diff options
Diffstat (limited to 'js/src/jit/arm/disasm/Constants-arm.h')
-rw-r--r-- | js/src/jit/arm/disasm/Constants-arm.h | 684 |
1 files changed, 684 insertions, 0 deletions
diff --git a/js/src/jit/arm/disasm/Constants-arm.h b/js/src/jit/arm/disasm/Constants-arm.h new file mode 100644 index 0000000000..0128062b3f --- /dev/null +++ b/js/src/jit/arm/disasm/Constants-arm.h @@ -0,0 +1,684 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + */ +// Copyright 2011 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef jit_arm_disasm_Constants_arm_h +#define jit_arm_disasm_Constants_arm_h + +#ifdef JS_DISASM_ARM + +# include "mozilla/Assertions.h" +# include "mozilla/Types.h" + +# include <string.h> + +namespace js { +namespace jit { +namespace disasm { + +// Constant pool marker. +// Use UDF, the permanently undefined instruction. +const int kConstantPoolMarkerMask = 0xfff000f0; +const int kConstantPoolMarker = 0xe7f000f0; +const int kConstantPoolLengthMaxMask = 0xffff; + +inline int EncodeConstantPoolLength(int length) { + MOZ_ASSERT((length & kConstantPoolLengthMaxMask) == length); + return ((length & 0xfff0) << 4) | (length & 0xf); +} + +inline int DecodeConstantPoolLength(int instr) { + MOZ_ASSERT((instr & kConstantPoolMarkerMask) == kConstantPoolMarker); + return ((instr >> 4) & 0xfff0) | (instr & 0xf); +} + +// Used in code age prologue - ldr(pc, MemOperand(pc, -4)) +const int kCodeAgeJumpInstruction = 0xe51ff004; + +// Number of registers in normal ARM mode. +const int kNumRegisters = 16; + +// VFP support. +const int kNumVFPSingleRegisters = 32; +const int kNumVFPDoubleRegisters = 32; +const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters; + +// PC is register 15. +const int kPCRegister = 15; +const int kNoRegister = -1; + +// ----------------------------------------------------------------------------- +// Conditions. + +// Defines constants and accessor classes to assemble, disassemble and +// simulate ARM instructions. +// +// Section references in the code refer to the "ARM Architecture Reference +// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) +// +// Constants for specific fields are defined in their respective named enums. +// General constants are in an anonymous enum in class Instr. + +// Values for the condition field as defined in section A3.2 +enum Condition { + kNoCondition = -1, + + eq = 0 << 28, // Z set Equal. + ne = 1 << 28, // Z clear Not equal. + cs = 2 << 28, // C set Unsigned higher or same. + cc = 3 << 28, // C clear Unsigned lower. + mi = 4 << 28, // N set Negative. + pl = 5 << 28, // N clear Positive or zero. + vs = 6 << 28, // V set Overflow. + vc = 7 << 28, // V clear No overflow. + hi = 8 << 28, // C set, Z clear Unsigned higher. + ls = 9 << 28, // C clear or Z set Unsigned lower or same. + ge = 10 << 28, // N == V Greater or equal. + lt = 11 << 28, // N != V Less than. + gt = 12 << 28, // Z clear, N == V Greater than. + le = 13 << 28, // Z set or N != V Less then or equal + al = 14 << 28, // Always. + + kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1). + kNumberOfConditions = 16, + + // Aliases. + hs = cs, // C set Unsigned higher or same. + lo = cc // C clear Unsigned lower. +}; + +inline Condition NegateCondition(Condition cond) { + MOZ_ASSERT(cond != al); + return static_cast<Condition>(cond ^ ne); +} + +// Commute a condition such that {a cond b == b cond' a}. +inline Condition CommuteCondition(Condition cond) { + switch (cond) { + case lo: + return hi; + case hi: + return lo; + case hs: + return ls; + case ls: + return hs; + case lt: + return gt; + case gt: + return lt; + case ge: + return le; + case le: + return ge; + default: + return cond; + } +} + +// ----------------------------------------------------------------------------- +// Instructions encoding. + +// Instr is merely used by the Assembler to distinguish 32bit integers +// representing instructions from usual 32 bit values. +// Instruction objects are pointers to 32bit values, and provide methods to +// access the various ISA fields. +typedef int32_t Instr; + +// Opcodes for Data-processing instructions (instructions with a type 0 and 1) +// as defined in section A3.4 +enum Opcode { + AND = 0 << 21, // Logical AND. + EOR = 1 << 21, // Logical Exclusive OR. + SUB = 2 << 21, // Subtract. + RSB = 3 << 21, // Reverse Subtract. + ADD = 4 << 21, // Add. + ADC = 5 << 21, // Add with Carry. + SBC = 6 << 21, // Subtract with Carry. + RSC = 7 << 21, // Reverse Subtract with Carry. + TST = 8 << 21, // Test. + TEQ = 9 << 21, // Test Equivalence. + CMP = 10 << 21, // Compare. + CMN = 11 << 21, // Compare Negated. + ORR = 12 << 21, // Logical (inclusive) OR. + MOV = 13 << 21, // Move. + BIC = 14 << 21, // Bit Clear. + MVN = 15 << 21 // Move Not. +}; + +// The bits for bit 7-4 for some type 0 miscellaneous instructions. +enum MiscInstructionsBits74 { + // With bits 22-21 01. + BX = 1 << 4, + BXJ = 2 << 4, + BLX = 3 << 4, + BKPT = 7 << 4, + + // With bits 22-21 11. + CLZ = 1 << 4 +}; + +// Load and store exclusive instructions. + +// Bit positions. +enum { + ExclusiveOpHi = 24, // Hi bit of opcode field + ExclusiveOpLo = 23, // Lo bit of opcode field + ExclusiveSizeHi = 22, // Hi bit of operand size field + ExclusiveSizeLo = 21, // Lo bit of operand size field + ExclusiveLoad = 20 // Bit indicating load +}; + +// Opcode bits for exclusive instructions. +enum { ExclusiveOpcode = 3 }; + +// Operand size, Bits(ExclusiveSizeHi,ExclusiveSizeLo). +enum { + ExclusiveWord = 0, + ExclusiveDouble = 1, + ExclusiveByte = 2, + ExclusiveHalf = 3 +}; + +// Instruction encoding bits and masks. +enum { + H = 1 << 5, // Halfword (or byte). + S6 = 1 << 6, // Signed (or unsigned). + L = 1 << 20, // Load (or store). + S = 1 << 20, // Set condition code (or leave unchanged). + W = 1 << 21, // Writeback base register (or leave unchanged). + A = 1 << 21, // Accumulate in multiply instruction (or not). + B = 1 << 22, // Unsigned byte (or word). + N = 1 << 22, // Long (or short). + U = 1 << 23, // Positive (or negative) offset/index. + P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing). + I = 1 << 25, // Immediate shifter operand (or not). + B0 = 1 << 0, + B4 = 1 << 4, + B5 = 1 << 5, + B6 = 1 << 6, + B7 = 1 << 7, + B8 = 1 << 8, + B9 = 1 << 9, + B12 = 1 << 12, + B16 = 1 << 16, + B17 = 1 << 17, + B18 = 1 << 18, + B19 = 1 << 19, + B20 = 1 << 20, + B21 = 1 << 21, + B22 = 1 << 22, + B23 = 1 << 23, + B24 = 1 << 24, + B25 = 1 << 25, + B26 = 1 << 26, + B27 = 1 << 27, + B28 = 1 << 28, + + // Instruction bit masks. + kCondMask = 15 << 28, + kALUMask = 0x6f << 21, + kRdMask = 15 << 12, // In str instruction. + kCoprocessorMask = 15 << 8, + kOpCodeMask = 15 << 21, // In data-processing instructions. + kImm24Mask = (1 << 24) - 1, + kImm16Mask = (1 << 16) - 1, + kImm8Mask = (1 << 8) - 1, + kOff12Mask = (1 << 12) - 1, + kOff8Mask = (1 << 8) - 1 +}; + +// ----------------------------------------------------------------------------- +// Addressing modes and instruction variants. + +// Condition code updating mode. +enum SBit { + SetCC = 1 << 20, // Set condition code. + LeaveCC = 0 << 20 // Leave condition code unchanged. +}; + +// Status register selection. +enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 }; + +// Shifter types for Data-processing operands as defined in section A5.1.2. +enum ShiftOp { + LSL = 0 << 5, // Logical shift left. + LSR = 1 << 5, // Logical shift right. + ASR = 2 << 5, // Arithmetic shift right. + ROR = 3 << 5, // Rotate right. + + // RRX is encoded as ROR with shift_imm == 0. + // Use a special code to make the distinction. The RRX ShiftOp is only used + // as an argument, and will never actually be encoded. The Assembler will + // detect it and emit the correct ROR shift operand with shift_imm == 0. + RRX = -1, + kNumberOfShifts = 4 +}; + +// Status register fields. +enum SRegisterField { + CPSR_c = CPSR | 1 << 16, + CPSR_x = CPSR | 1 << 17, + CPSR_s = CPSR | 1 << 18, + CPSR_f = CPSR | 1 << 19, + SPSR_c = SPSR | 1 << 16, + SPSR_x = SPSR | 1 << 17, + SPSR_s = SPSR | 1 << 18, + SPSR_f = SPSR | 1 << 19 +}; + +// Status register field mask (or'ed SRegisterField enum values). +typedef uint32_t SRegisterFieldMask; + +// Memory operand addressing mode. +enum AddrMode { + // Bit encoding P U W. + Offset = (8 | 4 | 0) << 21, // Offset (without writeback to base). + PreIndex = (8 | 4 | 1) << 21, // Pre-indexed addressing with writeback. + PostIndex = (0 | 4 | 0) << 21, // Post-indexed addressing with writeback. + NegOffset = + (8 | 0 | 0) << 21, // Negative offset (without writeback to base). + NegPreIndex = (8 | 0 | 1) << 21, // Negative pre-indexed with writeback. + NegPostIndex = (0 | 0 | 0) << 21 // Negative post-indexed with writeback. +}; + +// Load/store multiple addressing mode. +enum BlockAddrMode { + // Bit encoding P U W . + da = (0 | 0 | 0) << 21, // Decrement after. + ia = (0 | 4 | 0) << 21, // Increment after. + db = (8 | 0 | 0) << 21, // Decrement before. + ib = (8 | 4 | 0) << 21, // Increment before. + da_w = (0 | 0 | 1) << 21, // Decrement after with writeback to base. + ia_w = (0 | 4 | 1) << 21, // Increment after with writeback to base. + db_w = (8 | 0 | 1) << 21, // Decrement before with writeback to base. + ib_w = (8 | 4 | 1) << 21, // Increment before with writeback to base. + + // Alias modes for comparison when writeback does not matter. + da_x = (0 | 0 | 0) << 21, // Decrement after. + ia_x = (0 | 4 | 0) << 21, // Increment after. + db_x = (8 | 0 | 0) << 21, // Decrement before. + ib_x = (8 | 4 | 0) << 21, // Increment before. + + kBlockAddrModeMask = (8 | 4 | 1) << 21 +}; + +// Coprocessor load/store operand size. +enum LFlag { + Long = 1 << 22, // Long load/store coprocessor. + Short = 0 << 22 // Short load/store coprocessor. +}; + +// NEON data type +enum NeonDataType { + NeonS8 = 0x1, // U = 0, imm3 = 0b001 + NeonS16 = 0x2, // U = 0, imm3 = 0b010 + NeonS32 = 0x4, // U = 0, imm3 = 0b100 + NeonU8 = 1 << 24 | 0x1, // U = 1, imm3 = 0b001 + NeonU16 = 1 << 24 | 0x2, // U = 1, imm3 = 0b010 + NeonU32 = 1 << 24 | 0x4, // U = 1, imm3 = 0b100 + NeonDataTypeSizeMask = 0x7, + NeonDataTypeUMask = 1 << 24 +}; + +enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 }; + +enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 }; + +// ----------------------------------------------------------------------------- +// Supervisor Call (svc) specific support. + +// Special Software Interrupt codes when used in the presence of the ARM +// simulator. +// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for +// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. +enum SoftwareInterruptCodes { + // transition to C code + kCallRtRedirected = 0x10, + // break point + kBreakpoint = 0x20, + // stop + kStopCode = 1 << 23 +}; +const uint32_t kStopCodeMask = kStopCode - 1; +const uint32_t kMaxStopCode = kStopCode - 1; +const int32_t kDefaultStopCode = -1; + +// Type of VFP register. Determines register encoding. +enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1 }; + +// VFP FPSCR constants. +enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 }; + +// This mask does not include the "inexact" or "input denormal" cumulative +// exceptions flags, because we usually don't want to check for it. +const uint32_t kVFPExceptionMask = 0xf; +const uint32_t kVFPInvalidOpExceptionBit = 1 << 0; +const uint32_t kVFPOverflowExceptionBit = 1 << 2; +const uint32_t kVFPUnderflowExceptionBit = 1 << 3; +const uint32_t kVFPInexactExceptionBit = 1 << 4; +const uint32_t kVFPFlushToZeroMask = 1 << 24; +const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25; + +const uint32_t kVFPNConditionFlagBit = 1 << 31; +const uint32_t kVFPZConditionFlagBit = 1 << 30; +const uint32_t kVFPCConditionFlagBit = 1 << 29; +const uint32_t kVFPVConditionFlagBit = 1 << 28; + +// VFP rounding modes. See ARM DDI 0406B Page A2-29. +enum VFPRoundingMode { + RN = 0 << 22, // Round to Nearest. + RP = 1 << 22, // Round towards Plus Infinity. + RM = 2 << 22, // Round towards Minus Infinity. + RZ = 3 << 22, // Round towards zero. + + // Aliases. + kRoundToNearest = RN, + kRoundToPlusInf = RP, + kRoundToMinusInf = RM, + kRoundToZero = RZ +}; + +const uint32_t kVFPRoundingModeMask = 3 << 22; + +enum CheckForInexactConversion { + kCheckForInexactConversion, + kDontCheckForInexactConversion +}; + +// ----------------------------------------------------------------------------- +// Hints. + +// Branch hints are not used on the ARM. They are defined so that they can +// appear in shared function signatures, but will be ignored in ARM +// implementations. +enum Hint { no_hint }; + +// Hints are not used on the arm. Negating is trivial. +inline Hint NegateHint(Hint ignored) { return no_hint; } + +// ----------------------------------------------------------------------------- +// Instruction abstraction. + +// The class Instruction enables access to individual fields defined in the ARM +// architecture instruction set encoding as described in figure A3-1. +// Note that the Assembler uses typedef int32_t Instr. +// +// Example: Test whether the instruction at ptr does set the condition code +// bits. +// +// bool InstructionSetsConditionCodes(byte* ptr) { +// Instruction* instr = Instruction::At(ptr); +// int type = instr->TypeValue(); +// return ((type == 0) || (type == 1)) && instr->HasS(); +// } +// +class Instruction { + public: + enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 }; + + // Helper macro to define static accessors. + // We use the cast to char* trick to bypass the strict anti-aliasing rules. +# define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ + static inline return_type Name(Instr instr) { \ + char* temp = reinterpret_cast<char*>(&instr); \ + return reinterpret_cast<Instruction*>(temp)->Name(); \ + } + +# define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) + + // Get the raw instruction bits. + inline Instr InstructionBits() const { + return *reinterpret_cast<const Instr*>(this); + } + + // Set the raw instruction bits to value. + inline void SetInstructionBits(Instr value) { + *reinterpret_cast<Instr*>(this) = value; + } + + // Read one particular bit out of the instruction bits. + inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } + + // Read a bit field's value out of the instruction bits. + inline int Bits(int hi, int lo) const { + return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); + } + + // Read a bit field out of the instruction bits. + inline int BitField(int hi, int lo) const { + return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); + } + + // Static support. + + // Read one particular bit out of the instruction bits. + static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; } + + // Read the value of a bit field out of the instruction bits. + static inline int Bits(Instr instr, int hi, int lo) { + return (instr >> lo) & ((2 << (hi - lo)) - 1); + } + + // Read a bit field out of the instruction bits. + static inline int BitField(Instr instr, int hi, int lo) { + return instr & (((2 << (hi - lo)) - 1) << lo); + } + + // Accessors for the different named fields used in the ARM encoding. + // The naming of these accessor corresponds to figure A3-1. + // + // Two kind of accessors are declared: + // - <Name>Field() will return the raw field, i.e. the field's bits at their + // original place in the instruction encoding. + // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as + // 0xC0810002 ConditionField(instr) will return 0xC0000000. + // - <Name>Value() will return the field value, shifted back to bit 0. + // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as + // 0xC0810002 ConditionField(instr) will return 0xC. + + // Generally applicable fields + inline Condition ConditionValue() const { + return static_cast<Condition>(Bits(31, 28)); + } + inline Condition ConditionField() const { + return static_cast<Condition>(BitField(31, 28)); + } + DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue); + DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField); + + inline int TypeValue() const { return Bits(27, 25); } + inline int SpecialValue() const { return Bits(27, 23); } + + inline int RnValue() const { return Bits(19, 16); } + DECLARE_STATIC_ACCESSOR(RnValue); + inline int RdValue() const { return Bits(15, 12); } + DECLARE_STATIC_ACCESSOR(RdValue); + + inline int CoprocessorValue() const { return Bits(11, 8); } + // Support for VFP. + // Vn(19-16) | Vd(15-12) | Vm(3-0) + inline int VnValue() const { return Bits(19, 16); } + inline int VmValue() const { return Bits(3, 0); } + inline int VdValue() const { return Bits(15, 12); } + inline int NValue() const { return Bit(7); } + inline int MValue() const { return Bit(5); } + inline int DValue() const { return Bit(22); } + inline int RtValue() const { return Bits(15, 12); } + inline int PValue() const { return Bit(24); } + inline int UValue() const { return Bit(23); } + inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } + inline int Opc2Value() const { return Bits(19, 16); } + inline int Opc3Value() const { return Bits(7, 6); } + inline int SzValue() const { return Bit(8); } + inline int VLValue() const { return Bit(20); } + inline int VCValue() const { return Bit(8); } + inline int VAValue() const { return Bits(23, 21); } + inline int VBValue() const { return Bits(6, 5); } + inline int VFPNRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 16, 7); + } + inline int VFPMRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 0, 5); + } + inline int VFPDRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 12, 22); + } + + // Fields used in Data processing instructions + inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); } + inline Opcode OpcodeField() const { + return static_cast<Opcode>(BitField(24, 21)); + } + inline int SValue() const { return Bit(20); } + // with register + inline int RmValue() const { return Bits(3, 0); } + DECLARE_STATIC_ACCESSOR(RmValue); + inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } + inline ShiftOp ShiftField() const { + return static_cast<ShiftOp>(BitField(6, 5)); + } + inline int RegShiftValue() const { return Bit(4); } + inline int RsValue() const { return Bits(11, 8); } + inline int ShiftAmountValue() const { return Bits(11, 7); } + // with immediate + inline int RotateValue() const { return Bits(11, 8); } + DECLARE_STATIC_ACCESSOR(RotateValue); + inline int Immed8Value() const { return Bits(7, 0); } + DECLARE_STATIC_ACCESSOR(Immed8Value); + inline int Immed4Value() const { return Bits(19, 16); } + inline int ImmedMovwMovtValue() const { + return Immed4Value() << 12 | Offset12Value(); + } + DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue); + + // Fields used in Load/Store instructions + inline int PUValue() const { return Bits(24, 23); } + inline int PUField() const { return BitField(24, 23); } + inline int BValue() const { return Bit(22); } + inline int WValue() const { return Bit(21); } + inline int LValue() const { return Bit(20); } + // with register uses same fields as Data processing instructions above + // with immediate + inline int Offset12Value() const { return Bits(11, 0); } + // multiple + inline int RlistValue() const { return Bits(15, 0); } + // extra loads and stores + inline int SignValue() const { return Bit(6); } + inline int HValue() const { return Bit(5); } + inline int ImmedHValue() const { return Bits(11, 8); } + inline int ImmedLValue() const { return Bits(3, 0); } + + // Fields used in Branch instructions + inline int LinkValue() const { return Bit(24); } + inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); } + + // Fields used in Software interrupt instructions + inline SoftwareInterruptCodes SvcValue() const { + return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); + } + + // Test for special encodings of type 0 instructions (extra loads and stores, + // as well as multiplications). + inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } + + // Test for miscellaneous instructions encodings of type 0 instructions. + inline bool IsMiscType0() const { + return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) && + ((Bit(7) == 0)); + } + + // Test for a nop instruction, which falls under type 1. + inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; } + + // Test for a nop instruction, which falls under type 1. + inline bool IsCsdbType1() const { return Bits(24, 0) == 0x0120F014; } + + // Test for a stop instruction. + inline bool IsStop() const { + return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); + } + + // Special accessors that test for existence of a value. + inline bool HasS() const { return SValue() == 1; } + inline bool HasB() const { return BValue() == 1; } + inline bool HasW() const { return WValue() == 1; } + inline bool HasL() const { return LValue() == 1; } + inline bool HasU() const { return UValue() == 1; } + inline bool HasSign() const { return SignValue() == 1; } + inline bool HasH() const { return HValue() == 1; } + inline bool HasLink() const { return LinkValue() == 1; } + + // Decoding the double immediate in the vmov instruction. + double DoubleImmedVmov() const; + + // Instructions are read of out a code stream. The only way to get a + // reference to an instruction is to convert a pointer. There is no way + // to allocate or create instances of class Instruction. + // Use the At(pc) function to create references to Instruction. + static Instruction* At(uint8_t* pc) { + return reinterpret_cast<Instruction*>(pc); + } + + private: + // Join split register codes, depending on single or double precision. + // four_bit is the position of the least-significant bit of the four + // bit specifier. one_bit is the position of the additional single bit + // specifier. + inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { + if (pre == kSinglePrecision) { + return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); + } + return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); + } + + // We need to prevent the creation of instances of class Instruction. + Instruction() = delete; + Instruction(const Instruction&) = delete; + void operator=(const Instruction&) = delete; +}; + +// Helper functions for converting between register numbers and names. +class Registers { + public: + // Return the name of the register. + static const char* Name(int reg); + + // Lookup the register number for the name provided. + static int Number(const char* name); + + struct RegisterAlias { + int reg; + const char* name; + }; + + private: + static const char* names_[kNumRegisters]; + static const RegisterAlias aliases_[]; +}; + +// Helper functions for converting between VFP register numbers and names. +class VFPRegisters { + public: + // Return the name of the register. + static const char* Name(int reg, bool is_double); + + // Lookup the register number for the name provided. + // Set flag pointed by is_double to true if register + // is double-precision. + static int Number(const char* name, bool* is_double); + + private: + static const char* names_[kNumVFPRegisters]; +}; + +} // namespace disasm +} // namespace jit +} // namespace js + +#endif // JS_DISASM_ARM + +#endif // jit_arm_disasm_Constants_arm_h |