diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/siphasher/src/sip128.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/siphasher/src/sip128.rs')
-rw-r--r-- | third_party/rust/siphasher/src/sip128.rs | 671 |
1 files changed, 671 insertions, 0 deletions
diff --git a/third_party/rust/siphasher/src/sip128.rs b/third_party/rust/siphasher/src/sip128.rs new file mode 100644 index 0000000000..cabf8e3a3a --- /dev/null +++ b/third_party/rust/siphasher/src/sip128.rs @@ -0,0 +1,671 @@ +// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! An implementation of SipHash with a 128-bit output. + +use core::cmp; +use core::hash; +use core::marker::PhantomData; +use core::mem; +use core::ptr; +use core::u64; + +/// A 128-bit (2x64) hash output +#[derive(Debug, Clone, Copy, Default)] +#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))] +pub struct Hash128 { + pub h1: u64, + pub h2: u64, +} + +impl From<u128> for Hash128 { + fn from(v: u128) -> Self { + Hash128 { + h1: v as u64, + h2: (v >> 64) as u64, + } + } +} + +impl From<Hash128> for u128 { + fn from(h: Hash128) -> u128 { + (h.h1 as u128) | ((h.h2 as u128) << 64) + } +} + +/// An implementation of SipHash128 1-3. +#[derive(Debug, Clone, Copy, Default)] +#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))] +pub struct SipHasher13 { + hasher: Hasher<Sip13Rounds>, +} + +/// An implementation of SipHash128 2-4. +#[derive(Debug, Clone, Copy, Default)] +#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))] +pub struct SipHasher24 { + hasher: Hasher<Sip24Rounds>, +} + +/// An implementation of SipHash128 2-4. +/// +/// SipHash is a general-purpose hashing function: it runs at a good +/// speed (competitive with Spooky and City) and permits strong _keyed_ +/// hashing. This lets you key your hashtables from a strong RNG, such as +/// [`rand::os::OsRng`](https://doc.rust-lang.org/rand/rand/os/struct.OsRng.html). +/// +/// Although the SipHash algorithm is considered to be generally strong, +/// it is not intended for cryptographic purposes. As such, all +/// cryptographic uses of this implementation are _strongly discouraged_. +#[derive(Debug, Clone, Copy, Default)] +pub struct SipHasher(SipHasher24); + +#[derive(Debug, Copy)] +#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))] +struct Hasher<S: Sip> { + k0: u64, + k1: u64, + length: usize, // how many bytes we've processed + state: State, // hash State + tail: u64, // unprocessed bytes le + ntail: usize, // how many bytes in tail are valid + _marker: PhantomData<S>, +} + +#[derive(Debug, Clone, Copy)] +#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))] +struct State { + // v0, v2 and v1, v3 show up in pairs in the algorithm, + // and simd implementations of SipHash will use vectors + // of v02 and v13. By placing them in this order in the struct, + // the compiler can pick up on just a few simd optimizations by itself. + v0: u64, + v2: u64, + v1: u64, + v3: u64, +} + +macro_rules! compress { + ($state:expr) => {{ + compress!($state.v0, $state.v1, $state.v2, $state.v3) + }}; + ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{ + $v0 = $v0.wrapping_add($v1); + $v1 = $v1.rotate_left(13); + $v1 ^= $v0; + $v0 = $v0.rotate_left(32); + $v2 = $v2.wrapping_add($v3); + $v3 = $v3.rotate_left(16); + $v3 ^= $v2; + $v0 = $v0.wrapping_add($v3); + $v3 = $v3.rotate_left(21); + $v3 ^= $v0; + $v2 = $v2.wrapping_add($v1); + $v1 = $v1.rotate_left(17); + $v1 ^= $v2; + $v2 = $v2.rotate_left(32); + }}; +} + +/// Loads an integer of the desired type from a byte stream, in LE order. Uses +/// `copy_nonoverlapping` to let the compiler generate the most efficient way +/// to load it from a possibly unaligned address. +/// +/// Unsafe because: unchecked indexing at `i..i+size_of(int_ty)` +macro_rules! load_int_le { + ($buf:expr, $i:expr, $int_ty:ident) => {{ + debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len()); + let mut data = 0 as $int_ty; + ptr::copy_nonoverlapping( + $buf.as_ptr().add($i), + &mut data as *mut _ as *mut u8, + mem::size_of::<$int_ty>(), + ); + data.to_le() + }}; +} + +/// Loads a u64 using up to 7 bytes of a byte slice. It looks clumsy but the +/// `copy_nonoverlapping` calls that occur (via `load_int_le!`) all have fixed +/// sizes and avoid calling `memcpy`, which is good for speed. +/// +/// Unsafe because: unchecked indexing at start..start+len +#[inline] +unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 { + debug_assert!(len < 8); + let mut i = 0; // current byte index (from LSB) in the output u64 + let mut out = 0; + if i + 3 < len { + out = load_int_le!(buf, start + i, u32) as u64; + i += 4; + } + if i + 1 < len { + out |= (load_int_le!(buf, start + i, u16) as u64) << (i * 8); + i += 2 + } + if i < len { + out |= (*buf.get_unchecked(start + i) as u64) << (i * 8); + i += 1; + } + debug_assert_eq!(i, len); + out +} + +pub trait Hasher128 { + /// Return a 128-bit hash + fn finish128(&self) -> Hash128; +} + +impl SipHasher { + /// Creates a new `SipHasher` with the two initial keys set to 0. + #[inline] + pub fn new() -> SipHasher { + SipHasher::new_with_keys(0, 0) + } + + /// Creates a `SipHasher` that is keyed off the provided keys. + #[inline] + pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher { + SipHasher(SipHasher24::new_with_keys(key0, key1)) + } + + /// Creates a `SipHasher` from a 16 byte key. + pub fn new_with_key(key: &[u8; 16]) -> SipHasher { + let mut b0 = [0u8; 8]; + let mut b1 = [0u8; 8]; + b0.copy_from_slice(&key[0..8]); + b1.copy_from_slice(&key[8..16]); + let key0 = u64::from_le_bytes(b0); + let key1 = u64::from_le_bytes(b1); + Self::new_with_keys(key0, key1) + } + + /// Get the keys used by this hasher + pub fn keys(&self) -> (u64, u64) { + (self.0.hasher.k0, self.0.hasher.k1) + } + + /// Get the key used by this hasher as a 16 byte vector + pub fn key(&self) -> [u8; 16] { + let mut bytes = [0u8; 16]; + bytes[0..8].copy_from_slice(&self.0.hasher.k0.to_le_bytes()); + bytes[8..16].copy_from_slice(&self.0.hasher.k1.to_le_bytes()); + bytes + } +} + +impl Hasher128 for SipHasher { + /// Return a 128-bit hash + #[inline] + fn finish128(&self) -> Hash128 { + self.0.finish128() + } +} + +impl SipHasher13 { + /// Creates a new `SipHasher13` with the two initial keys set to 0. + #[inline] + pub fn new() -> SipHasher13 { + SipHasher13::new_with_keys(0, 0) + } + + /// Creates a `SipHasher13` that is keyed off the provided keys. + #[inline] + pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher13 { + SipHasher13 { + hasher: Hasher::new_with_keys(key0, key1), + } + } + + /// Creates a `SipHasher13` from a 16 byte key. + pub fn new_with_key(key: &[u8; 16]) -> SipHasher13 { + let mut b0 = [0u8; 8]; + let mut b1 = [0u8; 8]; + b0.copy_from_slice(&key[0..8]); + b1.copy_from_slice(&key[8..16]); + let key0 = u64::from_le_bytes(b0); + let key1 = u64::from_le_bytes(b1); + Self::new_with_keys(key0, key1) + } + + /// Get the keys used by this hasher + pub fn keys(&self) -> (u64, u64) { + (self.hasher.k0, self.hasher.k1) + } + + /// Get the key used by this hasher as a 16 byte vector + pub fn key(&self) -> [u8; 16] { + let mut bytes = [0u8; 16]; + bytes[0..8].copy_from_slice(&self.hasher.k0.to_le_bytes()); + bytes[8..16].copy_from_slice(&self.hasher.k1.to_le_bytes()); + bytes + } +} + +impl Hasher128 for SipHasher13 { + /// Return a 128-bit hash + #[inline] + fn finish128(&self) -> Hash128 { + self.hasher.finish128() + } +} + +impl SipHasher24 { + /// Creates a new `SipHasher24` with the two initial keys set to 0. + #[inline] + pub fn new() -> SipHasher24 { + SipHasher24::new_with_keys(0, 0) + } + + /// Creates a `SipHasher24` that is keyed off the provided keys. + #[inline] + pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher24 { + SipHasher24 { + hasher: Hasher::new_with_keys(key0, key1), + } + } + + /// Creates a `SipHasher24` from a 16 byte key. + pub fn new_with_key(key: &[u8; 16]) -> SipHasher24 { + let mut b0 = [0u8; 8]; + let mut b1 = [0u8; 8]; + b0.copy_from_slice(&key[0..8]); + b1.copy_from_slice(&key[8..16]); + let key0 = u64::from_le_bytes(b0); + let key1 = u64::from_le_bytes(b1); + Self::new_with_keys(key0, key1) + } + + /// Get the keys used by this hasher + pub fn keys(&self) -> (u64, u64) { + (self.hasher.k0, self.hasher.k1) + } + + /// Get the key used by this hasher as a 16 byte vector + pub fn key(&self) -> [u8; 16] { + let mut bytes = [0u8; 16]; + bytes[0..8].copy_from_slice(&self.hasher.k0.to_le_bytes()); + bytes[8..16].copy_from_slice(&self.hasher.k1.to_le_bytes()); + bytes + } +} + +impl Hasher128 for SipHasher24 { + /// Return a 128-bit hash + #[inline] + fn finish128(&self) -> Hash128 { + self.hasher.finish128() + } +} + +impl<S: Sip> Hasher<S> { + #[inline] + fn new_with_keys(key0: u64, key1: u64) -> Hasher<S> { + let mut state = Hasher { + k0: key0, + k1: key1, + length: 0, + state: State { + v0: 0, + v1: 0xee, + v2: 0, + v3: 0, + }, + tail: 0, + ntail: 0, + _marker: PhantomData, + }; + state.reset(); + state + } + + #[inline] + fn reset(&mut self) { + self.length = 0; + self.state.v0 = self.k0 ^ 0x736f6d6570736575; + self.state.v1 = self.k1 ^ 0x646f72616e646f83; + self.state.v2 = self.k0 ^ 0x6c7967656e657261; + self.state.v3 = self.k1 ^ 0x7465646279746573; + self.ntail = 0; + } + + // A specialized write function for values with size <= 8. + // + // The hashing of multi-byte integers depends on endianness. E.g.: + // - little-endian: `write_u32(0xDDCCBBAA)` == `write([0xAA, 0xBB, 0xCC, 0xDD])` + // - big-endian: `write_u32(0xDDCCBBAA)` == `write([0xDD, 0xCC, 0xBB, 0xAA])` + // + // This function does the right thing for little-endian hardware. On + // big-endian hardware `x` must be byte-swapped first to give the right + // behaviour. After any byte-swapping, the input must be zero-extended to + // 64-bits. The caller is responsible for the byte-swapping and + // zero-extension. + #[inline] + fn short_write<T>(&mut self, _x: T, x: u64) { + let size = mem::size_of::<T>(); + self.length += size; + + // The original number must be zero-extended, not sign-extended. + debug_assert!(if size < 8 { x >> (8 * size) == 0 } else { true }); + + // The number of bytes needed to fill `self.tail`. + let needed = 8 - self.ntail; + + self.tail |= x << (8 * self.ntail); + if size < needed { + self.ntail += size; + return; + } + + // `self.tail` is full, process it. + self.state.v3 ^= self.tail; + S::c_rounds(&mut self.state); + self.state.v0 ^= self.tail; + + self.ntail = size - needed; + self.tail = if needed < 8 { x >> (8 * needed) } else { 0 }; + } +} + +impl<S: Sip> Hasher<S> { + #[inline] + pub fn finish128(&self) -> Hash128 { + let mut state = self.state; + + let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail; + + state.v3 ^= b; + S::c_rounds(&mut state); + state.v0 ^= b; + + state.v2 ^= 0xee; + S::d_rounds(&mut state); + let h1 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3; + + state.v1 ^= 0xdd; + S::d_rounds(&mut state); + let h2 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3; + + Hash128 { h1, h2 } + } +} + +impl hash::Hasher for SipHasher { + #[inline] + fn write(&mut self, msg: &[u8]) { + self.0.write(msg) + } + + #[inline] + fn finish(&self) -> u64 { + self.0.finish() + } + + #[inline] + fn write_usize(&mut self, i: usize) { + self.0.write_usize(i); + } + + #[inline] + fn write_u8(&mut self, i: u8) { + self.0.write_u8(i); + } + + #[inline] + fn write_u16(&mut self, i: u16) { + self.0.write_u16(i); + } + + #[inline] + fn write_u32(&mut self, i: u32) { + self.0.write_u32(i); + } + + #[inline] + fn write_u64(&mut self, i: u64) { + self.0.write_u64(i); + } +} + +impl hash::Hasher for SipHasher13 { + #[inline] + fn write(&mut self, msg: &[u8]) { + self.hasher.write(msg) + } + + #[inline] + fn finish(&self) -> u64 { + self.hasher.finish() + } + + #[inline] + fn write_usize(&mut self, i: usize) { + self.hasher.write_usize(i); + } + + #[inline] + fn write_u8(&mut self, i: u8) { + self.hasher.write_u8(i); + } + + #[inline] + fn write_u16(&mut self, i: u16) { + self.hasher.write_u16(i); + } + + #[inline] + fn write_u32(&mut self, i: u32) { + self.hasher.write_u32(i); + } + + #[inline] + fn write_u64(&mut self, i: u64) { + self.hasher.write_u64(i); + } +} + +impl hash::Hasher for SipHasher24 { + #[inline] + fn write(&mut self, msg: &[u8]) { + self.hasher.write(msg) + } + + #[inline] + fn finish(&self) -> u64 { + self.hasher.finish() + } + + #[inline] + fn write_usize(&mut self, i: usize) { + self.hasher.write_usize(i); + } + + #[inline] + fn write_u8(&mut self, i: u8) { + self.hasher.write_u8(i); + } + + #[inline] + fn write_u16(&mut self, i: u16) { + self.hasher.write_u16(i); + } + + #[inline] + fn write_u32(&mut self, i: u32) { + self.hasher.write_u32(i); + } + + #[inline] + fn write_u64(&mut self, i: u64) { + self.hasher.write_u64(i); + } +} + +impl<S: Sip> hash::Hasher for Hasher<S> { + #[inline] + fn write_usize(&mut self, i: usize) { + self.short_write(i, i.to_le() as u64); + } + + #[inline] + fn write_u8(&mut self, i: u8) { + self.short_write(i, i as u64); + } + + #[inline] + fn write_u32(&mut self, i: u32) { + self.short_write(i, i.to_le() as u64); + } + + #[inline] + fn write_u64(&mut self, i: u64) { + self.short_write(i, i.to_le() as u64); + } + + #[inline] + fn write(&mut self, msg: &[u8]) { + let length = msg.len(); + self.length += length; + + let mut needed = 0; + + if self.ntail != 0 { + needed = 8 - self.ntail; + self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail); + if length < needed { + self.ntail += length; + return; + } else { + self.state.v3 ^= self.tail; + S::c_rounds(&mut self.state); + self.state.v0 ^= self.tail; + self.ntail = 0; + } + } + + // Buffered tail is now flushed, process new input. + let len = length - needed; + let left = len & 0x7; + + let mut i = needed; + while i < len - left { + let mi = unsafe { load_int_le!(msg, i, u64) }; + + self.state.v3 ^= mi; + S::c_rounds(&mut self.state); + self.state.v0 ^= mi; + + i += 8; + } + + self.tail = unsafe { u8to64_le(msg, i, left) }; + self.ntail = left; + } + + #[inline] + fn finish(&self) -> u64 { + self.finish128().h2 + } +} + +impl<S: Sip> Clone for Hasher<S> { + #[inline] + fn clone(&self) -> Hasher<S> { + Hasher { + k0: self.k0, + k1: self.k1, + length: self.length, + state: self.state, + tail: self.tail, + ntail: self.ntail, + _marker: self._marker, + } + } +} + +impl<S: Sip> Default for Hasher<S> { + /// Creates a `Hasher<S>` with the two initial keys set to 0. + #[inline] + fn default() -> Hasher<S> { + Hasher::new_with_keys(0, 0) + } +} + +#[doc(hidden)] +trait Sip { + fn c_rounds(_: &mut State); + fn d_rounds(_: &mut State); +} + +#[derive(Debug, Clone, Copy, Default)] +struct Sip13Rounds; + +impl Sip for Sip13Rounds { + #[inline] + fn c_rounds(state: &mut State) { + compress!(state); + } + + #[inline] + fn d_rounds(state: &mut State) { + compress!(state); + compress!(state); + compress!(state); + } +} + +#[derive(Debug, Clone, Copy, Default)] +struct Sip24Rounds; + +impl Sip for Sip24Rounds { + #[inline] + fn c_rounds(state: &mut State) { + compress!(state); + compress!(state); + } + + #[inline] + fn d_rounds(state: &mut State) { + compress!(state); + compress!(state); + compress!(state); + compress!(state); + } +} + +impl Hash128 { + /// Convert into a 16-bytes vector + pub fn as_bytes(&self) -> [u8; 16] { + let mut bytes = [0u8; 16]; + let h1 = self.h1.to_le(); + let h2 = self.h2.to_le(); + unsafe { + ptr::copy_nonoverlapping(&h1 as *const _ as *const u8, bytes.as_mut_ptr(), 8); + ptr::copy_nonoverlapping(&h2 as *const _ as *const u8, bytes.as_mut_ptr().add(8), 8); + } + bytes + } + + /// Convert into a `u128` + #[inline] + pub fn as_u128(&self) -> u128 { + let h1 = self.h1.to_le(); + let h2 = self.h2.to_le(); + h1 as u128 | ((h2 as u128) << 64) + } + + /// Convert into `(u64, u64)` + #[inline] + pub fn as_u64(&self) -> (u64, u64) { + let h1 = self.h1.to_le(); + let h2 = self.h2.to_le(); + (h1, h2) + } +} |