diff options
Diffstat (limited to '')
-rw-r--r-- | dom/svg/SVGPathData.cpp | 1357 |
1 files changed, 1357 insertions, 0 deletions
diff --git a/dom/svg/SVGPathData.cpp b/dom/svg/SVGPathData.cpp new file mode 100644 index 0000000000..4dde07fcbe --- /dev/null +++ b/dom/svg/SVGPathData.cpp @@ -0,0 +1,1357 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "SVGPathData.h" + +#include "gfx2DGlue.h" +#include "gfxPlatform.h" +#include "mozilla/gfx/2D.h" +#include "mozilla/gfx/Types.h" +#include "mozilla/gfx/Point.h" +#include "mozilla/RefPtr.h" +#include "nsError.h" +#include "nsString.h" +#include "SVGPathDataParser.h" +#include <stdarg.h> +#include "nsStyleConsts.h" +#include "SVGContentUtils.h" +#include "SVGGeometryElement.h" +#include "SVGPathSegUtils.h" +#include <algorithm> + +using namespace mozilla::dom::SVGPathSeg_Binding; +using namespace mozilla::gfx; + +namespace mozilla { + +static inline bool IsMoveto(uint16_t aSegType) { + return aSegType == PATHSEG_MOVETO_ABS || aSegType == PATHSEG_MOVETO_REL; +} + +static inline bool IsMoveto(StylePathCommand::Tag aSegType) { + return aSegType == StylePathCommand::Tag::MoveTo; +} + +static inline bool IsValidType(uint16_t aSegType) { + return SVGPathSegUtils::IsValidType(aSegType); +} + +static inline bool IsValidType(StylePathCommand::Tag aSegType) { + return aSegType != StylePathCommand::Tag::Unknown; +} + +static inline bool IsClosePath(uint16_t aSegType) { + return aSegType == PATHSEG_CLOSEPATH; +} + +static inline bool IsClosePath(StylePathCommand::Tag aSegType) { + return aSegType == StylePathCommand::Tag::ClosePath; +} + +static inline bool IsCubicType(StylePathCommand::Tag aType) { + return aType == StylePathCommand::Tag::CurveTo || + aType == StylePathCommand::Tag::SmoothCurveTo; +} + +static inline bool IsQuadraticType(StylePathCommand::Tag aType) { + return aType == StylePathCommand::Tag::QuadBezierCurveTo || + aType == StylePathCommand::Tag::SmoothQuadBezierCurveTo; +} + +nsresult SVGPathData::CopyFrom(const SVGPathData& rhs) { + if (!mData.Assign(rhs.mData, fallible)) { + return NS_ERROR_OUT_OF_MEMORY; + } + return NS_OK; +} + +void SVGPathData::GetValueAsString(nsAString& aValue) const { + // we need this function in DidChangePathSegList + aValue.Truncate(); + if (!Length()) { + return; + } + uint32_t i = 0; + for (;;) { + nsAutoString segAsString; + SVGPathSegUtils::GetValueAsString(&mData[i], segAsString); + // We ignore OOM, since it's not useful for us to return an error. + aValue.Append(segAsString); + i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]); + if (i >= mData.Length()) { + MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt"); + return; + } + aValue.Append(' '); + } +} + +nsresult SVGPathData::SetValueFromString(const nsAString& aValue) { + // We don't use a temp variable since the spec says to parse everything up to + // the first error. We still return any error though so that callers know if + // there's a problem. + + SVGPathDataParser pathParser(aValue, this); + return pathParser.Parse() ? NS_OK : NS_ERROR_DOM_SYNTAX_ERR; +} + +nsresult SVGPathData::AppendSeg(uint32_t aType, ...) { + uint32_t oldLength = mData.Length(); + uint32_t newLength = oldLength + 1 + SVGPathSegUtils::ArgCountForType(aType); + if (!mData.SetLength(newLength, fallible)) { + return NS_ERROR_OUT_OF_MEMORY; + } + + mData[oldLength] = SVGPathSegUtils::EncodeType(aType); + va_list args; + va_start(args, aType); + for (uint32_t i = oldLength + 1; i < newLength; ++i) { + // NOTE! 'float' is promoted to 'double' when passed through '...'! + mData[i] = float(va_arg(args, double)); + } + va_end(args); + return NS_OK; +} + +float SVGPathData::GetPathLength() const { + SVGPathTraversalState state; + + uint32_t i = 0; + while (i < mData.Length()) { + SVGPathSegUtils::TraversePathSegment(&mData[i], state); + i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]); + } + + MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt"); + + return state.length; +} + +#ifdef DEBUG +uint32_t SVGPathData::CountItems() const { + uint32_t i = 0, count = 0; + + while (i < mData.Length()) { + i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]); + count++; + } + + MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt"); + + return count; +} +#endif + +bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments( + FallibleTArray<double>* aOutput) const { + SVGPathTraversalState state; + + aOutput->Clear(); + + uint32_t i = 0; + while (i < mData.Length()) { + uint32_t segType = SVGPathSegUtils::DecodeType(mData[i]); + SVGPathSegUtils::TraversePathSegment(&mData[i], state); + + // With degenerately large point coordinates, TraversePathSegment can fail + // and end up producing NaNs. + if (!std::isfinite(state.length)) { + return false; + } + + // We skip all moveto commands except an initial moveto. See the text 'A + // "move to" command does not count as an additional point when dividing up + // the duration...': + // + // http://www.w3.org/TR/SVG11/animate.html#AnimateMotionElement + // + // This is important in the non-default case of calcMode="linear". In + // this case an equal amount of time is spent on each path segment, + // except on moveto segments which are jumped over immediately. + + if (i == 0 || !IsMoveto(segType)) { + if (!aOutput->AppendElement(state.length, fallible)) { + return false; + } + } + i += 1 + SVGPathSegUtils::ArgCountForType(segType); + } + + MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt?"); + + return true; +} + +/* static */ +bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments( + Span<const StylePathCommand> aPath, FallibleTArray<double>* aOutput) { + SVGPathTraversalState state; + + aOutput->Clear(); + + bool firstMoveToIsChecked = false; + for (const auto& cmd : aPath) { + SVGPathSegUtils::TraversePathSegment(cmd, state); + if (!std::isfinite(state.length)) { + return false; + } + + // We skip all moveto commands except for the initial moveto. + if (!cmd.IsMoveTo() || !firstMoveToIsChecked) { + if (!aOutput->AppendElement(state.length, fallible)) { + return false; + } + } + + if (cmd.IsMoveTo() && !firstMoveToIsChecked) { + firstMoveToIsChecked = true; + } + } + + return true; +} + +uint32_t SVGPathData::GetPathSegAtLength(float aDistance) const { + // TODO [SVGWG issue] get specified what happen if 'aDistance' < 0, or + // 'aDistance' > the length of the path, or the seg list is empty. + // Return -1? Throwing would better help authors avoid tricky bugs (DOM + // could do that if we return -1). + + uint32_t i = 0, segIndex = 0; + SVGPathTraversalState state; + + while (i < mData.Length()) { + SVGPathSegUtils::TraversePathSegment(&mData[i], state); + if (state.length >= aDistance) { + return segIndex; + } + i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]); + segIndex++; + } + + MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt"); + + return std::max(1U, segIndex) - + 1; // -1 because while loop takes us 1 too far +} + +/* static */ +uint32_t SVGPathData::GetPathSegAtLength(Span<const StylePathCommand> aPath, + float aDistance) { + uint32_t segIndex = 0; + SVGPathTraversalState state; + + for (const auto& cmd : aPath) { + SVGPathSegUtils::TraversePathSegment(cmd, state); + if (state.length >= aDistance) { + return segIndex; + } + segIndex++; + } + + return std::max(1U, segIndex) - 1; +} + +/** + * The SVG spec says we have to paint stroke caps for zero length subpaths: + * + * http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes + * + * Cairo only does this for |stroke-linecap: round| and not for + * |stroke-linecap: square| (since that's what Adobe Acrobat has always done). + * Most likely the other backends that DrawTarget uses have the same behavior. + * + * To help us conform to the SVG spec we have this helper function to draw an + * approximation of square caps for zero length subpaths. It does this by + * inserting a subpath containing a single user space axis aligned straight + * line that is as small as it can be while minimizing the risk of it being + * thrown away by the DrawTarget's backend for being too small to affect + * rendering. The idea is that we'll then get stroke caps drawn for this axis + * aligned line, creating an axis aligned rectangle that approximates the + * square that would ideally be drawn. + * + * Since we don't have any information about transforms from user space to + * device space, we choose the length of the small line that we insert by + * making it a small percentage of the stroke width of the path. This should + * hopefully allow us to make the line as long as possible (to avoid rounding + * issues in the backend resulting in the backend seeing it as having zero + * length) while still avoiding the small rectangle being noticeably different + * from a square. + * + * Note that this function inserts a subpath into the current gfx path that + * will be present during both fill and stroke operations. + */ +static void ApproximateZeroLengthSubpathSquareCaps(PathBuilder* aPB, + const Point& aPoint, + Float aStrokeWidth) { + // Note that caps are proportional to stroke width, so if stroke width is + // zero it's actually fine for |tinyLength| below to end up being zero. + // However, it would be a waste to inserting a LineTo in that case, so better + // not to. + MOZ_ASSERT(aStrokeWidth > 0.0f, + "Make the caller check for this, or check it here"); + + // The fraction of the stroke width that we choose for the length of the + // line is rather arbitrary, other than being chosen to meet the requirements + // described in the comment above. + + Float tinyLength = aStrokeWidth / SVG_ZERO_LENGTH_PATH_FIX_FACTOR; + + aPB->LineTo(aPoint + Point(tinyLength, 0)); + aPB->MoveTo(aPoint); +} + +#define MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT \ + do { \ + if (!subpathHasLength && hasLineCaps && aStrokeWidth > 0 && \ + subpathContainsNonMoveTo && IsValidType(prevSegType) && \ + (!IsMoveto(prevSegType) || IsClosePath(segType))) { \ + ApproximateZeroLengthSubpathSquareCaps(aBuilder, segStart, \ + aStrokeWidth); \ + } \ + } while (0) + +already_AddRefed<Path> SVGPathData::BuildPath(PathBuilder* aBuilder, + StyleStrokeLinecap aStrokeLineCap, + Float aStrokeWidth) const { + if (mData.IsEmpty() || !IsMoveto(SVGPathSegUtils::DecodeType(mData[0]))) { + return nullptr; // paths without an initial moveto are invalid + } + + bool hasLineCaps = aStrokeLineCap != StyleStrokeLinecap::Butt; + bool subpathHasLength = false; // visual length + bool subpathContainsNonMoveTo = false; + + uint32_t segType = PATHSEG_UNKNOWN; + uint32_t prevSegType = PATHSEG_UNKNOWN; + Point pathStart(0.0, 0.0); // start point of [sub]path + Point segStart(0.0, 0.0); + Point segEnd; + Point cp1, cp2; // previous bezier's control points + Point tcp1, tcp2; // temporaries + + // Regarding cp1 and cp2: If the previous segment was a cubic bezier curve, + // then cp2 is its second control point. If the previous segment was a + // quadratic curve, then cp1 is its (only) control point. + + uint32_t i = 0; + while (i < mData.Length()) { + segType = SVGPathSegUtils::DecodeType(mData[i++]); + uint32_t argCount = SVGPathSegUtils::ArgCountForType(segType); + + switch (segType) { + case PATHSEG_CLOSEPATH: + // set this early to allow drawing of square caps for "M{x},{y} Z": + subpathContainsNonMoveTo = true; + MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT; + segEnd = pathStart; + aBuilder->Close(); + break; + + case PATHSEG_MOVETO_ABS: + MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT; + pathStart = segEnd = Point(mData[i], mData[i + 1]); + aBuilder->MoveTo(segEnd); + subpathHasLength = false; + break; + + case PATHSEG_MOVETO_REL: + MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT; + pathStart = segEnd = segStart + Point(mData[i], mData[i + 1]); + aBuilder->MoveTo(segEnd); + subpathHasLength = false; + break; + + case PATHSEG_LINETO_ABS: + segEnd = Point(mData[i], mData[i + 1]); + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(segEnd); + } + break; + + case PATHSEG_LINETO_REL: + segEnd = segStart + Point(mData[i], mData[i + 1]); + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(segEnd); + } + break; + + case PATHSEG_CURVETO_CUBIC_ABS: + cp1 = Point(mData[i], mData[i + 1]); + cp2 = Point(mData[i + 2], mData[i + 3]); + segEnd = Point(mData[i + 4], mData[i + 5]); + if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) { + subpathHasLength = true; + aBuilder->BezierTo(cp1, cp2, segEnd); + } + break; + + case PATHSEG_CURVETO_CUBIC_REL: + cp1 = segStart + Point(mData[i], mData[i + 1]); + cp2 = segStart + Point(mData[i + 2], mData[i + 3]); + segEnd = segStart + Point(mData[i + 4], mData[i + 5]); + if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) { + subpathHasLength = true; + aBuilder->BezierTo(cp1, cp2, segEnd); + } + break; + + case PATHSEG_CURVETO_QUADRATIC_ABS: + cp1 = Point(mData[i], mData[i + 1]); + // Convert quadratic curve to cubic curve: + tcp1 = segStart + (cp1 - segStart) * 2 / 3; + segEnd = Point(mData[i + 2], mData[i + 3]); // set before setting tcp2! + tcp2 = cp1 + (segEnd - cp1) / 3; + if (segEnd != segStart || segEnd != cp1) { + subpathHasLength = true; + aBuilder->BezierTo(tcp1, tcp2, segEnd); + } + break; + + case PATHSEG_CURVETO_QUADRATIC_REL: + cp1 = segStart + Point(mData[i], mData[i + 1]); + // Convert quadratic curve to cubic curve: + tcp1 = segStart + (cp1 - segStart) * 2 / 3; + segEnd = segStart + + Point(mData[i + 2], mData[i + 3]); // set before setting tcp2! + tcp2 = cp1 + (segEnd - cp1) / 3; + if (segEnd != segStart || segEnd != cp1) { + subpathHasLength = true; + aBuilder->BezierTo(tcp1, tcp2, segEnd); + } + break; + + case PATHSEG_ARC_ABS: + case PATHSEG_ARC_REL: { + Point radii(mData[i], mData[i + 1]); + segEnd = Point(mData[i + 5], mData[i + 6]); + if (segType == PATHSEG_ARC_REL) { + segEnd += segStart; + } + if (segEnd != segStart) { + subpathHasLength = true; + if (radii.x == 0.0f || radii.y == 0.0f) { + aBuilder->LineTo(segEnd); + } else { + SVGArcConverter converter(segStart, segEnd, radii, mData[i + 2], + mData[i + 3] != 0, mData[i + 4] != 0); + while (converter.GetNextSegment(&cp1, &cp2, &segEnd)) { + aBuilder->BezierTo(cp1, cp2, segEnd); + } + } + } + break; + } + + case PATHSEG_LINETO_HORIZONTAL_ABS: + segEnd = Point(mData[i], segStart.y); + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(segEnd); + } + break; + + case PATHSEG_LINETO_HORIZONTAL_REL: + segEnd = segStart + Point(mData[i], 0.0f); + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(segEnd); + } + break; + + case PATHSEG_LINETO_VERTICAL_ABS: + segEnd = Point(segStart.x, mData[i]); + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(segEnd); + } + break; + + case PATHSEG_LINETO_VERTICAL_REL: + segEnd = segStart + Point(0.0f, mData[i]); + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(segEnd); + } + break; + + case PATHSEG_CURVETO_CUBIC_SMOOTH_ABS: + cp1 = SVGPathSegUtils::IsCubicType(prevSegType) ? segStart * 2 - cp2 + : segStart; + cp2 = Point(mData[i], mData[i + 1]); + segEnd = Point(mData[i + 2], mData[i + 3]); + if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) { + subpathHasLength = true; + aBuilder->BezierTo(cp1, cp2, segEnd); + } + break; + + case PATHSEG_CURVETO_CUBIC_SMOOTH_REL: + cp1 = SVGPathSegUtils::IsCubicType(prevSegType) ? segStart * 2 - cp2 + : segStart; + cp2 = segStart + Point(mData[i], mData[i + 1]); + segEnd = segStart + Point(mData[i + 2], mData[i + 3]); + if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) { + subpathHasLength = true; + aBuilder->BezierTo(cp1, cp2, segEnd); + } + break; + + case PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS: + cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType) ? segStart * 2 - cp1 + : segStart; + // Convert quadratic curve to cubic curve: + tcp1 = segStart + (cp1 - segStart) * 2 / 3; + segEnd = Point(mData[i], mData[i + 1]); // set before setting tcp2! + tcp2 = cp1 + (segEnd - cp1) / 3; + if (segEnd != segStart || segEnd != cp1) { + subpathHasLength = true; + aBuilder->BezierTo(tcp1, tcp2, segEnd); + } + break; + + case PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL: + cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType) ? segStart * 2 - cp1 + : segStart; + // Convert quadratic curve to cubic curve: + tcp1 = segStart + (cp1 - segStart) * 2 / 3; + segEnd = segStart + + Point(mData[i], mData[i + 1]); // changed before setting tcp2! + tcp2 = cp1 + (segEnd - cp1) / 3; + if (segEnd != segStart || segEnd != cp1) { + subpathHasLength = true; + aBuilder->BezierTo(tcp1, tcp2, segEnd); + } + break; + + default: + MOZ_ASSERT_UNREACHABLE("Bad path segment type"); + return nullptr; // according to spec we'd use everything up to the bad + // seg anyway + } + + subpathContainsNonMoveTo = !IsMoveto(segType); + i += argCount; + prevSegType = segType; + segStart = segEnd; + } + + MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt"); + MOZ_ASSERT(prevSegType == segType, + "prevSegType should be left at the final segType"); + + MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT; + + return aBuilder->Finish(); +} + +already_AddRefed<Path> SVGPathData::BuildPathForMeasuring() const { + // Since the path that we return will not be used for painting it doesn't + // matter what we pass to CreatePathBuilder as aFillRule. Hawever, we do want + // to pass something other than NS_STYLE_STROKE_LINECAP_SQUARE as + // aStrokeLineCap to avoid the insertion of extra little lines (by + // ApproximateZeroLengthSubpathSquareCaps), in which case the value that we + // pass as aStrokeWidth doesn't matter (since it's only used to determine the + // length of those extra little lines). + + RefPtr<DrawTarget> drawTarget = + gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget(); + RefPtr<PathBuilder> builder = + drawTarget->CreatePathBuilder(FillRule::FILL_WINDING); + return BuildPath(builder, StyleStrokeLinecap::Butt, 0); +} + +/* static */ +already_AddRefed<Path> SVGPathData::BuildPathForMeasuring( + Span<const StylePathCommand> aPath) { + RefPtr<DrawTarget> drawTarget = + gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget(); + RefPtr<PathBuilder> builder = + drawTarget->CreatePathBuilder(FillRule::FILL_WINDING); + return BuildPath(aPath, builder, StyleStrokeLinecap::Butt, 0); +} + +// We could simplify this function because this is only used by CSS motion path +// and clip-path, which don't render the SVG Path. i.e. The returned path is +// used as a reference. +/* static */ +already_AddRefed<Path> SVGPathData::BuildPath( + Span<const StylePathCommand> aPath, PathBuilder* aBuilder, + StyleStrokeLinecap aStrokeLineCap, Float aStrokeWidth, float aZoomFactor) { + if (aPath.IsEmpty() || !aPath[0].IsMoveTo()) { + return nullptr; // paths without an initial moveto are invalid + } + + bool hasLineCaps = aStrokeLineCap != StyleStrokeLinecap::Butt; + bool subpathHasLength = false; // visual length + bool subpathContainsNonMoveTo = false; + + StylePathCommand::Tag segType = StylePathCommand::Tag::Unknown; + StylePathCommand::Tag prevSegType = StylePathCommand::Tag::Unknown; + Point pathStart(0.0, 0.0); // start point of [sub]path + Point segStart(0.0, 0.0); + Point segEnd; + Point cp1, cp2; // previous bezier's control points + Point tcp1, tcp2; // temporaries + + auto scale = [aZoomFactor](const Point& p) { + return Point(p.x * aZoomFactor, p.y * aZoomFactor); + }; + + // Regarding cp1 and cp2: If the previous segment was a cubic bezier curve, + // then cp2 is its second control point. If the previous segment was a + // quadratic curve, then cp1 is its (only) control point. + + for (const StylePathCommand& cmd : aPath) { + segType = cmd.tag; + switch (segType) { + case StylePathCommand::Tag::ClosePath: + // set this early to allow drawing of square caps for "M{x},{y} Z": + subpathContainsNonMoveTo = true; + MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT; + segEnd = pathStart; + aBuilder->Close(); + break; + case StylePathCommand::Tag::MoveTo: { + MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT; + const Point& p = cmd.move_to.point.ConvertsToGfxPoint(); + pathStart = segEnd = + cmd.move_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p; + aBuilder->MoveTo(scale(segEnd)); + subpathHasLength = false; + break; + } + case StylePathCommand::Tag::LineTo: { + const Point& p = cmd.line_to.point.ConvertsToGfxPoint(); + segEnd = + cmd.line_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p; + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(scale(segEnd)); + } + break; + } + case StylePathCommand::Tag::CurveTo: + cp1 = cmd.curve_to.control1.ConvertsToGfxPoint(); + cp2 = cmd.curve_to.control2.ConvertsToGfxPoint(); + segEnd = cmd.curve_to.point.ConvertsToGfxPoint(); + + if (cmd.curve_to.absolute == StyleIsAbsolute::No) { + cp1 += segStart; + cp2 += segStart; + segEnd += segStart; + } + + if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) { + subpathHasLength = true; + aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd)); + } + break; + + case StylePathCommand::Tag::QuadBezierCurveTo: + cp1 = cmd.quad_bezier_curve_to.control1.ConvertsToGfxPoint(); + segEnd = cmd.quad_bezier_curve_to.point.ConvertsToGfxPoint(); + + if (cmd.quad_bezier_curve_to.absolute == StyleIsAbsolute::No) { + cp1 += segStart; + segEnd += segStart; // set before setting tcp2! + } + + // Convert quadratic curve to cubic curve: + tcp1 = segStart + (cp1 - segStart) * 2 / 3; + tcp2 = cp1 + (segEnd - cp1) / 3; + + if (segEnd != segStart || segEnd != cp1) { + subpathHasLength = true; + aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd)); + } + break; + + case StylePathCommand::Tag::EllipticalArc: { + const auto& arc = cmd.elliptical_arc; + Point radii(arc.rx, arc.ry); + segEnd = arc.point.ConvertsToGfxPoint(); + if (arc.absolute == StyleIsAbsolute::No) { + segEnd += segStart; + } + if (segEnd != segStart) { + subpathHasLength = true; + if (radii.x == 0.0f || radii.y == 0.0f) { + aBuilder->LineTo(scale(segEnd)); + } else { + SVGArcConverter converter(segStart, segEnd, radii, arc.angle, + arc.large_arc_flag._0, arc.sweep_flag._0); + while (converter.GetNextSegment(&cp1, &cp2, &segEnd)) { + aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd)); + } + } + } + break; + } + case StylePathCommand::Tag::HorizontalLineTo: + if (cmd.horizontal_line_to.absolute == StyleIsAbsolute::Yes) { + segEnd = Point(cmd.horizontal_line_to.x, segStart.y); + } else { + segEnd = segStart + Point(cmd.horizontal_line_to.x, 0.0f); + } + + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(scale(segEnd)); + } + break; + + case StylePathCommand::Tag::VerticalLineTo: + if (cmd.vertical_line_to.absolute == StyleIsAbsolute::Yes) { + segEnd = Point(segStart.x, cmd.vertical_line_to.y); + } else { + segEnd = segStart + Point(0.0f, cmd.vertical_line_to.y); + } + + if (segEnd != segStart) { + subpathHasLength = true; + aBuilder->LineTo(scale(segEnd)); + } + break; + + case StylePathCommand::Tag::SmoothCurveTo: + cp1 = IsCubicType(prevSegType) ? segStart * 2 - cp2 : segStart; + cp2 = cmd.smooth_curve_to.control2.ConvertsToGfxPoint(); + segEnd = cmd.smooth_curve_to.point.ConvertsToGfxPoint(); + + if (cmd.smooth_curve_to.absolute == StyleIsAbsolute::No) { + cp2 += segStart; + segEnd += segStart; + } + + if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) { + subpathHasLength = true; + aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd)); + } + break; + + case StylePathCommand::Tag::SmoothQuadBezierCurveTo: { + cp1 = IsQuadraticType(prevSegType) ? segStart * 2 - cp1 : segStart; + // Convert quadratic curve to cubic curve: + tcp1 = segStart + (cp1 - segStart) * 2 / 3; + + const Point& p = + cmd.smooth_quad_bezier_curve_to.point.ConvertsToGfxPoint(); + // set before setting tcp2! + segEnd = + cmd.smooth_quad_bezier_curve_to.absolute == StyleIsAbsolute::Yes + ? p + : segStart + p; + tcp2 = cp1 + (segEnd - cp1) / 3; + + if (segEnd != segStart || segEnd != cp1) { + subpathHasLength = true; + aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd)); + } + break; + } + case StylePathCommand::Tag::Unknown: + MOZ_ASSERT_UNREACHABLE("Unacceptable path segment type"); + return nullptr; + } + + subpathContainsNonMoveTo = !IsMoveto(segType); + prevSegType = segType; + segStart = segEnd; + } + + MOZ_ASSERT(prevSegType == segType, + "prevSegType should be left at the final segType"); + + MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT; + + return aBuilder->Finish(); +} + +static double AngleOfVector(const Point& aVector) { + // C99 says about atan2 "A domain error may occur if both arguments are + // zero" and "On a domain error, the function returns an implementation- + // defined value". In the case of atan2 the implementation-defined value + // seems to commonly be zero, but it could just as easily be a NaN value. + // We specifically want zero in this case, hence the check: + + return (aVector != Point(0.0, 0.0)) ? atan2(aVector.y, aVector.x) : 0.0; +} + +static float AngleOfVector(const Point& cp1, const Point& cp2) { + return static_cast<float>(AngleOfVector(cp1 - cp2)); +} + +// This implements F.6.5 and F.6.6 of +// http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes +static std::tuple<float, float, float, float> +/* rx, ry, segStartAngle, segEndAngle */ +ComputeSegAnglesAndCorrectRadii(const Point& aSegStart, const Point& aSegEnd, + const float aAngle, const bool aLargeArcFlag, + const bool aSweepFlag, const float aRx, + const float aRy) { + float rx = fabs(aRx); // F.6.6.1 + float ry = fabs(aRy); + + // F.6.5.1: + const float angle = static_cast<float>(aAngle * M_PI / 180.0); + double x1p = cos(angle) * (aSegStart.x - aSegEnd.x) / 2.0 + + sin(angle) * (aSegStart.y - aSegEnd.y) / 2.0; + double y1p = -sin(angle) * (aSegStart.x - aSegEnd.x) / 2.0 + + cos(angle) * (aSegStart.y - aSegEnd.y) / 2.0; + + // This is the root in F.6.5.2 and the numerator under that root: + double root; + double numerator = + rx * rx * ry * ry - rx * rx * y1p * y1p - ry * ry * x1p * x1p; + + if (numerator >= 0.0) { + root = sqrt(numerator / (rx * rx * y1p * y1p + ry * ry * x1p * x1p)); + if (aLargeArcFlag == aSweepFlag) root = -root; + } else { + // F.6.6 step 3 - |numerator < 0.0|. This is equivalent to the result + // of F.6.6.2 (lamedh) being greater than one. What we have here is + // ellipse radii that are too small for the ellipse to reach between + // segStart and segEnd. We scale the radii up uniformly so that the + // ellipse is just big enough to fit (i.e. to the point where there is + // exactly one solution). + + double lamedh = + 1.0 - numerator / (rx * rx * ry * ry); // equiv to eqn F.6.6.2 + double s = sqrt(lamedh); + rx = static_cast<float>((double)rx * s); // F.6.6.3 + ry = static_cast<float>((double)ry * s); + root = 0.0; + } + + double cxp = root * rx * y1p / ry; // F.6.5.2 + double cyp = -root * ry * x1p / rx; + + double theta = + AngleOfVector(Point(static_cast<float>((x1p - cxp) / rx), + static_cast<float>((y1p - cyp) / ry))); // F.6.5.5 + double delta = + AngleOfVector(Point(static_cast<float>((-x1p - cxp) / rx), + static_cast<float>((-y1p - cyp) / ry))) - // F.6.5.6 + theta; + if (!aSweepFlag && delta > 0) { + delta -= 2.0 * M_PI; + } else if (aSweepFlag && delta < 0) { + delta += 2.0 * M_PI; + } + + double tx1, ty1, tx2, ty2; + tx1 = -cos(angle) * rx * sin(theta) - sin(angle) * ry * cos(theta); + ty1 = -sin(angle) * rx * sin(theta) + cos(angle) * ry * cos(theta); + tx2 = -cos(angle) * rx * sin(theta + delta) - + sin(angle) * ry * cos(theta + delta); + ty2 = -sin(angle) * rx * sin(theta + delta) + + cos(angle) * ry * cos(theta + delta); + + if (delta < 0.0f) { + tx1 = -tx1; + ty1 = -ty1; + tx2 = -tx2; + ty2 = -ty2; + } + + return {rx, ry, static_cast<float>(atan2(ty1, tx1)), + static_cast<float>(atan2(ty2, tx2))}; +} + +void SVGPathData::GetMarkerPositioningData(nsTArray<SVGMark>* aMarks) const { + // This code should assume that ANY type of segment can appear at ANY index. + // It should also assume that segments such as M and Z can appear in weird + // places, and repeat multiple times consecutively. + + // info on current [sub]path (reset every M command): + Point pathStart(0.0, 0.0); + float pathStartAngle = 0.0f; + uint32_t pathStartIndex = 0; + + // info on previous segment: + uint16_t prevSegType = PATHSEG_UNKNOWN; + Point prevSegEnd(0.0, 0.0); + float prevSegEndAngle = 0.0f; + Point prevCP; // if prev seg was a bezier, this was its last control point + + uint32_t i = 0; + while (i < mData.Length()) { + // info on current segment: + uint16_t segType = + SVGPathSegUtils::DecodeType(mData[i++]); // advances i to args + Point& segStart = prevSegEnd; + Point segEnd; + float segStartAngle, segEndAngle; + + switch (segType) // to find segStartAngle, segEnd and segEndAngle + { + case PATHSEG_CLOSEPATH: + segEnd = pathStart; + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + + case PATHSEG_MOVETO_ABS: + case PATHSEG_MOVETO_REL: + if (segType == PATHSEG_MOVETO_ABS) { + segEnd = Point(mData[i], mData[i + 1]); + } else { + segEnd = segStart + Point(mData[i], mData[i + 1]); + } + pathStart = segEnd; + pathStartIndex = aMarks->Length(); + // If authors are going to specify multiple consecutive moveto commands + // with markers, me might as well make the angle do something useful: + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + i += 2; + break; + + case PATHSEG_LINETO_ABS: + case PATHSEG_LINETO_REL: + if (segType == PATHSEG_LINETO_ABS) { + segEnd = Point(mData[i], mData[i + 1]); + } else { + segEnd = segStart + Point(mData[i], mData[i + 1]); + } + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + i += 2; + break; + + case PATHSEG_CURVETO_CUBIC_ABS: + case PATHSEG_CURVETO_CUBIC_REL: { + Point cp1, cp2; // control points + if (segType == PATHSEG_CURVETO_CUBIC_ABS) { + cp1 = Point(mData[i], mData[i + 1]); + cp2 = Point(mData[i + 2], mData[i + 3]); + segEnd = Point(mData[i + 4], mData[i + 5]); + } else { + cp1 = segStart + Point(mData[i], mData[i + 1]); + cp2 = segStart + Point(mData[i + 2], mData[i + 3]); + segEnd = segStart + Point(mData[i + 4], mData[i + 5]); + } + prevCP = cp2; + segStartAngle = AngleOfVector( + cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart); + segEndAngle = AngleOfVector( + segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2); + i += 6; + break; + } + + case PATHSEG_CURVETO_QUADRATIC_ABS: + case PATHSEG_CURVETO_QUADRATIC_REL: { + Point cp1; // control point + if (segType == PATHSEG_CURVETO_QUADRATIC_ABS) { + cp1 = Point(mData[i], mData[i + 1]); + segEnd = Point(mData[i + 2], mData[i + 3]); + } else { + cp1 = segStart + Point(mData[i], mData[i + 1]); + segEnd = segStart + Point(mData[i + 2], mData[i + 3]); + } + prevCP = cp1; + segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart); + segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1); + i += 4; + break; + } + + case PATHSEG_ARC_ABS: + case PATHSEG_ARC_REL: { + float rx = mData[i]; + float ry = mData[i + 1]; + float angle = mData[i + 2]; + bool largeArcFlag = mData[i + 3] != 0.0f; + bool sweepFlag = mData[i + 4] != 0.0f; + if (segType == PATHSEG_ARC_ABS) { + segEnd = Point(mData[i + 5], mData[i + 6]); + } else { + segEnd = segStart + Point(mData[i + 5], mData[i + 6]); + } + + // See section F.6 of SVG 1.1 for details on what we're doing here: + // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes + + if (segStart == segEnd) { + // F.6.2 says "If the endpoints (x1, y1) and (x2, y2) are identical, + // then this is equivalent to omitting the elliptical arc segment + // entirely." We take that very literally here, not adding a mark, and + // not even setting any of the 'prev' variables so that it's as if + // this arc had never existed; note the difference this will make e.g. + // if the arc is proceeded by a bezier curve and followed by a + // "smooth" bezier curve of the same degree! + i += 7; + continue; + } + + // Below we have funny interleaving of F.6.6 (Correction of out-of-range + // radii) and F.6.5 (Conversion from endpoint to center + // parameterization) which is designed to avoid some unnecessary + // calculations. + + if (rx == 0.0 || ry == 0.0) { + // F.6.6 step 1 - straight line or coincidental points + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + i += 7; + break; + } + + std::tie(rx, ry, segStartAngle, segEndAngle) = + ComputeSegAnglesAndCorrectRadii(segStart, segEnd, angle, + largeArcFlag, sweepFlag, rx, ry); + i += 7; + break; + } + + case PATHSEG_LINETO_HORIZONTAL_ABS: + case PATHSEG_LINETO_HORIZONTAL_REL: + if (segType == PATHSEG_LINETO_HORIZONTAL_ABS) { + segEnd = Point(mData[i++], segStart.y); + } else { + segEnd = segStart + Point(mData[i++], 0.0f); + } + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + + case PATHSEG_LINETO_VERTICAL_ABS: + case PATHSEG_LINETO_VERTICAL_REL: + if (segType == PATHSEG_LINETO_VERTICAL_ABS) { + segEnd = Point(segStart.x, mData[i++]); + } else { + segEnd = segStart + Point(0.0f, mData[i++]); + } + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + + case PATHSEG_CURVETO_CUBIC_SMOOTH_ABS: + case PATHSEG_CURVETO_CUBIC_SMOOTH_REL: { + Point cp1 = SVGPathSegUtils::IsCubicType(prevSegType) + ? segStart * 2 - prevCP + : segStart; + Point cp2; + if (segType == PATHSEG_CURVETO_CUBIC_SMOOTH_ABS) { + cp2 = Point(mData[i], mData[i + 1]); + segEnd = Point(mData[i + 2], mData[i + 3]); + } else { + cp2 = segStart + Point(mData[i], mData[i + 1]); + segEnd = segStart + Point(mData[i + 2], mData[i + 3]); + } + prevCP = cp2; + segStartAngle = AngleOfVector( + cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart); + segEndAngle = AngleOfVector( + segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2); + i += 4; + break; + } + + case PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS: + case PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL: { + Point cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType) + ? segStart * 2 - prevCP + : segStart; + if (segType == PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS) { + segEnd = Point(mData[i], mData[i + 1]); + } else { + segEnd = segStart + Point(mData[i], mData[i + 1]); + } + prevCP = cp1; + segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart); + segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1); + i += 2; + break; + } + + default: + // Leave any existing marks in aMarks so we have a visual indication of + // when things went wrong. + MOZ_ASSERT(false, "Unknown segment type - path corruption?"); + return; + } + + // Set the angle of the mark at the start of this segment: + if (aMarks->Length()) { + SVGMark& mark = aMarks->LastElement(); + if (!IsMoveto(segType) && IsMoveto(prevSegType)) { + // start of new subpath + pathStartAngle = mark.angle = segStartAngle; + } else if (IsMoveto(segType) && !IsMoveto(prevSegType)) { + // end of a subpath + if (prevSegType != PATHSEG_CLOSEPATH) mark.angle = prevSegEndAngle; + } else { + if (!(segType == PATHSEG_CLOSEPATH && prevSegType == PATHSEG_CLOSEPATH)) + mark.angle = + SVGContentUtils::AngleBisect(prevSegEndAngle, segStartAngle); + } + } + + // Add the mark at the end of this segment, and set its position: + // XXX(Bug 1631371) Check if this should use a fallible operation as it + // pretended earlier. + aMarks->AppendElement(SVGMark(static_cast<float>(segEnd.x), + static_cast<float>(segEnd.y), 0.0f, + SVGMark::eMid)); + + if (segType == PATHSEG_CLOSEPATH && prevSegType != PATHSEG_CLOSEPATH) { + aMarks->LastElement().angle = aMarks->ElementAt(pathStartIndex).angle = + SVGContentUtils::AngleBisect(segEndAngle, pathStartAngle); + } + + prevSegType = segType; + prevSegEnd = segEnd; + prevSegEndAngle = segEndAngle; + } + + MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt"); + + if (aMarks->Length()) { + if (prevSegType != PATHSEG_CLOSEPATH) { + aMarks->LastElement().angle = prevSegEndAngle; + } + aMarks->LastElement().type = SVGMark::eEnd; + aMarks->ElementAt(0).type = SVGMark::eStart; + } +} + +// Basically, this is identical to the above function, but replace |mData| with +// |aPath|. We probably can factor out some identical calculation, but I believe +// the above one will be removed because we will use any kind of array of +// StylePathCommand for SVG d attribute in the future. +/* static */ +void SVGPathData::GetMarkerPositioningData(Span<const StylePathCommand> aPath, + nsTArray<SVGMark>* aMarks) { + if (aPath.IsEmpty()) { + return; + } + + // info on current [sub]path (reset every M command): + Point pathStart(0.0, 0.0); + float pathStartAngle = 0.0f; + uint32_t pathStartIndex = 0; + + // info on previous segment: + StylePathCommand::Tag prevSegType = StylePathCommand::Tag::Unknown; + Point prevSegEnd(0.0, 0.0); + float prevSegEndAngle = 0.0f; + Point prevCP; // if prev seg was a bezier, this was its last control point + + StylePathCommand::Tag segType = StylePathCommand::Tag::Unknown; + for (const StylePathCommand& cmd : aPath) { + segType = cmd.tag; + Point& segStart = prevSegEnd; + Point segEnd; + float segStartAngle, segEndAngle; + + switch (segType) // to find segStartAngle, segEnd and segEndAngle + { + case StylePathCommand::Tag::ClosePath: + segEnd = pathStart; + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + + case StylePathCommand::Tag::MoveTo: { + const Point& p = cmd.move_to.point.ConvertsToGfxPoint(); + pathStart = segEnd = + cmd.move_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p; + pathStartIndex = aMarks->Length(); + // If authors are going to specify multiple consecutive moveto commands + // with markers, me might as well make the angle do something useful: + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + } + case StylePathCommand::Tag::LineTo: { + const Point& p = cmd.line_to.point.ConvertsToGfxPoint(); + segEnd = + cmd.line_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p; + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + } + case StylePathCommand::Tag::CurveTo: { + Point cp1 = cmd.curve_to.control1.ConvertsToGfxPoint(); + Point cp2 = cmd.curve_to.control2.ConvertsToGfxPoint(); + segEnd = cmd.curve_to.point.ConvertsToGfxPoint(); + + if (cmd.curve_to.absolute == StyleIsAbsolute::No) { + cp1 += segStart; + cp2 += segStart; + segEnd += segStart; + } + + prevCP = cp2; + segStartAngle = AngleOfVector( + cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart); + segEndAngle = AngleOfVector( + segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2); + break; + } + case StylePathCommand::Tag::QuadBezierCurveTo: { + Point cp1 = cmd.quad_bezier_curve_to.control1.ConvertsToGfxPoint(); + segEnd = cmd.quad_bezier_curve_to.point.ConvertsToGfxPoint(); + + if (cmd.quad_bezier_curve_to.absolute == StyleIsAbsolute::No) { + cp1 += segStart; + segEnd += segStart; // set before setting tcp2! + } + + prevCP = cp1; + segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart); + segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1); + break; + } + case StylePathCommand::Tag::EllipticalArc: { + const auto& arc = cmd.elliptical_arc; + float rx = arc.rx; + float ry = arc.ry; + float angle = arc.angle; + bool largeArcFlag = arc.large_arc_flag._0; + bool sweepFlag = arc.sweep_flag._0; + Point radii(arc.rx, arc.ry); + segEnd = arc.point.ConvertsToGfxPoint(); + if (arc.absolute == StyleIsAbsolute::No) { + segEnd += segStart; + } + + // See section F.6 of SVG 1.1 for details on what we're doing here: + // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes + + if (segStart == segEnd) { + // F.6.2 says "If the endpoints (x1, y1) and (x2, y2) are identical, + // then this is equivalent to omitting the elliptical arc segment + // entirely." We take that very literally here, not adding a mark, and + // not even setting any of the 'prev' variables so that it's as if + // this arc had never existed; note the difference this will make e.g. + // if the arc is proceeded by a bezier curve and followed by a + // "smooth" bezier curve of the same degree! + continue; + } + + // Below we have funny interleaving of F.6.6 (Correction of out-of-range + // radii) and F.6.5 (Conversion from endpoint to center + // parameterization) which is designed to avoid some unnecessary + // calculations. + + if (rx == 0.0 || ry == 0.0) { + // F.6.6 step 1 - straight line or coincidental points + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + } + + std::tie(rx, ry, segStartAngle, segEndAngle) = + ComputeSegAnglesAndCorrectRadii(segStart, segEnd, angle, + largeArcFlag, sweepFlag, rx, ry); + break; + } + case StylePathCommand::Tag::HorizontalLineTo: { + if (cmd.horizontal_line_to.absolute == StyleIsAbsolute::Yes) { + segEnd = Point(cmd.horizontal_line_to.x, segStart.y); + } else { + segEnd = segStart + Point(cmd.horizontal_line_to.x, 0.0f); + } + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + } + case StylePathCommand::Tag::VerticalLineTo: { + if (cmd.vertical_line_to.absolute == StyleIsAbsolute::Yes) { + segEnd = Point(segStart.x, cmd.vertical_line_to.y); + } else { + segEnd = segStart + Point(0.0f, cmd.vertical_line_to.y); + } + segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); + break; + } + case StylePathCommand::Tag::SmoothCurveTo: { + Point cp1 = IsCubicType(prevSegType) ? segStart * 2 - prevCP : segStart; + Point cp2 = cmd.smooth_curve_to.control2.ConvertsToGfxPoint(); + segEnd = cmd.smooth_curve_to.point.ConvertsToGfxPoint(); + + if (cmd.smooth_curve_to.absolute == StyleIsAbsolute::No) { + cp2 += segStart; + segEnd += segStart; + } + + prevCP = cp2; + segStartAngle = AngleOfVector( + cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart); + segEndAngle = AngleOfVector( + segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2); + break; + } + case StylePathCommand::Tag::SmoothQuadBezierCurveTo: { + Point cp1 = + IsQuadraticType(prevSegType) ? segStart * 2 - prevCP : segStart; + segEnd = + cmd.smooth_quad_bezier_curve_to.absolute == StyleIsAbsolute::Yes + ? cmd.smooth_quad_bezier_curve_to.point.ConvertsToGfxPoint() + : segStart + cmd.smooth_quad_bezier_curve_to.point + .ConvertsToGfxPoint(); + + prevCP = cp1; + segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart); + segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1); + break; + } + case StylePathCommand::Tag::Unknown: + // Leave any existing marks in aMarks so we have a visual indication of + // when things went wrong. + MOZ_ASSERT_UNREACHABLE("Unknown segment type - path corruption?"); + return; + } + + // Set the angle of the mark at the start of this segment: + if (aMarks->Length()) { + SVGMark& mark = aMarks->LastElement(); + if (!IsMoveto(segType) && IsMoveto(prevSegType)) { + // start of new subpath + pathStartAngle = mark.angle = segStartAngle; + } else if (IsMoveto(segType) && !IsMoveto(prevSegType)) { + // end of a subpath + if (prevSegType != StylePathCommand::Tag::ClosePath) { + mark.angle = prevSegEndAngle; + } + } else if (!(segType == StylePathCommand::Tag::ClosePath && + prevSegType == StylePathCommand::Tag::ClosePath)) { + mark.angle = + SVGContentUtils::AngleBisect(prevSegEndAngle, segStartAngle); + } + } + + // Add the mark at the end of this segment, and set its position: + // XXX(Bug 1631371) Check if this should use a fallible operation as it + // pretended earlier. + aMarks->AppendElement(SVGMark(static_cast<float>(segEnd.x), + static_cast<float>(segEnd.y), 0.0f, + SVGMark::eMid)); + + if (segType == StylePathCommand::Tag::ClosePath && + prevSegType != StylePathCommand::Tag::ClosePath) { + aMarks->LastElement().angle = aMarks->ElementAt(pathStartIndex).angle = + SVGContentUtils::AngleBisect(segEndAngle, pathStartAngle); + } + + prevSegType = segType; + prevSegEnd = segEnd; + prevSegEndAngle = segEndAngle; + } + + if (aMarks->Length()) { + if (prevSegType != StylePathCommand::Tag::ClosePath) { + aMarks->LastElement().angle = prevSegEndAngle; + } + aMarks->LastElement().type = SVGMark::eEnd; + aMarks->ElementAt(0).type = SVGMark::eStart; + } +} + +size_t SVGPathData::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { + return mData.ShallowSizeOfExcludingThis(aMallocSizeOf); +} + +size_t SVGPathData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { + return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); +} + +} // namespace mozilla |