diff options
Diffstat (limited to '')
-rw-r--r-- | intl/icu/source/tools/makeconv/gencnvex.c | 1084 |
1 files changed, 1084 insertions, 0 deletions
diff --git a/intl/icu/source/tools/makeconv/gencnvex.c b/intl/icu/source/tools/makeconv/gencnvex.c new file mode 100644 index 0000000000..837a2d2c50 --- /dev/null +++ b/intl/icu/source/tools/makeconv/gencnvex.c @@ -0,0 +1,1084 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +******************************************************************************* +* +* Copyright (C) 2003-2014, International Business Machines +* Corporation and others. All Rights Reserved. +* +******************************************************************************* +* file name: gencnvex.c +* encoding: UTF-8 +* tab size: 8 (not used) +* indentation:4 +* +* created on: 2003oct12 +* created by: Markus W. Scherer +*/ + +#include <stdbool.h> +#include <stdio.h> +#include "unicode/utypes.h" +#include "unicode/ustring.h" +#include "cstring.h" +#include "cmemory.h" +#include "ucnv_cnv.h" +#include "ucnvmbcs.h" +#include "toolutil.h" +#include "unewdata.h" +#include "ucm.h" +#include "makeconv.h" +#include "genmbcs.h" + +static void +CnvExtClose(NewConverter *cnvData); + +static UBool +CnvExtIsValid(NewConverter *cnvData, + const uint8_t *bytes, int32_t length); + +static UBool +CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); + +static uint32_t +CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, + UNewDataMemory *pData, int32_t tableType); + +typedef struct CnvExtData { + NewConverter newConverter; + + UCMFile *ucm; + + /* toUnicode (state table in ucm->states) */ + UToolMemory *toUTable, *toUUChars; + + /* fromUnicode */ + UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes; + + uint16_t stage1[MBCS_STAGE_1_SIZE]; + uint16_t stage2[MBCS_STAGE_2_SIZE]; + uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */ + uint32_t stage3b[0x10000]; + + int32_t stage1Top, stage2Top, stage3Top, stage3bTop; + + /* for stage3 compaction of <subchar1> |2 mappings */ + uint16_t stage3Sub1Block; + + /* statistics */ + int32_t + maxInBytes, maxOutBytes, maxBytesPerUChar, + maxInUChars, maxOutUChars, maxUCharsPerByte; +} CnvExtData; + +NewConverter * +CnvExtOpen(UCMFile *ucm) { + CnvExtData *extData; + + extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData)); + if(extData==NULL) { + printf("out of memory\n"); + exit(U_MEMORY_ALLOCATION_ERROR); + } + uprv_memset(extData, 0, sizeof(CnvExtData)); + + extData->ucm=ucm; /* aliased, not owned */ + + extData->newConverter.close=CnvExtClose; + extData->newConverter.isValid=CnvExtIsValid; + extData->newConverter.addTable=CnvExtAddTable; + extData->newConverter.write=CnvExtWrite; + return &extData->newConverter; +} + +static void +CnvExtClose(NewConverter *cnvData) { + CnvExtData *extData=(CnvExtData *)cnvData; + if(extData!=NULL) { + utm_close(extData->toUTable); + utm_close(extData->toUUChars); + utm_close(extData->fromUTableUChars); + utm_close(extData->fromUTableValues); + utm_close(extData->fromUBytes); + uprv_free(extData); + } +} + +/* we do not expect this to be called */ +static UBool +CnvExtIsValid(NewConverter *cnvData, + const uint8_t *bytes, int32_t length) { + // suppress compiler warnings about unused variables + (void)cnvData; + (void)bytes; + (void)length; + return false; +} + +static uint32_t +CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, + UNewDataMemory *pData, int32_t tableType) { + (void) staticData; // suppress compiler warnings about unused variable + CnvExtData *extData=(CnvExtData *)cnvData; + int32_t length, top, headerSize; + + int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; + + if(tableType&TABLE_BASE) { + headerSize=0; + } else { + _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + + /* write the header and base table name for an extension-only table */ + length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; + while(length&3) { + /* add padding */ + extData->ucm->baseName[length++]=0; + } + + headerSize=MBCS_HEADER_V4_LENGTH*4+length; + + /* fill the header */ + header.version[0]=4; + header.version[1]=2; + header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); + + /* write the header and the base table name */ + udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4); + udata_writeBlock(pData, extData->ucm->baseName, length); + } + + /* fill indexes[] - offsets/indexes are in units of the target array */ + top=0; + + indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; + top+=length*4; + + indexes[UCNV_EXT_TO_U_INDEX]=top; + indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); + top+=length*4; + + indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; + indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); + top+=length*2; + + indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; + length=utm_countItems(extData->fromUTableUChars); + top+=length*2; + + if(top&3) { + /* add padding */ + *((UChar *)utm_alloc(extData->fromUTableUChars))=0; + *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; + ++length; + top+=2; + } + indexes[UCNV_EXT_FROM_U_LENGTH]=length; + + indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; + top+=length*4; + + indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; + length=utm_countItems(extData->fromUBytes); + top+=length; + + if(top&1) { + /* add padding */ + *((uint8_t *)utm_alloc(extData->fromUBytes))=0; + ++length; + ++top; + } + indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; + + indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; + indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; + indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; + top+=length*2; + + indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; + length=extData->stage3Top; + top+=length*2; + + if(top&3) { + /* add padding */ + extData->stage3[extData->stage3Top++]=0; + ++length; + top+=2; + } + indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; + + indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; + indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; + top+=length*4; + + indexes[UCNV_EXT_SIZE]=top; + + /* statistics */ + indexes[UCNV_EXT_COUNT_BYTES]= + (extData->maxInBytes<<16)| + (extData->maxOutBytes<<8)| + extData->maxBytesPerUChar; + indexes[UCNV_EXT_COUNT_UCHARS]= + (extData->maxInUChars<<16)| + (extData->maxOutUChars<<8)| + extData->maxUCharsPerByte; + + indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; + + /* write the extension data */ + udata_writeBlock(pData, indexes, sizeof(indexes)); + udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); + udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); + + udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); + udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); + udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); + + udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); + udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); + udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); + udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); + +#if 0 + { + int32_t i, j; + + length=extData->stage1Top; + printf("\nstage1[%x]:\n", length); + + for(i=0; i<length; ++i) { + if(extData->stage1[i]!=length) { + printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); + } + } + + j=length; + length=extData->stage2Top; + printf("\nstage2[%x]:\n", length); + + for(i=0; i<length; ++j, ++i) { + if(extData->stage2[i]!=0) { + printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); + } + } + + length=extData->stage3Top; + printf("\nstage3[%x]:\n", length); + + for(i=0; i<length; ++i) { + if(extData->stage3[i]!=0) { + printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); + } + } + + length=extData->stage3bTop; + printf("\nstage3b[%x]:\n", length); + + for(i=0; i<length; ++i) { + if(extData->stage3b[i]!=0) { + printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); + } + } + } +#endif + + if(VERBOSE) { + printf("size of extension data: %ld\n", (long)top); + } + + /* return the number of bytes that should have been written */ + return (uint32_t)(headerSize+top); +} + +/* to Unicode --------------------------------------------------------------- */ + +/* + * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for + * the toUnicode table. + * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable + * for the base toUnicode table but not for the base fromUnicode table. + * The table must be sorted. + * Modifies previous data in the reverseMap. + */ +static int32_t +reduceToUMappings(UCMTable *table) { + UCMapping *mappings; + int32_t *map; + int32_t i, j, count; + int8_t flag; + + mappings=table->mappings; + map=table->reverseMap; + count=table->mappingsLength; + + /* leave the map alone for the initial mappings with desired flags */ + for(i=j=0; i<count; ++i) { + flag=mappings[map[i]].f; + if(flag!=0 && flag!=3) { + break; + } + } + + /* reduce from here to the rest */ + for(j=i; i<count; ++i) { + flag=mappings[map[i]].f; + if(flag==0 || flag==3) { + map[j++]=map[i]; + } + } + + return j; +} + +static uint32_t +getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { + UChar32 *u32; + UChar *u; + uint32_t value; + int32_t u16Length, ratio; + UErrorCode errorCode; + + /* write the Unicode result code point or string index */ + if(m->uLen==1) { + u16Length=U16_LENGTH(m->u); + value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); + } else { + /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ + + /* get the result code point string and its 16-bit string length */ + u32=UCM_GET_CODE_POINTS(table, m); + errorCode=U_ZERO_ERROR; + u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); + if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { + exit(errorCode); + } + + /* allocate it and put its length and index into the value */ + value= + (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| + ((uint32_t)utm_countItems(extData->toUUChars)); + u=utm_allocN(extData->toUUChars, u16Length); + + /* write the result 16-bit string */ + errorCode=U_ZERO_ERROR; + u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); + if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { + exit(errorCode); + } + } + if(m->f==0) { + value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; + } + + /* update statistics */ + if(m->bLen>extData->maxInBytes) { + extData->maxInBytes=m->bLen; + } + if(u16Length>extData->maxOutUChars) { + extData->maxOutUChars=u16Length; + } + + ratio=(u16Length+(m->bLen-1))/m->bLen; + if(ratio>extData->maxUCharsPerByte) { + extData->maxUCharsPerByte=ratio; + } + + return value; +} + +/* + * Recursive toUTable generator core function. + * Preconditions: + * - start<limit (There is at least one mapping.) + * - The mappings are sorted lexically. (Access is through the reverseMap.) + * - All mappings between start and limit have input sequences that share + * the same prefix of unitIndex length, and therefore all of these sequences + * are at least unitIndex+1 long. + * - There are only relevant mappings available through the reverseMap, + * see reduceToUMappings(). + * + * One function invocation generates one section table. + * + * Steps: + * 1. Count the number of unique unit values and get the low/high unit values + * that occur at unitIndex. + * 2. Allocate the section table with possible optimization for linear access. + * 3. Write temporary version of the section table with start indexes of + * subsections, each corresponding to one unit value at unitIndex. + * 4. Iterate through the table once more, and depending on the subsection length: + * 0: write 0 as a result value (unused byte in linear-access section table) + * >0: if there is one mapping with an input unit sequence of unitIndex+1 + * then defaultValue=compute the mapping result for this whole sequence + * else defaultValue=0 + * + * recurse into the subsection + */ +static UBool +generateToUTable(CnvExtData *extData, UCMTable *table, + int32_t start, int32_t limit, int32_t unitIndex, + uint32_t defaultValue) { + UCMapping *mappings, *m; + int32_t *map; + int32_t i, j, uniqueCount, count, subStart, subLimit; + + uint8_t *bytes; + int32_t low, high, prev; + + uint32_t *section; + + mappings=table->mappings; + map=table->reverseMap; + + /* step 1: examine the input units; set low, high, uniqueCount */ + m=mappings+map[start]; + bytes=UCM_GET_BYTES(table, m); + low=bytes[unitIndex]; + uniqueCount=1; + + prev=high=low; + for(i=start+1; i<limit; ++i) { + m=mappings+map[i]; + bytes=UCM_GET_BYTES(table, m); + high=bytes[unitIndex]; + + if(high!=prev) { + prev=high; + ++uniqueCount; + } + } + + /* step 2: allocate the section; set count, section */ + count=(high-low)+1; + if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) { + /* + * for the root table and for fairly full tables: + * allocate for direct, linear array access + * by keeping count, to write an entry for each unit value + * from low to high + * exception: use a compact table if count==0x100 because + * that cannot be encoded in the length byte + */ + } else { + count=uniqueCount; + } + + if(count>=0x100) { + fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count); + return false; + } + + /* allocate the section: 1 entry for the header + count for the items */ + section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); + + /* write the section header */ + *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; + + /* step 3: write temporary section table with subsection starts */ + prev=low-1; /* just before low to prevent empty subsections before low */ + j=0; /* section table index */ + for(i=start; i<limit; ++i) { + m=mappings+map[i]; + bytes=UCM_GET_BYTES(table, m); + high=bytes[unitIndex]; + + if(high!=prev) { + /* start of a new subsection for unit high */ + if(count>uniqueCount) { + /* write empty subsections for unused units in a linear table */ + while(++prev<high) { + section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; + } + } else { + prev=high; + } + + /* write the entry with the subsection start */ + section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; + } + } + /* assert(j==count) */ + + /* step 4: recurse and write results */ + subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); + for(j=0; j<count; ++j) { + subStart=subLimit; + subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; + + /* remove the subStart temporary value */ + section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; + + if(subStart==subLimit) { + /* leave the value zero: empty subsection for unused unit in a linear table */ + continue; + } + + /* see if there is exactly one input unit sequence of length unitIndex+1 */ + defaultValue=0; + m=mappings+map[subStart]; + if(m->bLen==unitIndex+1) { + /* do not include this in generateToUTable() */ + ++subStart; + + if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { + /* print error for multiple same-input-sequence mappings */ + fprintf(stderr, "error: multiple mappings from same bytes\n"); + ucm_printMapping(table, m, stderr); + ucm_printMapping(table, mappings+map[subStart], stderr); + return false; + } + + defaultValue=getToUnicodeValue(extData, table, m); + } + + if(subStart==subLimit) { + /* write the result for the input sequence ending here */ + section[j]|=defaultValue; + } else { + /* write the index to the subsection table */ + section[j]|=(uint32_t)utm_countItems(extData->toUTable); + + /* recurse */ + if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { + return false; + } + } + } + return true; +} + +/* + * Generate the toUTable and toUUChars from the input table. + * The input table must be sorted, and all precision flags must be 0..3. + * This function will modify the table's reverseMap. + */ +static UBool +makeToUTable(CnvExtData *extData, UCMTable *table) { + int32_t toUCount; + + toUCount=reduceToUMappings(table); + + extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4); + extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2); + + return generateToUTable(extData, table, 0, toUCount, 0, 0); +} + +/* from Unicode ------------------------------------------------------------- */ + +/* + * preprocessing: + * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode + * change each Unicode string to encode all but the first code point in 16-bit form + * + * generation: + * for each unique code point + * write an entry in the 3-stage trie + * check that there is only one single-code point sequence + * start recursion for following 16-bit input units + */ + +/* + * Remove toUnicode fallbacks and non-<subchar1> SUB mappings + * which are irrelevant for the fromUnicode extension table. + * Remove MBCS_FROM_U_EXT_FLAG bits. + * Overwrite the reverseMap with an index array to the relevant mappings. + * Modify the code point sequences to a generator-friendly format where + * the first code points remains unchanged but the following are recoded + * into 16-bit Unicode string form. + * The table must be sorted. + * Destroys previous data in the reverseMap. + */ +static int32_t +prepareFromUMappings(UCMTable *table) { + UCMapping *mappings, *m; + int32_t *map; + int32_t i, j, count; + int8_t flag; + + mappings=table->mappings; + map=table->reverseMap; + count=table->mappingsLength; + + /* + * we do not go through the map on input because the mappings are + * sorted lexically + */ + m=mappings; + + for(i=j=0; i<count; ++m, ++i) { + flag=m->f; + if(flag>=0) { + flag&=MBCS_FROM_U_EXT_MASK; + m->f=flag; + } + if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) { + map[j++]=i; + + if(m->uLen>1) { + /* recode all but the first code point to 16-bit Unicode */ + UChar32 *u32; + UChar *u; + UChar32 c; + int32_t q, r; + + u32=UCM_GET_CODE_POINTS(table, m); + u=(UChar *)u32; /* destructive in-place recoding */ + for(r=2, q=1; q<m->uLen; ++q) { + c=u32[q]; + U16_APPEND_UNSAFE(u, r, c); + } + + /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */ + m->uLen=(int8_t)r; + } + } + } + + return j; +} + +static uint32_t +getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { + uint8_t *bytes, *resultBytes; + uint32_t value; + int32_t u16Length, ratio; + + if(m->f==2) { + /* + * no mapping, <subchar1> preferred + * + * no need to count in statistics because the subchars are already + * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, + * and this non-mapping does not count for maxInUChars which are always + * trivially at least two if counting unmappable supplementary code points + */ + return UCNV_EXT_FROM_U_SUBCHAR1; + } + + bytes=UCM_GET_BYTES(table, m); + value=0; + switch(m->bLen) { + /* 1..3: store the bytes in the value word */ + case 3: + value=((uint32_t)*bytes++)<<16; + case 2: + value|=((uint32_t)*bytes++)<<8; + case 1: + value|=*bytes; + break; + default: + /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ + /* store the bytes in fromUBytes[] and the index in the value word */ + value=(uint32_t)utm_countItems(extData->fromUBytes); + resultBytes=utm_allocN(extData->fromUBytes, m->bLen); + uprv_memcpy(resultBytes, bytes, m->bLen); + break; + } + value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; + if(m->f==0) { + value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; + } else if(m->f==4) { + value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG; + } + + /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ + if(m->uLen==1) { + u16Length=U16_LENGTH(m->u); + } else { + u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); + } + + /* update statistics */ + if(u16Length>extData->maxInUChars) { + extData->maxInUChars=u16Length; + } + if(m->bLen>extData->maxOutBytes) { + extData->maxOutBytes=m->bLen; + } + + ratio=(m->bLen+(u16Length-1))/u16Length; + if(ratio>extData->maxBytesPerUChar) { + extData->maxBytesPerUChar=ratio; + } + + return value; +} + +/* + * works like generateToUTable(), except that the + * output section consists of two arrays, one for input UChars and one + * for result values + * + * also, fromUTable sections are always stored in a compact form for + * access via binary search + */ +static UBool +generateFromUTable(CnvExtData *extData, UCMTable *table, + int32_t start, int32_t limit, int32_t unitIndex, + uint32_t defaultValue) { + UCMapping *mappings, *m; + int32_t *map; + int32_t i, j, uniqueCount, count, subStart, subLimit; + + UChar *uchars; + UChar32 low, high, prev; + + UChar *sectionUChars; + uint32_t *sectionValues; + + mappings=table->mappings; + map=table->reverseMap; + + /* step 1: examine the input units; set low, high, uniqueCount */ + m=mappings+map[start]; + uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); + low=uchars[unitIndex]; + uniqueCount=1; + + prev=high=low; + for(i=start+1; i<limit; ++i) { + m=mappings+map[i]; + uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); + high=uchars[unitIndex]; + + if(high!=prev) { + prev=high; + ++uniqueCount; + } + } + + /* step 2: allocate the section; set count, section */ + /* the fromUTable always stores for access via binary search */ + count=uniqueCount; + + /* allocate the section: 1 entry for the header + count for the items */ + sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); + sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); + + /* write the section header */ + *sectionUChars++=(UChar)count; + *sectionValues++=defaultValue; + + /* step 3: write temporary section table with subsection starts */ + prev=low-1; /* just before low to prevent empty subsections before low */ + j=0; /* section table index */ + for(i=start; i<limit; ++i) { + m=mappings+map[i]; + uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); + high=uchars[unitIndex]; + + if(high!=prev) { + /* start of a new subsection for unit high */ + prev=high; + + /* write the entry with the subsection start */ + sectionUChars[j]=(UChar)high; + sectionValues[j]=(uint32_t)i; + ++j; + } + } + /* assert(j==count) */ + + /* step 4: recurse and write results */ + subLimit=(int32_t)(sectionValues[0]); + for(j=0; j<count; ++j) { + subStart=subLimit; + subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; + + /* see if there is exactly one input unit sequence of length unitIndex+1 */ + defaultValue=0; + m=mappings+map[subStart]; + if(m->uLen==unitIndex+1) { + /* do not include this in generateToUTable() */ + ++subStart; + + if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { + /* print error for multiple same-input-sequence mappings */ + fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); + ucm_printMapping(table, m, stderr); + ucm_printMapping(table, mappings+map[subStart], stderr); + return false; + } + + defaultValue=getFromUBytesValue(extData, table, m); + } + + if(subStart==subLimit) { + /* write the result for the input sequence ending here */ + sectionValues[j]=defaultValue; + } else { + /* write the index to the subsection table */ + sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); + + /* recurse */ + if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { + return false; + } + } + } + return true; +} + +/* + * add entries to the fromUnicode trie, + * assume to be called with code points in ascending order + * and use that to build the trie in precompacted form + */ +static void +addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) { + int32_t i1, i2, i3, i3b, nextOffset, min, newBlock; + + if(value==0) { + return; + } + + /* + * compute the index for each stage, + * allocate a stage block if necessary, + * and write the stage value + */ + i1=c>>10; + if(i1>=extData->stage1Top) { + extData->stage1Top=i1+1; + } + + nextOffset=(c>>4)&0x3f; + + if(extData->stage1[i1]==0) { + /* allocate another block in stage 2; overlap with the previous block */ + newBlock=extData->stage2Top; + min=newBlock-nextOffset; /* minimum block start with overlap */ + while(min<newBlock && extData->stage2[newBlock-1]==0) { + --newBlock; + } + + extData->stage1[i1]=(uint16_t)newBlock; + extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE; + if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) { + fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c); + exit(U_MEMORY_ALLOCATION_ERROR); + } + } + + i2=extData->stage1[i1]+nextOffset; + nextOffset=c&0xf; + + if(extData->stage2[i2]==0) { + /* allocate another block in stage 3; overlap with the previous block */ + newBlock=extData->stage3Top; + min=newBlock-nextOffset; /* minimum block start with overlap */ + while(min<newBlock && extData->stage3[newBlock-1]==0) { + --newBlock; + } + + /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */ + newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1); + extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT); + + extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE; + if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) { + fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c); + exit(U_MEMORY_ALLOCATION_ERROR); + } + } + + i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset; + /* + * assume extData->stage3[i3]==0 because we get + * code points in strictly ascending order + */ + + if(value==UCNV_EXT_FROM_U_SUBCHAR1) { + /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */ + extData->stage3[i3]=1; + + /* + * precompaction is not optimal for <subchar1> |2 mappings because + * stage3 values for them are all the same, unlike for other mappings + * which all have unique values; + * use a simple compaction of reusing a whole block filled with these + * mappings + */ + + /* is the entire block filled with <subchar1> |2 mappings? */ + if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) { + for(min=i3-nextOffset; + min<i3 && extData->stage3[min]==1; + ++min) {} + + if(min==i3) { + /* the entire block is filled with these mappings */ + if(extData->stage3Sub1Block!=0) { + /* point to the previous such block and remove this block from stage3 */ + extData->stage2[i2]=extData->stage3Sub1Block; + extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE; + uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2); + } else { + /* remember this block's stage2 entry */ + extData->stage3Sub1Block=extData->stage2[i2]; + } + } + } + } else { + if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) { + fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c); + exit(U_MEMORY_ALLOCATION_ERROR); + } + + /* roundtrip or fallback mapping */ + extData->stage3[i3]=(uint16_t)i3b; + extData->stage3b[i3b]=value; + } +} + +static UBool +generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) { + UCMapping *mappings, *m; + int32_t *map; + uint32_t value; + int32_t subStart, subLimit; + + UChar32 *codePoints; + UChar32 c, next; + + if(mapLength==0) { + return true; + } + + mappings=table->mappings; + map=table->reverseMap; + + /* + * iterate over same-initial-code point mappings, + * enter the initial code point into the trie, + * and start a recursion on the corresponding mappings section + * with generateFromUTable() + */ + m=mappings+map[0]; + codePoints=UCM_GET_CODE_POINTS(table, m); + next=codePoints[0]; + subLimit=0; + while(subLimit<mapLength) { + /* get a new subsection of mappings starting with the same code point */ + subStart=subLimit; + c=next; + while(next==c && ++subLimit<mapLength) { + m=mappings+map[subLimit]; + codePoints=UCM_GET_CODE_POINTS(table, m); + next=codePoints[0]; + } + + /* + * compute the value for this code point; + * if there is a mapping for this code point alone, it is at subStart + * because the table is sorted lexically + */ + value=0; + m=mappings+map[subStart]; + codePoints=UCM_GET_CODE_POINTS(table, m); + if(m->uLen==1) { + /* do not include this in generateFromUTable() */ + ++subStart; + + if(subStart<subLimit && mappings[map[subStart]].uLen==1) { + /* print error for multiple same-input-sequence mappings */ + fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); + ucm_printMapping(table, m, stderr); + ucm_printMapping(table, mappings+map[subStart], stderr); + return false; + } + + value=getFromUBytesValue(extData, table, m); + } + + if(subStart==subLimit) { + /* write the result for this one code point */ + addFromUTrieEntry(extData, c, value); + } else { + /* write the index to the subsection table */ + addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues)); + + /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */ + if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) { + return false; + } + } + } + return true; +} + +/* + * Generate the fromU data structures from the input table. + * The input table must be sorted, and all precision flags must be 0..3. + * This function will modify the table's reverseMap. + */ +static UBool +makeFromUTable(CnvExtData *extData, UCMTable *table) { + uint16_t *stage1; + int32_t i, stage1Top, fromUCount; + + fromUCount=prepareFromUMappings(table); + + extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2); + extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4); + extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1); + + /* allocate all-unassigned stage blocks */ + extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; + extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED; + + /* + * stage 3b stores only unique values, and in + * index 0: 0 for "no mapping" + * index 1: "no mapping" with preference for <subchar1> rather than <subchar> + */ + extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1; + extData->stage3bTop=2; + + /* allocate the first entry in the fromUTable because index 0 means "no result" */ + utm_alloc(extData->fromUTableUChars); + utm_alloc(extData->fromUTableValues); + + if(!generateFromUTrie(extData, table, fromUCount)) { + return false; + } + + /* + * offset the stage 1 trie entries by stage1Top because they will + * be stored in a single array + */ + stage1=extData->stage1; + stage1Top=extData->stage1Top; + for(i=0; i<stage1Top; ++i) { + stage1[i]=(uint16_t)(stage1[i]+stage1Top); + } + + return true; +} + +/* -------------------------------------------------------------------------- */ + +static UBool +CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { + CnvExtData *extData; + + if(table->unicodeMask&UCNV_HAS_SURROGATES) { + fprintf(stderr, "error: contains mappings for surrogate code points\n"); + return false; + } + + staticData->conversionType=UCNV_MBCS; + + extData=(CnvExtData *)cnvData; + + /* + * assume that the table is sorted + * + * call the functions in this order because + * makeToUTable() modifies the original reverseMap, + * makeFromUTable() writes a whole new mapping into reverseMap + */ + return + makeToUTable(extData, table) && + makeFromUTable(extData, table); +} |