() {
+ // test some scenarios where the intersection can overflow but
+ // the min_x() and max_x() don't. Gecko currently fails these cases
+ let p = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(0, 0));
+ let q = Rect::new(
+ Point2D::new(2136893440, 2136893440),
+ Size2D::new(279552, 279552),
+ );
+ let r = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(1, 1));
+
+ assert!(p.is_empty());
+ let pq = p.intersection(&q);
+ assert!(pq.is_none());
+
+ let qr = q.intersection(&r);
+ assert!(qr.is_none());
+ }
+
+ #[test]
+ fn test_contains() {
+ let r = Rect::new(Point2D::new(-20, 15), Size2D::new(100, 200));
+
+ assert!(r.contains(Point2D::new(0, 50)));
+ assert!(r.contains(Point2D::new(-10, 200)));
+
+ // The `contains` method is inclusive of the top/left edges, but not the
+ // bottom/right edges.
+ assert!(r.contains(Point2D::new(-20, 15)));
+ assert!(!r.contains(Point2D::new(80, 15)));
+ assert!(!r.contains(Point2D::new(80, 215)));
+ assert!(!r.contains(Point2D::new(-20, 215)));
+
+ // Points beyond the top-left corner.
+ assert!(!r.contains(Point2D::new(-25, 15)));
+ assert!(!r.contains(Point2D::new(-15, 10)));
+
+ // Points beyond the top-right corner.
+ assert!(!r.contains(Point2D::new(85, 20)));
+ assert!(!r.contains(Point2D::new(75, 10)));
+
+ // Points beyond the bottom-right corner.
+ assert!(!r.contains(Point2D::new(85, 210)));
+ assert!(!r.contains(Point2D::new(75, 220)));
+
+ // Points beyond the bottom-left corner.
+ assert!(!r.contains(Point2D::new(-25, 210)));
+ assert!(!r.contains(Point2D::new(-15, 220)));
+
+ let r = Rect::new(Point2D::new(-20.0, 15.0), Size2D::new(100.0, 200.0));
+ assert!(r.contains_rect(&r));
+ assert!(!r.contains_rect(&r.translate(vec2(0.1, 0.0))));
+ assert!(!r.contains_rect(&r.translate(vec2(-0.1, 0.0))));
+ assert!(!r.contains_rect(&r.translate(vec2(0.0, 0.1))));
+ assert!(!r.contains_rect(&r.translate(vec2(0.0, -0.1))));
+ // Empty rectangles are always considered as contained in other rectangles,
+ // even if their origin is not.
+ let p = Point2D::new(1.0, 1.0);
+ assert!(!r.contains(p));
+ assert!(r.contains_rect(&Rect::new(p, Size2D::zero())));
+ }
+
+ #[test]
+ fn test_scale() {
+ let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
+ let pp = p.scale(10, 15);
+
+ assert!(pp.size.width == 500);
+ assert!(pp.size.height == 600);
+ assert!(pp.origin.x == 0);
+ assert!(pp.origin.y == 0);
+
+ let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
+ let rr = r.scale(1, 20);
+
+ assert!(rr.size.width == 50);
+ assert!(rr.size.height == 800);
+ assert!(rr.origin.x == -10);
+ assert!(rr.origin.y == -100);
+ }
+
+ #[test]
+ fn test_inflate() {
+ let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 10));
+ let pp = p.inflate(10, 20);
+
+ assert!(pp.size.width == 30);
+ assert!(pp.size.height == 50);
+ assert!(pp.origin.x == -10);
+ assert!(pp.origin.y == -20);
+
+ let r = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));
+ let rr = r.inflate(-2, -5);
+
+ assert!(rr.size.width == 6);
+ assert!(rr.size.height == 10);
+ assert!(rr.origin.x == 2);
+ assert!(rr.origin.y == 5);
+ }
+
+ #[test]
+ fn test_inner_outer_rect() {
+ let inner_rect = Rect::new(point2(20, 40), size2(80, 100));
+ let offsets = SideOffsets2D::new(20, 10, 10, 10);
+ let outer_rect = inner_rect.outer_rect(offsets);
+ assert_eq!(outer_rect.origin.x, 10);
+ assert_eq!(outer_rect.origin.y, 20);
+ assert_eq!(outer_rect.size.width, 100);
+ assert_eq!(outer_rect.size.height, 130);
+ assert_eq!(outer_rect.inner_rect(offsets), inner_rect);
+ }
+
+ #[test]
+ fn test_min_max_x_y() {
+ let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
+ assert!(p.max_y() == 40);
+ assert!(p.min_y() == 0);
+ assert!(p.max_x() == 50);
+ assert!(p.min_x() == 0);
+
+ let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
+ assert!(r.max_y() == 35);
+ assert!(r.min_y() == -5);
+ assert!(r.max_x() == 40);
+ assert!(r.min_x() == -10);
+ }
+
+ #[test]
+ fn test_width_height() {
+ let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
+ assert!(r.width() == 50);
+ assert!(r.height() == 40);
+ }
+
+ #[test]
+ fn test_is_empty() {
+ assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 0u32)).is_empty());
+ assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(10u32, 0u32)).is_empty());
+ assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 10u32)).is_empty());
+ assert!(!Rect::new(Point2D::new(0u32, 0u32), Size2D::new(1u32, 1u32)).is_empty());
+ assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 0u32)).is_empty());
+ assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(10u32, 0u32)).is_empty());
+ assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 10u32)).is_empty());
+ assert!(!Rect::new(Point2D::new(10u32, 10u32), Size2D::new(1u32, 1u32)).is_empty());
+ }
+
+ #[test]
+ fn test_round() {
+ let mut x = -2.0;
+ let mut y = -2.0;
+ let mut w = -2.0;
+ let mut h = -2.0;
+ while x < 2.0 {
+ while y < 2.0 {
+ while w < 2.0 {
+ while h < 2.0 {
+ let rect = Rect::new(Point2D::new(x, y), Size2D::new(w, h));
+
+ assert!(rect.contains_rect(&rect.round_in()));
+ assert!(rect.round_in().inflate(1.0, 1.0).contains_rect(&rect));
+
+ assert!(rect.round_out().contains_rect(&rect));
+ assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round_out()));
+
+ assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round()));
+ assert!(rect.round().inflate(1.0, 1.0).contains_rect(&rect));
+
+ h += 0.1;
+ }
+ w += 0.1;
+ }
+ y += 0.1;
+ }
+ x += 0.1
+ }
+ }
+
+ #[test]
+ fn test_center() {
+ let r: Rect<i32> = rect(-2, 5, 4, 10);
+ assert_eq!(r.center(), point2(0, 10));
+
+ let r: Rect<f32> = rect(1.0, 2.0, 3.0, 4.0);
+ assert_eq!(r.center(), point2(2.5, 4.0));
+ }
+
+ #[test]
+ fn test_nan() {
+ let r1: Rect<f32> = rect(-2.0, 5.0, 4.0, std::f32::NAN);
+ let r2: Rect<f32> = rect(std::f32::NAN, -1.0, 3.0, 10.0);
+
+ assert_eq!(r1.intersection(&r2), None);
+ }
+}