summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio/src/net
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/tokio/src/net
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/tokio/src/net')
-rw-r--r--third_party/rust/tokio/src/net/addr.rs318
-rw-r--r--third_party/rust/tokio/src/net/lookup_host.rs38
-rw-r--r--third_party/rust/tokio/src/net/mod.rs52
-rw-r--r--third_party/rust/tokio/src/net/tcp/listener.rs397
-rw-r--r--third_party/rust/tokio/src/net/tcp/mod.rs14
-rw-r--r--third_party/rust/tokio/src/net/tcp/socket.rs690
-rw-r--r--third_party/rust/tokio/src/net/tcp/split.rs401
-rw-r--r--third_party/rust/tokio/src/net/tcp/split_owned.rs485
-rw-r--r--third_party/rust/tokio/src/net/tcp/stream.rs1310
-rw-r--r--third_party/rust/tokio/src/net/udp.rs1589
-rw-r--r--third_party/rust/tokio/src/net/unix/datagram/mod.rs3
-rw-r--r--third_party/rust/tokio/src/net/unix/datagram/socket.rs1422
-rw-r--r--third_party/rust/tokio/src/net/unix/listener.rs186
-rw-r--r--third_party/rust/tokio/src/net/unix/mod.rs24
-rw-r--r--third_party/rust/tokio/src/net/unix/socketaddr.rs31
-rw-r--r--third_party/rust/tokio/src/net/unix/split.rs305
-rw-r--r--third_party/rust/tokio/src/net/unix/split_owned.rs393
-rw-r--r--third_party/rust/tokio/src/net/unix/stream.rs960
-rw-r--r--third_party/rust/tokio/src/net/unix/ucred.rs252
-rw-r--r--third_party/rust/tokio/src/net/windows/mod.rs3
-rw-r--r--third_party/rust/tokio/src/net/windows/named_pipe.rs2250
21 files changed, 11123 insertions, 0 deletions
diff --git a/third_party/rust/tokio/src/net/addr.rs b/third_party/rust/tokio/src/net/addr.rs
new file mode 100644
index 0000000000..13f743c962
--- /dev/null
+++ b/third_party/rust/tokio/src/net/addr.rs
@@ -0,0 +1,318 @@
+use std::future;
+use std::io;
+use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6};
+
+/// Converts or resolves without blocking to one or more `SocketAddr` values.
+///
+/// # DNS
+///
+/// Implementations of `ToSocketAddrs` for string types require a DNS lookup.
+///
+/// # Calling
+///
+/// Currently, this trait is only used as an argument to Tokio functions that
+/// need to reference a target socket address. To perform a `SocketAddr`
+/// conversion directly, use [`lookup_host()`](super::lookup_host()).
+///
+/// This trait is sealed and is intended to be opaque. The details of the trait
+/// will change. Stabilization is pending enhancements to the Rust language.
+pub trait ToSocketAddrs: sealed::ToSocketAddrsPriv {}
+
+type ReadyFuture<T> = future::Ready<io::Result<T>>;
+
+cfg_net! {
+ pub(crate) fn to_socket_addrs<T>(arg: T) -> T::Future
+ where
+ T: ToSocketAddrs,
+ {
+ arg.to_socket_addrs(sealed::Internal)
+ }
+}
+
+// ===== impl &impl ToSocketAddrs =====
+
+impl<T: ToSocketAddrs + ?Sized> ToSocketAddrs for &T {}
+
+impl<T> sealed::ToSocketAddrsPriv for &T
+where
+ T: sealed::ToSocketAddrsPriv + ?Sized,
+{
+ type Iter = T::Iter;
+ type Future = T::Future;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ (**self).to_socket_addrs(sealed::Internal)
+ }
+}
+
+// ===== impl SocketAddr =====
+
+impl ToSocketAddrs for SocketAddr {}
+
+impl sealed::ToSocketAddrsPriv for SocketAddr {
+ type Iter = std::option::IntoIter<SocketAddr>;
+ type Future = ReadyFuture<Self::Iter>;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ let iter = Some(*self).into_iter();
+ future::ready(Ok(iter))
+ }
+}
+
+// ===== impl SocketAddrV4 =====
+
+impl ToSocketAddrs for SocketAddrV4 {}
+
+impl sealed::ToSocketAddrsPriv for SocketAddrV4 {
+ type Iter = std::option::IntoIter<SocketAddr>;
+ type Future = ReadyFuture<Self::Iter>;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ SocketAddr::V4(*self).to_socket_addrs(sealed::Internal)
+ }
+}
+
+// ===== impl SocketAddrV6 =====
+
+impl ToSocketAddrs for SocketAddrV6 {}
+
+impl sealed::ToSocketAddrsPriv for SocketAddrV6 {
+ type Iter = std::option::IntoIter<SocketAddr>;
+ type Future = ReadyFuture<Self::Iter>;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ SocketAddr::V6(*self).to_socket_addrs(sealed::Internal)
+ }
+}
+
+// ===== impl (IpAddr, u16) =====
+
+impl ToSocketAddrs for (IpAddr, u16) {}
+
+impl sealed::ToSocketAddrsPriv for (IpAddr, u16) {
+ type Iter = std::option::IntoIter<SocketAddr>;
+ type Future = ReadyFuture<Self::Iter>;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ let iter = Some(SocketAddr::from(*self)).into_iter();
+ future::ready(Ok(iter))
+ }
+}
+
+// ===== impl (Ipv4Addr, u16) =====
+
+impl ToSocketAddrs for (Ipv4Addr, u16) {}
+
+impl sealed::ToSocketAddrsPriv for (Ipv4Addr, u16) {
+ type Iter = std::option::IntoIter<SocketAddr>;
+ type Future = ReadyFuture<Self::Iter>;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ let (ip, port) = *self;
+ SocketAddrV4::new(ip, port).to_socket_addrs(sealed::Internal)
+ }
+}
+
+// ===== impl (Ipv6Addr, u16) =====
+
+impl ToSocketAddrs for (Ipv6Addr, u16) {}
+
+impl sealed::ToSocketAddrsPriv for (Ipv6Addr, u16) {
+ type Iter = std::option::IntoIter<SocketAddr>;
+ type Future = ReadyFuture<Self::Iter>;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ let (ip, port) = *self;
+ SocketAddrV6::new(ip, port, 0, 0).to_socket_addrs(sealed::Internal)
+ }
+}
+
+// ===== impl &[SocketAddr] =====
+
+impl ToSocketAddrs for &[SocketAddr] {}
+
+impl sealed::ToSocketAddrsPriv for &[SocketAddr] {
+ type Iter = std::vec::IntoIter<SocketAddr>;
+ type Future = ReadyFuture<Self::Iter>;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ let iter = self.to_vec().into_iter();
+ future::ready(Ok(iter))
+ }
+}
+
+cfg_net! {
+ // ===== impl str =====
+
+ impl ToSocketAddrs for str {}
+
+ impl sealed::ToSocketAddrsPriv for str {
+ type Iter = sealed::OneOrMore;
+ type Future = sealed::MaybeReady;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ use crate::blocking::spawn_blocking;
+ use sealed::MaybeReady;
+
+ // First check if the input parses as a socket address
+ let res: Result<SocketAddr, _> = self.parse();
+
+ if let Ok(addr) = res {
+ return MaybeReady(sealed::State::Ready(Some(addr)));
+ }
+
+ // Run DNS lookup on the blocking pool
+ let s = self.to_owned();
+
+ MaybeReady(sealed::State::Blocking(spawn_blocking(move || {
+ std::net::ToSocketAddrs::to_socket_addrs(&s)
+ })))
+ }
+ }
+
+ // ===== impl (&str, u16) =====
+
+ impl ToSocketAddrs for (&str, u16) {}
+
+ impl sealed::ToSocketAddrsPriv for (&str, u16) {
+ type Iter = sealed::OneOrMore;
+ type Future = sealed::MaybeReady;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ use crate::blocking::spawn_blocking;
+ use sealed::MaybeReady;
+
+ let (host, port) = *self;
+
+ // try to parse the host as a regular IP address first
+ if let Ok(addr) = host.parse::<Ipv4Addr>() {
+ let addr = SocketAddrV4::new(addr, port);
+ let addr = SocketAddr::V4(addr);
+
+ return MaybeReady(sealed::State::Ready(Some(addr)));
+ }
+
+ if let Ok(addr) = host.parse::<Ipv6Addr>() {
+ let addr = SocketAddrV6::new(addr, port, 0, 0);
+ let addr = SocketAddr::V6(addr);
+
+ return MaybeReady(sealed::State::Ready(Some(addr)));
+ }
+
+ let host = host.to_owned();
+
+ MaybeReady(sealed::State::Blocking(spawn_blocking(move || {
+ std::net::ToSocketAddrs::to_socket_addrs(&(&host[..], port))
+ })))
+ }
+ }
+
+ // ===== impl (String, u16) =====
+
+ impl ToSocketAddrs for (String, u16) {}
+
+ impl sealed::ToSocketAddrsPriv for (String, u16) {
+ type Iter = sealed::OneOrMore;
+ type Future = sealed::MaybeReady;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ (self.0.as_str(), self.1).to_socket_addrs(sealed::Internal)
+ }
+ }
+
+ // ===== impl String =====
+
+ impl ToSocketAddrs for String {}
+
+ impl sealed::ToSocketAddrsPriv for String {
+ type Iter = <str as sealed::ToSocketAddrsPriv>::Iter;
+ type Future = <str as sealed::ToSocketAddrsPriv>::Future;
+
+ fn to_socket_addrs(&self, _: sealed::Internal) -> Self::Future {
+ (&self[..]).to_socket_addrs(sealed::Internal)
+ }
+ }
+}
+
+pub(crate) mod sealed {
+ //! The contents of this trait are intended to remain private and __not__
+ //! part of the `ToSocketAddrs` public API. The details will change over
+ //! time.
+
+ use std::future::Future;
+ use std::io;
+ use std::net::SocketAddr;
+
+ #[doc(hidden)]
+ pub trait ToSocketAddrsPriv {
+ type Iter: Iterator<Item = SocketAddr> + Send + 'static;
+ type Future: Future<Output = io::Result<Self::Iter>> + Send + 'static;
+
+ fn to_socket_addrs(&self, internal: Internal) -> Self::Future;
+ }
+
+ #[allow(missing_debug_implementations)]
+ pub struct Internal;
+
+ cfg_net! {
+ use crate::blocking::JoinHandle;
+
+ use std::option;
+ use std::pin::Pin;
+ use std::task::{Context, Poll};
+ use std::vec;
+
+ #[doc(hidden)]
+ #[derive(Debug)]
+ pub struct MaybeReady(pub(super) State);
+
+ #[derive(Debug)]
+ pub(super) enum State {
+ Ready(Option<SocketAddr>),
+ Blocking(JoinHandle<io::Result<vec::IntoIter<SocketAddr>>>),
+ }
+
+ #[doc(hidden)]
+ #[derive(Debug)]
+ pub enum OneOrMore {
+ One(option::IntoIter<SocketAddr>),
+ More(vec::IntoIter<SocketAddr>),
+ }
+
+ impl Future for MaybeReady {
+ type Output = io::Result<OneOrMore>;
+
+ fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ match self.0 {
+ State::Ready(ref mut i) => {
+ let iter = OneOrMore::One(i.take().into_iter());
+ Poll::Ready(Ok(iter))
+ }
+ State::Blocking(ref mut rx) => {
+ let res = ready!(Pin::new(rx).poll(cx))?.map(OneOrMore::More);
+
+ Poll::Ready(res)
+ }
+ }
+ }
+ }
+
+ impl Iterator for OneOrMore {
+ type Item = SocketAddr;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ match self {
+ OneOrMore::One(i) => i.next(),
+ OneOrMore::More(i) => i.next(),
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ match self {
+ OneOrMore::One(i) => i.size_hint(),
+ OneOrMore::More(i) => i.size_hint(),
+ }
+ }
+ }
+ }
+}
diff --git a/third_party/rust/tokio/src/net/lookup_host.rs b/third_party/rust/tokio/src/net/lookup_host.rs
new file mode 100644
index 0000000000..28861849e4
--- /dev/null
+++ b/third_party/rust/tokio/src/net/lookup_host.rs
@@ -0,0 +1,38 @@
+cfg_net! {
+ use crate::net::addr::{self, ToSocketAddrs};
+
+ use std::io;
+ use std::net::SocketAddr;
+
+ /// Performs a DNS resolution.
+ ///
+ /// The returned iterator may not actually yield any values depending on the
+ /// outcome of any resolution performed.
+ ///
+ /// This API is not intended to cover all DNS use cases. Anything beyond the
+ /// basic use case should be done with a specialized library.
+ ///
+ /// # Examples
+ ///
+ /// To resolve a DNS entry:
+ ///
+ /// ```no_run
+ /// use tokio::net;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// for addr in net::lookup_host("localhost:3000").await? {
+ /// println!("socket address is {}", addr);
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn lookup_host<T>(host: T) -> io::Result<impl Iterator<Item = SocketAddr>>
+ where
+ T: ToSocketAddrs
+ {
+ addr::to_socket_addrs(host).await
+ }
+}
diff --git a/third_party/rust/tokio/src/net/mod.rs b/third_party/rust/tokio/src/net/mod.rs
new file mode 100644
index 0000000000..0b8c1ecd19
--- /dev/null
+++ b/third_party/rust/tokio/src/net/mod.rs
@@ -0,0 +1,52 @@
+#![cfg(not(loom))]
+
+//! TCP/UDP/Unix bindings for `tokio`.
+//!
+//! This module contains the TCP/UDP/Unix networking types, similar to the standard
+//! library, which can be used to implement networking protocols.
+//!
+//! # Organization
+//!
+//! * [`TcpListener`] and [`TcpStream`] provide functionality for communication over TCP
+//! * [`UdpSocket`] provides functionality for communication over UDP
+//! * [`UnixListener`] and [`UnixStream`] provide functionality for communication over a
+//! Unix Domain Stream Socket **(available on Unix only)**
+//! * [`UnixDatagram`] provides functionality for communication
+//! over Unix Domain Datagram Socket **(available on Unix only)**
+
+//!
+//! [`TcpListener`]: TcpListener
+//! [`TcpStream`]: TcpStream
+//! [`UdpSocket`]: UdpSocket
+//! [`UnixListener`]: UnixListener
+//! [`UnixStream`]: UnixStream
+//! [`UnixDatagram`]: UnixDatagram
+
+mod addr;
+#[cfg(feature = "net")]
+pub(crate) use addr::to_socket_addrs;
+pub use addr::ToSocketAddrs;
+
+cfg_net! {
+ mod lookup_host;
+ pub use lookup_host::lookup_host;
+
+ pub mod tcp;
+ pub use tcp::listener::TcpListener;
+ pub use tcp::socket::TcpSocket;
+ pub use tcp::stream::TcpStream;
+
+ mod udp;
+ pub use udp::UdpSocket;
+}
+
+cfg_net_unix! {
+ pub mod unix;
+ pub use unix::datagram::socket::UnixDatagram;
+ pub use unix::listener::UnixListener;
+ pub use unix::stream::UnixStream;
+}
+
+cfg_net_windows! {
+ pub mod windows;
+}
diff --git a/third_party/rust/tokio/src/net/tcp/listener.rs b/third_party/rust/tokio/src/net/tcp/listener.rs
new file mode 100644
index 0000000000..8aecb21aaa
--- /dev/null
+++ b/third_party/rust/tokio/src/net/tcp/listener.rs
@@ -0,0 +1,397 @@
+use crate::io::{Interest, PollEvented};
+use crate::net::tcp::TcpStream;
+use crate::net::{to_socket_addrs, ToSocketAddrs};
+
+use std::convert::TryFrom;
+use std::fmt;
+use std::io;
+use std::net::{self, SocketAddr};
+use std::task::{Context, Poll};
+
+cfg_net! {
+ /// A TCP socket server, listening for connections.
+ ///
+ /// You can accept a new connection by using the [`accept`](`TcpListener::accept`)
+ /// method.
+ ///
+ /// A `TcpListener` can be turned into a `Stream` with [`TcpListenerStream`].
+ ///
+ /// [`TcpListenerStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.TcpListenerStream.html
+ ///
+ /// # Errors
+ ///
+ /// Note that accepting a connection can lead to various errors and not all
+ /// of them are necessarily fatal ‒ for example having too many open file
+ /// descriptors or the other side closing the connection while it waits in
+ /// an accept queue. These would terminate the stream if not handled in any
+ /// way.
+ ///
+ /// # Examples
+ ///
+ /// Using `accept`:
+ /// ```no_run
+ /// use tokio::net::TcpListener;
+ ///
+ /// use std::io;
+ ///
+ /// async fn process_socket<T>(socket: T) {
+ /// # drop(socket);
+ /// // do work with socket here
+ /// }
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let listener = TcpListener::bind("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// let (socket, _) = listener.accept().await?;
+ /// process_socket(socket).await;
+ /// }
+ /// }
+ /// ```
+ pub struct TcpListener {
+ io: PollEvented<mio::net::TcpListener>,
+ }
+}
+
+impl TcpListener {
+ /// Creates a new TcpListener, which will be bound to the specified address.
+ ///
+ /// The returned listener is ready for accepting connections.
+ ///
+ /// Binding with a port number of 0 will request that the OS assigns a port
+ /// to this listener. The port allocated can be queried via the `local_addr`
+ /// method.
+ ///
+ /// The address type can be any implementor of the [`ToSocketAddrs`] trait.
+ /// If `addr` yields multiple addresses, bind will be attempted with each of
+ /// the addresses until one succeeds and returns the listener. If none of
+ /// the addresses succeed in creating a listener, the error returned from
+ /// the last attempt (the last address) is returned.
+ ///
+ /// This function sets the `SO_REUSEADDR` option on the socket.
+ ///
+ /// To configure the socket before binding, you can use the [`TcpSocket`]
+ /// type.
+ ///
+ /// [`ToSocketAddrs`]: trait@crate::net::ToSocketAddrs
+ /// [`TcpSocket`]: struct@crate::net::TcpSocket
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpListener;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let listener = TcpListener::bind("127.0.0.1:2345").await?;
+ ///
+ /// // use the listener
+ ///
+ /// # let _ = listener;
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<TcpListener> {
+ let addrs = to_socket_addrs(addr).await?;
+
+ let mut last_err = None;
+
+ for addr in addrs {
+ match TcpListener::bind_addr(addr) {
+ Ok(listener) => return Ok(listener),
+ Err(e) => last_err = Some(e),
+ }
+ }
+
+ Err(last_err.unwrap_or_else(|| {
+ io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "could not resolve to any address",
+ )
+ }))
+ }
+
+ fn bind_addr(addr: SocketAddr) -> io::Result<TcpListener> {
+ let listener = mio::net::TcpListener::bind(addr)?;
+ TcpListener::new(listener)
+ }
+
+ /// Accepts a new incoming connection from this listener.
+ ///
+ /// This function will yield once a new TCP connection is established. When
+ /// established, the corresponding [`TcpStream`] and the remote peer's
+ /// address will be returned.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If the method is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then it is guaranteed that no new connections were
+ /// accepted by this method.
+ ///
+ /// [`TcpStream`]: struct@crate::net::TcpStream
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpListener;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let listener = TcpListener::bind("127.0.0.1:8080").await?;
+ ///
+ /// match listener.accept().await {
+ /// Ok((_socket, addr)) => println!("new client: {:?}", addr),
+ /// Err(e) => println!("couldn't get client: {:?}", e),
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> {
+ let (mio, addr) = self
+ .io
+ .registration()
+ .async_io(Interest::READABLE, || self.io.accept())
+ .await?;
+
+ let stream = TcpStream::new(mio)?;
+ Ok((stream, addr))
+ }
+
+ /// Polls to accept a new incoming connection to this listener.
+ ///
+ /// If there is no connection to accept, `Poll::Pending` is returned and the
+ /// current task will be notified by a waker. Note that on multiple calls
+ /// to `poll_accept`, only the `Waker` from the `Context` passed to the most
+ /// recent call is scheduled to receive a wakeup.
+ pub fn poll_accept(&self, cx: &mut Context<'_>) -> Poll<io::Result<(TcpStream, SocketAddr)>> {
+ loop {
+ let ev = ready!(self.io.registration().poll_read_ready(cx))?;
+
+ match self.io.accept() {
+ Ok((io, addr)) => {
+ let io = TcpStream::new(io)?;
+ return Poll::Ready(Ok((io, addr)));
+ }
+ Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ self.io.registration().clear_readiness(ev);
+ }
+ Err(e) => return Poll::Ready(Err(e)),
+ }
+ }
+ }
+
+ /// Creates new `TcpListener` from a `std::net::TcpListener`.
+ ///
+ /// This function is intended to be used to wrap a TCP listener from the
+ /// standard library in the Tokio equivalent. The conversion assumes nothing
+ /// about the underlying listener; it is left up to the user to set it in
+ /// non-blocking mode.
+ ///
+ /// This API is typically paired with the `socket2` crate and the `Socket`
+ /// type to build up and customize a listener before it's shipped off to the
+ /// backing event loop. This allows configuration of options like
+ /// `SO_REUSEPORT`, binding to multiple addresses, etc.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use std::error::Error;
+ /// use tokio::net::TcpListener;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let std_listener = std::net::TcpListener::bind("127.0.0.1:0")?;
+ /// std_listener.set_nonblocking(true)?;
+ /// let listener = TcpListener::from_std(std_listener)?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called
+ /// from a future driven by a tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
+ pub fn from_std(listener: net::TcpListener) -> io::Result<TcpListener> {
+ let io = mio::net::TcpListener::from_std(listener);
+ let io = PollEvented::new(io)?;
+ Ok(TcpListener { io })
+ }
+
+ /// Turns a [`tokio::net::TcpListener`] into a [`std::net::TcpListener`].
+ ///
+ /// The returned [`std::net::TcpListener`] will have nonblocking mode set as
+ /// `true`. Use [`set_nonblocking`] to change the blocking mode if needed.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let tokio_listener = tokio::net::TcpListener::bind("127.0.0.1:0").await?;
+ /// let std_listener = tokio_listener.into_std()?;
+ /// std_listener.set_nonblocking(false)?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`tokio::net::TcpListener`]: TcpListener
+ /// [`std::net::TcpListener`]: std::net::TcpListener
+ /// [`set_nonblocking`]: fn@std::net::TcpListener::set_nonblocking
+ pub fn into_std(self) -> io::Result<std::net::TcpListener> {
+ #[cfg(unix)]
+ {
+ use std::os::unix::io::{FromRawFd, IntoRawFd};
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_fd())
+ .map(|raw_fd| unsafe { std::net::TcpListener::from_raw_fd(raw_fd) })
+ }
+
+ #[cfg(windows)]
+ {
+ use std::os::windows::io::{FromRawSocket, IntoRawSocket};
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_socket())
+ .map(|raw_socket| unsafe { std::net::TcpListener::from_raw_socket(raw_socket) })
+ }
+ }
+
+ pub(crate) fn new(listener: mio::net::TcpListener) -> io::Result<TcpListener> {
+ let io = PollEvented::new(listener)?;
+ Ok(TcpListener { io })
+ }
+
+ /// Returns the local address that this listener is bound to.
+ ///
+ /// This can be useful, for example, when binding to port 0 to figure out
+ /// which port was actually bound.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use tokio::net::TcpListener;
+ ///
+ /// use std::io;
+ /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let listener = TcpListener::bind("127.0.0.1:8080").await?;
+ ///
+ /// assert_eq!(listener.local_addr()?,
+ /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080)));
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.io.local_addr()
+ }
+
+ /// Gets the value of the `IP_TTL` option for this socket.
+ ///
+ /// For more information about this option, see [`set_ttl`].
+ ///
+ /// [`set_ttl`]: method@Self::set_ttl
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpListener;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let listener = TcpListener::bind("127.0.0.1:0").await?;
+ ///
+ /// listener.set_ttl(100).expect("could not set TTL");
+ /// assert_eq!(listener.ttl()?, 100);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn ttl(&self) -> io::Result<u32> {
+ self.io.ttl()
+ }
+
+ /// Sets the value for the `IP_TTL` option on this socket.
+ ///
+ /// This value sets the time-to-live field that is used in every packet sent
+ /// from this socket.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpListener;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let listener = TcpListener::bind("127.0.0.1:0").await?;
+ ///
+ /// listener.set_ttl(100).expect("could not set TTL");
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
+ self.io.set_ttl(ttl)
+ }
+}
+
+impl TryFrom<net::TcpListener> for TcpListener {
+ type Error = io::Error;
+
+ /// Consumes stream, returning the tokio I/O object.
+ ///
+ /// This is equivalent to
+ /// [`TcpListener::from_std(stream)`](TcpListener::from_std).
+ fn try_from(stream: net::TcpListener) -> Result<Self, Self::Error> {
+ Self::from_std(stream)
+ }
+}
+
+impl fmt::Debug for TcpListener {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.io.fmt(f)
+ }
+}
+
+#[cfg(unix)]
+mod sys {
+ use super::TcpListener;
+ use std::os::unix::prelude::*;
+
+ impl AsRawFd for TcpListener {
+ fn as_raw_fd(&self) -> RawFd {
+ self.io.as_raw_fd()
+ }
+ }
+}
+
+#[cfg(windows)]
+mod sys {
+ use super::TcpListener;
+ use std::os::windows::prelude::*;
+
+ impl AsRawSocket for TcpListener {
+ fn as_raw_socket(&self) -> RawSocket {
+ self.io.as_raw_socket()
+ }
+ }
+}
diff --git a/third_party/rust/tokio/src/net/tcp/mod.rs b/third_party/rust/tokio/src/net/tcp/mod.rs
new file mode 100644
index 0000000000..cb8a8b238b
--- /dev/null
+++ b/third_party/rust/tokio/src/net/tcp/mod.rs
@@ -0,0 +1,14 @@
+//! TCP utility types.
+
+pub(crate) mod listener;
+
+pub(crate) mod socket;
+
+mod split;
+pub use split::{ReadHalf, WriteHalf};
+
+mod split_owned;
+pub use split_owned::{OwnedReadHalf, OwnedWriteHalf, ReuniteError};
+
+pub(crate) mod stream;
+pub(crate) use stream::TcpStream;
diff --git a/third_party/rust/tokio/src/net/tcp/socket.rs b/third_party/rust/tokio/src/net/tcp/socket.rs
new file mode 100644
index 0000000000..171e240189
--- /dev/null
+++ b/third_party/rust/tokio/src/net/tcp/socket.rs
@@ -0,0 +1,690 @@
+use crate::net::{TcpListener, TcpStream};
+
+use std::fmt;
+use std::io;
+use std::net::SocketAddr;
+
+#[cfg(unix)]
+use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
+#[cfg(windows)]
+use std::os::windows::io::{AsRawSocket, FromRawSocket, IntoRawSocket, RawSocket};
+use std::time::Duration;
+
+cfg_net! {
+ /// A TCP socket that has not yet been converted to a `TcpStream` or
+ /// `TcpListener`.
+ ///
+ /// `TcpSocket` wraps an operating system socket and enables the caller to
+ /// configure the socket before establishing a TCP connection or accepting
+ /// inbound connections. The caller is able to set socket option and explicitly
+ /// bind the socket with a socket address.
+ ///
+ /// The underlying socket is closed when the `TcpSocket` value is dropped.
+ ///
+ /// `TcpSocket` should only be used directly if the default configuration used
+ /// by `TcpStream::connect` and `TcpListener::bind` does not meet the required
+ /// use case.
+ ///
+ /// Calling `TcpStream::connect("127.0.0.1:8080")` is equivalent to:
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// let stream = socket.connect(addr).await?;
+ /// # drop(stream);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// Calling `TcpListener::bind("127.0.0.1:8080")` is equivalent to:
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// // On platforms with Berkeley-derived sockets, this allows to quickly
+ /// // rebind a socket, without needing to wait for the OS to clean up the
+ /// // previous one.
+ /// //
+ /// // On Windows, this allows rebinding sockets which are actively in use,
+ /// // which allows “socket hijacking”, so we explicitly don't set it here.
+ /// // https://docs.microsoft.com/en-us/windows/win32/winsock/using-so-reuseaddr-and-so-exclusiveaddruse
+ /// socket.set_reuseaddr(true)?;
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(1024)?;
+ /// # drop(listener);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// Setting socket options not explicitly provided by `TcpSocket` may be done by
+ /// accessing the `RawFd`/`RawSocket` using [`AsRawFd`]/[`AsRawSocket`] and
+ /// setting the option with a crate like [`socket2`].
+ ///
+ /// [`RawFd`]: https://doc.rust-lang.org/std/os/unix/io/type.RawFd.html
+ /// [`RawSocket`]: https://doc.rust-lang.org/std/os/windows/io/type.RawSocket.html
+ /// [`AsRawFd`]: https://doc.rust-lang.org/std/os/unix/io/trait.AsRawFd.html
+ /// [`AsRawSocket`]: https://doc.rust-lang.org/std/os/windows/io/trait.AsRawSocket.html
+ /// [`socket2`]: https://docs.rs/socket2/
+ #[cfg_attr(docsrs, doc(alias = "connect_std"))]
+ pub struct TcpSocket {
+ inner: socket2::Socket,
+ }
+}
+
+impl TcpSocket {
+ /// Creates a new socket configured for IPv4.
+ ///
+ /// Calls `socket(2)` with `AF_INET` and `SOCK_STREAM`.
+ ///
+ /// # Returns
+ ///
+ /// On success, the newly created `TcpSocket` is returned. If an error is
+ /// encountered, it is returned instead.
+ ///
+ /// # Examples
+ ///
+ /// Create a new IPv4 socket and start listening.
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ /// let socket = TcpSocket::new_v4()?;
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(128)?;
+ /// # drop(listener);
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn new_v4() -> io::Result<TcpSocket> {
+ TcpSocket::new(socket2::Domain::IPV4)
+ }
+
+ /// Creates a new socket configured for IPv6.
+ ///
+ /// Calls `socket(2)` with `AF_INET6` and `SOCK_STREAM`.
+ ///
+ /// # Returns
+ ///
+ /// On success, the newly created `TcpSocket` is returned. If an error is
+ /// encountered, it is returned instead.
+ ///
+ /// # Examples
+ ///
+ /// Create a new IPv6 socket and start listening.
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "[::1]:8080".parse().unwrap();
+ /// let socket = TcpSocket::new_v6()?;
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(128)?;
+ /// # drop(listener);
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn new_v6() -> io::Result<TcpSocket> {
+ TcpSocket::new(socket2::Domain::IPV6)
+ }
+
+ fn new(domain: socket2::Domain) -> io::Result<TcpSocket> {
+ let ty = socket2::Type::STREAM;
+ #[cfg(any(
+ target_os = "android",
+ target_os = "dragonfly",
+ target_os = "freebsd",
+ target_os = "fuchsia",
+ target_os = "illumos",
+ target_os = "linux",
+ target_os = "netbsd",
+ target_os = "openbsd"
+ ))]
+ let ty = ty.nonblocking();
+ let inner = socket2::Socket::new(domain, ty, Some(socket2::Protocol::TCP))?;
+ #[cfg(not(any(
+ target_os = "android",
+ target_os = "dragonfly",
+ target_os = "freebsd",
+ target_os = "fuchsia",
+ target_os = "illumos",
+ target_os = "linux",
+ target_os = "netbsd",
+ target_os = "openbsd"
+ )))]
+ inner.set_nonblocking(true)?;
+ Ok(TcpSocket { inner })
+ }
+
+ /// Allows the socket to bind to an in-use address.
+ ///
+ /// Behavior is platform specific. Refer to the target platform's
+ /// documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// socket.set_reuseaddr(true)?;
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(1024)?;
+ /// # drop(listener);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn set_reuseaddr(&self, reuseaddr: bool) -> io::Result<()> {
+ self.inner.set_reuse_address(reuseaddr)
+ }
+
+ /// Retrieves the value set for `SO_REUSEADDR` on this socket.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// socket.set_reuseaddr(true)?;
+ /// assert!(socket.reuseaddr().unwrap());
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(1024)?;
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn reuseaddr(&self) -> io::Result<bool> {
+ self.inner.reuse_address()
+ }
+
+ /// Allows the socket to bind to an in-use port. Only available for unix systems
+ /// (excluding Solaris & Illumos).
+ ///
+ /// Behavior is platform specific. Refer to the target platform's
+ /// documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// socket.set_reuseport(true)?;
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(1024)?;
+ /// Ok(())
+ /// }
+ /// ```
+ #[cfg(all(unix, not(target_os = "solaris"), not(target_os = "illumos")))]
+ #[cfg_attr(
+ docsrs,
+ doc(cfg(all(unix, not(target_os = "solaris"), not(target_os = "illumos"))))
+ )]
+ pub fn set_reuseport(&self, reuseport: bool) -> io::Result<()> {
+ self.inner.set_reuse_port(reuseport)
+ }
+
+ /// Allows the socket to bind to an in-use port. Only available for unix systems
+ /// (excluding Solaris & Illumos).
+ ///
+ /// Behavior is platform specific. Refer to the target platform's
+ /// documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// socket.set_reuseport(true)?;
+ /// assert!(socket.reuseport().unwrap());
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(1024)?;
+ /// Ok(())
+ /// }
+ /// ```
+ #[cfg(all(unix, not(target_os = "solaris"), not(target_os = "illumos")))]
+ #[cfg_attr(
+ docsrs,
+ doc(cfg(all(unix, not(target_os = "solaris"), not(target_os = "illumos"))))
+ )]
+ pub fn reuseport(&self) -> io::Result<bool> {
+ self.inner.reuse_port()
+ }
+
+ /// Sets the size of the TCP send buffer on this socket.
+ ///
+ /// On most operating systems, this sets the `SO_SNDBUF` socket option.
+ pub fn set_send_buffer_size(&self, size: u32) -> io::Result<()> {
+ self.inner.set_send_buffer_size(size as usize)
+ }
+
+ /// Returns the size of the TCP send buffer for this socket.
+ ///
+ /// On most operating systems, this is the value of the `SO_SNDBUF` socket
+ /// option.
+ ///
+ /// Note that if [`set_send_buffer_size`] has been called on this socket
+ /// previously, the value returned by this function may not be the same as
+ /// the argument provided to `set_send_buffer_size`. This is for the
+ /// following reasons:
+ ///
+ /// * Most operating systems have minimum and maximum allowed sizes for the
+ /// send buffer, and will clamp the provided value if it is below the
+ /// minimum or above the maximum. The minimum and maximum buffer sizes are
+ /// OS-dependent.
+ /// * Linux will double the buffer size to account for internal bookkeeping
+ /// data, and returns the doubled value from `getsockopt(2)`. As per `man
+ /// 7 socket`:
+ /// > Sets or gets the maximum socket send buffer in bytes. The
+ /// > kernel doubles this value (to allow space for bookkeeping
+ /// > overhead) when it is set using `setsockopt(2)`, and this doubled
+ /// > value is returned by `getsockopt(2)`.
+ ///
+ /// [`set_send_buffer_size`]: #method.set_send_buffer_size
+ pub fn send_buffer_size(&self) -> io::Result<u32> {
+ self.inner.send_buffer_size().map(|n| n as u32)
+ }
+
+ /// Sets the size of the TCP receive buffer on this socket.
+ ///
+ /// On most operating systems, this sets the `SO_RCVBUF` socket option.
+ pub fn set_recv_buffer_size(&self, size: u32) -> io::Result<()> {
+ self.inner.set_recv_buffer_size(size as usize)
+ }
+
+ /// Returns the size of the TCP receive buffer for this socket.
+ ///
+ /// On most operating systems, this is the value of the `SO_RCVBUF` socket
+ /// option.
+ ///
+ /// Note that if [`set_recv_buffer_size`] has been called on this socket
+ /// previously, the value returned by this function may not be the same as
+ /// the argument provided to `set_send_buffer_size`. This is for the
+ /// following reasons:
+ ///
+ /// * Most operating systems have minimum and maximum allowed sizes for the
+ /// receive buffer, and will clamp the provided value if it is below the
+ /// minimum or above the maximum. The minimum and maximum buffer sizes are
+ /// OS-dependent.
+ /// * Linux will double the buffer size to account for internal bookkeeping
+ /// data, and returns the doubled value from `getsockopt(2)`. As per `man
+ /// 7 socket`:
+ /// > Sets or gets the maximum socket send buffer in bytes. The
+ /// > kernel doubles this value (to allow space for bookkeeping
+ /// > overhead) when it is set using `setsockopt(2)`, and this doubled
+ /// > value is returned by `getsockopt(2)`.
+ ///
+ /// [`set_recv_buffer_size`]: #method.set_recv_buffer_size
+ pub fn recv_buffer_size(&self) -> io::Result<u32> {
+ self.inner.recv_buffer_size().map(|n| n as u32)
+ }
+
+ /// Sets the linger duration of this socket by setting the SO_LINGER option.
+ ///
+ /// This option controls the action taken when a stream has unsent messages and the stream is
+ /// closed. If SO_LINGER is set, the system shall block the process until it can transmit the
+ /// data or until the time expires.
+ ///
+ /// If SO_LINGER is not specified, and the socket is closed, the system handles the call in a
+ /// way that allows the process to continue as quickly as possible.
+ pub fn set_linger(&self, dur: Option<Duration>) -> io::Result<()> {
+ self.inner.set_linger(dur)
+ }
+
+ /// Reads the linger duration for this socket by getting the `SO_LINGER`
+ /// option.
+ ///
+ /// For more information about this option, see [`set_linger`].
+ ///
+ /// [`set_linger`]: TcpSocket::set_linger
+ pub fn linger(&self) -> io::Result<Option<Duration>> {
+ self.inner.linger()
+ }
+
+ /// Gets the local address of this socket.
+ ///
+ /// Will fail on windows if called before `bind`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// socket.bind(addr)?;
+ /// assert_eq!(socket.local_addr().unwrap().to_string(), "127.0.0.1:8080");
+ /// let listener = socket.listen(1024)?;
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.local_addr().and_then(convert_address)
+ }
+
+ /// Binds the socket to the given address.
+ ///
+ /// This calls the `bind(2)` operating-system function. Behavior is
+ /// platform specific. Refer to the target platform's documentation for more
+ /// details.
+ ///
+ /// # Examples
+ ///
+ /// Bind a socket before listening.
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(1024)?;
+ /// # drop(listener);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn bind(&self, addr: SocketAddr) -> io::Result<()> {
+ self.inner.bind(&addr.into())
+ }
+
+ /// Establishes a TCP connection with a peer at the specified socket address.
+ ///
+ /// The `TcpSocket` is consumed. Once the connection is established, a
+ /// connected [`TcpStream`] is returned. If the connection fails, the
+ /// encountered error is returned.
+ ///
+ /// [`TcpStream`]: TcpStream
+ ///
+ /// This calls the `connect(2)` operating-system function. Behavior is
+ /// platform specific. Refer to the target platform's documentation for more
+ /// details.
+ ///
+ /// # Examples
+ ///
+ /// Connecting to a peer.
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// let stream = socket.connect(addr).await?;
+ /// # drop(stream);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn connect(self, addr: SocketAddr) -> io::Result<TcpStream> {
+ if let Err(err) = self.inner.connect(&addr.into()) {
+ #[cfg(unix)]
+ if err.raw_os_error() != Some(libc::EINPROGRESS) {
+ return Err(err);
+ }
+ #[cfg(windows)]
+ if err.kind() != io::ErrorKind::WouldBlock {
+ return Err(err);
+ }
+ }
+ #[cfg(unix)]
+ let mio = {
+ use std::os::unix::io::{FromRawFd, IntoRawFd};
+
+ let raw_fd = self.inner.into_raw_fd();
+ unsafe { mio::net::TcpStream::from_raw_fd(raw_fd) }
+ };
+
+ #[cfg(windows)]
+ let mio = {
+ use std::os::windows::io::{FromRawSocket, IntoRawSocket};
+
+ let raw_socket = self.inner.into_raw_socket();
+ unsafe { mio::net::TcpStream::from_raw_socket(raw_socket) }
+ };
+
+ TcpStream::connect_mio(mio).await
+ }
+
+ /// Converts the socket into a `TcpListener`.
+ ///
+ /// `backlog` defines the maximum number of pending connections are queued
+ /// by the operating system at any given time. Connection are removed from
+ /// the queue with [`TcpListener::accept`]. When the queue is full, the
+ /// operating-system will start rejecting connections.
+ ///
+ /// [`TcpListener::accept`]: TcpListener::accept
+ ///
+ /// This calls the `listen(2)` operating-system function, marking the socket
+ /// as a passive socket. Behavior is platform specific. Refer to the target
+ /// platform's documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// Create a `TcpListener`.
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpSocket;
+ ///
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let addr = "127.0.0.1:8080".parse().unwrap();
+ ///
+ /// let socket = TcpSocket::new_v4()?;
+ /// socket.bind(addr)?;
+ ///
+ /// let listener = socket.listen(1024)?;
+ /// # drop(listener);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn listen(self, backlog: u32) -> io::Result<TcpListener> {
+ self.inner.listen(backlog as i32)?;
+ #[cfg(unix)]
+ let mio = {
+ use std::os::unix::io::{FromRawFd, IntoRawFd};
+
+ let raw_fd = self.inner.into_raw_fd();
+ unsafe { mio::net::TcpListener::from_raw_fd(raw_fd) }
+ };
+
+ #[cfg(windows)]
+ let mio = {
+ use std::os::windows::io::{FromRawSocket, IntoRawSocket};
+
+ let raw_socket = self.inner.into_raw_socket();
+ unsafe { mio::net::TcpListener::from_raw_socket(raw_socket) }
+ };
+
+ TcpListener::new(mio)
+ }
+
+ /// Converts a [`std::net::TcpStream`] into a `TcpSocket`. The provided
+ /// socket must not have been connected prior to calling this function. This
+ /// function is typically used together with crates such as [`socket2`] to
+ /// configure socket options that are not available on `TcpSocket`.
+ ///
+ /// [`std::net::TcpStream`]: struct@std::net::TcpStream
+ /// [`socket2`]: https://docs.rs/socket2/
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::net::TcpSocket;
+ /// use socket2::{Domain, Socket, Type};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> std::io::Result<()> {
+ ///
+ /// let socket2_socket = Socket::new(Domain::IPV4, Type::STREAM, None)?;
+ ///
+ /// let socket = TcpSocket::from_std_stream(socket2_socket.into());
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn from_std_stream(std_stream: std::net::TcpStream) -> TcpSocket {
+ #[cfg(unix)]
+ {
+ use std::os::unix::io::{FromRawFd, IntoRawFd};
+
+ let raw_fd = std_stream.into_raw_fd();
+ unsafe { TcpSocket::from_raw_fd(raw_fd) }
+ }
+
+ #[cfg(windows)]
+ {
+ use std::os::windows::io::{FromRawSocket, IntoRawSocket};
+
+ let raw_socket = std_stream.into_raw_socket();
+ unsafe { TcpSocket::from_raw_socket(raw_socket) }
+ }
+ }
+}
+
+fn convert_address(address: socket2::SockAddr) -> io::Result<SocketAddr> {
+ match address.as_socket() {
+ Some(address) => Ok(address),
+ None => Err(io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "invalid address family (not IPv4 or IPv6)",
+ )),
+ }
+}
+
+impl fmt::Debug for TcpSocket {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.inner.fmt(fmt)
+ }
+}
+
+#[cfg(unix)]
+impl AsRawFd for TcpSocket {
+ fn as_raw_fd(&self) -> RawFd {
+ self.inner.as_raw_fd()
+ }
+}
+
+#[cfg(unix)]
+impl FromRawFd for TcpSocket {
+ /// Converts a `RawFd` to a `TcpSocket`.
+ ///
+ /// # Notes
+ ///
+ /// The caller is responsible for ensuring that the socket is in
+ /// non-blocking mode.
+ unsafe fn from_raw_fd(fd: RawFd) -> TcpSocket {
+ let inner = socket2::Socket::from_raw_fd(fd);
+ TcpSocket { inner }
+ }
+}
+
+#[cfg(unix)]
+impl IntoRawFd for TcpSocket {
+ fn into_raw_fd(self) -> RawFd {
+ self.inner.into_raw_fd()
+ }
+}
+
+#[cfg(windows)]
+impl IntoRawSocket for TcpSocket {
+ fn into_raw_socket(self) -> RawSocket {
+ self.inner.into_raw_socket()
+ }
+}
+
+#[cfg(windows)]
+impl AsRawSocket for TcpSocket {
+ fn as_raw_socket(&self) -> RawSocket {
+ self.inner.as_raw_socket()
+ }
+}
+
+#[cfg(windows)]
+impl FromRawSocket for TcpSocket {
+ /// Converts a `RawSocket` to a `TcpStream`.
+ ///
+ /// # Notes
+ ///
+ /// The caller is responsible for ensuring that the socket is in
+ /// non-blocking mode.
+ unsafe fn from_raw_socket(socket: RawSocket) -> TcpSocket {
+ let inner = socket2::Socket::from_raw_socket(socket);
+ TcpSocket { inner }
+ }
+}
diff --git a/third_party/rust/tokio/src/net/tcp/split.rs b/third_party/rust/tokio/src/net/tcp/split.rs
new file mode 100644
index 0000000000..0e02928495
--- /dev/null
+++ b/third_party/rust/tokio/src/net/tcp/split.rs
@@ -0,0 +1,401 @@
+//! `TcpStream` split support.
+//!
+//! A `TcpStream` can be split into a `ReadHalf` and a
+//! `WriteHalf` with the `TcpStream::split` method. `ReadHalf`
+//! implements `AsyncRead` while `WriteHalf` implements `AsyncWrite`.
+//!
+//! Compared to the generic split of `AsyncRead + AsyncWrite`, this specialized
+//! split has no associated overhead and enforces all invariants at the type
+//! level.
+
+use crate::future::poll_fn;
+use crate::io::{AsyncRead, AsyncWrite, Interest, ReadBuf, Ready};
+use crate::net::TcpStream;
+
+use std::io;
+use std::net::{Shutdown, SocketAddr};
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ use bytes::BufMut;
+}
+
+/// Borrowed read half of a [`TcpStream`], created by [`split`].
+///
+/// Reading from a `ReadHalf` is usually done using the convenience methods found on the
+/// [`AsyncReadExt`] trait.
+///
+/// [`TcpStream`]: TcpStream
+/// [`split`]: TcpStream::split()
+/// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
+#[derive(Debug)]
+pub struct ReadHalf<'a>(&'a TcpStream);
+
+/// Borrowed write half of a [`TcpStream`], created by [`split`].
+///
+/// Note that in the [`AsyncWrite`] implementation of this type, [`poll_shutdown`] will
+/// shut down the TCP stream in the write direction.
+///
+/// Writing to an `WriteHalf` is usually done using the convenience methods found
+/// on the [`AsyncWriteExt`] trait.
+///
+/// [`TcpStream`]: TcpStream
+/// [`split`]: TcpStream::split()
+/// [`AsyncWrite`]: trait@crate::io::AsyncWrite
+/// [`poll_shutdown`]: fn@crate::io::AsyncWrite::poll_shutdown
+/// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
+#[derive(Debug)]
+pub struct WriteHalf<'a>(&'a TcpStream);
+
+pub(crate) fn split(stream: &mut TcpStream) -> (ReadHalf<'_>, WriteHalf<'_>) {
+ (ReadHalf(&*stream), WriteHalf(&*stream))
+}
+
+impl ReadHalf<'_> {
+ /// Attempts to receive data on the socket, without removing that data from
+ /// the queue, registering the current task for wakeup if data is not yet
+ /// available.
+ ///
+ /// Note that on multiple calls to `poll_peek` or `poll_read`, only the
+ /// `Waker` from the `Context` passed to the most recent call is scheduled
+ /// to receive a wakeup.
+ ///
+ /// See the [`TcpStream::poll_peek`] level documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, ReadBuf};
+ /// use tokio::net::TcpStream;
+ ///
+ /// use futures::future::poll_fn;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut stream = TcpStream::connect("127.0.0.1:8000").await?;
+ /// let (mut read_half, _) = stream.split();
+ /// let mut buf = [0; 10];
+ /// let mut buf = ReadBuf::new(&mut buf);
+ ///
+ /// poll_fn(|cx| {
+ /// read_half.poll_peek(cx, &mut buf)
+ /// }).await?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`TcpStream::poll_peek`]: TcpStream::poll_peek
+ pub fn poll_peek(
+ &mut self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<usize>> {
+ self.0.poll_peek(cx, buf)
+ }
+
+ /// Receives data on the socket from the remote address to which it is
+ /// connected, without removing that data from the queue. On success,
+ /// returns the number of bytes peeked.
+ ///
+ /// See the [`TcpStream::peek`] level documentation for more details.
+ ///
+ /// [`TcpStream::peek`]: TcpStream::peek
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use tokio::io::AsyncReadExt;
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let mut stream = TcpStream::connect("127.0.0.1:8080").await?;
+ /// let (mut read_half, _) = stream.split();
+ ///
+ /// let mut b1 = [0; 10];
+ /// let mut b2 = [0; 10];
+ ///
+ /// // Peek at the data
+ /// let n = read_half.peek(&mut b1).await?;
+ ///
+ /// // Read the data
+ /// assert_eq!(n, read_half.read(&mut b2[..n]).await?);
+ /// assert_eq!(&b1[..n], &b2[..n]);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// The [`read`] method is defined on the [`AsyncReadExt`] trait.
+ ///
+ /// [`read`]: fn@crate::io::AsyncReadExt::read
+ /// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
+ pub async fn peek(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ let mut buf = ReadBuf::new(buf);
+ poll_fn(|cx| self.poll_peek(cx, &mut buf)).await
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// This function is equivalent to [`TcpStream::ready`].
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ self.0.ready(interest).await
+ }
+
+ /// Waits for the socket to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_read()`.
+ ///
+ /// This function is also equivalent to [`TcpStream::ready`].
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn readable(&self) -> io::Result<()> {
+ self.0.readable().await
+ }
+
+ /// Tries to read data from the stream into the provided buffer, returning how
+ /// many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.0.try_read(buf)
+ }
+
+ /// Tries to read data from the stream into the provided buffers, returning
+ /// how many bytes were read.
+ ///
+ /// Data is copied to fill each buffer in order, with the final buffer
+ /// written to possibly being only partially filled. This method behaves
+ /// equivalently to a single call to [`try_read()`] with concatenated
+ /// buffers.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_vectored()` is non-blocking, the buffer does not have to be
+ /// stored by the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`try_read()`]: Self::try_read()
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
+ self.0.try_read_vectored(bufs)
+ }
+
+ cfg_io_util! {
+ /// Tries to read data from the stream into the provided buffer, advancing the
+ /// buffer's internal cursor, returning how many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
+ self.0.try_read_buf(buf)
+ }
+ }
+
+ /// Returns the remote address that this stream is connected to.
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.0.peer_addr()
+ }
+
+ /// Returns the local address that this stream is bound to.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.0.local_addr()
+ }
+}
+
+impl WriteHalf<'_> {
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// This function is equivalent to [`TcpStream::ready`].
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ self.0.ready(interest).await
+ }
+
+ /// Waits for the socket to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
+ /// paired with `try_write()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn writable(&self) -> io::Result<()> {
+ self.0.writable().await
+ }
+
+ /// Tries to write a buffer to the stream, returning how many bytes were
+ /// written.
+ ///
+ /// The function will attempt to write the entire contents of `buf`, but
+ /// only part of the buffer may be written.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
+ self.0.try_write(buf)
+ }
+
+ /// Tries to write several buffers to the stream, returning how many bytes
+ /// were written.
+ ///
+ /// Data is written from each buffer in order, with the final buffer read
+ /// from possible being only partially consumed. This method behaves
+ /// equivalently to a single call to [`try_write()`] with concatenated
+ /// buffers.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// [`try_write()`]: Self::try_write()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_write_vectored(&self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
+ self.0.try_write_vectored(bufs)
+ }
+
+ /// Returns the remote address that this stream is connected to.
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.0.peer_addr()
+ }
+
+ /// Returns the local address that this stream is bound to.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.0.local_addr()
+ }
+}
+
+impl AsyncRead for ReadHalf<'_> {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.0.poll_read_priv(cx, buf)
+ }
+}
+
+impl AsyncWrite for WriteHalf<'_> {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.0.poll_write_priv(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.0.poll_write_vectored_priv(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ self.0.is_write_vectored()
+ }
+
+ #[inline]
+ fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ // tcp flush is a no-op
+ Poll::Ready(Ok(()))
+ }
+
+ // `poll_shutdown` on a write half shutdowns the stream in the "write" direction.
+ fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.0.shutdown_std(Shutdown::Write).into()
+ }
+}
+
+impl AsRef<TcpStream> for ReadHalf<'_> {
+ fn as_ref(&self) -> &TcpStream {
+ self.0
+ }
+}
+
+impl AsRef<TcpStream> for WriteHalf<'_> {
+ fn as_ref(&self) -> &TcpStream {
+ self.0
+ }
+}
diff --git a/third_party/rust/tokio/src/net/tcp/split_owned.rs b/third_party/rust/tokio/src/net/tcp/split_owned.rs
new file mode 100644
index 0000000000..ef4e7b5361
--- /dev/null
+++ b/third_party/rust/tokio/src/net/tcp/split_owned.rs
@@ -0,0 +1,485 @@
+//! `TcpStream` owned split support.
+//!
+//! A `TcpStream` can be split into an `OwnedReadHalf` and a `OwnedWriteHalf`
+//! with the `TcpStream::into_split` method. `OwnedReadHalf` implements
+//! `AsyncRead` while `OwnedWriteHalf` implements `AsyncWrite`.
+//!
+//! Compared to the generic split of `AsyncRead + AsyncWrite`, this specialized
+//! split has no associated overhead and enforces all invariants at the type
+//! level.
+
+use crate::future::poll_fn;
+use crate::io::{AsyncRead, AsyncWrite, Interest, ReadBuf, Ready};
+use crate::net::TcpStream;
+
+use std::error::Error;
+use std::net::{Shutdown, SocketAddr};
+use std::pin::Pin;
+use std::sync::Arc;
+use std::task::{Context, Poll};
+use std::{fmt, io};
+
+cfg_io_util! {
+ use bytes::BufMut;
+}
+
+/// Owned read half of a [`TcpStream`], created by [`into_split`].
+///
+/// Reading from an `OwnedReadHalf` is usually done using the convenience methods found
+/// on the [`AsyncReadExt`] trait.
+///
+/// [`TcpStream`]: TcpStream
+/// [`into_split`]: TcpStream::into_split()
+/// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
+#[derive(Debug)]
+pub struct OwnedReadHalf {
+ inner: Arc<TcpStream>,
+}
+
+/// Owned write half of a [`TcpStream`], created by [`into_split`].
+///
+/// Note that in the [`AsyncWrite`] implementation of this type, [`poll_shutdown`] will
+/// shut down the TCP stream in the write direction. Dropping the write half
+/// will also shut down the write half of the TCP stream.
+///
+/// Writing to an `OwnedWriteHalf` is usually done using the convenience methods found
+/// on the [`AsyncWriteExt`] trait.
+///
+/// [`TcpStream`]: TcpStream
+/// [`into_split`]: TcpStream::into_split()
+/// [`AsyncWrite`]: trait@crate::io::AsyncWrite
+/// [`poll_shutdown`]: fn@crate::io::AsyncWrite::poll_shutdown
+/// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
+#[derive(Debug)]
+pub struct OwnedWriteHalf {
+ inner: Arc<TcpStream>,
+ shutdown_on_drop: bool,
+}
+
+pub(crate) fn split_owned(stream: TcpStream) -> (OwnedReadHalf, OwnedWriteHalf) {
+ let arc = Arc::new(stream);
+ let read = OwnedReadHalf {
+ inner: Arc::clone(&arc),
+ };
+ let write = OwnedWriteHalf {
+ inner: arc,
+ shutdown_on_drop: true,
+ };
+ (read, write)
+}
+
+pub(crate) fn reunite(
+ read: OwnedReadHalf,
+ write: OwnedWriteHalf,
+) -> Result<TcpStream, ReuniteError> {
+ if Arc::ptr_eq(&read.inner, &write.inner) {
+ write.forget();
+ // This unwrap cannot fail as the api does not allow creating more than two Arcs,
+ // and we just dropped the other half.
+ Ok(Arc::try_unwrap(read.inner).expect("TcpStream: try_unwrap failed in reunite"))
+ } else {
+ Err(ReuniteError(read, write))
+ }
+}
+
+/// Error indicating that two halves were not from the same socket, and thus could
+/// not be reunited.
+#[derive(Debug)]
+pub struct ReuniteError(pub OwnedReadHalf, pub OwnedWriteHalf);
+
+impl fmt::Display for ReuniteError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(
+ f,
+ "tried to reunite halves that are not from the same socket"
+ )
+ }
+}
+
+impl Error for ReuniteError {}
+
+impl OwnedReadHalf {
+ /// Attempts to put the two halves of a `TcpStream` back together and
+ /// recover the original socket. Succeeds only if the two halves
+ /// originated from the same call to [`into_split`].
+ ///
+ /// [`into_split`]: TcpStream::into_split()
+ pub fn reunite(self, other: OwnedWriteHalf) -> Result<TcpStream, ReuniteError> {
+ reunite(self, other)
+ }
+
+ /// Attempt to receive data on the socket, without removing that data from
+ /// the queue, registering the current task for wakeup if data is not yet
+ /// available.
+ ///
+ /// Note that on multiple calls to `poll_peek` or `poll_read`, only the
+ /// `Waker` from the `Context` passed to the most recent call is scheduled
+ /// to receive a wakeup.
+ ///
+ /// See the [`TcpStream::poll_peek`] level documentation for more details.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, ReadBuf};
+ /// use tokio::net::TcpStream;
+ ///
+ /// use futures::future::poll_fn;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let stream = TcpStream::connect("127.0.0.1:8000").await?;
+ /// let (mut read_half, _) = stream.into_split();
+ /// let mut buf = [0; 10];
+ /// let mut buf = ReadBuf::new(&mut buf);
+ ///
+ /// poll_fn(|cx| {
+ /// read_half.poll_peek(cx, &mut buf)
+ /// }).await?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`TcpStream::poll_peek`]: TcpStream::poll_peek
+ pub fn poll_peek(
+ &mut self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<usize>> {
+ self.inner.poll_peek(cx, buf)
+ }
+
+ /// Receives data on the socket from the remote address to which it is
+ /// connected, without removing that data from the queue. On success,
+ /// returns the number of bytes peeked.
+ ///
+ /// See the [`TcpStream::peek`] level documentation for more details.
+ ///
+ /// [`TcpStream::peek`]: TcpStream::peek
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use tokio::io::AsyncReadExt;
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ /// let (mut read_half, _) = stream.into_split();
+ ///
+ /// let mut b1 = [0; 10];
+ /// let mut b2 = [0; 10];
+ ///
+ /// // Peek at the data
+ /// let n = read_half.peek(&mut b1).await?;
+ ///
+ /// // Read the data
+ /// assert_eq!(n, read_half.read(&mut b2[..n]).await?);
+ /// assert_eq!(&b1[..n], &b2[..n]);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// The [`read`] method is defined on the [`AsyncReadExt`] trait.
+ ///
+ /// [`read`]: fn@crate::io::AsyncReadExt::read
+ /// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
+ pub async fn peek(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ let mut buf = ReadBuf::new(buf);
+ poll_fn(|cx| self.poll_peek(cx, &mut buf)).await
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// This function is equivalent to [`TcpStream::ready`].
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ self.inner.ready(interest).await
+ }
+
+ /// Waits for the socket to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_read()`.
+ ///
+ /// This function is also equivalent to [`TcpStream::ready`].
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn readable(&self) -> io::Result<()> {
+ self.inner.readable().await
+ }
+
+ /// Tries to read data from the stream into the provided buffer, returning how
+ /// many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.inner.try_read(buf)
+ }
+
+ /// Tries to read data from the stream into the provided buffers, returning
+ /// how many bytes were read.
+ ///
+ /// Data is copied to fill each buffer in order, with the final buffer
+ /// written to possibly being only partially filled. This method behaves
+ /// equivalently to a single call to [`try_read()`] with concatenated
+ /// buffers.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_vectored()` is non-blocking, the buffer does not have to be
+ /// stored by the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`try_read()`]: Self::try_read()
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
+ self.inner.try_read_vectored(bufs)
+ }
+
+ cfg_io_util! {
+ /// Tries to read data from the stream into the provided buffer, advancing the
+ /// buffer's internal cursor, returning how many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
+ self.inner.try_read_buf(buf)
+ }
+ }
+
+ /// Returns the remote address that this stream is connected to.
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.peer_addr()
+ }
+
+ /// Returns the local address that this stream is bound to.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.local_addr()
+ }
+}
+
+impl AsyncRead for OwnedReadHalf {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.inner.poll_read_priv(cx, buf)
+ }
+}
+
+impl OwnedWriteHalf {
+ /// Attempts to put the two halves of a `TcpStream` back together and
+ /// recover the original socket. Succeeds only if the two halves
+ /// originated from the same call to [`into_split`].
+ ///
+ /// [`into_split`]: TcpStream::into_split()
+ pub fn reunite(self, other: OwnedReadHalf) -> Result<TcpStream, ReuniteError> {
+ reunite(other, self)
+ }
+
+ /// Destroys the write half, but don't close the write half of the stream
+ /// until the read half is dropped. If the read half has already been
+ /// dropped, this closes the stream.
+ pub fn forget(mut self) {
+ self.shutdown_on_drop = false;
+ drop(self);
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// This function is equivalent to [`TcpStream::ready`].
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ self.inner.ready(interest).await
+ }
+
+ /// Waits for the socket to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
+ /// paired with `try_write()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn writable(&self) -> io::Result<()> {
+ self.inner.writable().await
+ }
+
+ /// Tries to write a buffer to the stream, returning how many bytes were
+ /// written.
+ ///
+ /// The function will attempt to write the entire contents of `buf`, but
+ /// only part of the buffer may be written.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
+ self.inner.try_write(buf)
+ }
+
+ /// Tries to write several buffers to the stream, returning how many bytes
+ /// were written.
+ ///
+ /// Data is written from each buffer in order, with the final buffer read
+ /// from possible being only partially consumed. This method behaves
+ /// equivalently to a single call to [`try_write()`] with concatenated
+ /// buffers.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// [`try_write()`]: Self::try_write()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_write_vectored(&self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
+ self.inner.try_write_vectored(bufs)
+ }
+
+ /// Returns the remote address that this stream is connected to.
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.peer_addr()
+ }
+
+ /// Returns the local address that this stream is bound to.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.local_addr()
+ }
+}
+
+impl Drop for OwnedWriteHalf {
+ fn drop(&mut self) {
+ if self.shutdown_on_drop {
+ let _ = self.inner.shutdown_std(Shutdown::Write);
+ }
+ }
+}
+
+impl AsyncWrite for OwnedWriteHalf {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.inner.poll_write_priv(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.inner.poll_write_vectored_priv(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ self.inner.is_write_vectored()
+ }
+
+ #[inline]
+ fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ // tcp flush is a no-op
+ Poll::Ready(Ok(()))
+ }
+
+ // `poll_shutdown` on a write half shutdowns the stream in the "write" direction.
+ fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ let res = self.inner.shutdown_std(Shutdown::Write);
+ if res.is_ok() {
+ Pin::into_inner(self).shutdown_on_drop = false;
+ }
+ res.into()
+ }
+}
+
+impl AsRef<TcpStream> for OwnedReadHalf {
+ fn as_ref(&self) -> &TcpStream {
+ &*self.inner
+ }
+}
+
+impl AsRef<TcpStream> for OwnedWriteHalf {
+ fn as_ref(&self) -> &TcpStream {
+ &*self.inner
+ }
+}
diff --git a/third_party/rust/tokio/src/net/tcp/stream.rs b/third_party/rust/tokio/src/net/tcp/stream.rs
new file mode 100644
index 0000000000..ebb67b84d1
--- /dev/null
+++ b/third_party/rust/tokio/src/net/tcp/stream.rs
@@ -0,0 +1,1310 @@
+use crate::future::poll_fn;
+use crate::io::{AsyncRead, AsyncWrite, Interest, PollEvented, ReadBuf, Ready};
+use crate::net::tcp::split::{split, ReadHalf, WriteHalf};
+use crate::net::tcp::split_owned::{split_owned, OwnedReadHalf, OwnedWriteHalf};
+use crate::net::{to_socket_addrs, ToSocketAddrs};
+
+use std::convert::TryFrom;
+use std::fmt;
+use std::io;
+use std::net::{Shutdown, SocketAddr};
+use std::pin::Pin;
+use std::task::{Context, Poll};
+use std::time::Duration;
+
+cfg_io_util! {
+ use bytes::BufMut;
+}
+
+cfg_net! {
+ /// A TCP stream between a local and a remote socket.
+ ///
+ /// A TCP stream can either be created by connecting to an endpoint, via the
+ /// [`connect`] method, or by [accepting] a connection from a [listener]. A
+ /// TCP stream can also be created via the [`TcpSocket`] type.
+ ///
+ /// Reading and writing to a `TcpStream` is usually done using the
+ /// convenience methods found on the [`AsyncReadExt`] and [`AsyncWriteExt`]
+ /// traits.
+ ///
+ /// [`connect`]: method@TcpStream::connect
+ /// [accepting]: method@crate::net::TcpListener::accept
+ /// [listener]: struct@crate::net::TcpListener
+ /// [`TcpSocket`]: struct@crate::net::TcpSocket
+ /// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
+ /// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use tokio::io::AsyncWriteExt;
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let mut stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// // Write some data.
+ /// stream.write_all(b"hello world!").await?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// The [`write_all`] method is defined on the [`AsyncWriteExt`] trait.
+ ///
+ /// [`write_all`]: fn@crate::io::AsyncWriteExt::write_all
+ /// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
+ ///
+ /// To shut down the stream in the write direction, you can call the
+ /// [`shutdown()`] method. This will cause the other peer to receive a read of
+ /// length 0, indicating that no more data will be sent. This only closes
+ /// the stream in one direction.
+ ///
+ /// [`shutdown()`]: fn@crate::io::AsyncWriteExt::shutdown
+ pub struct TcpStream {
+ io: PollEvented<mio::net::TcpStream>,
+ }
+}
+
+impl TcpStream {
+ /// Opens a TCP connection to a remote host.
+ ///
+ /// `addr` is an address of the remote host. Anything which implements the
+ /// [`ToSocketAddrs`] trait can be supplied as the address. If `addr`
+ /// yields multiple addresses, connect will be attempted with each of the
+ /// addresses until a connection is successful. If none of the addresses
+ /// result in a successful connection, the error returned from the last
+ /// connection attempt (the last address) is returned.
+ ///
+ /// To configure the socket before connecting, you can use the [`TcpSocket`]
+ /// type.
+ ///
+ /// [`ToSocketAddrs`]: trait@crate::net::ToSocketAddrs
+ /// [`TcpSocket`]: struct@crate::net::TcpSocket
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use tokio::io::AsyncWriteExt;
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let mut stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// // Write some data.
+ /// stream.write_all(b"hello world!").await?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// The [`write_all`] method is defined on the [`AsyncWriteExt`] trait.
+ ///
+ /// [`write_all`]: fn@crate::io::AsyncWriteExt::write_all
+ /// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
+ pub async fn connect<A: ToSocketAddrs>(addr: A) -> io::Result<TcpStream> {
+ let addrs = to_socket_addrs(addr).await?;
+
+ let mut last_err = None;
+
+ for addr in addrs {
+ match TcpStream::connect_addr(addr).await {
+ Ok(stream) => return Ok(stream),
+ Err(e) => last_err = Some(e),
+ }
+ }
+
+ Err(last_err.unwrap_or_else(|| {
+ io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "could not resolve to any address",
+ )
+ }))
+ }
+
+ /// Establishes a connection to the specified `addr`.
+ async fn connect_addr(addr: SocketAddr) -> io::Result<TcpStream> {
+ let sys = mio::net::TcpStream::connect(addr)?;
+ TcpStream::connect_mio(sys).await
+ }
+
+ pub(crate) async fn connect_mio(sys: mio::net::TcpStream) -> io::Result<TcpStream> {
+ let stream = TcpStream::new(sys)?;
+
+ // Once we've connected, wait for the stream to be writable as
+ // that's when the actual connection has been initiated. Once we're
+ // writable we check for `take_socket_error` to see if the connect
+ // actually hit an error or not.
+ //
+ // If all that succeeded then we ship everything on up.
+ poll_fn(|cx| stream.io.registration().poll_write_ready(cx)).await?;
+
+ if let Some(e) = stream.io.take_error()? {
+ return Err(e);
+ }
+
+ Ok(stream)
+ }
+
+ pub(crate) fn new(connected: mio::net::TcpStream) -> io::Result<TcpStream> {
+ let io = PollEvented::new(connected)?;
+ Ok(TcpStream { io })
+ }
+
+ /// Creates new `TcpStream` from a `std::net::TcpStream`.
+ ///
+ /// This function is intended to be used to wrap a TCP stream from the
+ /// standard library in the Tokio equivalent. The conversion assumes nothing
+ /// about the underlying stream; it is left up to the user to set it in
+ /// non-blocking mode.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use std::error::Error;
+ /// use tokio::net::TcpStream;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let std_stream = std::net::TcpStream::connect("127.0.0.1:34254")?;
+ /// std_stream.set_nonblocking(true)?;
+ /// let stream = TcpStream::from_std(std_stream)?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called
+ /// from a future driven by a tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
+ pub fn from_std(stream: std::net::TcpStream) -> io::Result<TcpStream> {
+ let io = mio::net::TcpStream::from_std(stream);
+ let io = PollEvented::new(io)?;
+ Ok(TcpStream { io })
+ }
+
+ /// Turns a [`tokio::net::TcpStream`] into a [`std::net::TcpStream`].
+ ///
+ /// The returned [`std::net::TcpStream`] will have nonblocking mode set as `true`.
+ /// Use [`set_nonblocking`] to change the blocking mode if needed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::error::Error;
+ /// use std::io::Read;
+ /// use tokio::net::TcpListener;
+ /// # use tokio::net::TcpStream;
+ /// # use tokio::io::AsyncWriteExt;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let mut data = [0u8; 12];
+ /// let listener = TcpListener::bind("127.0.0.1:34254").await?;
+ /// # let handle = tokio::spawn(async {
+ /// # let mut stream: TcpStream = TcpStream::connect("127.0.0.1:34254").await.unwrap();
+ /// # stream.write(b"Hello world!").await.unwrap();
+ /// # });
+ /// let (tokio_tcp_stream, _) = listener.accept().await?;
+ /// let mut std_tcp_stream = tokio_tcp_stream.into_std()?;
+ /// # handle.await.expect("The task being joined has panicked");
+ /// std_tcp_stream.set_nonblocking(false)?;
+ /// std_tcp_stream.read_exact(&mut data)?;
+ /// # assert_eq!(b"Hello world!", &data);
+ /// Ok(())
+ /// }
+ /// ```
+ /// [`tokio::net::TcpStream`]: TcpStream
+ /// [`std::net::TcpStream`]: std::net::TcpStream
+ /// [`set_nonblocking`]: fn@std::net::TcpStream::set_nonblocking
+ pub fn into_std(self) -> io::Result<std::net::TcpStream> {
+ #[cfg(unix)]
+ {
+ use std::os::unix::io::{FromRawFd, IntoRawFd};
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_fd())
+ .map(|raw_fd| unsafe { std::net::TcpStream::from_raw_fd(raw_fd) })
+ }
+
+ #[cfg(windows)]
+ {
+ use std::os::windows::io::{FromRawSocket, IntoRawSocket};
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_socket())
+ .map(|raw_socket| unsafe { std::net::TcpStream::from_raw_socket(raw_socket) })
+ }
+ }
+
+ /// Returns the local address that this stream is bound to.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// println!("{:?}", stream.local_addr()?);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.io.local_addr()
+ }
+
+ /// Returns the remote address that this stream is connected to.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// println!("{:?}", stream.peer_addr()?);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.io.peer_addr()
+ }
+
+ /// Attempts to receive data on the socket, without removing that data from
+ /// the queue, registering the current task for wakeup if data is not yet
+ /// available.
+ ///
+ /// Note that on multiple calls to `poll_peek`, `poll_read` or
+ /// `poll_read_ready`, only the `Waker` from the `Context` passed to the
+ /// most recent call is scheduled to receive a wakeup. (However,
+ /// `poll_write` retains a second, independent waker.)
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if data is not yet available.
+ /// * `Poll::Ready(Ok(n))` if data is available. `n` is the number of bytes peeked.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, ReadBuf};
+ /// use tokio::net::TcpStream;
+ ///
+ /// use futures::future::poll_fn;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let stream = TcpStream::connect("127.0.0.1:8000").await?;
+ /// let mut buf = [0; 10];
+ /// let mut buf = ReadBuf::new(&mut buf);
+ ///
+ /// poll_fn(|cx| {
+ /// stream.poll_peek(cx, &mut buf)
+ /// }).await?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn poll_peek(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<usize>> {
+ loop {
+ let ev = ready!(self.io.registration().poll_read_ready(cx))?;
+
+ let b = unsafe {
+ &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
+ };
+
+ match self.io.peek(b) {
+ Ok(ret) => {
+ unsafe { buf.assume_init(ret) };
+ buf.advance(ret);
+ return Poll::Ready(Ok(ret));
+ }
+ Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ self.io.registration().clear_readiness(ev);
+ }
+ Err(e) => return Poll::Ready(Err(e)),
+ }
+ }
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// Concurrently read and write to the stream on the same task without
+ /// splitting.
+ ///
+ /// ```no_run
+ /// use tokio::io::Interest;
+ /// use tokio::net::TcpStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// let ready = stream.ready(Interest::READABLE | Interest::WRITABLE).await?;
+ ///
+ /// if ready.is_readable() {
+ /// let mut data = vec![0; 1024];
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read(&mut data) {
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ ///
+ /// }
+ ///
+ /// if ready.is_writable() {
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// println!("write {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ /// }
+ /// }
+ /// ```
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ let event = self.io.registration().readiness(interest).await?;
+ Ok(event.ready)
+ }
+
+ /// Waits for the socket to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_read()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// let mut msg = vec![0; 1024];
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// stream.readable().await?;
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read(&mut msg) {
+ /// Ok(n) => {
+ /// msg.truncate(n);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// println!("GOT = {:?}", msg);
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn readable(&self) -> io::Result<()> {
+ self.ready(Interest::READABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for read readiness.
+ ///
+ /// If the tcp stream is not currently ready for reading, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the tcp
+ /// stream becomes ready for reading, `Waker::wake` will be called on the
+ /// waker.
+ ///
+ /// Note that on multiple calls to `poll_read_ready`, `poll_read` or
+ /// `poll_peek`, only the `Waker` from the `Context` passed to the most
+ /// recent call is scheduled to receive a wakeup. (However,
+ /// `poll_write_ready` retains a second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`readable`] is not feasible. Where possible, using [`readable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the tcp stream is not ready for reading.
+ /// * `Poll::Ready(Ok(()))` if the tcp stream is ready for reading.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`readable`]: method@Self::readable
+ pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_read_ready(cx).map_ok(|_| ())
+ }
+
+ /// Tries to read data from the stream into the provided buffer, returning how
+ /// many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: TcpStream::readable()
+ /// [`ready()`]: TcpStream::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// stream.readable().await?;
+ ///
+ /// // Creating the buffer **after** the `await` prevents it from
+ /// // being stored in the async task.
+ /// let mut buf = [0; 4096];
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read(&mut buf) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
+ use std::io::Read;
+
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || (&*self.io).read(buf))
+ }
+
+ /// Tries to read data from the stream into the provided buffers, returning
+ /// how many bytes were read.
+ ///
+ /// Data is copied to fill each buffer in order, with the final buffer
+ /// written to possibly being only partially filled. This method behaves
+ /// equivalently to a single call to [`try_read()`] with concatenated
+ /// buffers.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_vectored()` is non-blocking, the buffer does not have to be
+ /// stored by the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`try_read()`]: TcpStream::try_read()
+ /// [`readable()`]: TcpStream::readable()
+ /// [`ready()`]: TcpStream::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use std::error::Error;
+ /// use std::io::{self, IoSliceMut};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// stream.readable().await?;
+ ///
+ /// // Creating the buffer **after** the `await` prevents it from
+ /// // being stored in the async task.
+ /// let mut buf_a = [0; 512];
+ /// let mut buf_b = [0; 1024];
+ /// let mut bufs = [
+ /// IoSliceMut::new(&mut buf_a),
+ /// IoSliceMut::new(&mut buf_b),
+ /// ];
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read_vectored(&mut bufs) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
+ use std::io::Read;
+
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || (&*self.io).read_vectored(bufs))
+ }
+
+ cfg_io_util! {
+ /// Tries to read data from the stream into the provided buffer, advancing the
+ /// buffer's internal cursor, returning how many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: TcpStream::readable()
+ /// [`ready()`]: TcpStream::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// stream.readable().await?;
+ ///
+ /// let mut buf = Vec::with_capacity(4096);
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read_buf(&mut buf) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
+ self.io.registration().try_io(Interest::READABLE, || {
+ use std::io::Read;
+
+ let dst = buf.chunk_mut();
+ let dst =
+ unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
+
+ // Safety: We trust `TcpStream::read` to have filled up `n` bytes in the
+ // buffer.
+ let n = (&*self.io).read(dst)?;
+
+ unsafe {
+ buf.advance_mut(n);
+ }
+
+ Ok(n)
+ })
+ }
+ }
+
+ /// Waits for the socket to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
+ /// paired with `try_write()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// stream.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn writable(&self) -> io::Result<()> {
+ self.ready(Interest::WRITABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for write readiness.
+ ///
+ /// If the tcp stream is not currently ready for writing, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the tcp
+ /// stream becomes ready for writing, `Waker::wake` will be called on the
+ /// waker.
+ ///
+ /// Note that on multiple calls to `poll_write_ready` or `poll_write`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_read_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`writable`] is not feasible. Where possible, using [`writable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the tcp stream is not ready for writing.
+ /// * `Poll::Ready(Ok(()))` if the tcp stream is ready for writing.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`writable`]: method@Self::writable
+ pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_write_ready(cx).map_ok(|_| ())
+ }
+
+ /// Try to write a buffer to the stream, returning how many bytes were
+ /// written.
+ ///
+ /// The function will attempt to write the entire contents of `buf`, but
+ /// only part of the buffer may be written.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// stream.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
+ use std::io::Write;
+
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || (&*self.io).write(buf))
+ }
+
+ /// Tries to write several buffers to the stream, returning how many bytes
+ /// were written.
+ ///
+ /// Data is written from each buffer in order, with the final buffer read
+ /// from possible being only partially consumed. This method behaves
+ /// equivalently to a single call to [`try_write()`] with concatenated
+ /// buffers.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// [`try_write()`]: TcpStream::try_write()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// let bufs = [io::IoSlice::new(b"hello "), io::IoSlice::new(b"world")];
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// stream.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_write_vectored(&bufs) {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_write_vectored(&self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
+ use std::io::Write;
+
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || (&*self.io).write_vectored(bufs))
+ }
+
+ /// Tries to read or write from the socket using a user-provided IO operation.
+ ///
+ /// If the socket is ready, the provided closure is called. The closure
+ /// should attempt to perform IO operation from the socket by manually
+ /// calling the appropriate syscall. If the operation fails because the
+ /// socket is not actually ready, then the closure should return a
+ /// `WouldBlock` error and the readiness flag is cleared. The return value
+ /// of the closure is then returned by `try_io`.
+ ///
+ /// If the socket is not ready, then the closure is not called
+ /// and a `WouldBlock` error is returned.
+ ///
+ /// The closure should only return a `WouldBlock` error if it has performed
+ /// an IO operation on the socket that failed due to the socket not being
+ /// ready. Returning a `WouldBlock` error in any other situation will
+ /// incorrectly clear the readiness flag, which can cause the socket to
+ /// behave incorrectly.
+ ///
+ /// The closure should not perform the IO operation using any of the methods
+ /// defined on the Tokio `TcpStream` type, as this will mess with the
+ /// readiness flag and can cause the socket to behave incorrectly.
+ ///
+ /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: TcpStream::readable()
+ /// [`writable()`]: TcpStream::writable()
+ /// [`ready()`]: TcpStream::ready()
+ pub fn try_io<R>(
+ &self,
+ interest: Interest,
+ f: impl FnOnce() -> io::Result<R>,
+ ) -> io::Result<R> {
+ self.io.registration().try_io(interest, f)
+ }
+
+ /// Receives data on the socket from the remote address to which it is
+ /// connected, without removing that data from the queue. On success,
+ /// returns the number of bytes peeked.
+ ///
+ /// Successive calls return the same data. This is accomplished by passing
+ /// `MSG_PEEK` as a flag to the underlying recv system call.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ /// use tokio::io::AsyncReadExt;
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let mut stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// let mut b1 = [0; 10];
+ /// let mut b2 = [0; 10];
+ ///
+ /// // Peek at the data
+ /// let n = stream.peek(&mut b1).await?;
+ ///
+ /// // Read the data
+ /// assert_eq!(n, stream.read(&mut b2[..n]).await?);
+ /// assert_eq!(&b1[..n], &b2[..n]);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// The [`read`] method is defined on the [`AsyncReadExt`] trait.
+ ///
+ /// [`read`]: fn@crate::io::AsyncReadExt::read
+ /// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
+ pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .async_io(Interest::READABLE, || self.io.peek(buf))
+ .await
+ }
+
+ /// Shuts down the read, write, or both halves of this connection.
+ ///
+ /// This function will cause all pending and future I/O on the specified
+ /// portions to return immediately with an appropriate value (see the
+ /// documentation of `Shutdown`).
+ pub(super) fn shutdown_std(&self, how: Shutdown) -> io::Result<()> {
+ self.io.shutdown(how)
+ }
+
+ /// Gets the value of the `TCP_NODELAY` option on this socket.
+ ///
+ /// For more information about this option, see [`set_nodelay`].
+ ///
+ /// [`set_nodelay`]: TcpStream::set_nodelay
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// println!("{:?}", stream.nodelay()?);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn nodelay(&self) -> io::Result<bool> {
+ self.io.nodelay()
+ }
+
+ /// Sets the value of the `TCP_NODELAY` option on this socket.
+ ///
+ /// If set, this option disables the Nagle algorithm. This means that
+ /// segments are always sent as soon as possible, even if there is only a
+ /// small amount of data. When not set, data is buffered until there is a
+ /// sufficient amount to send out, thereby avoiding the frequent sending of
+ /// small packets.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// stream.set_nodelay(true)?;
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
+ self.io.set_nodelay(nodelay)
+ }
+
+ /// Reads the linger duration for this socket by getting the `SO_LINGER`
+ /// option.
+ ///
+ /// For more information about this option, see [`set_linger`].
+ ///
+ /// [`set_linger`]: TcpStream::set_linger
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// println!("{:?}", stream.linger()?);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn linger(&self) -> io::Result<Option<Duration>> {
+ socket2::SockRef::from(self).linger()
+ }
+
+ /// Sets the linger duration of this socket by setting the SO_LINGER option.
+ ///
+ /// This option controls the action taken when a stream has unsent messages and the stream is
+ /// closed. If SO_LINGER is set, the system shall block the process until it can transmit the
+ /// data or until the time expires.
+ ///
+ /// If SO_LINGER is not specified, and the stream is closed, the system handles the call in a
+ /// way that allows the process to continue as quickly as possible.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// stream.set_linger(None)?;
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn set_linger(&self, dur: Option<Duration>) -> io::Result<()> {
+ socket2::SockRef::from(self).set_linger(dur)
+ }
+
+ /// Gets the value of the `IP_TTL` option for this socket.
+ ///
+ /// For more information about this option, see [`set_ttl`].
+ ///
+ /// [`set_ttl`]: TcpStream::set_ttl
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// println!("{:?}", stream.ttl()?);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn ttl(&self) -> io::Result<u32> {
+ self.io.ttl()
+ }
+
+ /// Sets the value for the `IP_TTL` option on this socket.
+ ///
+ /// This value sets the time-to-live field that is used in every packet sent
+ /// from this socket.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::TcpStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
+ ///
+ /// stream.set_ttl(123)?;
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
+ self.io.set_ttl(ttl)
+ }
+
+ // These lifetime markers also appear in the generated documentation, and make
+ // it more clear that this is a *borrowed* split.
+ #[allow(clippy::needless_lifetimes)]
+ /// Splits a `TcpStream` into a read half and a write half, which can be used
+ /// to read and write the stream concurrently.
+ ///
+ /// This method is more efficient than [`into_split`], but the halves cannot be
+ /// moved into independently spawned tasks.
+ ///
+ /// [`into_split`]: TcpStream::into_split()
+ pub fn split<'a>(&'a mut self) -> (ReadHalf<'a>, WriteHalf<'a>) {
+ split(self)
+ }
+
+ /// Splits a `TcpStream` into a read half and a write half, which can be used
+ /// to read and write the stream concurrently.
+ ///
+ /// Unlike [`split`], the owned halves can be moved to separate tasks, however
+ /// this comes at the cost of a heap allocation.
+ ///
+ /// **Note:** Dropping the write half will shut down the write half of the TCP
+ /// stream. This is equivalent to calling [`shutdown()`] on the `TcpStream`.
+ ///
+ /// [`split`]: TcpStream::split()
+ /// [`shutdown()`]: fn@crate::io::AsyncWriteExt::shutdown
+ pub fn into_split(self) -> (OwnedReadHalf, OwnedWriteHalf) {
+ split_owned(self)
+ }
+
+ // == Poll IO functions that takes `&self` ==
+ //
+ // To read or write without mutable access to the `UnixStream`, combine the
+ // `poll_read_ready` or `poll_write_ready` methods with the `try_read` or
+ // `try_write` methods.
+
+ pub(crate) fn poll_read_priv(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ // Safety: `TcpStream::read` correctly handles reads into uninitialized memory
+ unsafe { self.io.poll_read(cx, buf) }
+ }
+
+ pub(super) fn poll_write_priv(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.io.poll_write(cx, buf)
+ }
+
+ pub(super) fn poll_write_vectored_priv(
+ &self,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.io.poll_write_vectored(cx, bufs)
+ }
+}
+
+impl TryFrom<std::net::TcpStream> for TcpStream {
+ type Error = io::Error;
+
+ /// Consumes stream, returning the tokio I/O object.
+ ///
+ /// This is equivalent to
+ /// [`TcpStream::from_std(stream)`](TcpStream::from_std).
+ fn try_from(stream: std::net::TcpStream) -> Result<Self, Self::Error> {
+ Self::from_std(stream)
+ }
+}
+
+// ===== impl Read / Write =====
+
+impl AsyncRead for TcpStream {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.poll_read_priv(cx, buf)
+ }
+}
+
+impl AsyncWrite for TcpStream {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.poll_write_priv(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.poll_write_vectored_priv(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ #[inline]
+ fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ // tcp flush is a no-op
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.shutdown_std(std::net::Shutdown::Write)?;
+ Poll::Ready(Ok(()))
+ }
+}
+
+impl fmt::Debug for TcpStream {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.io.fmt(f)
+ }
+}
+
+#[cfg(unix)]
+mod sys {
+ use super::TcpStream;
+ use std::os::unix::prelude::*;
+
+ impl AsRawFd for TcpStream {
+ fn as_raw_fd(&self) -> RawFd {
+ self.io.as_raw_fd()
+ }
+ }
+}
+
+#[cfg(windows)]
+mod sys {
+ use super::TcpStream;
+ use std::os::windows::prelude::*;
+
+ impl AsRawSocket for TcpStream {
+ fn as_raw_socket(&self) -> RawSocket {
+ self.io.as_raw_socket()
+ }
+ }
+}
diff --git a/third_party/rust/tokio/src/net/udp.rs b/third_party/rust/tokio/src/net/udp.rs
new file mode 100644
index 0000000000..12af5152c2
--- /dev/null
+++ b/third_party/rust/tokio/src/net/udp.rs
@@ -0,0 +1,1589 @@
+use crate::io::{Interest, PollEvented, ReadBuf, Ready};
+use crate::net::{to_socket_addrs, ToSocketAddrs};
+
+use std::convert::TryFrom;
+use std::fmt;
+use std::io;
+use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr};
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ use bytes::BufMut;
+}
+
+cfg_net! {
+ /// A UDP socket.
+ ///
+ /// UDP is "connectionless", unlike TCP. Meaning, regardless of what address you've bound to, a `UdpSocket`
+ /// is free to communicate with many different remotes. In tokio there are basically two main ways to use `UdpSocket`:
+ ///
+ /// * one to many: [`bind`](`UdpSocket::bind`) and use [`send_to`](`UdpSocket::send_to`)
+ /// and [`recv_from`](`UdpSocket::recv_from`) to communicate with many different addresses
+ /// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single address, using [`send`](`UdpSocket::send`)
+ /// and [`recv`](`UdpSocket::recv`) to communicate only with that remote address
+ ///
+ /// This type does not provide a `split` method, because this functionality
+ /// can be achieved by instead wrapping the socket in an [`Arc`]. Note that
+ /// you do not need a `Mutex` to share the `UdpSocket` — an `Arc<UdpSocket>`
+ /// is enough. This is because all of the methods take `&self` instead of
+ /// `&mut self`. Once you have wrapped it in an `Arc`, you can call
+ /// `.clone()` on the `Arc<UdpSocket>` to get multiple shared handles to the
+ /// same socket. An example of such usage can be found further down.
+ ///
+ /// [`Arc`]: std::sync::Arc
+ ///
+ /// # Streams
+ ///
+ /// If you need to listen over UDP and produce a [`Stream`], you can look
+ /// at [`UdpFramed`].
+ ///
+ /// [`UdpFramed`]: https://docs.rs/tokio-util/latest/tokio_util/udp/struct.UdpFramed.html
+ /// [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html
+ ///
+ /// # Example: one to many (bind)
+ ///
+ /// Using `bind` we can create a simple echo server that sends and recv's with many different clients:
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let sock = UdpSocket::bind("0.0.0.0:8080").await?;
+ /// let mut buf = [0; 1024];
+ /// loop {
+ /// let (len, addr) = sock.recv_from(&mut buf).await?;
+ /// println!("{:?} bytes received from {:?}", len, addr);
+ ///
+ /// let len = sock.send_to(&buf[..len], addr).await?;
+ /// println!("{:?} bytes sent", len);
+ /// }
+ /// }
+ /// ```
+ ///
+ /// # Example: one to one (connect)
+ ///
+ /// Or using `connect` we can echo with a single remote address using `send` and `recv`:
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let sock = UdpSocket::bind("0.0.0.0:8080").await?;
+ ///
+ /// let remote_addr = "127.0.0.1:59611";
+ /// sock.connect(remote_addr).await?;
+ /// let mut buf = [0; 1024];
+ /// loop {
+ /// let len = sock.recv(&mut buf).await?;
+ /// println!("{:?} bytes received from {:?}", len, remote_addr);
+ ///
+ /// let len = sock.send(&buf[..len]).await?;
+ /// println!("{:?} bytes sent", len);
+ /// }
+ /// }
+ /// ```
+ ///
+ /// # Example: Splitting with `Arc`
+ ///
+ /// Because `send_to` and `recv_from` take `&self`. It's perfectly alright
+ /// to use an `Arc<UdpSocket>` and share the references to multiple tasks.
+ /// Here is a similar "echo" example that supports concurrent
+ /// sending/receiving:
+ ///
+ /// ```no_run
+ /// use tokio::{net::UdpSocket, sync::mpsc};
+ /// use std::{io, net::SocketAddr, sync::Arc};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?;
+ /// let r = Arc::new(sock);
+ /// let s = r.clone();
+ /// let (tx, mut rx) = mpsc::channel::<(Vec<u8>, SocketAddr)>(1_000);
+ ///
+ /// tokio::spawn(async move {
+ /// while let Some((bytes, addr)) = rx.recv().await {
+ /// let len = s.send_to(&bytes, &addr).await.unwrap();
+ /// println!("{:?} bytes sent", len);
+ /// }
+ /// });
+ ///
+ /// let mut buf = [0; 1024];
+ /// loop {
+ /// let (len, addr) = r.recv_from(&mut buf).await?;
+ /// println!("{:?} bytes received from {:?}", len, addr);
+ /// tx.send((buf[..len].to_vec(), addr)).await.unwrap();
+ /// }
+ /// }
+ /// ```
+ ///
+ pub struct UdpSocket {
+ io: PollEvented<mio::net::UdpSocket>,
+ }
+}
+
+impl UdpSocket {
+ /// This function will create a new UDP socket and attempt to bind it to
+ /// the `addr` provided.
+ ///
+ /// Binding with a port number of 0 will request that the OS assigns a port
+ /// to this listener. The port allocated can be queried via the `local_addr`
+ /// method.
+ ///
+ /// # Example
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let sock = UdpSocket::bind("0.0.0.0:8080").await?;
+ /// // use `sock`
+ /// # let _ = sock;
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> {
+ let addrs = to_socket_addrs(addr).await?;
+ let mut last_err = None;
+
+ for addr in addrs {
+ match UdpSocket::bind_addr(addr) {
+ Ok(socket) => return Ok(socket),
+ Err(e) => last_err = Some(e),
+ }
+ }
+
+ Err(last_err.unwrap_or_else(|| {
+ io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "could not resolve to any address",
+ )
+ }))
+ }
+
+ fn bind_addr(addr: SocketAddr) -> io::Result<UdpSocket> {
+ let sys = mio::net::UdpSocket::bind(addr)?;
+ UdpSocket::new(sys)
+ }
+
+ fn new(socket: mio::net::UdpSocket) -> io::Result<UdpSocket> {
+ let io = PollEvented::new(socket)?;
+ Ok(UdpSocket { io })
+ }
+
+ /// Creates new `UdpSocket` from a previously bound `std::net::UdpSocket`.
+ ///
+ /// This function is intended to be used to wrap a UDP socket from the
+ /// standard library in the Tokio equivalent. The conversion assumes nothing
+ /// about the underlying socket; it is left up to the user to set it in
+ /// non-blocking mode.
+ ///
+ /// This can be used in conjunction with socket2's `Socket` interface to
+ /// configure a socket before it's handed off, such as setting options like
+ /// `reuse_address` or binding to multiple addresses.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called
+ /// from a future driven by a tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
+ ///
+ /// # Example
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// # use std::{io, net::SocketAddr};
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() -> io::Result<()> {
+ /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap();
+ /// let std_sock = std::net::UdpSocket::bind(addr)?;
+ /// std_sock.set_nonblocking(true)?;
+ /// let sock = UdpSocket::from_std(std_sock)?;
+ /// // use `sock`
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn from_std(socket: net::UdpSocket) -> io::Result<UdpSocket> {
+ let io = mio::net::UdpSocket::from_std(socket);
+ UdpSocket::new(io)
+ }
+
+ /// Turns a [`tokio::net::UdpSocket`] into a [`std::net::UdpSocket`].
+ ///
+ /// The returned [`std::net::UdpSocket`] will have nonblocking mode set as
+ /// `true`. Use [`set_nonblocking`] to change the blocking mode if needed.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let tokio_socket = tokio::net::UdpSocket::bind("127.0.0.1:0").await?;
+ /// let std_socket = tokio_socket.into_std()?;
+ /// std_socket.set_nonblocking(false)?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`tokio::net::UdpSocket`]: UdpSocket
+ /// [`std::net::UdpSocket`]: std::net::UdpSocket
+ /// [`set_nonblocking`]: fn@std::net::UdpSocket::set_nonblocking
+ pub fn into_std(self) -> io::Result<std::net::UdpSocket> {
+ #[cfg(unix)]
+ {
+ use std::os::unix::io::{FromRawFd, IntoRawFd};
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_fd())
+ .map(|raw_fd| unsafe { std::net::UdpSocket::from_raw_fd(raw_fd) })
+ }
+
+ #[cfg(windows)]
+ {
+ use std::os::windows::io::{FromRawSocket, IntoRawSocket};
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_socket())
+ .map(|raw_socket| unsafe { std::net::UdpSocket::from_raw_socket(raw_socket) })
+ }
+ }
+
+ /// Returns the local address that this socket is bound to.
+ ///
+ /// # Example
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// # use std::{io, net::SocketAddr};
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() -> io::Result<()> {
+ /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap();
+ /// let sock = UdpSocket::bind(addr).await?;
+ /// // the address the socket is bound to
+ /// let local_addr = sock.local_addr()?;
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.io.local_addr()
+ }
+
+ /// Connects the UDP socket setting the default destination for send() and
+ /// limiting packets that are read via recv from the address specified in
+ /// `addr`.
+ ///
+ /// # Example
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// # use std::{io, net::SocketAddr};
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() -> io::Result<()> {
+ /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?;
+ ///
+ /// let remote_addr = "127.0.0.1:59600".parse::<SocketAddr>().unwrap();
+ /// sock.connect(remote_addr).await?;
+ /// let mut buf = [0u8; 32];
+ /// // recv from remote_addr
+ /// let len = sock.recv(&mut buf).await?;
+ /// // send to remote_addr
+ /// let _len = sock.send(&buf[..len]).await?;
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> {
+ let addrs = to_socket_addrs(addr).await?;
+ let mut last_err = None;
+
+ for addr in addrs {
+ match self.io.connect(addr) {
+ Ok(_) => return Ok(()),
+ Err(e) => last_err = Some(e),
+ }
+ }
+
+ Err(last_err.unwrap_or_else(|| {
+ io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "could not resolve to any address",
+ )
+ }))
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_recv()` or `try_send()`. It
+ /// can be used to concurrently recv / send to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// The function may complete without the socket being ready. This is a
+ /// false-positive and attempting an operation will return with
+ /// `io::ErrorKind::WouldBlock`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// Concurrently receive from and send to the socket on the same task
+ /// without splitting.
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, Interest};
+ /// use tokio::net::UdpSocket;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// socket.connect("127.0.0.1:8081").await?;
+ ///
+ /// loop {
+ /// let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?;
+ ///
+ /// if ready.is_readable() {
+ /// // The buffer is **not** included in the async task and will only exist
+ /// // on the stack.
+ /// let mut data = [0; 1024];
+ /// match socket.try_recv(&mut data[..]) {
+ /// Ok(n) => {
+ /// println!("received {:?}", &data[..n]);
+ /// }
+ /// // False-positive, continue
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// if ready.is_writable() {
+ /// // Write some data
+ /// match socket.try_send(b"hello world") {
+ /// Ok(n) => {
+ /// println!("sent {} bytes", n);
+ /// }
+ /// // False-positive, continue
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ /// }
+ /// }
+ /// ```
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ let event = self.io.registration().readiness(interest).await?;
+ Ok(event.ready)
+ }
+
+ /// Waits for the socket to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is
+ /// usually paired with `try_send()` or `try_send_to()`.
+ ///
+ /// The function may complete without the socket being writable. This is a
+ /// false-positive and attempting a `try_send()` will return with
+ /// `io::ErrorKind::WouldBlock`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Bind socket
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// socket.connect("127.0.0.1:8081").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// socket.writable().await?;
+ ///
+ /// // Try to send data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_send(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn writable(&self) -> io::Result<()> {
+ self.ready(Interest::WRITABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for write/send readiness.
+ ///
+ /// If the udp stream is not currently ready for sending, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the udp
+ /// stream becomes ready for sending, `Waker::wake` will be called on the
+ /// waker.
+ ///
+ /// Note that on multiple calls to `poll_send_ready` or `poll_send`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_recv_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`writable`] is not feasible. Where possible, using [`writable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the udp stream is not ready for writing.
+ /// * `Poll::Ready(Ok(()))` if the udp stream is ready for writing.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`writable`]: method@Self::writable
+ pub fn poll_send_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_write_ready(cx).map_ok(|_| ())
+ }
+
+ /// Sends data on the socket to the remote address that the socket is
+ /// connected to.
+ ///
+ /// The [`connect`] method will connect this socket to a remote address.
+ /// This method will fail if the socket is not connected.
+ ///
+ /// [`connect`]: method@Self::connect
+ ///
+ /// # Return
+ ///
+ /// On success, the number of bytes sent is returned, otherwise, the
+ /// encountered error is returned.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If `send` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then it is guaranteed that the message was not sent.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io;
+ /// use tokio::net::UdpSocket;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Bind socket
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// socket.connect("127.0.0.1:8081").await?;
+ ///
+ /// // Send a message
+ /// socket.send(b"hello world").await?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .async_io(Interest::WRITABLE, || self.io.send(buf))
+ .await
+ }
+
+ /// Attempts to send data on the socket to the remote address to which it
+ /// was previously `connect`ed.
+ ///
+ /// The [`connect`] method will connect this socket to a remote address.
+ /// This method will fail if the socket is not connected.
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the send direction,
+ /// only the `Waker` from the `Context` passed to the most recent call will
+ /// be scheduled to receive a wakeup.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not available to write
+ /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`connect`]: method@Self::connect
+ pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> {
+ self.io
+ .registration()
+ .poll_write_io(cx, || self.io.send(buf))
+ }
+
+ /// Tries to send data on the socket to the remote address to which it is
+ /// connected.
+ ///
+ /// When the socket buffer is full, `Err(io::ErrorKind::WouldBlock)` is
+ /// returned. This function is usually paired with `writable()`.
+ ///
+ /// # Returns
+ ///
+ /// If successful, `Ok(n)` is returned, where `n` is the number of bytes
+ /// sent. If the socket is not ready to send data,
+ /// `Err(ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Bind a UDP socket
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ ///
+ /// // Connect to a peer
+ /// socket.connect("127.0.0.1:8081").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// socket.writable().await?;
+ ///
+ /// // Try to send data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_send(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_send(&self, buf: &[u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || self.io.send(buf))
+ }
+
+ /// Waits for the socket to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_recv()`.
+ ///
+ /// The function may complete without the socket being readable. This is a
+ /// false-positive and attempting a `try_recv()` will return with
+ /// `io::ErrorKind::WouldBlock`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// socket.connect("127.0.0.1:8081").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// // The buffer is **not** included in the async task and will
+ /// // only exist on the stack.
+ /// let mut buf = [0; 1024];
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv(&mut buf) {
+ /// Ok(n) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn readable(&self) -> io::Result<()> {
+ self.ready(Interest::READABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for read/receive readiness.
+ ///
+ /// If the udp stream is not currently ready for receiving, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the udp
+ /// socket becomes ready for reading, `Waker::wake` will be called on the
+ /// waker.
+ ///
+ /// Note that on multiple calls to `poll_recv_ready`, `poll_recv` or
+ /// `poll_peek`, only the `Waker` from the `Context` passed to the most
+ /// recent call is scheduled to receive a wakeup. (However,
+ /// `poll_send_ready` retains a second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`readable`] is not feasible. Where possible, using [`readable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the udp stream is not ready for reading.
+ /// * `Poll::Ready(Ok(()))` if the udp stream is ready for reading.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`readable`]: method@Self::readable
+ pub fn poll_recv_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_read_ready(cx).map_ok(|_| ())
+ }
+
+ /// Receives a single datagram message on the socket from the remote address
+ /// to which it is connected. On success, returns the number of bytes read.
+ ///
+ /// The function must be called with valid byte array `buf` of sufficient
+ /// size to hold the message bytes. If a message is too long to fit in the
+ /// supplied buffer, excess bytes may be discarded.
+ ///
+ /// The [`connect`] method will connect this socket to a remote address.
+ /// This method will fail if the socket is not connected.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If `recv_from` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, it is guaranteed that no messages were received on this
+ /// socket.
+ ///
+ /// [`connect`]: method@Self::connect
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Bind socket
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// socket.connect("127.0.0.1:8081").await?;
+ ///
+ /// let mut buf = vec![0; 10];
+ /// let n = socket.recv(&mut buf).await?;
+ ///
+ /// println!("received {} bytes {:?}", n, &buf[..n]);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .async_io(Interest::READABLE, || self.io.recv(buf))
+ .await
+ }
+
+ /// Attempts to receive a single datagram message on the socket from the remote
+ /// address to which it is `connect`ed.
+ ///
+ /// The [`connect`] method will connect this socket to a remote address. This method
+ /// resolves to an error if the socket is not connected.
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
+ /// `Waker` from the `Context` passed to the most recent call will be scheduled to
+ /// receive a wakeup.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready to read
+ /// * `Poll::Ready(Ok(()))` reads data `ReadBuf` if the socket is ready
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`connect`]: method@Self::connect
+ pub fn poll_recv(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> {
+ let n = ready!(self.io.registration().poll_read_io(cx, || {
+ // Safety: will not read the maybe uninitialized bytes.
+ let b = unsafe {
+ &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
+ };
+
+ self.io.recv(b)
+ }))?;
+
+ // Safety: We trust `recv` to have filled up `n` bytes in the buffer.
+ unsafe {
+ buf.assume_init(n);
+ }
+ buf.advance(n);
+ Poll::Ready(Ok(()))
+ }
+
+ /// Tries to receive a single datagram message on the socket from the remote
+ /// address to which it is connected. On success, returns the number of
+ /// bytes read.
+ ///
+ /// The function must be called with valid byte array buf of sufficient size
+ /// to hold the message bytes. If a message is too long to fit in the
+ /// supplied buffer, excess bytes may be discarded.
+ ///
+ /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
+ /// returned. This function is usually paired with `readable()`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// socket.connect("127.0.0.1:8081").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// // The buffer is **not** included in the async task and will
+ /// // only exist on the stack.
+ /// let mut buf = [0; 1024];
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv(&mut buf) {
+ /// Ok(n) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_recv(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || self.io.recv(buf))
+ }
+
+ cfg_io_util! {
+ /// Tries to receive data from the stream into the provided buffer, advancing the
+ /// buffer's internal cursor, returning how many bytes were read.
+ ///
+ /// The function must be called with valid byte array buf of sufficient size
+ /// to hold the message bytes. If a message is too long to fit in the
+ /// supplied buffer, excess bytes may be discarded.
+ ///
+ /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
+ /// returned. This function is usually paired with `readable()`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// socket.connect("127.0.0.1:8081").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// let mut buf = Vec::with_capacity(1024);
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv_buf(&mut buf) {
+ /// Ok(n) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
+ self.io.registration().try_io(Interest::READABLE, || {
+ let dst = buf.chunk_mut();
+ let dst =
+ unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
+
+ // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the
+ // buffer.
+ let n = (&*self.io).recv(dst)?;
+
+ unsafe {
+ buf.advance_mut(n);
+ }
+
+ Ok(n)
+ })
+ }
+
+ /// Tries to receive a single datagram message on the socket. On success,
+ /// returns the number of bytes read and the origin.
+ ///
+ /// The function must be called with valid byte array buf of sufficient size
+ /// to hold the message bytes. If a message is too long to fit in the
+ /// supplied buffer, excess bytes may be discarded.
+ ///
+ /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
+ /// returned. This function is usually paired with `readable()`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// let mut buf = Vec::with_capacity(1024);
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv_buf_from(&mut buf) {
+ /// Ok((n, _addr)) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> {
+ self.io.registration().try_io(Interest::READABLE, || {
+ let dst = buf.chunk_mut();
+ let dst =
+ unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
+
+ // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the
+ // buffer.
+ let (n, addr) = (&*self.io).recv_from(dst)?;
+
+ unsafe {
+ buf.advance_mut(n);
+ }
+
+ Ok((n, addr))
+ })
+ }
+ }
+
+ /// Sends data on the socket to the given address. On success, returns the
+ /// number of bytes written.
+ ///
+ /// Address type can be any implementor of [`ToSocketAddrs`] trait. See its
+ /// documentation for concrete examples.
+ ///
+ /// It is possible for `addr` to yield multiple addresses, but `send_to`
+ /// will only send data to the first address yielded by `addr`.
+ ///
+ /// This will return an error when the IP version of the local socket does
+ /// not match that returned from [`ToSocketAddrs`].
+ ///
+ /// [`ToSocketAddrs`]: crate::net::ToSocketAddrs
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If `send_to` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then it is guaranteed that the message was not sent.
+ ///
+ /// # Example
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// let len = socket.send_to(b"hello world", "127.0.0.1:8081").await?;
+ ///
+ /// println!("Sent {} bytes", len);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], target: A) -> io::Result<usize> {
+ let mut addrs = to_socket_addrs(target).await?;
+
+ match addrs.next() {
+ Some(target) => self.send_to_addr(buf, target).await,
+ None => Err(io::Error::new(
+ io::ErrorKind::InvalidInput,
+ "no addresses to send data to",
+ )),
+ }
+ }
+
+ /// Attempts to send data on the socket to a given address.
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the send direction, only the
+ /// `Waker` from the `Context` passed to the most recent call will be scheduled to
+ /// receive a wakeup.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready to write
+ /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ pub fn poll_send_to(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ target: SocketAddr,
+ ) -> Poll<io::Result<usize>> {
+ self.io
+ .registration()
+ .poll_write_io(cx, || self.io.send_to(buf, target))
+ }
+
+ /// Tries to send data on the socket to the given address, but if the send is
+ /// blocked this will return right away.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Returns
+ ///
+ /// If successful, returns the number of bytes sent
+ ///
+ /// Users should ensure that when the remote cannot receive, the
+ /// [`ErrorKind::WouldBlock`] is properly handled. An error can also occur
+ /// if the IP version of the socket does not match that of `target`.
+ ///
+ /// [`ErrorKind::WouldBlock`]: std::io::ErrorKind::WouldBlock
+ ///
+ /// # Example
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ ///
+ /// let dst = "127.0.0.1:8081".parse()?;
+ ///
+ /// loop {
+ /// socket.writable().await?;
+ ///
+ /// match socket.try_send_to(&b"hello world"[..], dst) {
+ /// Ok(sent) => {
+ /// println!("sent {} bytes", sent);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// // Writable false positive.
+ /// continue;
+ /// }
+ /// Err(e) => return Err(e.into()),
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_send_to(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || self.io.send_to(buf, target))
+ }
+
+ async fn send_to_addr(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> {
+ self.io
+ .registration()
+ .async_io(Interest::WRITABLE, || self.io.send_to(buf, target))
+ .await
+ }
+
+ /// Receives a single datagram message on the socket. On success, returns
+ /// the number of bytes read and the origin.
+ ///
+ /// The function must be called with valid byte array `buf` of sufficient
+ /// size to hold the message bytes. If a message is too long to fit in the
+ /// supplied buffer, excess bytes may be discarded.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If `recv_from` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, it is guaranteed that no messages were received on this
+ /// socket.
+ ///
+ /// # Example
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ ///
+ /// let mut buf = vec![0u8; 32];
+ /// let (len, addr) = socket.recv_from(&mut buf).await?;
+ ///
+ /// println!("received {:?} bytes from {:?}", len, addr);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
+ self.io
+ .registration()
+ .async_io(Interest::READABLE, || self.io.recv_from(buf))
+ .await
+ }
+
+ /// Attempts to receive a single datagram on the socket.
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
+ /// `Waker` from the `Context` passed to the most recent call will be scheduled to
+ /// receive a wakeup.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready to read
+ /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ pub fn poll_recv_from(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<SocketAddr>> {
+ let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || {
+ // Safety: will not read the maybe uninitialized bytes.
+ let b = unsafe {
+ &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
+ };
+
+ self.io.recv_from(b)
+ }))?;
+
+ // Safety: We trust `recv` to have filled up `n` bytes in the buffer.
+ unsafe {
+ buf.assume_init(n);
+ }
+ buf.advance(n);
+ Poll::Ready(Ok(addr))
+ }
+
+ /// Tries to receive a single datagram message on the socket. On success,
+ /// returns the number of bytes read and the origin.
+ ///
+ /// The function must be called with valid byte array buf of sufficient size
+ /// to hold the message bytes. If a message is too long to fit in the
+ /// supplied buffer, excess bytes may be discarded.
+ ///
+ /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
+ /// returned. This function is usually paired with `readable()`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// // The buffer is **not** included in the async task and will
+ /// // only exist on the stack.
+ /// let mut buf = [0; 1024];
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv_from(&mut buf) {
+ /// Ok((n, _addr)) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || self.io.recv_from(buf))
+ }
+
+ /// Tries to read or write from the socket using a user-provided IO operation.
+ ///
+ /// If the socket is ready, the provided closure is called. The closure
+ /// should attempt to perform IO operation from the socket by manually
+ /// calling the appropriate syscall. If the operation fails because the
+ /// socket is not actually ready, then the closure should return a
+ /// `WouldBlock` error and the readiness flag is cleared. The return value
+ /// of the closure is then returned by `try_io`.
+ ///
+ /// If the socket is not ready, then the closure is not called
+ /// and a `WouldBlock` error is returned.
+ ///
+ /// The closure should only return a `WouldBlock` error if it has performed
+ /// an IO operation on the socket that failed due to the socket not being
+ /// ready. Returning a `WouldBlock` error in any other situation will
+ /// incorrectly clear the readiness flag, which can cause the socket to
+ /// behave incorrectly.
+ ///
+ /// The closure should not perform the IO operation using any of the methods
+ /// defined on the Tokio `UdpSocket` type, as this will mess with the
+ /// readiness flag and can cause the socket to behave incorrectly.
+ ///
+ /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: UdpSocket::readable()
+ /// [`writable()`]: UdpSocket::writable()
+ /// [`ready()`]: UdpSocket::ready()
+ pub fn try_io<R>(
+ &self,
+ interest: Interest,
+ f: impl FnOnce() -> io::Result<R>,
+ ) -> io::Result<R> {
+ self.io.registration().try_io(interest, f)
+ }
+
+ /// Receives data from the socket, without removing it from the input queue.
+ /// On success, returns the number of bytes read and the address from whence
+ /// the data came.
+ ///
+ /// # Notes
+ ///
+ /// On Windows, if the data is larger than the buffer specified, the buffer
+ /// is filled with the first part of the data, and peek_from returns the error
+ /// WSAEMSGSIZE(10040). The excess data is lost.
+ /// Make sure to always use a sufficiently large buffer to hold the
+ /// maximum UDP packet size, which can be up to 65536 bytes in size.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
+ ///
+ /// let mut buf = vec![0u8; 32];
+ /// let (len, addr) = socket.peek_from(&mut buf).await?;
+ ///
+ /// println!("peeked {:?} bytes from {:?}", len, addr);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
+ self.io
+ .registration()
+ .async_io(Interest::READABLE, || self.io.peek_from(buf))
+ .await
+ }
+
+ /// Receives data from the socket, without removing it from the input queue.
+ /// On success, returns the number of bytes read.
+ ///
+ /// # Notes
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
+ /// `Waker` from the `Context` passed to the most recent call will be scheduled to
+ /// receive a wakeup
+ ///
+ /// On Windows, if the data is larger than the buffer specified, the buffer
+ /// is filled with the first part of the data, and peek returns the error
+ /// WSAEMSGSIZE(10040). The excess data is lost.
+ /// Make sure to always use a sufficiently large buffer to hold the
+ /// maximum UDP packet size, which can be up to 65536 bytes in size.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready to read
+ /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ pub fn poll_peek_from(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<SocketAddr>> {
+ let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || {
+ // Safety: will not read the maybe uninitialized bytes.
+ let b = unsafe {
+ &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
+ };
+
+ self.io.peek_from(b)
+ }))?;
+
+ // Safety: We trust `recv` to have filled up `n` bytes in the buffer.
+ unsafe {
+ buf.assume_init(n);
+ }
+ buf.advance(n);
+ Poll::Ready(Ok(addr))
+ }
+
+ /// Gets the value of the `SO_BROADCAST` option for this socket.
+ ///
+ /// For more information about this option, see [`set_broadcast`].
+ ///
+ /// [`set_broadcast`]: method@Self::set_broadcast
+ pub fn broadcast(&self) -> io::Result<bool> {
+ self.io.broadcast()
+ }
+
+ /// Sets the value of the `SO_BROADCAST` option for this socket.
+ ///
+ /// When enabled, this socket is allowed to send packets to a broadcast
+ /// address.
+ pub fn set_broadcast(&self, on: bool) -> io::Result<()> {
+ self.io.set_broadcast(on)
+ }
+
+ /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket.
+ ///
+ /// For more information about this option, see [`set_multicast_loop_v4`].
+ ///
+ /// [`set_multicast_loop_v4`]: method@Self::set_multicast_loop_v4
+ pub fn multicast_loop_v4(&self) -> io::Result<bool> {
+ self.io.multicast_loop_v4()
+ }
+
+ /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket.
+ ///
+ /// If enabled, multicast packets will be looped back to the local socket.
+ ///
+ /// # Note
+ ///
+ /// This may not have any affect on IPv6 sockets.
+ pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> {
+ self.io.set_multicast_loop_v4(on)
+ }
+
+ /// Gets the value of the `IP_MULTICAST_TTL` option for this socket.
+ ///
+ /// For more information about this option, see [`set_multicast_ttl_v4`].
+ ///
+ /// [`set_multicast_ttl_v4`]: method@Self::set_multicast_ttl_v4
+ pub fn multicast_ttl_v4(&self) -> io::Result<u32> {
+ self.io.multicast_ttl_v4()
+ }
+
+ /// Sets the value of the `IP_MULTICAST_TTL` option for this socket.
+ ///
+ /// Indicates the time-to-live value of outgoing multicast packets for
+ /// this socket. The default value is 1 which means that multicast packets
+ /// don't leave the local network unless explicitly requested.
+ ///
+ /// # Note
+ ///
+ /// This may not have any affect on IPv6 sockets.
+ pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> {
+ self.io.set_multicast_ttl_v4(ttl)
+ }
+
+ /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
+ ///
+ /// For more information about this option, see [`set_multicast_loop_v6`].
+ ///
+ /// [`set_multicast_loop_v6`]: method@Self::set_multicast_loop_v6
+ pub fn multicast_loop_v6(&self) -> io::Result<bool> {
+ self.io.multicast_loop_v6()
+ }
+
+ /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
+ ///
+ /// Controls whether this socket sees the multicast packets it sends itself.
+ ///
+ /// # Note
+ ///
+ /// This may not have any affect on IPv4 sockets.
+ pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> {
+ self.io.set_multicast_loop_v6(on)
+ }
+
+ /// Gets the value of the `IP_TTL` option for this socket.
+ ///
+ /// For more information about this option, see [`set_ttl`].
+ ///
+ /// [`set_ttl`]: method@Self::set_ttl
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// # use std::io;
+ ///
+ /// # async fn dox() -> io::Result<()> {
+ /// let sock = UdpSocket::bind("127.0.0.1:8080").await?;
+ ///
+ /// println!("{:?}", sock.ttl()?);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn ttl(&self) -> io::Result<u32> {
+ self.io.ttl()
+ }
+
+ /// Sets the value for the `IP_TTL` option on this socket.
+ ///
+ /// This value sets the time-to-live field that is used in every packet sent
+ /// from this socket.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UdpSocket;
+ /// # use std::io;
+ ///
+ /// # async fn dox() -> io::Result<()> {
+ /// let sock = UdpSocket::bind("127.0.0.1:8080").await?;
+ /// sock.set_ttl(60)?;
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
+ self.io.set_ttl(ttl)
+ }
+
+ /// Executes an operation of the `IP_ADD_MEMBERSHIP` type.
+ ///
+ /// This function specifies a new multicast group for this socket to join.
+ /// The address must be a valid multicast address, and `interface` is the
+ /// address of the local interface with which the system should join the
+ /// multicast group. If it's equal to `INADDR_ANY` then an appropriate
+ /// interface is chosen by the system.
+ pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
+ self.io.join_multicast_v4(&multiaddr, &interface)
+ }
+
+ /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type.
+ ///
+ /// This function specifies a new multicast group for this socket to join.
+ /// The address must be a valid multicast address, and `interface` is the
+ /// index of the interface to join/leave (or 0 to indicate any interface).
+ pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
+ self.io.join_multicast_v6(multiaddr, interface)
+ }
+
+ /// Executes an operation of the `IP_DROP_MEMBERSHIP` type.
+ ///
+ /// For more information about this option, see [`join_multicast_v4`].
+ ///
+ /// [`join_multicast_v4`]: method@Self::join_multicast_v4
+ pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
+ self.io.leave_multicast_v4(&multiaddr, &interface)
+ }
+
+ /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type.
+ ///
+ /// For more information about this option, see [`join_multicast_v6`].
+ ///
+ /// [`join_multicast_v6`]: method@Self::join_multicast_v6
+ pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
+ self.io.leave_multicast_v6(multiaddr, interface)
+ }
+
+ /// Returns the value of the `SO_ERROR` option.
+ ///
+ /// # Examples
+ /// ```
+ /// use tokio::net::UdpSocket;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Create a socket
+ /// let socket = UdpSocket::bind("0.0.0.0:8080").await?;
+ ///
+ /// if let Ok(Some(err)) = socket.take_error() {
+ /// println!("Got error: {:?}", err);
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn take_error(&self) -> io::Result<Option<io::Error>> {
+ self.io.take_error()
+ }
+}
+
+impl TryFrom<std::net::UdpSocket> for UdpSocket {
+ type Error = io::Error;
+
+ /// Consumes stream, returning the tokio I/O object.
+ ///
+ /// This is equivalent to
+ /// [`UdpSocket::from_std(stream)`](UdpSocket::from_std).
+ fn try_from(stream: std::net::UdpSocket) -> Result<Self, Self::Error> {
+ Self::from_std(stream)
+ }
+}
+
+impl fmt::Debug for UdpSocket {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.io.fmt(f)
+ }
+}
+
+#[cfg(all(unix))]
+mod sys {
+ use super::UdpSocket;
+ use std::os::unix::prelude::*;
+
+ impl AsRawFd for UdpSocket {
+ fn as_raw_fd(&self) -> RawFd {
+ self.io.as_raw_fd()
+ }
+ }
+}
+
+#[cfg(windows)]
+mod sys {
+ use super::UdpSocket;
+ use std::os::windows::prelude::*;
+
+ impl AsRawSocket for UdpSocket {
+ fn as_raw_socket(&self) -> RawSocket {
+ self.io.as_raw_socket()
+ }
+ }
+}
diff --git a/third_party/rust/tokio/src/net/unix/datagram/mod.rs b/third_party/rust/tokio/src/net/unix/datagram/mod.rs
new file mode 100644
index 0000000000..6268b4ac90
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/datagram/mod.rs
@@ -0,0 +1,3 @@
+//! Unix datagram types.
+
+pub(crate) mod socket;
diff --git a/third_party/rust/tokio/src/net/unix/datagram/socket.rs b/third_party/rust/tokio/src/net/unix/datagram/socket.rs
new file mode 100644
index 0000000000..d5b618663d
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/datagram/socket.rs
@@ -0,0 +1,1422 @@
+use crate::io::{Interest, PollEvented, ReadBuf, Ready};
+use crate::net::unix::SocketAddr;
+
+use std::convert::TryFrom;
+use std::fmt;
+use std::io;
+use std::net::Shutdown;
+use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
+use std::os::unix::net;
+use std::path::Path;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ use bytes::BufMut;
+}
+
+cfg_net_unix! {
+ /// An I/O object representing a Unix datagram socket.
+ ///
+ /// A socket can be either named (associated with a filesystem path) or
+ /// unnamed.
+ ///
+ /// This type does not provide a `split` method, because this functionality
+ /// can be achieved by wrapping the socket in an [`Arc`]. Note that you do
+ /// not need a `Mutex` to share the `UnixDatagram` — an `Arc<UnixDatagram>`
+ /// is enough. This is because all of the methods take `&self` instead of
+ /// `&mut self`.
+ ///
+ /// **Note:** named sockets are persisted even after the object is dropped
+ /// and the program has exited, and cannot be reconnected. It is advised
+ /// that you either check for and unlink the existing socket if it exists,
+ /// or use a temporary file that is guaranteed to not already exist.
+ ///
+ /// [`Arc`]: std::sync::Arc
+ ///
+ /// # Examples
+ /// Using named sockets, associated with a filesystem path:
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use tempfile::tempdir;
+ ///
+ /// // We use a temporary directory so that the socket
+ /// // files left by the bound sockets will get cleaned up.
+ /// let tmp = tempdir()?;
+ ///
+ /// // Bind each socket to a filesystem path
+ /// let tx_path = tmp.path().join("tx");
+ /// let tx = UnixDatagram::bind(&tx_path)?;
+ /// let rx_path = tmp.path().join("rx");
+ /// let rx = UnixDatagram::bind(&rx_path)?;
+ ///
+ /// let bytes = b"hello world";
+ /// tx.send_to(bytes, &rx_path).await?;
+ ///
+ /// let mut buf = vec![0u8; 24];
+ /// let (size, addr) = rx.recv_from(&mut buf).await?;
+ ///
+ /// let dgram = &buf[..size];
+ /// assert_eq!(dgram, bytes);
+ /// assert_eq!(addr.as_pathname().unwrap(), &tx_path);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ ///
+ /// Using unnamed sockets, created as a pair
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ ///
+ /// // Create the pair of sockets
+ /// let (sock1, sock2) = UnixDatagram::pair()?;
+ ///
+ /// // Since the sockets are paired, the paired send/recv
+ /// // functions can be used
+ /// let bytes = b"hello world";
+ /// sock1.send(bytes).await?;
+ ///
+ /// let mut buff = vec![0u8; 24];
+ /// let size = sock2.recv(&mut buff).await?;
+ ///
+ /// let dgram = &buff[..size];
+ /// assert_eq!(dgram, bytes);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub struct UnixDatagram {
+ io: PollEvented<mio::net::UnixDatagram>,
+ }
+}
+
+impl UnixDatagram {
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_recv()` or `try_send()`. It
+ /// can be used to concurrently recv / send to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// The function may complete without the socket being ready. This is a
+ /// false-positive and attempting an operation will return with
+ /// `io::ErrorKind::WouldBlock`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// Concurrently receive from and send to the socket on the same task
+ /// without splitting.
+ ///
+ /// ```no_run
+ /// use tokio::io::Interest;
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ /// socket.connect(&server_path)?;
+ ///
+ /// loop {
+ /// let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?;
+ ///
+ /// if ready.is_readable() {
+ /// let mut data = [0; 1024];
+ /// match socket.try_recv(&mut data[..]) {
+ /// Ok(n) => {
+ /// println!("received {:?}", &data[..n]);
+ /// }
+ /// // False-positive, continue
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// if ready.is_writable() {
+ /// // Write some data
+ /// match socket.try_send(b"hello world") {
+ /// Ok(n) => {
+ /// println!("sent {} bytes", n);
+ /// }
+ /// // False-positive, continue
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ /// }
+ /// }
+ /// ```
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ let event = self.io.registration().readiness(interest).await?;
+ Ok(event.ready)
+ }
+
+ /// Waits for the socket to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is
+ /// usually paired with `try_send()` or `try_send_to()`.
+ ///
+ /// The function may complete without the socket being writable. This is a
+ /// false-positive and attempting a `try_send()` will return with
+ /// `io::ErrorKind::WouldBlock`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ /// socket.connect(&server_path)?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// socket.writable().await?;
+ ///
+ /// // Try to send data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_send(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn writable(&self) -> io::Result<()> {
+ self.ready(Interest::WRITABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for write/send readiness.
+ ///
+ /// If the socket is not currently ready for sending, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the socket
+ /// becomes ready for sending, `Waker::wake` will be called on the
+ /// waker.
+ ///
+ /// Note that on multiple calls to `poll_send_ready` or `poll_send`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_recv_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`writable`] is not feasible. Where possible, using [`writable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready for writing.
+ /// * `Poll::Ready(Ok(()))` if the socket is ready for writing.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`writable`]: method@Self::writable
+ pub fn poll_send_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_write_ready(cx).map_ok(|_| ())
+ }
+
+ /// Waits for the socket to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_recv()`.
+ ///
+ /// The function may complete without the socket being readable. This is a
+ /// false-positive and attempting a `try_recv()` will return with
+ /// `io::ErrorKind::WouldBlock`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ /// socket.connect(&server_path)?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// // The buffer is **not** included in the async task and will
+ /// // only exist on the stack.
+ /// let mut buf = [0; 1024];
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv(&mut buf) {
+ /// Ok(n) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn readable(&self) -> io::Result<()> {
+ self.ready(Interest::READABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for read/receive readiness.
+ ///
+ /// If the socket is not currently ready for receiving, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the
+ /// socket becomes ready for reading, `Waker::wake` will be called on the
+ /// waker.
+ ///
+ /// Note that on multiple calls to `poll_recv_ready`, `poll_recv` or
+ /// `poll_peek`, only the `Waker` from the `Context` passed to the most
+ /// recent call is scheduled to receive a wakeup. (However,
+ /// `poll_send_ready` retains a second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`readable`] is not feasible. Where possible, using [`readable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready for reading.
+ /// * `Poll::Ready(Ok(()))` if the socket is ready for reading.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`readable`]: method@Self::readable
+ pub fn poll_recv_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_read_ready(cx).map_ok(|_| ())
+ }
+
+ /// Creates a new `UnixDatagram` bound to the specified path.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use tempfile::tempdir;
+ ///
+ /// // We use a temporary directory so that the socket
+ /// // files left by the bound sockets will get cleaned up.
+ /// let tmp = tempdir()?;
+ ///
+ /// // Bind the socket to a filesystem path
+ /// let socket_path = tmp.path().join("socket");
+ /// let socket = UnixDatagram::bind(&socket_path)?;
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn bind<P>(path: P) -> io::Result<UnixDatagram>
+ where
+ P: AsRef<Path>,
+ {
+ let socket = mio::net::UnixDatagram::bind(path)?;
+ UnixDatagram::new(socket)
+ }
+
+ /// Creates an unnamed pair of connected sockets.
+ ///
+ /// This function will create a pair of interconnected Unix sockets for
+ /// communicating back and forth between one another.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ ///
+ /// // Create the pair of sockets
+ /// let (sock1, sock2) = UnixDatagram::pair()?;
+ ///
+ /// // Since the sockets are paired, the paired send/recv
+ /// // functions can be used
+ /// let bytes = b"hail eris";
+ /// sock1.send(bytes).await?;
+ ///
+ /// let mut buff = vec![0u8; 24];
+ /// let size = sock2.recv(&mut buff).await?;
+ ///
+ /// let dgram = &buff[..size];
+ /// assert_eq!(dgram, bytes);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn pair() -> io::Result<(UnixDatagram, UnixDatagram)> {
+ let (a, b) = mio::net::UnixDatagram::pair()?;
+ let a = UnixDatagram::new(a)?;
+ let b = UnixDatagram::new(b)?;
+
+ Ok((a, b))
+ }
+
+ /// Creates new `UnixDatagram` from a `std::os::unix::net::UnixDatagram`.
+ ///
+ /// This function is intended to be used to wrap a UnixDatagram from the
+ /// standard library in the Tokio equivalent. The conversion assumes
+ /// nothing about the underlying datagram; it is left up to the user to set
+ /// it in non-blocking mode.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called
+ /// from a future driven by a Tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use std::os::unix::net::UnixDatagram as StdUDS;
+ /// use tempfile::tempdir;
+ ///
+ /// // We use a temporary directory so that the socket
+ /// // files left by the bound sockets will get cleaned up.
+ /// let tmp = tempdir()?;
+ ///
+ /// // Bind the socket to a filesystem path
+ /// let socket_path = tmp.path().join("socket");
+ /// let std_socket = StdUDS::bind(&socket_path)?;
+ /// std_socket.set_nonblocking(true)?;
+ /// let tokio_socket = UnixDatagram::from_std(std_socket)?;
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn from_std(datagram: net::UnixDatagram) -> io::Result<UnixDatagram> {
+ let socket = mio::net::UnixDatagram::from_std(datagram);
+ let io = PollEvented::new(socket)?;
+ Ok(UnixDatagram { io })
+ }
+
+ /// Turns a [`tokio::net::UnixDatagram`] into a [`std::os::unix::net::UnixDatagram`].
+ ///
+ /// The returned [`std::os::unix::net::UnixDatagram`] will have nonblocking
+ /// mode set as `true`. Use [`set_nonblocking`] to change the blocking mode
+ /// if needed.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let tokio_socket = tokio::net::UnixDatagram::bind("127.0.0.1:0")?;
+ /// let std_socket = tokio_socket.into_std()?;
+ /// std_socket.set_nonblocking(false)?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`tokio::net::UnixDatagram`]: UnixDatagram
+ /// [`std::os::unix::net::UnixDatagram`]: std::os::unix::net::UnixDatagram
+ /// [`set_nonblocking`]: fn@std::os::unix::net::UnixDatagram::set_nonblocking
+ pub fn into_std(self) -> io::Result<std::os::unix::net::UnixDatagram> {
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_fd())
+ .map(|raw_fd| unsafe { std::os::unix::net::UnixDatagram::from_raw_fd(raw_fd) })
+ }
+
+ fn new(socket: mio::net::UnixDatagram) -> io::Result<UnixDatagram> {
+ let io = PollEvented::new(socket)?;
+ Ok(UnixDatagram { io })
+ }
+
+ /// Creates a new `UnixDatagram` which is not bound to any address.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use tempfile::tempdir;
+ ///
+ /// // Create an unbound socket
+ /// let tx = UnixDatagram::unbound()?;
+ ///
+ /// // Create another, bound socket
+ /// let tmp = tempdir()?;
+ /// let rx_path = tmp.path().join("rx");
+ /// let rx = UnixDatagram::bind(&rx_path)?;
+ ///
+ /// // Send to the bound socket
+ /// let bytes = b"hello world";
+ /// tx.send_to(bytes, &rx_path).await?;
+ ///
+ /// let mut buf = vec![0u8; 24];
+ /// let (size, addr) = rx.recv_from(&mut buf).await?;
+ ///
+ /// let dgram = &buf[..size];
+ /// assert_eq!(dgram, bytes);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn unbound() -> io::Result<UnixDatagram> {
+ let socket = mio::net::UnixDatagram::unbound()?;
+ UnixDatagram::new(socket)
+ }
+
+ /// Connects the socket to the specified address.
+ ///
+ /// The `send` method may be used to send data to the specified address.
+ /// `recv` and `recv_from` will only receive data from that address.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use tempfile::tempdir;
+ ///
+ /// // Create an unbound socket
+ /// let tx = UnixDatagram::unbound()?;
+ ///
+ /// // Create another, bound socket
+ /// let tmp = tempdir()?;
+ /// let rx_path = tmp.path().join("rx");
+ /// let rx = UnixDatagram::bind(&rx_path)?;
+ ///
+ /// // Connect to the bound socket
+ /// tx.connect(&rx_path)?;
+ ///
+ /// // Send to the bound socket
+ /// let bytes = b"hello world";
+ /// tx.send(bytes).await?;
+ ///
+ /// let mut buf = vec![0u8; 24];
+ /// let (size, addr) = rx.recv_from(&mut buf).await?;
+ ///
+ /// let dgram = &buf[..size];
+ /// assert_eq!(dgram, bytes);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn connect<P: AsRef<Path>>(&self, path: P) -> io::Result<()> {
+ self.io.connect(path)
+ }
+
+ /// Sends data on the socket to the socket's peer.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If `send` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then it is guaranteed that the message was not sent.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ ///
+ /// // Create the pair of sockets
+ /// let (sock1, sock2) = UnixDatagram::pair()?;
+ ///
+ /// // Since the sockets are paired, the paired send/recv
+ /// // functions can be used
+ /// let bytes = b"hello world";
+ /// sock1.send(bytes).await?;
+ ///
+ /// let mut buff = vec![0u8; 24];
+ /// let size = sock2.recv(&mut buff).await?;
+ ///
+ /// let dgram = &buff[..size];
+ /// assert_eq!(dgram, bytes);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .async_io(Interest::WRITABLE, || self.io.send(buf))
+ .await
+ }
+
+ /// Tries to send a datagram to the peer without waiting.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ /// socket.connect(&server_path)?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// socket.writable().await?;
+ ///
+ /// // Try to send data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_send(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_send(&self, buf: &[u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || self.io.send(buf))
+ }
+
+ /// Tries to send a datagram to the peer without waiting.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// socket.writable().await?;
+ ///
+ /// // Try to send data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_send_to(b"hello world", &server_path) {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_send_to<P>(&self, buf: &[u8], target: P) -> io::Result<usize>
+ where
+ P: AsRef<Path>,
+ {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || self.io.send_to(buf, target))
+ }
+
+ /// Receives data from the socket.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If `recv` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, it is guaranteed that no messages were received on this
+ /// socket.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ ///
+ /// // Create the pair of sockets
+ /// let (sock1, sock2) = UnixDatagram::pair()?;
+ ///
+ /// // Since the sockets are paired, the paired send/recv
+ /// // functions can be used
+ /// let bytes = b"hello world";
+ /// sock1.send(bytes).await?;
+ ///
+ /// let mut buff = vec![0u8; 24];
+ /// let size = sock2.recv(&mut buff).await?;
+ ///
+ /// let dgram = &buff[..size];
+ /// assert_eq!(dgram, bytes);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .async_io(Interest::READABLE, || self.io.recv(buf))
+ .await
+ }
+
+ /// Tries to receive a datagram from the peer without waiting.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ /// socket.connect(&server_path)?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// // The buffer is **not** included in the async task and will
+ /// // only exist on the stack.
+ /// let mut buf = [0; 1024];
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv(&mut buf) {
+ /// Ok(n) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_recv(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || self.io.recv(buf))
+ }
+
+ cfg_io_util! {
+ /// Tries to receive data from the socket without waiting.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// let mut buf = Vec::with_capacity(1024);
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv_buf_from(&mut buf) {
+ /// Ok((n, _addr)) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> {
+ let (n, addr) = self.io.registration().try_io(Interest::READABLE, || {
+ let dst = buf.chunk_mut();
+ let dst =
+ unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
+
+ // Safety: We trust `UnixDatagram::recv_from` to have filled up `n` bytes in the
+ // buffer.
+ let (n, addr) = (&*self.io).recv_from(dst)?;
+
+ unsafe {
+ buf.advance_mut(n);
+ }
+
+ Ok((n, addr))
+ })?;
+
+ Ok((n, SocketAddr(addr)))
+ }
+
+ /// Tries to read data from the stream into the provided buffer, advancing the
+ /// buffer's internal cursor, returning how many bytes were read.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ /// socket.connect(&server_path)?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// let mut buf = Vec::with_capacity(1024);
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv_buf(&mut buf) {
+ /// Ok(n) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
+ self.io.registration().try_io(Interest::READABLE, || {
+ let dst = buf.chunk_mut();
+ let dst =
+ unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
+
+ // Safety: We trust `UnixDatagram::recv` to have filled up `n` bytes in the
+ // buffer.
+ let n = (&*self.io).recv(dst)?;
+
+ unsafe {
+ buf.advance_mut(n);
+ }
+
+ Ok(n)
+ })
+ }
+ }
+
+ /// Sends data on the socket to the specified address.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If `send_to` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then it is guaranteed that the message was not sent.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use tempfile::tempdir;
+ ///
+ /// // We use a temporary directory so that the socket
+ /// // files left by the bound sockets will get cleaned up.
+ /// let tmp = tempdir()?;
+ ///
+ /// // Bind each socket to a filesystem path
+ /// let tx_path = tmp.path().join("tx");
+ /// let tx = UnixDatagram::bind(&tx_path)?;
+ /// let rx_path = tmp.path().join("rx");
+ /// let rx = UnixDatagram::bind(&rx_path)?;
+ ///
+ /// let bytes = b"hello world";
+ /// tx.send_to(bytes, &rx_path).await?;
+ ///
+ /// let mut buf = vec![0u8; 24];
+ /// let (size, addr) = rx.recv_from(&mut buf).await?;
+ ///
+ /// let dgram = &buf[..size];
+ /// assert_eq!(dgram, bytes);
+ /// assert_eq!(addr.as_pathname().unwrap(), &tx_path);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn send_to<P>(&self, buf: &[u8], target: P) -> io::Result<usize>
+ where
+ P: AsRef<Path>,
+ {
+ self.io
+ .registration()
+ .async_io(Interest::WRITABLE, || self.io.send_to(buf, target.as_ref()))
+ .await
+ }
+
+ /// Receives data from the socket.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If `recv_from` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, it is guaranteed that no messages were received on this
+ /// socket.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use tempfile::tempdir;
+ ///
+ /// // We use a temporary directory so that the socket
+ /// // files left by the bound sockets will get cleaned up.
+ /// let tmp = tempdir()?;
+ ///
+ /// // Bind each socket to a filesystem path
+ /// let tx_path = tmp.path().join("tx");
+ /// let tx = UnixDatagram::bind(&tx_path)?;
+ /// let rx_path = tmp.path().join("rx");
+ /// let rx = UnixDatagram::bind(&rx_path)?;
+ ///
+ /// let bytes = b"hello world";
+ /// tx.send_to(bytes, &rx_path).await?;
+ ///
+ /// let mut buf = vec![0u8; 24];
+ /// let (size, addr) = rx.recv_from(&mut buf).await?;
+ ///
+ /// let dgram = &buf[..size];
+ /// assert_eq!(dgram, bytes);
+ /// assert_eq!(addr.as_pathname().unwrap(), &tx_path);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
+ let (n, addr) = self
+ .io
+ .registration()
+ .async_io(Interest::READABLE, || self.io.recv_from(buf))
+ .await?;
+
+ Ok((n, SocketAddr(addr)))
+ }
+
+ /// Attempts to receive a single datagram on the specified address.
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
+ /// `Waker` from the `Context` passed to the most recent call will be scheduled to
+ /// receive a wakeup.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready to read
+ /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ pub fn poll_recv_from(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<SocketAddr>> {
+ let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || {
+ // Safety: will not read the maybe uninitialized bytes.
+ let b = unsafe {
+ &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
+ };
+
+ self.io.recv_from(b)
+ }))?;
+
+ // Safety: We trust `recv` to have filled up `n` bytes in the buffer.
+ unsafe {
+ buf.assume_init(n);
+ }
+ buf.advance(n);
+ Poll::Ready(Ok(SocketAddr(addr)))
+ }
+
+ /// Attempts to send data to the specified address.
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the send direction, only the
+ /// `Waker` from the `Context` passed to the most recent call will be scheduled to
+ /// receive a wakeup.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready to write
+ /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ pub fn poll_send_to<P>(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ target: P,
+ ) -> Poll<io::Result<usize>>
+ where
+ P: AsRef<Path>,
+ {
+ self.io
+ .registration()
+ .poll_write_io(cx, || self.io.send_to(buf, target.as_ref()))
+ }
+
+ /// Attempts to send data on the socket to the remote address to which it
+ /// was previously `connect`ed.
+ ///
+ /// The [`connect`] method will connect this socket to a remote address.
+ /// This method will fail if the socket is not connected.
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the send direction,
+ /// only the `Waker` from the `Context` passed to the most recent call will
+ /// be scheduled to receive a wakeup.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not available to write
+ /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`connect`]: method@Self::connect
+ pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> {
+ self.io
+ .registration()
+ .poll_write_io(cx, || self.io.send(buf))
+ }
+
+ /// Attempts to receive a single datagram message on the socket from the remote
+ /// address to which it is `connect`ed.
+ ///
+ /// The [`connect`] method will connect this socket to a remote address. This method
+ /// resolves to an error if the socket is not connected.
+ ///
+ /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
+ /// `Waker` from the `Context` passed to the most recent call will be scheduled to
+ /// receive a wakeup.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the socket is not ready to read
+ /// * `Poll::Ready(Ok(()))` reads data `ReadBuf` if the socket is ready
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`connect`]: method@Self::connect
+ pub fn poll_recv(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> {
+ let n = ready!(self.io.registration().poll_read_io(cx, || {
+ // Safety: will not read the maybe uninitialized bytes.
+ let b = unsafe {
+ &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
+ };
+
+ self.io.recv(b)
+ }))?;
+
+ // Safety: We trust `recv` to have filled up `n` bytes in the buffer.
+ unsafe {
+ buf.assume_init(n);
+ }
+ buf.advance(n);
+ Poll::Ready(Ok(()))
+ }
+
+ /// Tries to receive data from the socket without waiting.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixDatagram;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let client_path = dir.path().join("client.sock");
+ /// let server_path = dir.path().join("server.sock");
+ /// let socket = UnixDatagram::bind(&client_path)?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// socket.readable().await?;
+ ///
+ /// // The buffer is **not** included in the async task and will
+ /// // only exist on the stack.
+ /// let mut buf = [0; 1024];
+ ///
+ /// // Try to recv data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match socket.try_recv_from(&mut buf) {
+ /// Ok((n, _addr)) => {
+ /// println!("GOT {:?}", &buf[..n]);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e);
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
+ let (n, addr) = self
+ .io
+ .registration()
+ .try_io(Interest::READABLE, || self.io.recv_from(buf))?;
+
+ Ok((n, SocketAddr(addr)))
+ }
+
+ /// Tries to read or write from the socket using a user-provided IO operation.
+ ///
+ /// If the socket is ready, the provided closure is called. The closure
+ /// should attempt to perform IO operation from the socket by manually
+ /// calling the appropriate syscall. If the operation fails because the
+ /// socket is not actually ready, then the closure should return a
+ /// `WouldBlock` error and the readiness flag is cleared. The return value
+ /// of the closure is then returned by `try_io`.
+ ///
+ /// If the socket is not ready, then the closure is not called
+ /// and a `WouldBlock` error is returned.
+ ///
+ /// The closure should only return a `WouldBlock` error if it has performed
+ /// an IO operation on the socket that failed due to the socket not being
+ /// ready. Returning a `WouldBlock` error in any other situation will
+ /// incorrectly clear the readiness flag, which can cause the socket to
+ /// behave incorrectly.
+ ///
+ /// The closure should not perform the IO operation using any of the methods
+ /// defined on the Tokio `UnixDatagram` type, as this will mess with the
+ /// readiness flag and can cause the socket to behave incorrectly.
+ ///
+ /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: UnixDatagram::readable()
+ /// [`writable()`]: UnixDatagram::writable()
+ /// [`ready()`]: UnixDatagram::ready()
+ pub fn try_io<R>(
+ &self,
+ interest: Interest,
+ f: impl FnOnce() -> io::Result<R>,
+ ) -> io::Result<R> {
+ self.io.registration().try_io(interest, f)
+ }
+
+ /// Returns the local address that this socket is bound to.
+ ///
+ /// # Examples
+ /// For a socket bound to a local path
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use tempfile::tempdir;
+ ///
+ /// // We use a temporary directory so that the socket
+ /// // files left by the bound sockets will get cleaned up.
+ /// let tmp = tempdir()?;
+ ///
+ /// // Bind socket to a filesystem path
+ /// let socket_path = tmp.path().join("socket");
+ /// let socket = UnixDatagram::bind(&socket_path)?;
+ ///
+ /// assert_eq!(socket.local_addr()?.as_pathname().unwrap(), &socket_path);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ ///
+ /// For an unbound socket
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ ///
+ /// // Create an unbound socket
+ /// let socket = UnixDatagram::unbound()?;
+ ///
+ /// assert!(socket.local_addr()?.is_unnamed());
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.io.local_addr().map(SocketAddr)
+ }
+
+ /// Returns the address of this socket's peer.
+ ///
+ /// The `connect` method will connect the socket to a peer.
+ ///
+ /// # Examples
+ /// For a peer with a local path
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use tempfile::tempdir;
+ ///
+ /// // Create an unbound socket
+ /// let tx = UnixDatagram::unbound()?;
+ ///
+ /// // Create another, bound socket
+ /// let tmp = tempdir()?;
+ /// let rx_path = tmp.path().join("rx");
+ /// let rx = UnixDatagram::bind(&rx_path)?;
+ ///
+ /// // Connect to the bound socket
+ /// tx.connect(&rx_path)?;
+ ///
+ /// assert_eq!(tx.peer_addr()?.as_pathname().unwrap(), &rx_path);
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ ///
+ /// For an unbound peer
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ ///
+ /// // Create the pair of sockets
+ /// let (sock1, sock2) = UnixDatagram::pair()?;
+ ///
+ /// assert!(sock1.peer_addr()?.is_unnamed());
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.io.peer_addr().map(SocketAddr)
+ }
+
+ /// Returns the value of the `SO_ERROR` option.
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ ///
+ /// // Create an unbound socket
+ /// let socket = UnixDatagram::unbound()?;
+ ///
+ /// if let Ok(Some(err)) = socket.take_error() {
+ /// println!("Got error: {:?}", err);
+ /// }
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn take_error(&self) -> io::Result<Option<io::Error>> {
+ self.io.take_error()
+ }
+
+ /// Shuts down the read, write, or both halves of this connection.
+ ///
+ /// This function will cause all pending and future I/O calls on the
+ /// specified portions to immediately return with an appropriate value
+ /// (see the documentation of `Shutdown`).
+ ///
+ /// # Examples
+ /// ```
+ /// # use std::error::Error;
+ /// # #[tokio::main]
+ /// # async fn main() -> Result<(), Box<dyn Error>> {
+ /// use tokio::net::UnixDatagram;
+ /// use std::net::Shutdown;
+ ///
+ /// // Create an unbound socket
+ /// let (socket, other) = UnixDatagram::pair()?;
+ ///
+ /// socket.shutdown(Shutdown::Both)?;
+ ///
+ /// // NOTE: the following commented out code does NOT work as expected.
+ /// // Due to an underlying issue, the recv call will block indefinitely.
+ /// // See: https://github.com/tokio-rs/tokio/issues/1679
+ /// //let mut buff = vec![0u8; 24];
+ /// //let size = socket.recv(&mut buff).await?;
+ /// //assert_eq!(size, 0);
+ ///
+ /// let send_result = socket.send(b"hello world").await;
+ /// assert!(send_result.is_err());
+ ///
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
+ self.io.shutdown(how)
+ }
+}
+
+impl TryFrom<std::os::unix::net::UnixDatagram> for UnixDatagram {
+ type Error = io::Error;
+
+ /// Consumes stream, returning the Tokio I/O object.
+ ///
+ /// This is equivalent to
+ /// [`UnixDatagram::from_std(stream)`](UnixDatagram::from_std).
+ fn try_from(stream: std::os::unix::net::UnixDatagram) -> Result<Self, Self::Error> {
+ Self::from_std(stream)
+ }
+}
+
+impl fmt::Debug for UnixDatagram {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.io.fmt(f)
+ }
+}
+
+impl AsRawFd for UnixDatagram {
+ fn as_raw_fd(&self) -> RawFd {
+ self.io.as_raw_fd()
+ }
+}
diff --git a/third_party/rust/tokio/src/net/unix/listener.rs b/third_party/rust/tokio/src/net/unix/listener.rs
new file mode 100644
index 0000000000..1785f8b0f7
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/listener.rs
@@ -0,0 +1,186 @@
+use crate::io::{Interest, PollEvented};
+use crate::net::unix::{SocketAddr, UnixStream};
+
+use std::convert::TryFrom;
+use std::fmt;
+use std::io;
+use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
+use std::os::unix::net;
+use std::path::Path;
+use std::task::{Context, Poll};
+
+cfg_net_unix! {
+ /// A Unix socket which can accept connections from other Unix sockets.
+ ///
+ /// You can accept a new connection by using the [`accept`](`UnixListener::accept`) method.
+ ///
+ /// A `UnixListener` can be turned into a `Stream` with [`UnixListenerStream`].
+ ///
+ /// [`UnixListenerStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.UnixListenerStream.html
+ ///
+ /// # Errors
+ ///
+ /// Note that accepting a connection can lead to various errors and not all
+ /// of them are necessarily fatal ‒ for example having too many open file
+ /// descriptors or the other side closing the connection while it waits in
+ /// an accept queue. These would terminate the stream if not handled in any
+ /// way.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixListener;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let listener = UnixListener::bind("/path/to/the/socket").unwrap();
+ /// loop {
+ /// match listener.accept().await {
+ /// Ok((stream, _addr)) => {
+ /// println!("new client!");
+ /// }
+ /// Err(e) => { /* connection failed */ }
+ /// }
+ /// }
+ /// }
+ /// ```
+ pub struct UnixListener {
+ io: PollEvented<mio::net::UnixListener>,
+ }
+}
+
+impl UnixListener {
+ /// Creates a new `UnixListener` bound to the specified path.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called
+ /// from a future driven by a tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
+ pub fn bind<P>(path: P) -> io::Result<UnixListener>
+ where
+ P: AsRef<Path>,
+ {
+ let listener = mio::net::UnixListener::bind(path)?;
+ let io = PollEvented::new(listener)?;
+ Ok(UnixListener { io })
+ }
+
+ /// Creates new `UnixListener` from a `std::os::unix::net::UnixListener `.
+ ///
+ /// This function is intended to be used to wrap a UnixListener from the
+ /// standard library in the Tokio equivalent. The conversion assumes
+ /// nothing about the underlying listener; it is left up to the user to set
+ /// it in non-blocking mode.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called
+ /// from a future driven by a tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
+ pub fn from_std(listener: net::UnixListener) -> io::Result<UnixListener> {
+ let listener = mio::net::UnixListener::from_std(listener);
+ let io = PollEvented::new(listener)?;
+ Ok(UnixListener { io })
+ }
+
+ /// Turns a [`tokio::net::UnixListener`] into a [`std::os::unix::net::UnixListener`].
+ ///
+ /// The returned [`std::os::unix::net::UnixListener`] will have nonblocking mode
+ /// set as `true`. Use [`set_nonblocking`] to change the blocking mode if needed.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use std::error::Error;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let tokio_listener = tokio::net::UnixListener::bind("127.0.0.1:0")?;
+ /// let std_listener = tokio_listener.into_std()?;
+ /// std_listener.set_nonblocking(false)?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`tokio::net::UnixListener`]: UnixListener
+ /// [`std::os::unix::net::UnixListener`]: std::os::unix::net::UnixListener
+ /// [`set_nonblocking`]: fn@std::os::unix::net::UnixListener::set_nonblocking
+ pub fn into_std(self) -> io::Result<std::os::unix::net::UnixListener> {
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_fd())
+ .map(|raw_fd| unsafe { net::UnixListener::from_raw_fd(raw_fd) })
+ }
+
+ /// Returns the local socket address of this listener.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.io.local_addr().map(SocketAddr)
+ }
+
+ /// Returns the value of the `SO_ERROR` option.
+ pub fn take_error(&self) -> io::Result<Option<io::Error>> {
+ self.io.take_error()
+ }
+
+ /// Accepts a new incoming connection to this listener.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If the method is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then it is guaranteed that no new connections were
+ /// accepted by this method.
+ pub async fn accept(&self) -> io::Result<(UnixStream, SocketAddr)> {
+ let (mio, addr) = self
+ .io
+ .registration()
+ .async_io(Interest::READABLE, || self.io.accept())
+ .await?;
+
+ let addr = SocketAddr(addr);
+ let stream = UnixStream::new(mio)?;
+ Ok((stream, addr))
+ }
+
+ /// Polls to accept a new incoming connection to this listener.
+ ///
+ /// If there is no connection to accept, `Poll::Pending` is returned and the
+ /// current task will be notified by a waker. Note that on multiple calls
+ /// to `poll_accept`, only the `Waker` from the `Context` passed to the most
+ /// recent call is scheduled to receive a wakeup.
+ pub fn poll_accept(&self, cx: &mut Context<'_>) -> Poll<io::Result<(UnixStream, SocketAddr)>> {
+ let (sock, addr) = ready!(self.io.registration().poll_read_io(cx, || self.io.accept()))?;
+ let addr = SocketAddr(addr);
+ let sock = UnixStream::new(sock)?;
+ Poll::Ready(Ok((sock, addr)))
+ }
+}
+
+impl TryFrom<std::os::unix::net::UnixListener> for UnixListener {
+ type Error = io::Error;
+
+ /// Consumes stream, returning the tokio I/O object.
+ ///
+ /// This is equivalent to
+ /// [`UnixListener::from_std(stream)`](UnixListener::from_std).
+ fn try_from(stream: std::os::unix::net::UnixListener) -> io::Result<Self> {
+ Self::from_std(stream)
+ }
+}
+
+impl fmt::Debug for UnixListener {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.io.fmt(f)
+ }
+}
+
+impl AsRawFd for UnixListener {
+ fn as_raw_fd(&self) -> RawFd {
+ self.io.as_raw_fd()
+ }
+}
diff --git a/third_party/rust/tokio/src/net/unix/mod.rs b/third_party/rust/tokio/src/net/unix/mod.rs
new file mode 100644
index 0000000000..14cb456705
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/mod.rs
@@ -0,0 +1,24 @@
+//! Unix domain socket utility types.
+
+// This module does not currently provide any public API, but it was
+// unintentionally defined as a public module. Hide it from the documentation
+// instead of changing it to a private module to avoid breakage.
+#[doc(hidden)]
+pub mod datagram;
+
+pub(crate) mod listener;
+
+mod split;
+pub use split::{ReadHalf, WriteHalf};
+
+mod split_owned;
+pub use split_owned::{OwnedReadHalf, OwnedWriteHalf, ReuniteError};
+
+mod socketaddr;
+pub use socketaddr::SocketAddr;
+
+pub(crate) mod stream;
+pub(crate) use stream::UnixStream;
+
+mod ucred;
+pub use ucred::UCred;
diff --git a/third_party/rust/tokio/src/net/unix/socketaddr.rs b/third_party/rust/tokio/src/net/unix/socketaddr.rs
new file mode 100644
index 0000000000..48f7b96b8c
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/socketaddr.rs
@@ -0,0 +1,31 @@
+use std::fmt;
+use std::path::Path;
+
+/// An address associated with a Tokio Unix socket.
+pub struct SocketAddr(pub(super) mio::net::SocketAddr);
+
+impl SocketAddr {
+ /// Returns `true` if the address is unnamed.
+ ///
+ /// Documentation reflected in [`SocketAddr`]
+ ///
+ /// [`SocketAddr`]: std::os::unix::net::SocketAddr
+ pub fn is_unnamed(&self) -> bool {
+ self.0.is_unnamed()
+ }
+
+ /// Returns the contents of this address if it is a `pathname` address.
+ ///
+ /// Documentation reflected in [`SocketAddr`]
+ ///
+ /// [`SocketAddr`]: std::os::unix::net::SocketAddr
+ pub fn as_pathname(&self) -> Option<&Path> {
+ self.0.as_pathname()
+ }
+}
+
+impl fmt::Debug for SocketAddr {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.0.fmt(fmt)
+ }
+}
diff --git a/third_party/rust/tokio/src/net/unix/split.rs b/third_party/rust/tokio/src/net/unix/split.rs
new file mode 100644
index 0000000000..d4686c22d7
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/split.rs
@@ -0,0 +1,305 @@
+//! `UnixStream` split support.
+//!
+//! A `UnixStream` can be split into a read half and a write half with
+//! `UnixStream::split`. The read half implements `AsyncRead` while the write
+//! half implements `AsyncWrite`.
+//!
+//! Compared to the generic split of `AsyncRead + AsyncWrite`, this specialized
+//! split has no associated overhead and enforces all invariants at the type
+//! level.
+
+use crate::io::{AsyncRead, AsyncWrite, Interest, ReadBuf, Ready};
+use crate::net::UnixStream;
+
+use crate::net::unix::SocketAddr;
+use std::io;
+use std::net::Shutdown;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ use bytes::BufMut;
+}
+
+/// Borrowed read half of a [`UnixStream`], created by [`split`].
+///
+/// Reading from a `ReadHalf` is usually done using the convenience methods found on the
+/// [`AsyncReadExt`] trait.
+///
+/// [`UnixStream`]: UnixStream
+/// [`split`]: UnixStream::split()
+/// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
+#[derive(Debug)]
+pub struct ReadHalf<'a>(&'a UnixStream);
+
+/// Borrowed write half of a [`UnixStream`], created by [`split`].
+///
+/// Note that in the [`AsyncWrite`] implementation of this type, [`poll_shutdown`] will
+/// shut down the UnixStream stream in the write direction.
+///
+/// Writing to an `WriteHalf` is usually done using the convenience methods found
+/// on the [`AsyncWriteExt`] trait.
+///
+/// [`UnixStream`]: UnixStream
+/// [`split`]: UnixStream::split()
+/// [`AsyncWrite`]: trait@crate::io::AsyncWrite
+/// [`poll_shutdown`]: fn@crate::io::AsyncWrite::poll_shutdown
+/// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
+#[derive(Debug)]
+pub struct WriteHalf<'a>(&'a UnixStream);
+
+pub(crate) fn split(stream: &mut UnixStream) -> (ReadHalf<'_>, WriteHalf<'_>) {
+ (ReadHalf(stream), WriteHalf(stream))
+}
+
+impl ReadHalf<'_> {
+ /// Wait for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ self.0.ready(interest).await
+ }
+
+ /// Waits for the socket to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_read()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn readable(&self) -> io::Result<()> {
+ self.0.readable().await
+ }
+
+ /// Tries to read data from the stream into the provided buffer, returning how
+ /// many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.0.try_read(buf)
+ }
+
+ cfg_io_util! {
+ /// Tries to read data from the stream into the provided buffer, advancing the
+ /// buffer's internal cursor, returning how many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
+ self.0.try_read_buf(buf)
+ }
+ }
+
+ /// Tries to read data from the stream into the provided buffers, returning
+ /// how many bytes were read.
+ ///
+ /// Data is copied to fill each buffer in order, with the final buffer
+ /// written to possibly being only partially filled. This method behaves
+ /// equivalently to a single call to [`try_read()`] with concatenated
+ /// buffers.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_vectored()` is non-blocking, the buffer does not have to be
+ /// stored by the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`try_read()`]: Self::try_read()
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
+ self.0.try_read_vectored(bufs)
+ }
+
+ /// Returns the socket address of the remote half of this connection.
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.0.peer_addr()
+ }
+
+ /// Returns the socket address of the local half of this connection.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.0.local_addr()
+ }
+}
+
+impl WriteHalf<'_> {
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ self.0.ready(interest).await
+ }
+
+ /// Waits for the socket to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
+ /// paired with `try_write()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn writable(&self) -> io::Result<()> {
+ self.0.writable().await
+ }
+
+ /// Tries to write a buffer to the stream, returning how many bytes were
+ /// written.
+ ///
+ /// The function will attempt to write the entire contents of `buf`, but
+ /// only part of the buffer may be written.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
+ self.0.try_write(buf)
+ }
+
+ /// Tries to write several buffers to the stream, returning how many bytes
+ /// were written.
+ ///
+ /// Data is written from each buffer in order, with the final buffer read
+ /// from possible being only partially consumed. This method behaves
+ /// equivalently to a single call to [`try_write()`] with concatenated
+ /// buffers.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// [`try_write()`]: Self::try_write()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
+ self.0.try_write_vectored(buf)
+ }
+
+ /// Returns the socket address of the remote half of this connection.
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.0.peer_addr()
+ }
+
+ /// Returns the socket address of the local half of this connection.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.0.local_addr()
+ }
+}
+
+impl AsyncRead for ReadHalf<'_> {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.0.poll_read_priv(cx, buf)
+ }
+}
+
+impl AsyncWrite for WriteHalf<'_> {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.0.poll_write_priv(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.0.poll_write_vectored_priv(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ self.0.is_write_vectored()
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.0.shutdown_std(Shutdown::Write).into()
+ }
+}
+
+impl AsRef<UnixStream> for ReadHalf<'_> {
+ fn as_ref(&self) -> &UnixStream {
+ self.0
+ }
+}
+
+impl AsRef<UnixStream> for WriteHalf<'_> {
+ fn as_ref(&self) -> &UnixStream {
+ self.0
+ }
+}
diff --git a/third_party/rust/tokio/src/net/unix/split_owned.rs b/third_party/rust/tokio/src/net/unix/split_owned.rs
new file mode 100644
index 0000000000..9c3a2a4177
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/split_owned.rs
@@ -0,0 +1,393 @@
+//! `UnixStream` owned split support.
+//!
+//! A `UnixStream` can be split into an `OwnedReadHalf` and a `OwnedWriteHalf`
+//! with the `UnixStream::into_split` method. `OwnedReadHalf` implements
+//! `AsyncRead` while `OwnedWriteHalf` implements `AsyncWrite`.
+//!
+//! Compared to the generic split of `AsyncRead + AsyncWrite`, this specialized
+//! split has no associated overhead and enforces all invariants at the type
+//! level.
+
+use crate::io::{AsyncRead, AsyncWrite, Interest, ReadBuf, Ready};
+use crate::net::UnixStream;
+
+use crate::net::unix::SocketAddr;
+use std::error::Error;
+use std::net::Shutdown;
+use std::pin::Pin;
+use std::sync::Arc;
+use std::task::{Context, Poll};
+use std::{fmt, io};
+
+cfg_io_util! {
+ use bytes::BufMut;
+}
+
+/// Owned read half of a [`UnixStream`], created by [`into_split`].
+///
+/// Reading from an `OwnedReadHalf` is usually done using the convenience methods found
+/// on the [`AsyncReadExt`] trait.
+///
+/// [`UnixStream`]: crate::net::UnixStream
+/// [`into_split`]: crate::net::UnixStream::into_split()
+/// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
+#[derive(Debug)]
+pub struct OwnedReadHalf {
+ inner: Arc<UnixStream>,
+}
+
+/// Owned write half of a [`UnixStream`], created by [`into_split`].
+///
+/// Note that in the [`AsyncWrite`] implementation of this type,
+/// [`poll_shutdown`] will shut down the stream in the write direction.
+/// Dropping the write half will also shut down the write half of the stream.
+///
+/// Writing to an `OwnedWriteHalf` is usually done using the convenience methods
+/// found on the [`AsyncWriteExt`] trait.
+///
+/// [`UnixStream`]: crate::net::UnixStream
+/// [`into_split`]: crate::net::UnixStream::into_split()
+/// [`AsyncWrite`]: trait@crate::io::AsyncWrite
+/// [`poll_shutdown`]: fn@crate::io::AsyncWrite::poll_shutdown
+/// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
+#[derive(Debug)]
+pub struct OwnedWriteHalf {
+ inner: Arc<UnixStream>,
+ shutdown_on_drop: bool,
+}
+
+pub(crate) fn split_owned(stream: UnixStream) -> (OwnedReadHalf, OwnedWriteHalf) {
+ let arc = Arc::new(stream);
+ let read = OwnedReadHalf {
+ inner: Arc::clone(&arc),
+ };
+ let write = OwnedWriteHalf {
+ inner: arc,
+ shutdown_on_drop: true,
+ };
+ (read, write)
+}
+
+pub(crate) fn reunite(
+ read: OwnedReadHalf,
+ write: OwnedWriteHalf,
+) -> Result<UnixStream, ReuniteError> {
+ if Arc::ptr_eq(&read.inner, &write.inner) {
+ write.forget();
+ // This unwrap cannot fail as the api does not allow creating more than two Arcs,
+ // and we just dropped the other half.
+ Ok(Arc::try_unwrap(read.inner).expect("UnixStream: try_unwrap failed in reunite"))
+ } else {
+ Err(ReuniteError(read, write))
+ }
+}
+
+/// Error indicating that two halves were not from the same socket, and thus could
+/// not be reunited.
+#[derive(Debug)]
+pub struct ReuniteError(pub OwnedReadHalf, pub OwnedWriteHalf);
+
+impl fmt::Display for ReuniteError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(
+ f,
+ "tried to reunite halves that are not from the same socket"
+ )
+ }
+}
+
+impl Error for ReuniteError {}
+
+impl OwnedReadHalf {
+ /// Attempts to put the two halves of a `UnixStream` back together and
+ /// recover the original socket. Succeeds only if the two halves
+ /// originated from the same call to [`into_split`].
+ ///
+ /// [`into_split`]: crate::net::UnixStream::into_split()
+ pub fn reunite(self, other: OwnedWriteHalf) -> Result<UnixStream, ReuniteError> {
+ reunite(self, other)
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ self.inner.ready(interest).await
+ }
+
+ /// Waits for the socket to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_read()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn readable(&self) -> io::Result<()> {
+ self.inner.readable().await
+ }
+
+ /// Tries to read data from the stream into the provided buffer, returning how
+ /// many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.inner.try_read(buf)
+ }
+
+ cfg_io_util! {
+ /// Tries to read data from the stream into the provided buffer, advancing the
+ /// buffer's internal cursor, returning how many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
+ self.inner.try_read_buf(buf)
+ }
+ }
+
+ /// Tries to read data from the stream into the provided buffers, returning
+ /// how many bytes were read.
+ ///
+ /// Data is copied to fill each buffer in order, with the final buffer
+ /// written to possibly being only partially filled. This method behaves
+ /// equivalently to a single call to [`try_read()`] with concatenated
+ /// buffers.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_vectored()` is non-blocking, the buffer does not have to be
+ /// stored by the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`try_read()`]: Self::try_read()
+ /// [`readable()`]: Self::readable()
+ /// [`ready()`]: Self::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
+ self.inner.try_read_vectored(bufs)
+ }
+
+ /// Returns the socket address of the remote half of this connection.
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.peer_addr()
+ }
+
+ /// Returns the socket address of the local half of this connection.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.local_addr()
+ }
+}
+
+impl AsyncRead for OwnedReadHalf {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.inner.poll_read_priv(cx, buf)
+ }
+}
+
+impl OwnedWriteHalf {
+ /// Attempts to put the two halves of a `UnixStream` back together and
+ /// recover the original socket. Succeeds only if the two halves
+ /// originated from the same call to [`into_split`].
+ ///
+ /// [`into_split`]: crate::net::UnixStream::into_split()
+ pub fn reunite(self, other: OwnedReadHalf) -> Result<UnixStream, ReuniteError> {
+ reunite(other, self)
+ }
+
+ /// Destroys the write half, but don't close the write half of the stream
+ /// until the read half is dropped. If the read half has already been
+ /// dropped, this closes the stream.
+ pub fn forget(mut self) {
+ self.shutdown_on_drop = false;
+ drop(self);
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ self.inner.ready(interest).await
+ }
+
+ /// Waits for the socket to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
+ /// paired with `try_write()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ pub async fn writable(&self) -> io::Result<()> {
+ self.inner.writable().await
+ }
+
+ /// Tries to write a buffer to the stream, returning how many bytes were
+ /// written.
+ ///
+ /// The function will attempt to write the entire contents of `buf`, but
+ /// only part of the buffer may be written.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
+ self.inner.try_write(buf)
+ }
+
+ /// Tries to write several buffers to the stream, returning how many bytes
+ /// were written.
+ ///
+ /// Data is written from each buffer in order, with the final buffer read
+ /// from possible being only partially consumed. This method behaves
+ /// equivalently to a single call to [`try_write()`] with concatenated
+ /// buffers.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// [`try_write()`]: Self::try_write()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
+ self.inner.try_write_vectored(buf)
+ }
+
+ /// Returns the socket address of the remote half of this connection.
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.peer_addr()
+ }
+
+ /// Returns the socket address of the local half of this connection.
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.inner.local_addr()
+ }
+}
+
+impl Drop for OwnedWriteHalf {
+ fn drop(&mut self) {
+ if self.shutdown_on_drop {
+ let _ = self.inner.shutdown_std(Shutdown::Write);
+ }
+ }
+}
+
+impl AsyncWrite for OwnedWriteHalf {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.inner.poll_write_priv(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.inner.poll_write_vectored_priv(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ self.inner.is_write_vectored()
+ }
+
+ #[inline]
+ fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ // flush is a no-op
+ Poll::Ready(Ok(()))
+ }
+
+ // `poll_shutdown` on a write half shutdowns the stream in the "write" direction.
+ fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ let res = self.inner.shutdown_std(Shutdown::Write);
+ if res.is_ok() {
+ Pin::into_inner(self).shutdown_on_drop = false;
+ }
+ res.into()
+ }
+}
+
+impl AsRef<UnixStream> for OwnedReadHalf {
+ fn as_ref(&self) -> &UnixStream {
+ &*self.inner
+ }
+}
+
+impl AsRef<UnixStream> for OwnedWriteHalf {
+ fn as_ref(&self) -> &UnixStream {
+ &*self.inner
+ }
+}
diff --git a/third_party/rust/tokio/src/net/unix/stream.rs b/third_party/rust/tokio/src/net/unix/stream.rs
new file mode 100644
index 0000000000..4e7ef87b41
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/stream.rs
@@ -0,0 +1,960 @@
+use crate::future::poll_fn;
+use crate::io::{AsyncRead, AsyncWrite, Interest, PollEvented, ReadBuf, Ready};
+use crate::net::unix::split::{split, ReadHalf, WriteHalf};
+use crate::net::unix::split_owned::{split_owned, OwnedReadHalf, OwnedWriteHalf};
+use crate::net::unix::ucred::{self, UCred};
+use crate::net::unix::SocketAddr;
+
+use std::convert::TryFrom;
+use std::fmt;
+use std::io::{self, Read, Write};
+use std::net::Shutdown;
+use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
+use std::os::unix::net;
+use std::path::Path;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ use bytes::BufMut;
+}
+
+cfg_net_unix! {
+ /// A structure representing a connected Unix socket.
+ ///
+ /// This socket can be connected directly with `UnixStream::connect` or accepted
+ /// from a listener with `UnixListener::incoming`. Additionally, a pair of
+ /// anonymous Unix sockets can be created with `UnixStream::pair`.
+ ///
+ /// To shut down the stream in the write direction, you can call the
+ /// [`shutdown()`] method. This will cause the other peer to receive a read of
+ /// length 0, indicating that no more data will be sent. This only closes
+ /// the stream in one direction.
+ ///
+ /// [`shutdown()`]: fn@crate::io::AsyncWriteExt::shutdown
+ pub struct UnixStream {
+ io: PollEvented<mio::net::UnixStream>,
+ }
+}
+
+impl UnixStream {
+ /// Connects to the socket named by `path`.
+ ///
+ /// This function will create a new Unix socket and connect to the path
+ /// specified, associating the returned stream with the default event loop's
+ /// handle.
+ pub async fn connect<P>(path: P) -> io::Result<UnixStream>
+ where
+ P: AsRef<Path>,
+ {
+ let stream = mio::net::UnixStream::connect(path)?;
+ let stream = UnixStream::new(stream)?;
+
+ poll_fn(|cx| stream.io.registration().poll_write_ready(cx)).await?;
+
+ if let Some(e) = stream.io.take_error()? {
+ return Err(e);
+ }
+
+ Ok(stream)
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same socket on a single
+ /// task without splitting the socket.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read or write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// Concurrently read and write to the stream on the same task without
+ /// splitting.
+ ///
+ /// ```no_run
+ /// use tokio::io::Interest;
+ /// use tokio::net::UnixStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// loop {
+ /// let ready = stream.ready(Interest::READABLE | Interest::WRITABLE).await?;
+ ///
+ /// if ready.is_readable() {
+ /// let mut data = vec![0; 1024];
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read(&mut data) {
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ ///
+ /// }
+ ///
+ /// if ready.is_writable() {
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// println!("write {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ /// }
+ /// }
+ /// ```
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ let event = self.io.registration().readiness(interest).await?;
+ Ok(event.ready)
+ }
+
+ /// Waits for the socket to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_read()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to read that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// let mut msg = vec![0; 1024];
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// stream.readable().await?;
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read(&mut msg) {
+ /// Ok(n) => {
+ /// msg.truncate(n);
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// println!("GOT = {:?}", msg);
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn readable(&self) -> io::Result<()> {
+ self.ready(Interest::READABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for read readiness.
+ ///
+ /// If the unix stream is not currently ready for reading, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the unix
+ /// stream becomes ready for reading, `Waker::wake` will be called on the
+ /// waker.
+ ///
+ /// Note that on multiple calls to `poll_read_ready` or `poll_read`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_write_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`readable`] is not feasible. Where possible, using [`readable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the unix stream is not ready for reading.
+ /// * `Poll::Ready(Ok(()))` if the unix stream is ready for reading.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`readable`]: method@Self::readable
+ pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_read_ready(cx).map_ok(|_| ())
+ }
+
+ /// Try to read data from the stream into the provided buffer, returning how
+ /// many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: UnixStream::readable()
+ /// [`ready()`]: UnixStream::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// stream.readable().await?;
+ ///
+ /// // Creating the buffer **after** the `await` prevents it from
+ /// // being stored in the async task.
+ /// let mut buf = [0; 4096];
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read(&mut buf) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || (&*self.io).read(buf))
+ }
+
+ /// Tries to read data from the stream into the provided buffers, returning
+ /// how many bytes were read.
+ ///
+ /// Data is copied to fill each buffer in order, with the final buffer
+ /// written to possibly being only partially filled. This method behaves
+ /// equivalently to a single call to [`try_read()`] with concatenated
+ /// buffers.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_vectored()` is non-blocking, the buffer does not have to be
+ /// stored by the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`try_read()`]: UnixStream::try_read()
+ /// [`readable()`]: UnixStream::readable()
+ /// [`ready()`]: UnixStream::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ /// use std::error::Error;
+ /// use std::io::{self, IoSliceMut};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// stream.readable().await?;
+ ///
+ /// // Creating the buffer **after** the `await` prevents it from
+ /// // being stored in the async task.
+ /// let mut buf_a = [0; 512];
+ /// let mut buf_b = [0; 1024];
+ /// let mut bufs = [
+ /// IoSliceMut::new(&mut buf_a),
+ /// IoSliceMut::new(&mut buf_b),
+ /// ];
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read_vectored(&mut bufs) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || (&*self.io).read_vectored(bufs))
+ }
+
+ cfg_io_util! {
+ /// Tries to read data from the stream into the provided buffer, advancing the
+ /// buffer's internal cursor, returning how many bytes were read.
+ ///
+ /// Receives any pending data from the socket but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: UnixStream::readable()
+ /// [`ready()`]: UnixStream::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the stream's read half is closed
+ /// and will no longer yield data. If the stream is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be readable
+ /// stream.readable().await?;
+ ///
+ /// let mut buf = Vec::with_capacity(4096);
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_read_buf(&mut buf) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
+ self.io.registration().try_io(Interest::READABLE, || {
+ use std::io::Read;
+
+ let dst = buf.chunk_mut();
+ let dst =
+ unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
+
+ // Safety: We trust `UnixStream::read` to have filled up `n` bytes in the
+ // buffer.
+ let n = (&*self.io).read(dst)?;
+
+ unsafe {
+ buf.advance_mut(n);
+ }
+
+ Ok(n)
+ })
+ }
+ }
+
+ /// Waits for the socket to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
+ /// paired with `try_write()`.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. Once a readiness event occurs, the method
+ /// will continue to return immediately until the readiness event is
+ /// consumed by an attempt to write that fails with `WouldBlock` or
+ /// `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// stream.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn writable(&self) -> io::Result<()> {
+ self.ready(Interest::WRITABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for write readiness.
+ ///
+ /// If the unix stream is not currently ready for writing, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the unix
+ /// stream becomes ready for writing, `Waker::wake` will be called on the
+ /// waker.
+ ///
+ /// Note that on multiple calls to `poll_write_ready` or `poll_write`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_read_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`writable`] is not feasible. Where possible, using [`writable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the unix stream is not ready for writing.
+ /// * `Poll::Ready(Ok(()))` if the unix stream is ready for writing.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`writable`]: method@Self::writable
+ pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_write_ready(cx).map_ok(|_| ())
+ }
+
+ /// Tries to write a buffer to the stream, returning how many bytes were
+ /// written.
+ ///
+ /// The function will attempt to write the entire contents of `buf`, but
+ /// only part of the buffer may be written.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// stream.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || (&*self.io).write(buf))
+ }
+
+ /// Tries to write several buffers to the stream, returning how many bytes
+ /// were written.
+ ///
+ /// Data is written from each buffer in order, with the final buffer read
+ /// from possible being only partially consumed. This method behaves
+ /// equivalently to a single call to [`try_write()`] with concatenated
+ /// buffers.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// [`try_write()`]: UnixStream::try_write()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the stream is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// // Connect to a peer
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// let bufs = [io::IoSlice::new(b"hello "), io::IoSlice::new(b"world")];
+ ///
+ /// loop {
+ /// // Wait for the socket to be writable
+ /// stream.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match stream.try_write_vectored(&bufs) {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || (&*self.io).write_vectored(buf))
+ }
+
+ /// Tries to read or write from the socket using a user-provided IO operation.
+ ///
+ /// If the socket is ready, the provided closure is called. The closure
+ /// should attempt to perform IO operation from the socket by manually
+ /// calling the appropriate syscall. If the operation fails because the
+ /// socket is not actually ready, then the closure should return a
+ /// `WouldBlock` error and the readiness flag is cleared. The return value
+ /// of the closure is then returned by `try_io`.
+ ///
+ /// If the socket is not ready, then the closure is not called
+ /// and a `WouldBlock` error is returned.
+ ///
+ /// The closure should only return a `WouldBlock` error if it has performed
+ /// an IO operation on the socket that failed due to the socket not being
+ /// ready. Returning a `WouldBlock` error in any other situation will
+ /// incorrectly clear the readiness flag, which can cause the socket to
+ /// behave incorrectly.
+ ///
+ /// The closure should not perform the IO operation using any of the methods
+ /// defined on the Tokio `UnixStream` type, as this will mess with the
+ /// readiness flag and can cause the socket to behave incorrectly.
+ ///
+ /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: UnixStream::readable()
+ /// [`writable()`]: UnixStream::writable()
+ /// [`ready()`]: UnixStream::ready()
+ pub fn try_io<R>(
+ &self,
+ interest: Interest,
+ f: impl FnOnce() -> io::Result<R>,
+ ) -> io::Result<R> {
+ self.io.registration().try_io(interest, f)
+ }
+
+ /// Creates new `UnixStream` from a `std::os::unix::net::UnixStream`.
+ ///
+ /// This function is intended to be used to wrap a UnixStream from the
+ /// standard library in the Tokio equivalent. The conversion assumes
+ /// nothing about the underlying stream; it is left up to the user to set
+ /// it in non-blocking mode.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called
+ /// from a future driven by a tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
+ pub fn from_std(stream: net::UnixStream) -> io::Result<UnixStream> {
+ let stream = mio::net::UnixStream::from_std(stream);
+ let io = PollEvented::new(stream)?;
+
+ Ok(UnixStream { io })
+ }
+
+ /// Turns a [`tokio::net::UnixStream`] into a [`std::os::unix::net::UnixStream`].
+ ///
+ /// The returned [`std::os::unix::net::UnixStream`] will have nonblocking
+ /// mode set as `true`. Use [`set_nonblocking`] to change the blocking
+ /// mode if needed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::error::Error;
+ /// use std::io::Read;
+ /// use tokio::net::UnixListener;
+ /// # use tokio::net::UnixStream;
+ /// # use tokio::io::AsyncWriteExt;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ ///
+ /// let mut data = [0u8; 12];
+ /// let listener = UnixListener::bind(&bind_path)?;
+ /// # let handle = tokio::spawn(async {
+ /// # let mut stream = UnixStream::connect(bind_path).await.unwrap();
+ /// # stream.write(b"Hello world!").await.unwrap();
+ /// # });
+ /// let (tokio_unix_stream, _) = listener.accept().await?;
+ /// let mut std_unix_stream = tokio_unix_stream.into_std()?;
+ /// # handle.await.expect("The task being joined has panicked");
+ /// std_unix_stream.set_nonblocking(false)?;
+ /// std_unix_stream.read_exact(&mut data)?;
+ /// # assert_eq!(b"Hello world!", &data);
+ /// Ok(())
+ /// }
+ /// ```
+ /// [`tokio::net::UnixStream`]: UnixStream
+ /// [`std::os::unix::net::UnixStream`]: std::os::unix::net::UnixStream
+ /// [`set_nonblocking`]: fn@std::os::unix::net::UnixStream::set_nonblocking
+ pub fn into_std(self) -> io::Result<std::os::unix::net::UnixStream> {
+ self.io
+ .into_inner()
+ .map(|io| io.into_raw_fd())
+ .map(|raw_fd| unsafe { std::os::unix::net::UnixStream::from_raw_fd(raw_fd) })
+ }
+
+ /// Creates an unnamed pair of connected sockets.
+ ///
+ /// This function will create a pair of interconnected Unix sockets for
+ /// communicating back and forth between one another. Each socket will
+ /// be associated with the default event loop's handle.
+ pub fn pair() -> io::Result<(UnixStream, UnixStream)> {
+ let (a, b) = mio::net::UnixStream::pair()?;
+ let a = UnixStream::new(a)?;
+ let b = UnixStream::new(b)?;
+
+ Ok((a, b))
+ }
+
+ pub(crate) fn new(stream: mio::net::UnixStream) -> io::Result<UnixStream> {
+ let io = PollEvented::new(stream)?;
+ Ok(UnixStream { io })
+ }
+
+ /// Returns the socket address of the local half of this connection.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// println!("{:?}", stream.local_addr()?);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn local_addr(&self) -> io::Result<SocketAddr> {
+ self.io.local_addr().map(SocketAddr)
+ }
+
+ /// Returns the socket address of the remote half of this connection.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::UnixStream;
+ ///
+ /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
+ /// let dir = tempfile::tempdir().unwrap();
+ /// let bind_path = dir.path().join("bind_path");
+ /// let stream = UnixStream::connect(bind_path).await?;
+ ///
+ /// println!("{:?}", stream.peer_addr()?);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub fn peer_addr(&self) -> io::Result<SocketAddr> {
+ self.io.peer_addr().map(SocketAddr)
+ }
+
+ /// Returns effective credentials of the process which called `connect` or `pair`.
+ pub fn peer_cred(&self) -> io::Result<UCred> {
+ ucred::get_peer_cred(self)
+ }
+
+ /// Returns the value of the `SO_ERROR` option.
+ pub fn take_error(&self) -> io::Result<Option<io::Error>> {
+ self.io.take_error()
+ }
+
+ /// Shuts down the read, write, or both halves of this connection.
+ ///
+ /// This function will cause all pending and future I/O calls on the
+ /// specified portions to immediately return with an appropriate value
+ /// (see the documentation of `Shutdown`).
+ pub(super) fn shutdown_std(&self, how: Shutdown) -> io::Result<()> {
+ self.io.shutdown(how)
+ }
+
+ // These lifetime markers also appear in the generated documentation, and make
+ // it more clear that this is a *borrowed* split.
+ #[allow(clippy::needless_lifetimes)]
+ /// Splits a `UnixStream` into a read half and a write half, which can be used
+ /// to read and write the stream concurrently.
+ ///
+ /// This method is more efficient than [`into_split`], but the halves cannot be
+ /// moved into independently spawned tasks.
+ ///
+ /// [`into_split`]: Self::into_split()
+ pub fn split<'a>(&'a mut self) -> (ReadHalf<'a>, WriteHalf<'a>) {
+ split(self)
+ }
+
+ /// Splits a `UnixStream` into a read half and a write half, which can be used
+ /// to read and write the stream concurrently.
+ ///
+ /// Unlike [`split`], the owned halves can be moved to separate tasks, however
+ /// this comes at the cost of a heap allocation.
+ ///
+ /// **Note:** Dropping the write half will shut down the write half of the
+ /// stream. This is equivalent to calling [`shutdown()`] on the `UnixStream`.
+ ///
+ /// [`split`]: Self::split()
+ /// [`shutdown()`]: fn@crate::io::AsyncWriteExt::shutdown
+ pub fn into_split(self) -> (OwnedReadHalf, OwnedWriteHalf) {
+ split_owned(self)
+ }
+}
+
+impl TryFrom<net::UnixStream> for UnixStream {
+ type Error = io::Error;
+
+ /// Consumes stream, returning the tokio I/O object.
+ ///
+ /// This is equivalent to
+ /// [`UnixStream::from_std(stream)`](UnixStream::from_std).
+ fn try_from(stream: net::UnixStream) -> io::Result<Self> {
+ Self::from_std(stream)
+ }
+}
+
+impl AsyncRead for UnixStream {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.poll_read_priv(cx, buf)
+ }
+}
+
+impl AsyncWrite for UnixStream {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.poll_write_priv(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.poll_write_vectored_priv(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.shutdown_std(std::net::Shutdown::Write)?;
+ Poll::Ready(Ok(()))
+ }
+}
+
+impl UnixStream {
+ // == Poll IO functions that takes `&self` ==
+ //
+ // To read or write without mutable access to the `UnixStream`, combine the
+ // `poll_read_ready` or `poll_write_ready` methods with the `try_read` or
+ // `try_write` methods.
+
+ pub(crate) fn poll_read_priv(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ // Safety: `UnixStream::read` correctly handles reads into uninitialized memory
+ unsafe { self.io.poll_read(cx, buf) }
+ }
+
+ pub(crate) fn poll_write_priv(
+ &self,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.io.poll_write(cx, buf)
+ }
+
+ pub(super) fn poll_write_vectored_priv(
+ &self,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.io.poll_write_vectored(cx, bufs)
+ }
+}
+
+impl fmt::Debug for UnixStream {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.io.fmt(f)
+ }
+}
+
+impl AsRawFd for UnixStream {
+ fn as_raw_fd(&self) -> RawFd {
+ self.io.as_raw_fd()
+ }
+}
diff --git a/third_party/rust/tokio/src/net/unix/ucred.rs b/third_party/rust/tokio/src/net/unix/ucred.rs
new file mode 100644
index 0000000000..865303b4ce
--- /dev/null
+++ b/third_party/rust/tokio/src/net/unix/ucred.rs
@@ -0,0 +1,252 @@
+use libc::{gid_t, pid_t, uid_t};
+
+/// Credentials of a process.
+#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
+pub struct UCred {
+ /// PID (process ID) of the process.
+ pid: Option<pid_t>,
+ /// UID (user ID) of the process.
+ uid: uid_t,
+ /// GID (group ID) of the process.
+ gid: gid_t,
+}
+
+impl UCred {
+ /// Gets UID (user ID) of the process.
+ pub fn uid(&self) -> uid_t {
+ self.uid
+ }
+
+ /// Gets GID (group ID) of the process.
+ pub fn gid(&self) -> gid_t {
+ self.gid
+ }
+
+ /// Gets PID (process ID) of the process.
+ ///
+ /// This is only implemented under Linux, Android, iOS, macOS, Solaris and
+ /// Illumos. On other platforms this will always return `None`.
+ pub fn pid(&self) -> Option<pid_t> {
+ self.pid
+ }
+}
+
+#[cfg(any(target_os = "linux", target_os = "android", target_os = "openbsd"))]
+pub(crate) use self::impl_linux::get_peer_cred;
+
+#[cfg(any(target_os = "netbsd"))]
+pub(crate) use self::impl_netbsd::get_peer_cred;
+
+#[cfg(any(target_os = "dragonfly", target_os = "freebsd"))]
+pub(crate) use self::impl_bsd::get_peer_cred;
+
+#[cfg(any(target_os = "macos", target_os = "ios"))]
+pub(crate) use self::impl_macos::get_peer_cred;
+
+#[cfg(any(target_os = "solaris", target_os = "illumos"))]
+pub(crate) use self::impl_solaris::get_peer_cred;
+
+#[cfg(any(target_os = "linux", target_os = "android", target_os = "openbsd"))]
+pub(crate) mod impl_linux {
+ use crate::net::unix::UnixStream;
+
+ use libc::{c_void, getsockopt, socklen_t, SOL_SOCKET, SO_PEERCRED};
+ use std::{io, mem};
+
+ #[cfg(target_os = "openbsd")]
+ use libc::sockpeercred as ucred;
+ #[cfg(any(target_os = "linux", target_os = "android"))]
+ use libc::ucred;
+
+ pub(crate) fn get_peer_cred(sock: &UnixStream) -> io::Result<super::UCred> {
+ use std::os::unix::io::AsRawFd;
+
+ unsafe {
+ let raw_fd = sock.as_raw_fd();
+
+ let mut ucred = ucred {
+ pid: 0,
+ uid: 0,
+ gid: 0,
+ };
+
+ let ucred_size = mem::size_of::<ucred>();
+
+ // These paranoid checks should be optimized-out
+ assert!(mem::size_of::<u32>() <= mem::size_of::<usize>());
+ assert!(ucred_size <= u32::MAX as usize);
+
+ let mut ucred_size = ucred_size as socklen_t;
+
+ let ret = getsockopt(
+ raw_fd,
+ SOL_SOCKET,
+ SO_PEERCRED,
+ &mut ucred as *mut ucred as *mut c_void,
+ &mut ucred_size,
+ );
+ if ret == 0 && ucred_size as usize == mem::size_of::<ucred>() {
+ Ok(super::UCred {
+ uid: ucred.uid,
+ gid: ucred.gid,
+ pid: Some(ucred.pid),
+ })
+ } else {
+ Err(io::Error::last_os_error())
+ }
+ }
+ }
+}
+
+#[cfg(any(target_os = "netbsd"))]
+pub(crate) mod impl_netbsd {
+ use crate::net::unix::UnixStream;
+
+ use libc::{c_void, getsockopt, socklen_t, unpcbid, LOCAL_PEEREID, SOL_SOCKET};
+ use std::io;
+ use std::mem::size_of;
+ use std::os::unix::io::AsRawFd;
+
+ pub(crate) fn get_peer_cred(sock: &UnixStream) -> io::Result<super::UCred> {
+ unsafe {
+ let raw_fd = sock.as_raw_fd();
+
+ let mut unpcbid = unpcbid {
+ unp_pid: 0,
+ unp_euid: 0,
+ unp_egid: 0,
+ };
+
+ let unpcbid_size = size_of::<unpcbid>();
+ let mut unpcbid_size = unpcbid_size as socklen_t;
+
+ let ret = getsockopt(
+ raw_fd,
+ SOL_SOCKET,
+ LOCAL_PEEREID,
+ &mut unpcbid as *mut unpcbid as *mut c_void,
+ &mut unpcbid_size,
+ );
+ if ret == 0 && unpcbid_size as usize == size_of::<unpcbid>() {
+ Ok(super::UCred {
+ uid: unpcbid.unp_euid,
+ gid: unpcbid.unp_egid,
+ pid: Some(unpcbid.unp_pid),
+ })
+ } else {
+ Err(io::Error::last_os_error())
+ }
+ }
+ }
+}
+
+#[cfg(any(target_os = "dragonfly", target_os = "freebsd"))]
+pub(crate) mod impl_bsd {
+ use crate::net::unix::UnixStream;
+
+ use libc::getpeereid;
+ use std::io;
+ use std::mem::MaybeUninit;
+ use std::os::unix::io::AsRawFd;
+
+ pub(crate) fn get_peer_cred(sock: &UnixStream) -> io::Result<super::UCred> {
+ unsafe {
+ let raw_fd = sock.as_raw_fd();
+
+ let mut uid = MaybeUninit::uninit();
+ let mut gid = MaybeUninit::uninit();
+
+ let ret = getpeereid(raw_fd, uid.as_mut_ptr(), gid.as_mut_ptr());
+
+ if ret == 0 {
+ Ok(super::UCred {
+ uid: uid.assume_init(),
+ gid: gid.assume_init(),
+ pid: None,
+ })
+ } else {
+ Err(io::Error::last_os_error())
+ }
+ }
+ }
+}
+
+#[cfg(any(target_os = "macos", target_os = "ios"))]
+pub(crate) mod impl_macos {
+ use crate::net::unix::UnixStream;
+
+ use libc::{c_void, getpeereid, getsockopt, pid_t, LOCAL_PEEREPID, SOL_LOCAL};
+ use std::io;
+ use std::mem::size_of;
+ use std::mem::MaybeUninit;
+ use std::os::unix::io::AsRawFd;
+
+ pub(crate) fn get_peer_cred(sock: &UnixStream) -> io::Result<super::UCred> {
+ unsafe {
+ let raw_fd = sock.as_raw_fd();
+
+ let mut uid = MaybeUninit::uninit();
+ let mut gid = MaybeUninit::uninit();
+ let mut pid: MaybeUninit<pid_t> = MaybeUninit::uninit();
+ let mut pid_size: MaybeUninit<u32> = MaybeUninit::new(size_of::<pid_t>() as u32);
+
+ if getsockopt(
+ raw_fd,
+ SOL_LOCAL,
+ LOCAL_PEEREPID,
+ pid.as_mut_ptr() as *mut c_void,
+ pid_size.as_mut_ptr(),
+ ) != 0
+ {
+ return Err(io::Error::last_os_error());
+ }
+
+ assert!(pid_size.assume_init() == (size_of::<pid_t>() as u32));
+
+ let ret = getpeereid(raw_fd, uid.as_mut_ptr(), gid.as_mut_ptr());
+
+ if ret == 0 {
+ Ok(super::UCred {
+ uid: uid.assume_init(),
+ gid: gid.assume_init(),
+ pid: Some(pid.assume_init()),
+ })
+ } else {
+ Err(io::Error::last_os_error())
+ }
+ }
+ }
+}
+
+#[cfg(any(target_os = "solaris", target_os = "illumos"))]
+pub(crate) mod impl_solaris {
+ use crate::net::unix::UnixStream;
+ use std::io;
+ use std::os::unix::io::AsRawFd;
+ use std::ptr;
+
+ pub(crate) fn get_peer_cred(sock: &UnixStream) -> io::Result<super::UCred> {
+ unsafe {
+ let raw_fd = sock.as_raw_fd();
+
+ let mut cred = ptr::null_mut();
+ let ret = libc::getpeerucred(raw_fd, &mut cred);
+
+ if ret == 0 {
+ let uid = libc::ucred_geteuid(cred);
+ let gid = libc::ucred_getegid(cred);
+ let pid = libc::ucred_getpid(cred);
+
+ libc::ucred_free(cred);
+
+ Ok(super::UCred {
+ uid,
+ gid,
+ pid: Some(pid),
+ })
+ } else {
+ Err(io::Error::last_os_error())
+ }
+ }
+ }
+}
diff --git a/third_party/rust/tokio/src/net/windows/mod.rs b/third_party/rust/tokio/src/net/windows/mod.rs
new file mode 100644
index 0000000000..060b68e663
--- /dev/null
+++ b/third_party/rust/tokio/src/net/windows/mod.rs
@@ -0,0 +1,3 @@
+//! Windows specific network types.
+
+pub mod named_pipe;
diff --git a/third_party/rust/tokio/src/net/windows/named_pipe.rs b/third_party/rust/tokio/src/net/windows/named_pipe.rs
new file mode 100644
index 0000000000..550fd4df2b
--- /dev/null
+++ b/third_party/rust/tokio/src/net/windows/named_pipe.rs
@@ -0,0 +1,2250 @@
+//! Tokio support for [Windows named pipes].
+//!
+//! [Windows named pipes]: https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
+
+use std::ffi::c_void;
+use std::ffi::OsStr;
+use std::io::{self, Read, Write};
+use std::pin::Pin;
+use std::ptr;
+use std::task::{Context, Poll};
+
+use crate::io::{AsyncRead, AsyncWrite, Interest, PollEvented, ReadBuf, Ready};
+use crate::os::windows::io::{AsRawHandle, FromRawHandle, RawHandle};
+
+// Hide imports which are not used when generating documentation.
+#[cfg(not(docsrs))]
+mod doc {
+ pub(super) use crate::os::windows::ffi::OsStrExt;
+ pub(super) use crate::winapi::shared::minwindef::{DWORD, FALSE};
+ pub(super) use crate::winapi::um::fileapi;
+ pub(super) use crate::winapi::um::handleapi;
+ pub(super) use crate::winapi::um::namedpipeapi;
+ pub(super) use crate::winapi::um::winbase;
+ pub(super) use crate::winapi::um::winnt;
+
+ pub(super) use mio::windows as mio_windows;
+}
+
+// NB: none of these shows up in public API, so don't document them.
+#[cfg(docsrs)]
+mod doc {
+ pub type DWORD = crate::doc::NotDefinedHere;
+
+ pub(super) mod mio_windows {
+ pub type NamedPipe = crate::doc::NotDefinedHere;
+ }
+}
+
+use self::doc::*;
+
+/// A [Windows named pipe] server.
+///
+/// Accepting client connections involves creating a server with
+/// [`ServerOptions::create`] and waiting for clients to connect using
+/// [`NamedPipeServer::connect`].
+///
+/// To avoid having clients sporadically fail with
+/// [`std::io::ErrorKind::NotFound`] when they connect to a server, we must
+/// ensure that at least one server instance is available at all times. This
+/// means that the typical listen loop for a server is a bit involved, because
+/// we have to ensure that we never drop a server accidentally while a client
+/// might connect.
+///
+/// So a correctly implemented server looks like this:
+///
+/// ```no_run
+/// use std::io;
+/// use tokio::net::windows::named_pipe::ServerOptions;
+///
+/// const PIPE_NAME: &str = r"\\.\pipe\named-pipe-idiomatic-server";
+///
+/// # #[tokio::main] async fn main() -> std::io::Result<()> {
+/// // The first server needs to be constructed early so that clients can
+/// // be correctly connected. Otherwise calling .wait will cause the client to
+/// // error.
+/// //
+/// // Here we also make use of `first_pipe_instance`, which will ensure that
+/// // there are no other servers up and running already.
+/// let mut server = ServerOptions::new()
+/// .first_pipe_instance(true)
+/// .create(PIPE_NAME)?;
+///
+/// // Spawn the server loop.
+/// let server = tokio::spawn(async move {
+/// loop {
+/// // Wait for a client to connect.
+/// let connected = server.connect().await?;
+///
+/// // Construct the next server to be connected before sending the one
+/// // we already have of onto a task. This ensures that the server
+/// // isn't closed (after it's done in the task) before a new one is
+/// // available. Otherwise the client might error with
+/// // `io::ErrorKind::NotFound`.
+/// server = ServerOptions::new().create(PIPE_NAME)?;
+///
+/// let client = tokio::spawn(async move {
+/// /* use the connected client */
+/// # Ok::<_, std::io::Error>(())
+/// });
+/// # if true { break } // needed for type inference to work
+/// }
+///
+/// Ok::<_, io::Error>(())
+/// });
+///
+/// /* do something else not server related here */
+/// # Ok(()) }
+/// ```
+///
+/// [`ERROR_PIPE_BUSY`]: crate::winapi::shared::winerror::ERROR_PIPE_BUSY
+/// [Windows named pipe]: https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
+#[derive(Debug)]
+pub struct NamedPipeServer {
+ io: PollEvented<mio_windows::NamedPipe>,
+}
+
+impl NamedPipeServer {
+ /// Constructs a new named pipe server from the specified raw handle.
+ ///
+ /// This function will consume ownership of the handle given, passing
+ /// responsibility for closing the handle to the returned object.
+ ///
+ /// This function is also unsafe as the primitives currently returned have
+ /// the contract that they are the sole owner of the file descriptor they
+ /// are wrapping. Usage of this function could accidentally allow violating
+ /// this contract which can cause memory unsafety in code that relies on it
+ /// being true.
+ ///
+ /// # Errors
+ ///
+ /// This errors if called outside of a [Tokio Runtime], or in a runtime that
+ /// has not [enabled I/O], or if any OS-specific I/O errors occur.
+ ///
+ /// [Tokio Runtime]: crate::runtime::Runtime
+ /// [enabled I/O]: crate::runtime::Builder::enable_io
+ pub unsafe fn from_raw_handle(handle: RawHandle) -> io::Result<Self> {
+ let named_pipe = mio_windows::NamedPipe::from_raw_handle(handle);
+
+ Ok(Self {
+ io: PollEvented::new(named_pipe)?,
+ })
+ }
+
+ /// Retrieves information about the named pipe the server is associated
+ /// with.
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe::{PipeEnd, PipeMode, ServerOptions};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-info";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let server = ServerOptions::new()
+ /// .pipe_mode(PipeMode::Message)
+ /// .max_instances(5)
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let server_info = server.info()?;
+ ///
+ /// assert_eq!(server_info.end, PipeEnd::Server);
+ /// assert_eq!(server_info.mode, PipeMode::Message);
+ /// assert_eq!(server_info.max_instances, 5);
+ /// # Ok(()) }
+ /// ```
+ pub fn info(&self) -> io::Result<PipeInfo> {
+ // Safety: we're ensuring the lifetime of the named pipe.
+ unsafe { named_pipe_info(self.io.as_raw_handle()) }
+ }
+
+ /// Enables a named pipe server process to wait for a client process to
+ /// connect to an instance of a named pipe. A client process connects by
+ /// creating a named pipe with the same name.
+ ///
+ /// This corresponds to the [`ConnectNamedPipe`] system call.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancellation safe in the sense that if it is used as the
+ /// event in a [`select!`](crate::select) statement and some other branch
+ /// completes first, then no connection events have been lost.
+ ///
+ /// [`ConnectNamedPipe`]: https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-connectnamedpipe
+ ///
+ /// # Example
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe::ServerOptions;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\mynamedpipe";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let pipe = ServerOptions::new().create(PIPE_NAME)?;
+ ///
+ /// // Wait for a client to connect.
+ /// pipe.connect().await?;
+ ///
+ /// // Use the connected client...
+ /// # Ok(()) }
+ /// ```
+ pub async fn connect(&self) -> io::Result<()> {
+ loop {
+ match self.io.connect() {
+ Ok(()) => break,
+ Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ self.io.registration().readiness(Interest::WRITABLE).await?;
+ }
+ Err(e) => return Err(e),
+ }
+ }
+
+ Ok(())
+ }
+
+ /// Disconnects the server end of a named pipe instance from a client
+ /// process.
+ ///
+ /// ```
+ /// use tokio::io::AsyncWriteExt;
+ /// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
+ /// use winapi::shared::winerror;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-disconnect";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let server = ServerOptions::new()
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let mut client = ClientOptions::new()
+ /// .open(PIPE_NAME)?;
+ ///
+ /// // Wait for a client to become connected.
+ /// server.connect().await?;
+ ///
+ /// // Forcibly disconnect the client.
+ /// server.disconnect()?;
+ ///
+ /// // Write fails with an OS-specific error after client has been
+ /// // disconnected.
+ /// let e = client.write(b"ping").await.unwrap_err();
+ /// assert_eq!(e.raw_os_error(), Some(winerror::ERROR_PIPE_NOT_CONNECTED as i32));
+ /// # Ok(()) }
+ /// ```
+ pub fn disconnect(&self) -> io::Result<()> {
+ self.io.disconnect()
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same pipe on a single
+ /// task without splitting the pipe.
+ ///
+ /// # Examples
+ ///
+ /// Concurrently read and write to the pipe on the same task without
+ /// splitting.
+ ///
+ /// ```no_run
+ /// use tokio::io::Interest;
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-ready";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let server = named_pipe::ServerOptions::new()
+ /// .create(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// let ready = server.ready(Interest::READABLE | Interest::WRITABLE).await?;
+ ///
+ /// if ready.is_readable() {
+ /// let mut data = vec![0; 1024];
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match server.try_read(&mut data) {
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// if ready.is_writable() {
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match server.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// println!("write {} bytes", n);
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ /// }
+ /// }
+ /// ```
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ let event = self.io.registration().readiness(interest).await?;
+ Ok(event.ready)
+ }
+
+ /// Waits for the pipe to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_read()`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-readable";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let server = named_pipe::ServerOptions::new()
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let mut msg = vec![0; 1024];
+ ///
+ /// loop {
+ /// // Wait for the pipe to be readable
+ /// server.readable().await?;
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match server.try_read(&mut msg) {
+ /// Ok(n) => {
+ /// msg.truncate(n);
+ /// break;
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// println!("GOT = {:?}", msg);
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn readable(&self) -> io::Result<()> {
+ self.ready(Interest::READABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for read readiness.
+ ///
+ /// If the pipe is not currently ready for reading, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the pipe
+ /// becomes ready for reading, `Waker::wake` will be called on the waker.
+ ///
+ /// Note that on multiple calls to `poll_read_ready` or `poll_read`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_write_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`readable`] is not feasible. Where possible, using [`readable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the pipe is not ready for reading.
+ /// * `Poll::Ready(Ok(()))` if the pipe is ready for reading.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`readable`]: method@Self::readable
+ pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_read_ready(cx).map_ok(|_| ())
+ }
+
+ /// Tries to read data from the pipe into the provided buffer, returning how
+ /// many bytes were read.
+ ///
+ /// Receives any pending data from the pipe but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: NamedPipeServer::readable()
+ /// [`ready()`]: NamedPipeServer::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the pipe's read half is closed
+ /// and will no longer yield data. If the pipe is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-try-read";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let server = named_pipe::ServerOptions::new()
+ /// .create(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// // Wait for the pipe to be readable
+ /// server.readable().await?;
+ ///
+ /// // Creating the buffer **after** the `await` prevents it from
+ /// // being stored in the async task.
+ /// let mut buf = [0; 4096];
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match server.try_read(&mut buf) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || (&*self.io).read(buf))
+ }
+
+ /// Tries to read data from the pipe into the provided buffers, returning
+ /// how many bytes were read.
+ ///
+ /// Data is copied to fill each buffer in order, with the final buffer
+ /// written to possibly being only partially filled. This method behaves
+ /// equivalently to a single call to [`try_read()`] with concatenated
+ /// buffers.
+ ///
+ /// Receives any pending data from the pipe but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_vectored()` is non-blocking, the buffer does not have to be
+ /// stored by the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`try_read()`]: NamedPipeServer::try_read()
+ /// [`readable()`]: NamedPipeServer::readable()
+ /// [`ready()`]: NamedPipeServer::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the pipe's read half is closed
+ /// and will no longer yield data. If the pipe is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io::{self, IoSliceMut};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-try-read-vectored";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let server = named_pipe::ServerOptions::new()
+ /// .create(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// // Wait for the pipe to be readable
+ /// server.readable().await?;
+ ///
+ /// // Creating the buffer **after** the `await` prevents it from
+ /// // being stored in the async task.
+ /// let mut buf_a = [0; 512];
+ /// let mut buf_b = [0; 1024];
+ /// let mut bufs = [
+ /// IoSliceMut::new(&mut buf_a),
+ /// IoSliceMut::new(&mut buf_b),
+ /// ];
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match server.try_read_vectored(&mut bufs) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || (&*self.io).read_vectored(bufs))
+ }
+
+ /// Waits for the pipe to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
+ /// paired with `try_write()`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-writable";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let server = named_pipe::ServerOptions::new()
+ /// .create(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// // Wait for the pipe to be writable
+ /// server.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match server.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn writable(&self) -> io::Result<()> {
+ self.ready(Interest::WRITABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for write readiness.
+ ///
+ /// If the pipe is not currently ready for writing, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the pipe
+ /// becomes ready for writing, `Waker::wake` will be called on the waker.
+ ///
+ /// Note that on multiple calls to `poll_write_ready` or `poll_write`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_read_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`writable`] is not feasible. Where possible, using [`writable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the pipe is not ready for writing.
+ /// * `Poll::Ready(Ok(()))` if the pipe is ready for writing.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`writable`]: method@Self::writable
+ pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_write_ready(cx).map_ok(|_| ())
+ }
+
+ /// Tries to write a buffer to the pipe, returning how many bytes were
+ /// written.
+ ///
+ /// The function will attempt to write the entire contents of `buf`, but
+ /// only part of the buffer may be written.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the pipe is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-try-write";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let server = named_pipe::ServerOptions::new()
+ /// .create(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// // Wait for the pipe to be writable
+ /// server.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match server.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || (&*self.io).write(buf))
+ }
+
+ /// Tries to write several buffers to the pipe, returning how many bytes
+ /// were written.
+ ///
+ /// Data is written from each buffer in order, with the final buffer read
+ /// from possible being only partially consumed. This method behaves
+ /// equivalently to a single call to [`try_write()`] with concatenated
+ /// buffers.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// [`try_write()`]: NamedPipeServer::try_write()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the pipe is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-try-write-vectored";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let server = named_pipe::ServerOptions::new()
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let bufs = [io::IoSlice::new(b"hello "), io::IoSlice::new(b"world")];
+ ///
+ /// loop {
+ /// // Wait for the pipe to be writable
+ /// server.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match server.try_write_vectored(&bufs) {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || (&*self.io).write_vectored(buf))
+ }
+
+ /// Tries to read or write from the socket using a user-provided IO operation.
+ ///
+ /// If the socket is ready, the provided closure is called. The closure
+ /// should attempt to perform IO operation from the socket by manually
+ /// calling the appropriate syscall. If the operation fails because the
+ /// socket is not actually ready, then the closure should return a
+ /// `WouldBlock` error and the readiness flag is cleared. The return value
+ /// of the closure is then returned by `try_io`.
+ ///
+ /// If the socket is not ready, then the closure is not called
+ /// and a `WouldBlock` error is returned.
+ ///
+ /// The closure should only return a `WouldBlock` error if it has performed
+ /// an IO operation on the socket that failed due to the socket not being
+ /// ready. Returning a `WouldBlock` error in any other situation will
+ /// incorrectly clear the readiness flag, which can cause the socket to
+ /// behave incorrectly.
+ ///
+ /// The closure should not perform the IO operation using any of the
+ /// methods defined on the Tokio `NamedPipeServer` type, as this will mess with
+ /// the readiness flag and can cause the socket to behave incorrectly.
+ ///
+ /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: NamedPipeServer::readable()
+ /// [`writable()`]: NamedPipeServer::writable()
+ /// [`ready()`]: NamedPipeServer::ready()
+ pub fn try_io<R>(
+ &self,
+ interest: Interest,
+ f: impl FnOnce() -> io::Result<R>,
+ ) -> io::Result<R> {
+ self.io.registration().try_io(interest, f)
+ }
+}
+
+impl AsyncRead for NamedPipeServer {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ unsafe { self.io.poll_read(cx, buf) }
+ }
+}
+
+impl AsyncWrite for NamedPipeServer {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.io.poll_write(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.io.poll_write_vectored(cx, bufs)
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.poll_flush(cx)
+ }
+}
+
+impl AsRawHandle for NamedPipeServer {
+ fn as_raw_handle(&self) -> RawHandle {
+ self.io.as_raw_handle()
+ }
+}
+
+/// A [Windows named pipe] client.
+///
+/// Constructed using [`ClientOptions::open`].
+///
+/// Connecting a client correctly involves a few steps. When connecting through
+/// [`ClientOptions::open`], it might error indicating one of two things:
+///
+/// * [`std::io::ErrorKind::NotFound`] - There is no server available.
+/// * [`ERROR_PIPE_BUSY`] - There is a server available, but it is busy. Sleep
+/// for a while and try again.
+///
+/// So a correctly implemented client looks like this:
+///
+/// ```no_run
+/// use std::time::Duration;
+/// use tokio::net::windows::named_pipe::ClientOptions;
+/// use tokio::time;
+/// use winapi::shared::winerror;
+///
+/// const PIPE_NAME: &str = r"\\.\pipe\named-pipe-idiomatic-client";
+///
+/// # #[tokio::main] async fn main() -> std::io::Result<()> {
+/// let client = loop {
+/// match ClientOptions::new().open(PIPE_NAME) {
+/// Ok(client) => break client,
+/// Err(e) if e.raw_os_error() == Some(winerror::ERROR_PIPE_BUSY as i32) => (),
+/// Err(e) => return Err(e),
+/// }
+///
+/// time::sleep(Duration::from_millis(50)).await;
+/// };
+///
+/// /* use the connected client */
+/// # Ok(()) }
+/// ```
+///
+/// [`ERROR_PIPE_BUSY`]: crate::winapi::shared::winerror::ERROR_PIPE_BUSY
+/// [Windows named pipe]: https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
+#[derive(Debug)]
+pub struct NamedPipeClient {
+ io: PollEvented<mio_windows::NamedPipe>,
+}
+
+impl NamedPipeClient {
+ /// Constructs a new named pipe client from the specified raw handle.
+ ///
+ /// This function will consume ownership of the handle given, passing
+ /// responsibility for closing the handle to the returned object.
+ ///
+ /// This function is also unsafe as the primitives currently returned have
+ /// the contract that they are the sole owner of the file descriptor they
+ /// are wrapping. Usage of this function could accidentally allow violating
+ /// this contract which can cause memory unsafety in code that relies on it
+ /// being true.
+ ///
+ /// # Errors
+ ///
+ /// This errors if called outside of a [Tokio Runtime], or in a runtime that
+ /// has not [enabled I/O], or if any OS-specific I/O errors occur.
+ ///
+ /// [Tokio Runtime]: crate::runtime::Runtime
+ /// [enabled I/O]: crate::runtime::Builder::enable_io
+ pub unsafe fn from_raw_handle(handle: RawHandle) -> io::Result<Self> {
+ let named_pipe = mio_windows::NamedPipe::from_raw_handle(handle);
+
+ Ok(Self {
+ io: PollEvented::new(named_pipe)?,
+ })
+ }
+
+ /// Retrieves information about the named pipe the client is associated
+ /// with.
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe::{ClientOptions, PipeEnd, PipeMode};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-info";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let client = ClientOptions::new()
+ /// .open(PIPE_NAME)?;
+ ///
+ /// let client_info = client.info()?;
+ ///
+ /// assert_eq!(client_info.end, PipeEnd::Client);
+ /// assert_eq!(client_info.mode, PipeMode::Message);
+ /// assert_eq!(client_info.max_instances, 5);
+ /// # Ok(()) }
+ /// ```
+ pub fn info(&self) -> io::Result<PipeInfo> {
+ // Safety: we're ensuring the lifetime of the named pipe.
+ unsafe { named_pipe_info(self.io.as_raw_handle()) }
+ }
+
+ /// Waits for any of the requested ready states.
+ ///
+ /// This function is usually paired with `try_read()` or `try_write()`. It
+ /// can be used to concurrently read / write to the same pipe on a single
+ /// task without splitting the pipe.
+ ///
+ /// # Examples
+ ///
+ /// Concurrently read and write to the pipe on the same task without
+ /// splitting.
+ ///
+ /// ```no_run
+ /// use tokio::io::Interest;
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-ready";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// let ready = client.ready(Interest::READABLE | Interest::WRITABLE).await?;
+ ///
+ /// if ready.is_readable() {
+ /// let mut data = vec![0; 1024];
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match client.try_read(&mut data) {
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// if ready.is_writable() {
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match client.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// println!("write {} bytes", n);
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ /// }
+ /// }
+ /// ```
+ pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
+ let event = self.io.registration().readiness(interest).await?;
+ Ok(event.ready)
+ }
+
+ /// Waits for the pipe to become readable.
+ ///
+ /// This function is equivalent to `ready(Interest::READABLE)` and is usually
+ /// paired with `try_read()`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-readable";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
+ ///
+ /// let mut msg = vec![0; 1024];
+ ///
+ /// loop {
+ /// // Wait for the pipe to be readable
+ /// client.readable().await?;
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match client.try_read(&mut msg) {
+ /// Ok(n) => {
+ /// msg.truncate(n);
+ /// break;
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// println!("GOT = {:?}", msg);
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn readable(&self) -> io::Result<()> {
+ self.ready(Interest::READABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for read readiness.
+ ///
+ /// If the pipe is not currently ready for reading, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the pipe
+ /// becomes ready for reading, `Waker::wake` will be called on the waker.
+ ///
+ /// Note that on multiple calls to `poll_read_ready` or `poll_read`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_write_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`readable`] is not feasible. Where possible, using [`readable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the pipe is not ready for reading.
+ /// * `Poll::Ready(Ok(()))` if the pipe is ready for reading.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`readable`]: method@Self::readable
+ pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_read_ready(cx).map_ok(|_| ())
+ }
+
+ /// Tries to read data from the pipe into the provided buffer, returning how
+ /// many bytes were read.
+ ///
+ /// Receives any pending data from the pipe but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read()` is non-blocking, the buffer does not have to be stored by
+ /// the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: NamedPipeClient::readable()
+ /// [`ready()`]: NamedPipeClient::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the pipe's read half is closed
+ /// and will no longer yield data. If the pipe is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-try-read";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// // Wait for the pipe to be readable
+ /// client.readable().await?;
+ ///
+ /// // Creating the buffer **after** the `await` prevents it from
+ /// // being stored in the async task.
+ /// let mut buf = [0; 4096];
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match client.try_read(&mut buf) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || (&*self.io).read(buf))
+ }
+
+ /// Tries to read data from the pipe into the provided buffers, returning
+ /// how many bytes were read.
+ ///
+ /// Data is copied to fill each buffer in order, with the final buffer
+ /// written to possibly being only partially filled. This method behaves
+ /// equivalently to a single call to [`try_read()`] with concatenated
+ /// buffers.
+ ///
+ /// Receives any pending data from the pipe but does not wait for new data
+ /// to arrive. On success, returns the number of bytes read. Because
+ /// `try_read_vectored()` is non-blocking, the buffer does not have to be
+ /// stored by the async task and can exist entirely on the stack.
+ ///
+ /// Usually, [`readable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`try_read()`]: NamedPipeClient::try_read()
+ /// [`readable()`]: NamedPipeClient::readable()
+ /// [`ready()`]: NamedPipeClient::ready()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully read, `Ok(n)` is returned, where `n` is the
+ /// number of bytes read. `Ok(0)` indicates the pipe's read half is closed
+ /// and will no longer yield data. If the pipe is not ready to read data
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io::{self, IoSliceMut};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-try-read-vectored";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// // Wait for the pipe to be readable
+ /// client.readable().await?;
+ ///
+ /// // Creating the buffer **after** the `await` prevents it from
+ /// // being stored in the async task.
+ /// let mut buf_a = [0; 512];
+ /// let mut buf_b = [0; 1024];
+ /// let mut bufs = [
+ /// IoSliceMut::new(&mut buf_a),
+ /// IoSliceMut::new(&mut buf_b),
+ /// ];
+ ///
+ /// // Try to read data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match client.try_read_vectored(&mut bufs) {
+ /// Ok(0) => break,
+ /// Ok(n) => {
+ /// println!("read {} bytes", n);
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::READABLE, || (&*self.io).read_vectored(bufs))
+ }
+
+ /// Waits for the pipe to become writable.
+ ///
+ /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
+ /// paired with `try_write()`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-writable";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// // Wait for the pipe to be writable
+ /// client.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match client.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub async fn writable(&self) -> io::Result<()> {
+ self.ready(Interest::WRITABLE).await?;
+ Ok(())
+ }
+
+ /// Polls for write readiness.
+ ///
+ /// If the pipe is not currently ready for writing, this method will
+ /// store a clone of the `Waker` from the provided `Context`. When the pipe
+ /// becomes ready for writing, `Waker::wake` will be called on the waker.
+ ///
+ /// Note that on multiple calls to `poll_write_ready` or `poll_write`, only
+ /// the `Waker` from the `Context` passed to the most recent call is
+ /// scheduled to receive a wakeup. (However, `poll_read_ready` retains a
+ /// second, independent waker.)
+ ///
+ /// This function is intended for cases where creating and pinning a future
+ /// via [`writable`] is not feasible. Where possible, using [`writable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// # Return value
+ ///
+ /// The function returns:
+ ///
+ /// * `Poll::Pending` if the pipe is not ready for writing.
+ /// * `Poll::Ready(Ok(()))` if the pipe is ready for writing.
+ /// * `Poll::Ready(Err(e))` if an error is encountered.
+ ///
+ /// # Errors
+ ///
+ /// This function may encounter any standard I/O error except `WouldBlock`.
+ ///
+ /// [`writable`]: method@Self::writable
+ pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.io.registration().poll_write_ready(cx).map_ok(|_| ())
+ }
+
+ /// Tries to write a buffer to the pipe, returning how many bytes were
+ /// written.
+ ///
+ /// The function will attempt to write the entire contents of `buf`, but
+ /// only part of the buffer may be written.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the pipe is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-try-write";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
+ ///
+ /// loop {
+ /// // Wait for the pipe to be writable
+ /// client.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match client.try_write(b"hello world") {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || (&*self.io).write(buf))
+ }
+
+ /// Tries to write several buffers to the pipe, returning how many bytes
+ /// were written.
+ ///
+ /// Data is written from each buffer in order, with the final buffer read
+ /// from possible being only partially consumed. This method behaves
+ /// equivalently to a single call to [`try_write()`] with concatenated
+ /// buffers.
+ ///
+ /// This function is usually paired with `writable()`.
+ ///
+ /// [`try_write()`]: NamedPipeClient::try_write()
+ ///
+ /// # Return
+ ///
+ /// If data is successfully written, `Ok(n)` is returned, where `n` is the
+ /// number of bytes written. If the pipe is not ready to write data,
+ /// `Err(io::ErrorKind::WouldBlock)` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::net::windows::named_pipe;
+ /// use std::error::Error;
+ /// use std::io;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-try-write-vectored";
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> Result<(), Box<dyn Error>> {
+ /// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
+ ///
+ /// let bufs = [io::IoSlice::new(b"hello "), io::IoSlice::new(b"world")];
+ ///
+ /// loop {
+ /// // Wait for the pipe to be writable
+ /// client.writable().await?;
+ ///
+ /// // Try to write data, this may still fail with `WouldBlock`
+ /// // if the readiness event is a false positive.
+ /// match client.try_write_vectored(&bufs) {
+ /// Ok(n) => {
+ /// break;
+ /// }
+ /// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
+ /// continue;
+ /// }
+ /// Err(e) => {
+ /// return Err(e.into());
+ /// }
+ /// }
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
+ self.io
+ .registration()
+ .try_io(Interest::WRITABLE, || (&*self.io).write_vectored(buf))
+ }
+
+ /// Tries to read or write from the socket using a user-provided IO operation.
+ ///
+ /// If the socket is ready, the provided closure is called. The closure
+ /// should attempt to perform IO operation from the socket by manually
+ /// calling the appropriate syscall. If the operation fails because the
+ /// socket is not actually ready, then the closure should return a
+ /// `WouldBlock` error and the readiness flag is cleared. The return value
+ /// of the closure is then returned by `try_io`.
+ ///
+ /// If the socket is not ready, then the closure is not called
+ /// and a `WouldBlock` error is returned.
+ ///
+ /// The closure should only return a `WouldBlock` error if it has performed
+ /// an IO operation on the socket that failed due to the socket not being
+ /// ready. Returning a `WouldBlock` error in any other situation will
+ /// incorrectly clear the readiness flag, which can cause the socket to
+ /// behave incorrectly.
+ ///
+ /// The closure should not perform the IO operation using any of the methods
+ /// defined on the Tokio `NamedPipeClient` type, as this will mess with the
+ /// readiness flag and can cause the socket to behave incorrectly.
+ ///
+ /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
+ ///
+ /// [`readable()`]: NamedPipeClient::readable()
+ /// [`writable()`]: NamedPipeClient::writable()
+ /// [`ready()`]: NamedPipeClient::ready()
+ pub fn try_io<R>(
+ &self,
+ interest: Interest,
+ f: impl FnOnce() -> io::Result<R>,
+ ) -> io::Result<R> {
+ self.io.registration().try_io(interest, f)
+ }
+}
+
+impl AsyncRead for NamedPipeClient {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ unsafe { self.io.poll_read(cx, buf) }
+ }
+}
+
+impl AsyncWrite for NamedPipeClient {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.io.poll_write(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.io.poll_write_vectored(cx, bufs)
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.poll_flush(cx)
+ }
+}
+
+impl AsRawHandle for NamedPipeClient {
+ fn as_raw_handle(&self) -> RawHandle {
+ self.io.as_raw_handle()
+ }
+}
+
+// Helper to set a boolean flag as a bitfield.
+macro_rules! bool_flag {
+ ($f:expr, $t:expr, $flag:expr) => {{
+ let current = $f;
+
+ if $t {
+ $f = current | $flag;
+ } else {
+ $f = current & !$flag;
+ };
+ }};
+}
+
+/// A builder structure for construct a named pipe with named pipe-specific
+/// options. This is required to use for named pipe servers who wants to modify
+/// pipe-related options.
+///
+/// See [`ServerOptions::create`].
+#[derive(Debug, Clone)]
+pub struct ServerOptions {
+ open_mode: DWORD,
+ pipe_mode: DWORD,
+ max_instances: DWORD,
+ out_buffer_size: DWORD,
+ in_buffer_size: DWORD,
+ default_timeout: DWORD,
+}
+
+impl ServerOptions {
+ /// Creates a new named pipe builder with the default settings.
+ ///
+ /// ```
+ /// use tokio::net::windows::named_pipe::ServerOptions;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-new";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let server = ServerOptions::new().create(PIPE_NAME)?;
+ /// # Ok(()) }
+ /// ```
+ pub fn new() -> ServerOptions {
+ ServerOptions {
+ open_mode: winbase::PIPE_ACCESS_DUPLEX | winbase::FILE_FLAG_OVERLAPPED,
+ pipe_mode: winbase::PIPE_TYPE_BYTE | winbase::PIPE_REJECT_REMOTE_CLIENTS,
+ max_instances: winbase::PIPE_UNLIMITED_INSTANCES,
+ out_buffer_size: 65536,
+ in_buffer_size: 65536,
+ default_timeout: 0,
+ }
+ }
+
+ /// The pipe mode.
+ ///
+ /// The default pipe mode is [`PipeMode::Byte`]. See [`PipeMode`] for
+ /// documentation of what each mode means.
+ ///
+ /// This corresponding to specifying [`dwPipeMode`].
+ ///
+ /// [`dwPipeMode`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
+ pub fn pipe_mode(&mut self, pipe_mode: PipeMode) -> &mut Self {
+ self.pipe_mode = match pipe_mode {
+ PipeMode::Byte => winbase::PIPE_TYPE_BYTE,
+ PipeMode::Message => winbase::PIPE_TYPE_MESSAGE,
+ };
+
+ self
+ }
+
+ /// The flow of data in the pipe goes from client to server only.
+ ///
+ /// This corresponds to setting [`PIPE_ACCESS_INBOUND`].
+ ///
+ /// [`PIPE_ACCESS_INBOUND`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#pipe_access_inbound
+ ///
+ /// # Errors
+ ///
+ /// Server side prevents connecting by denying inbound access, client errors
+ /// with [`std::io::ErrorKind::PermissionDenied`] when attempting to create
+ /// the connection.
+ ///
+ /// ```
+ /// use std::io;
+ /// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-inbound-err1";
+ ///
+ /// # #[tokio::main] async fn main() -> io::Result<()> {
+ /// let _server = ServerOptions::new()
+ /// .access_inbound(false)
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let e = ClientOptions::new()
+ /// .open(PIPE_NAME)
+ /// .unwrap_err();
+ ///
+ /// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
+ /// # Ok(()) }
+ /// ```
+ ///
+ /// Disabling writing allows a client to connect, but errors with
+ /// [`std::io::ErrorKind::PermissionDenied`] if a write is attempted.
+ ///
+ /// ```
+ /// use std::io;
+ /// use tokio::io::AsyncWriteExt;
+ /// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-inbound-err2";
+ ///
+ /// # #[tokio::main] async fn main() -> io::Result<()> {
+ /// let server = ServerOptions::new()
+ /// .access_inbound(false)
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let mut client = ClientOptions::new()
+ /// .write(false)
+ /// .open(PIPE_NAME)?;
+ ///
+ /// server.connect().await?;
+ ///
+ /// let e = client.write(b"ping").await.unwrap_err();
+ /// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
+ /// # Ok(()) }
+ /// ```
+ ///
+ /// # Examples
+ ///
+ /// A unidirectional named pipe that only supports server-to-client
+ /// communication.
+ ///
+ /// ```
+ /// use std::io;
+ /// use tokio::io::{AsyncReadExt, AsyncWriteExt};
+ /// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-inbound";
+ ///
+ /// # #[tokio::main] async fn main() -> io::Result<()> {
+ /// let mut server = ServerOptions::new()
+ /// .access_inbound(false)
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let mut client = ClientOptions::new()
+ /// .write(false)
+ /// .open(PIPE_NAME)?;
+ ///
+ /// server.connect().await?;
+ ///
+ /// let write = server.write_all(b"ping");
+ ///
+ /// let mut buf = [0u8; 4];
+ /// let read = client.read_exact(&mut buf);
+ ///
+ /// let ((), read) = tokio::try_join!(write, read)?;
+ ///
+ /// assert_eq!(read, 4);
+ /// assert_eq!(&buf[..], b"ping");
+ /// # Ok(()) }
+ /// ```
+ pub fn access_inbound(&mut self, allowed: bool) -> &mut Self {
+ bool_flag!(self.open_mode, allowed, winbase::PIPE_ACCESS_INBOUND);
+ self
+ }
+
+ /// The flow of data in the pipe goes from server to client only.
+ ///
+ /// This corresponds to setting [`PIPE_ACCESS_OUTBOUND`].
+ ///
+ /// [`PIPE_ACCESS_OUTBOUND`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#pipe_access_outbound
+ ///
+ /// # Errors
+ ///
+ /// Server side prevents connecting by denying outbound access, client
+ /// errors with [`std::io::ErrorKind::PermissionDenied`] when attempting to
+ /// create the connection.
+ ///
+ /// ```
+ /// use std::io;
+ /// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-outbound-err1";
+ ///
+ /// # #[tokio::main] async fn main() -> io::Result<()> {
+ /// let server = ServerOptions::new()
+ /// .access_outbound(false)
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let e = ClientOptions::new()
+ /// .open(PIPE_NAME)
+ /// .unwrap_err();
+ ///
+ /// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
+ /// # Ok(()) }
+ /// ```
+ ///
+ /// Disabling reading allows a client to connect, but attempting to read
+ /// will error with [`std::io::ErrorKind::PermissionDenied`].
+ ///
+ /// ```
+ /// use std::io;
+ /// use tokio::io::AsyncReadExt;
+ /// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-outbound-err2";
+ ///
+ /// # #[tokio::main] async fn main() -> io::Result<()> {
+ /// let server = ServerOptions::new()
+ /// .access_outbound(false)
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let mut client = ClientOptions::new()
+ /// .read(false)
+ /// .open(PIPE_NAME)?;
+ ///
+ /// server.connect().await?;
+ ///
+ /// let mut buf = [0u8; 4];
+ /// let e = client.read(&mut buf).await.unwrap_err();
+ /// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
+ /// # Ok(()) }
+ /// ```
+ ///
+ /// # Examples
+ ///
+ /// A unidirectional named pipe that only supports client-to-server
+ /// communication.
+ ///
+ /// ```
+ /// use tokio::io::{AsyncReadExt, AsyncWriteExt};
+ /// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-outbound";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let mut server = ServerOptions::new()
+ /// .access_outbound(false)
+ /// .create(PIPE_NAME)?;
+ ///
+ /// let mut client = ClientOptions::new()
+ /// .read(false)
+ /// .open(PIPE_NAME)?;
+ ///
+ /// server.connect().await?;
+ ///
+ /// let write = client.write_all(b"ping");
+ ///
+ /// let mut buf = [0u8; 4];
+ /// let read = server.read_exact(&mut buf);
+ ///
+ /// let ((), read) = tokio::try_join!(write, read)?;
+ ///
+ /// println!("done reading and writing");
+ ///
+ /// assert_eq!(read, 4);
+ /// assert_eq!(&buf[..], b"ping");
+ /// # Ok(()) }
+ /// ```
+ pub fn access_outbound(&mut self, allowed: bool) -> &mut Self {
+ bool_flag!(self.open_mode, allowed, winbase::PIPE_ACCESS_OUTBOUND);
+ self
+ }
+
+ /// If you attempt to create multiple instances of a pipe with this flag
+ /// set, creation of the first server instance succeeds, but creation of any
+ /// subsequent instances will fail with
+ /// [`std::io::ErrorKind::PermissionDenied`].
+ ///
+ /// This option is intended to be used with servers that want to ensure that
+ /// they are the only process listening for clients on a given named pipe.
+ /// This is accomplished by enabling it for the first server instance
+ /// created in a process.
+ ///
+ /// This corresponds to setting [`FILE_FLAG_FIRST_PIPE_INSTANCE`].
+ ///
+ /// # Errors
+ ///
+ /// If this option is set and more than one instance of the server for a
+ /// given named pipe exists, calling [`create`] will fail with
+ /// [`std::io::ErrorKind::PermissionDenied`].
+ ///
+ /// ```
+ /// use std::io;
+ /// use tokio::net::windows::named_pipe::ServerOptions;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-first-instance-error";
+ ///
+ /// # #[tokio::main] async fn main() -> io::Result<()> {
+ /// let server1 = ServerOptions::new()
+ /// .first_pipe_instance(true)
+ /// .create(PIPE_NAME)?;
+ ///
+ /// // Second server errs, since it's not the first instance.
+ /// let e = ServerOptions::new()
+ /// .first_pipe_instance(true)
+ /// .create(PIPE_NAME)
+ /// .unwrap_err();
+ ///
+ /// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
+ /// # Ok(()) }
+ /// ```
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::io;
+ /// use tokio::net::windows::named_pipe::ServerOptions;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-first-instance";
+ ///
+ /// # #[tokio::main] async fn main() -> io::Result<()> {
+ /// let mut builder = ServerOptions::new();
+ /// builder.first_pipe_instance(true);
+ ///
+ /// let server = builder.create(PIPE_NAME)?;
+ /// let e = builder.create(PIPE_NAME).unwrap_err();
+ /// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
+ /// drop(server);
+ ///
+ /// // OK: since, we've closed the other instance.
+ /// let _server2 = builder.create(PIPE_NAME)?;
+ /// # Ok(()) }
+ /// ```
+ ///
+ /// [`create`]: ServerOptions::create
+ /// [`FILE_FLAG_FIRST_PIPE_INSTANCE`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#pipe_first_pipe_instance
+ pub fn first_pipe_instance(&mut self, first: bool) -> &mut Self {
+ bool_flag!(
+ self.open_mode,
+ first,
+ winbase::FILE_FLAG_FIRST_PIPE_INSTANCE
+ );
+ self
+ }
+
+ /// Indicates whether this server can accept remote clients or not. Remote
+ /// clients are disabled by default.
+ ///
+ /// This corresponds to setting [`PIPE_REJECT_REMOTE_CLIENTS`].
+ ///
+ /// [`PIPE_REJECT_REMOTE_CLIENTS`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#pipe_reject_remote_clients
+ pub fn reject_remote_clients(&mut self, reject: bool) -> &mut Self {
+ bool_flag!(self.pipe_mode, reject, winbase::PIPE_REJECT_REMOTE_CLIENTS);
+ self
+ }
+
+ /// The maximum number of instances that can be created for this pipe. The
+ /// first instance of the pipe can specify this value; the same number must
+ /// be specified for other instances of the pipe. Acceptable values are in
+ /// the range 1 through 254. The default value is unlimited.
+ ///
+ /// This corresponds to specifying [`nMaxInstances`].
+ ///
+ /// [`nMaxInstances`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
+ ///
+ /// # Errors
+ ///
+ /// The same numbers of `max_instances` have to be used by all servers. Any
+ /// additional servers trying to be built which uses a mismatching value
+ /// might error.
+ ///
+ /// ```
+ /// use std::io;
+ /// use tokio::net::windows::named_pipe::{ServerOptions, ClientOptions};
+ /// use winapi::shared::winerror;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-max-instances";
+ ///
+ /// # #[tokio::main] async fn main() -> io::Result<()> {
+ /// let mut server = ServerOptions::new();
+ /// server.max_instances(2);
+ ///
+ /// let s1 = server.create(PIPE_NAME)?;
+ /// let c1 = ClientOptions::new().open(PIPE_NAME);
+ ///
+ /// let s2 = server.create(PIPE_NAME)?;
+ /// let c2 = ClientOptions::new().open(PIPE_NAME);
+ ///
+ /// // Too many servers!
+ /// let e = server.create(PIPE_NAME).unwrap_err();
+ /// assert_eq!(e.raw_os_error(), Some(winerror::ERROR_PIPE_BUSY as i32));
+ ///
+ /// // Still too many servers even if we specify a higher value!
+ /// let e = server.max_instances(100).create(PIPE_NAME).unwrap_err();
+ /// assert_eq!(e.raw_os_error(), Some(winerror::ERROR_PIPE_BUSY as i32));
+ /// # Ok(()) }
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if more than 254 instances are specified. If
+ /// you do not wish to set an instance limit, leave it unspecified.
+ ///
+ /// ```should_panic
+ /// use tokio::net::windows::named_pipe::ServerOptions;
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let builder = ServerOptions::new().max_instances(255);
+ /// # Ok(()) }
+ /// ```
+ pub fn max_instances(&mut self, instances: usize) -> &mut Self {
+ assert!(instances < 255, "cannot specify more than 254 instances");
+ self.max_instances = instances as DWORD;
+ self
+ }
+
+ /// The number of bytes to reserve for the output buffer.
+ ///
+ /// This corresponds to specifying [`nOutBufferSize`].
+ ///
+ /// [`nOutBufferSize`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
+ pub fn out_buffer_size(&mut self, buffer: u32) -> &mut Self {
+ self.out_buffer_size = buffer as DWORD;
+ self
+ }
+
+ /// The number of bytes to reserve for the input buffer.
+ ///
+ /// This corresponds to specifying [`nInBufferSize`].
+ ///
+ /// [`nInBufferSize`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
+ pub fn in_buffer_size(&mut self, buffer: u32) -> &mut Self {
+ self.in_buffer_size = buffer as DWORD;
+ self
+ }
+
+ /// Creates the named pipe identified by `addr` for use as a server.
+ ///
+ /// This uses the [`CreateNamedPipe`] function.
+ ///
+ /// [`CreateNamedPipe`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
+ ///
+ /// # Errors
+ ///
+ /// This errors if called outside of a [Tokio Runtime], or in a runtime that
+ /// has not [enabled I/O], or if any OS-specific I/O errors occur.
+ ///
+ /// [Tokio Runtime]: crate::runtime::Runtime
+ /// [enabled I/O]: crate::runtime::Builder::enable_io
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::net::windows::named_pipe::ServerOptions;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-create";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let server = ServerOptions::new().create(PIPE_NAME)?;
+ /// # Ok(()) }
+ /// ```
+ pub fn create(&self, addr: impl AsRef<OsStr>) -> io::Result<NamedPipeServer> {
+ // Safety: We're calling create_with_security_attributes_raw w/ a null
+ // pointer which disables it.
+ unsafe { self.create_with_security_attributes_raw(addr, ptr::null_mut()) }
+ }
+
+ /// Creates the named pipe identified by `addr` for use as a server.
+ ///
+ /// This is the same as [`create`] except that it supports providing the raw
+ /// pointer to a structure of [`SECURITY_ATTRIBUTES`] which will be passed
+ /// as the `lpSecurityAttributes` argument to [`CreateFile`].
+ ///
+ /// # Errors
+ ///
+ /// This errors if called outside of a [Tokio Runtime], or in a runtime that
+ /// has not [enabled I/O], or if any OS-specific I/O errors occur.
+ ///
+ /// [Tokio Runtime]: crate::runtime::Runtime
+ /// [enabled I/O]: crate::runtime::Builder::enable_io
+ ///
+ /// # Safety
+ ///
+ /// The `attrs` argument must either be null or point at a valid instance of
+ /// the [`SECURITY_ATTRIBUTES`] structure. If the argument is null, the
+ /// behavior is identical to calling the [`create`] method.
+ ///
+ /// [`create`]: ServerOptions::create
+ /// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
+ /// [`SECURITY_ATTRIBUTES`]: crate::winapi::um::minwinbase::SECURITY_ATTRIBUTES
+ pub unsafe fn create_with_security_attributes_raw(
+ &self,
+ addr: impl AsRef<OsStr>,
+ attrs: *mut c_void,
+ ) -> io::Result<NamedPipeServer> {
+ let addr = encode_addr(addr);
+
+ let h = namedpipeapi::CreateNamedPipeW(
+ addr.as_ptr(),
+ self.open_mode,
+ self.pipe_mode,
+ self.max_instances,
+ self.out_buffer_size,
+ self.in_buffer_size,
+ self.default_timeout,
+ attrs as *mut _,
+ );
+
+ if h == handleapi::INVALID_HANDLE_VALUE {
+ return Err(io::Error::last_os_error());
+ }
+
+ NamedPipeServer::from_raw_handle(h)
+ }
+}
+
+/// A builder suitable for building and interacting with named pipes from the
+/// client side.
+///
+/// See [`ClientOptions::open`].
+#[derive(Debug, Clone)]
+pub struct ClientOptions {
+ desired_access: DWORD,
+ security_qos_flags: DWORD,
+}
+
+impl ClientOptions {
+ /// Creates a new named pipe builder with the default settings.
+ ///
+ /// ```
+ /// use tokio::net::windows::named_pipe::{ServerOptions, ClientOptions};
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-new";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// // Server must be created in order for the client creation to succeed.
+ /// let server = ServerOptions::new().create(PIPE_NAME)?;
+ /// let client = ClientOptions::new().open(PIPE_NAME)?;
+ /// # Ok(()) }
+ /// ```
+ pub fn new() -> Self {
+ Self {
+ desired_access: winnt::GENERIC_READ | winnt::GENERIC_WRITE,
+ security_qos_flags: winbase::SECURITY_IDENTIFICATION | winbase::SECURITY_SQOS_PRESENT,
+ }
+ }
+
+ /// If the client supports reading data. This is enabled by default.
+ ///
+ /// This corresponds to setting [`GENERIC_READ`] in the call to [`CreateFile`].
+ ///
+ /// [`GENERIC_READ`]: https://docs.microsoft.com/en-us/windows/win32/secauthz/generic-access-rights
+ /// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
+ pub fn read(&mut self, allowed: bool) -> &mut Self {
+ bool_flag!(self.desired_access, allowed, winnt::GENERIC_READ);
+ self
+ }
+
+ /// If the created pipe supports writing data. This is enabled by default.
+ ///
+ /// This corresponds to setting [`GENERIC_WRITE`] in the call to [`CreateFile`].
+ ///
+ /// [`GENERIC_WRITE`]: https://docs.microsoft.com/en-us/windows/win32/secauthz/generic-access-rights
+ /// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
+ pub fn write(&mut self, allowed: bool) -> &mut Self {
+ bool_flag!(self.desired_access, allowed, winnt::GENERIC_WRITE);
+ self
+ }
+
+ /// Sets qos flags which are combined with other flags and attributes in the
+ /// call to [`CreateFile`].
+ ///
+ /// By default `security_qos_flags` is set to [`SECURITY_IDENTIFICATION`],
+ /// calling this function would override that value completely with the
+ /// argument specified.
+ ///
+ /// When `security_qos_flags` is not set, a malicious program can gain the
+ /// elevated privileges of a privileged Rust process when it allows opening
+ /// user-specified paths, by tricking it into opening a named pipe. So
+ /// arguably `security_qos_flags` should also be set when opening arbitrary
+ /// paths. However the bits can then conflict with other flags, specifically
+ /// `FILE_FLAG_OPEN_NO_RECALL`.
+ ///
+ /// For information about possible values, see [Impersonation Levels] on the
+ /// Windows Dev Center site. The `SECURITY_SQOS_PRESENT` flag is set
+ /// automatically when using this method.
+ ///
+ /// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
+ /// [`SECURITY_IDENTIFICATION`]: crate::winapi::um::winbase::SECURITY_IDENTIFICATION
+ /// [Impersonation Levels]: https://docs.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-security_impersonation_level
+ pub fn security_qos_flags(&mut self, flags: u32) -> &mut Self {
+ // See: https://github.com/rust-lang/rust/pull/58216
+ self.security_qos_flags = flags | winbase::SECURITY_SQOS_PRESENT;
+ self
+ }
+
+ /// Opens the named pipe identified by `addr`.
+ ///
+ /// This opens the client using [`CreateFile`] with the
+ /// `dwCreationDisposition` option set to `OPEN_EXISTING`.
+ ///
+ /// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
+ ///
+ /// # Errors
+ ///
+ /// This errors if called outside of a [Tokio Runtime], or in a runtime that
+ /// has not [enabled I/O], or if any OS-specific I/O errors occur.
+ ///
+ /// There are a few errors you need to take into account when creating a
+ /// named pipe on the client side:
+ ///
+ /// * [`std::io::ErrorKind::NotFound`] - This indicates that the named pipe
+ /// does not exist. Presumably the server is not up.
+ /// * [`ERROR_PIPE_BUSY`] - This error is raised when the named pipe exists,
+ /// but the server is not currently waiting for a connection. Please see the
+ /// examples for how to check for this error.
+ ///
+ /// [`ERROR_PIPE_BUSY`]: crate::winapi::shared::winerror::ERROR_PIPE_BUSY
+ /// [`winapi`]: crate::winapi
+ /// [enabled I/O]: crate::runtime::Builder::enable_io
+ /// [Tokio Runtime]: crate::runtime::Runtime
+ ///
+ /// A connect loop that waits until a pipe becomes available looks like
+ /// this:
+ ///
+ /// ```no_run
+ /// use std::time::Duration;
+ /// use tokio::net::windows::named_pipe::ClientOptions;
+ /// use tokio::time;
+ /// use winapi::shared::winerror;
+ ///
+ /// const PIPE_NAME: &str = r"\\.\pipe\mynamedpipe";
+ ///
+ /// # #[tokio::main] async fn main() -> std::io::Result<()> {
+ /// let client = loop {
+ /// match ClientOptions::new().open(PIPE_NAME) {
+ /// Ok(client) => break client,
+ /// Err(e) if e.raw_os_error() == Some(winerror::ERROR_PIPE_BUSY as i32) => (),
+ /// Err(e) => return Err(e),
+ /// }
+ ///
+ /// time::sleep(Duration::from_millis(50)).await;
+ /// };
+ ///
+ /// // use the connected client.
+ /// # Ok(()) }
+ /// ```
+ pub fn open(&self, addr: impl AsRef<OsStr>) -> io::Result<NamedPipeClient> {
+ // Safety: We're calling open_with_security_attributes_raw w/ a null
+ // pointer which disables it.
+ unsafe { self.open_with_security_attributes_raw(addr, ptr::null_mut()) }
+ }
+
+ /// Opens the named pipe identified by `addr`.
+ ///
+ /// This is the same as [`open`] except that it supports providing the raw
+ /// pointer to a structure of [`SECURITY_ATTRIBUTES`] which will be passed
+ /// as the `lpSecurityAttributes` argument to [`CreateFile`].
+ ///
+ /// # Safety
+ ///
+ /// The `attrs` argument must either be null or point at a valid instance of
+ /// the [`SECURITY_ATTRIBUTES`] structure. If the argument is null, the
+ /// behavior is identical to calling the [`open`] method.
+ ///
+ /// [`open`]: ClientOptions::open
+ /// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
+ /// [`SECURITY_ATTRIBUTES`]: crate::winapi::um::minwinbase::SECURITY_ATTRIBUTES
+ pub unsafe fn open_with_security_attributes_raw(
+ &self,
+ addr: impl AsRef<OsStr>,
+ attrs: *mut c_void,
+ ) -> io::Result<NamedPipeClient> {
+ let addr = encode_addr(addr);
+
+ // NB: We could use a platform specialized `OpenOptions` here, but since
+ // we have access to winapi it ultimately doesn't hurt to use
+ // `CreateFile` explicitly since it allows the use of our already
+ // well-structured wide `addr` to pass into CreateFileW.
+ let h = fileapi::CreateFileW(
+ addr.as_ptr(),
+ self.desired_access,
+ 0,
+ attrs as *mut _,
+ fileapi::OPEN_EXISTING,
+ self.get_flags(),
+ ptr::null_mut(),
+ );
+
+ if h == handleapi::INVALID_HANDLE_VALUE {
+ return Err(io::Error::last_os_error());
+ }
+
+ NamedPipeClient::from_raw_handle(h)
+ }
+
+ fn get_flags(&self) -> u32 {
+ self.security_qos_flags | winbase::FILE_FLAG_OVERLAPPED
+ }
+}
+
+/// The pipe mode of a named pipe.
+///
+/// Set through [`ServerOptions::pipe_mode`].
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
+#[non_exhaustive]
+pub enum PipeMode {
+ /// Data is written to the pipe as a stream of bytes. The pipe does not
+ /// distinguish bytes written during different write operations.
+ ///
+ /// Corresponds to [`PIPE_TYPE_BYTE`][crate::winapi::um::winbase::PIPE_TYPE_BYTE].
+ Byte,
+ /// Data is written to the pipe as a stream of messages. The pipe treats the
+ /// bytes written during each write operation as a message unit. Any reading
+ /// on a named pipe returns [`ERROR_MORE_DATA`] when a message is not read
+ /// completely.
+ ///
+ /// Corresponds to [`PIPE_TYPE_MESSAGE`][crate::winapi::um::winbase::PIPE_TYPE_MESSAGE].
+ ///
+ /// [`ERROR_MORE_DATA`]: crate::winapi::shared::winerror::ERROR_MORE_DATA
+ Message,
+}
+
+/// Indicates the end of a named pipe.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
+#[non_exhaustive]
+pub enum PipeEnd {
+ /// The named pipe refers to the client end of a named pipe instance.
+ ///
+ /// Corresponds to [`PIPE_CLIENT_END`][crate::winapi::um::winbase::PIPE_CLIENT_END].
+ Client,
+ /// The named pipe refers to the server end of a named pipe instance.
+ ///
+ /// Corresponds to [`PIPE_SERVER_END`][crate::winapi::um::winbase::PIPE_SERVER_END].
+ Server,
+}
+
+/// Information about a named pipe.
+///
+/// Constructed through [`NamedPipeServer::info`] or [`NamedPipeClient::info`].
+#[derive(Debug)]
+#[non_exhaustive]
+pub struct PipeInfo {
+ /// Indicates the mode of a named pipe.
+ pub mode: PipeMode,
+ /// Indicates the end of a named pipe.
+ pub end: PipeEnd,
+ /// The maximum number of instances that can be created for this pipe.
+ pub max_instances: u32,
+ /// The number of bytes to reserve for the output buffer.
+ pub out_buffer_size: u32,
+ /// The number of bytes to reserve for the input buffer.
+ pub in_buffer_size: u32,
+}
+
+/// Encodes an address so that it is a null-terminated wide string.
+fn encode_addr(addr: impl AsRef<OsStr>) -> Box<[u16]> {
+ let len = addr.as_ref().encode_wide().count();
+ let mut vec = Vec::with_capacity(len + 1);
+ vec.extend(addr.as_ref().encode_wide());
+ vec.push(0);
+ vec.into_boxed_slice()
+}
+
+/// Internal function to get the info out of a raw named pipe.
+unsafe fn named_pipe_info(handle: RawHandle) -> io::Result<PipeInfo> {
+ let mut flags = 0;
+ let mut out_buffer_size = 0;
+ let mut in_buffer_size = 0;
+ let mut max_instances = 0;
+
+ let result = namedpipeapi::GetNamedPipeInfo(
+ handle,
+ &mut flags,
+ &mut out_buffer_size,
+ &mut in_buffer_size,
+ &mut max_instances,
+ );
+
+ if result == FALSE {
+ return Err(io::Error::last_os_error());
+ }
+
+ let mut end = PipeEnd::Client;
+ let mut mode = PipeMode::Byte;
+
+ if flags & winbase::PIPE_SERVER_END != 0 {
+ end = PipeEnd::Server;
+ }
+
+ if flags & winbase::PIPE_TYPE_MESSAGE != 0 {
+ mode = PipeMode::Message;
+ }
+
+ Ok(PipeInfo {
+ end,
+ mode,
+ out_buffer_size,
+ in_buffer_size,
+ max_instances,
+ })
+}