summaryrefslogtreecommitdiffstats
path: root/media/libtheora/lib/state.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--media/libtheora/lib/state.c1267
1 files changed, 1267 insertions, 0 deletions
diff --git a/media/libtheora/lib/state.c b/media/libtheora/lib/state.c
new file mode 100644
index 0000000000..f4c6240387
--- /dev/null
+++ b/media/libtheora/lib/state.c
@@ -0,0 +1,1267 @@
+/********************************************************************
+ * *
+ * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
+ * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
+ * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
+ * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
+ * *
+ * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 *
+ * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
+ * *
+ ********************************************************************
+
+ function:
+ last mod: $Id$
+
+ ********************************************************************/
+
+#include <stdlib.h>
+#include <string.h>
+#include "state.h"
+#if defined(OC_DUMP_IMAGES)
+# include <stdio.h>
+# include "png.h"
+# include "zlib.h"
+#endif
+
+/*The function used to fill in the chroma plane motion vectors for a macro
+ block when 4 different motion vectors are specified in the luma plane.
+ This version is for use with chroma decimated in the X and Y directions
+ (4:2:0).
+ _cbmvs: The chroma block-level motion vectors to fill in.
+ _lbmvs: The luma block-level motion vectors.*/
+static void oc_set_chroma_mvs00(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
+ int dx;
+ int dy;
+ dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1])
+ +OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
+ dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1])
+ +OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
+ _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,2,2),OC_DIV_ROUND_POW2(dy,2,2));
+}
+
+/*The function used to fill in the chroma plane motion vectors for a macro
+ block when 4 different motion vectors are specified in the luma plane.
+ This version is for use with chroma decimated in the Y direction.
+ _cbmvs: The chroma block-level motion vectors to fill in.
+ _lbmvs: The luma block-level motion vectors.*/
+static void oc_set_chroma_mvs01(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
+ int dx;
+ int dy;
+ dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[2]);
+ dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[2]);
+ _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
+ dx=OC_MV_X(_lbmvs[1])+OC_MV_X(_lbmvs[3]);
+ dy=OC_MV_Y(_lbmvs[1])+OC_MV_Y(_lbmvs[3]);
+ _cbmvs[1]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
+}
+
+/*The function used to fill in the chroma plane motion vectors for a macro
+ block when 4 different motion vectors are specified in the luma plane.
+ This version is for use with chroma decimated in the X direction (4:2:2).
+ _cbmvs: The chroma block-level motion vectors to fill in.
+ _lbmvs: The luma block-level motion vectors.*/
+static void oc_set_chroma_mvs10(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
+ int dx;
+ int dy;
+ dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1]);
+ dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1]);
+ _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
+ dx=OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
+ dy=OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
+ _cbmvs[2]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
+}
+
+/*The function used to fill in the chroma plane motion vectors for a macro
+ block when 4 different motion vectors are specified in the luma plane.
+ This version is for use with no chroma decimation (4:4:4).
+ _cbmvs: The chroma block-level motion vectors to fill in.
+ _lmbmv: The luma macro-block level motion vector to fill in for use in
+ prediction.
+ _lbmvs: The luma block-level motion vectors.*/
+static void oc_set_chroma_mvs11(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
+ _cbmvs[0]=_lbmvs[0];
+ _cbmvs[1]=_lbmvs[1];
+ _cbmvs[2]=_lbmvs[2];
+ _cbmvs[3]=_lbmvs[3];
+}
+
+/*A table of functions used to fill in the chroma plane motion vectors for a
+ macro block when 4 different motion vectors are specified in the luma
+ plane.*/
+const oc_set_chroma_mvs_func OC_SET_CHROMA_MVS_TABLE[TH_PF_NFORMATS]={
+ (oc_set_chroma_mvs_func)oc_set_chroma_mvs00,
+ (oc_set_chroma_mvs_func)oc_set_chroma_mvs01,
+ (oc_set_chroma_mvs_func)oc_set_chroma_mvs10,
+ (oc_set_chroma_mvs_func)oc_set_chroma_mvs11
+};
+
+
+
+/*Returns the fragment index of the top-left block in a macro block.
+ This can be used to test whether or not the whole macro block is valid.
+ _sb_map: The super block map.
+ _quadi: The quadrant number.
+ Return: The index of the fragment of the upper left block in the macro
+ block, or -1 if the block lies outside the coded frame.*/
+static ptrdiff_t oc_sb_quad_top_left_frag(oc_sb_map_quad _sb_map[4],int _quadi){
+ /*It so happens that under the Hilbert curve ordering described below, the
+ upper-left block in each macro block is at index 0, except in macro block
+ 3, where it is at index 2.*/
+ return _sb_map[_quadi][_quadi&_quadi<<1];
+}
+
+/*Fills in the mapping from block positions to fragment numbers for a single
+ color plane.
+ This function also fills in the "valid" flag of each quadrant in the super
+ block flags.
+ _sb_maps: The array of super block maps for the color plane.
+ _sb_flags: The array of super block flags for the color plane.
+ _frag0: The index of the first fragment in the plane.
+ _hfrags: The number of horizontal fragments in a coded frame.
+ _vfrags: The number of vertical fragments in a coded frame.*/
+static void oc_sb_create_plane_mapping(oc_sb_map _sb_maps[],
+ oc_sb_flags _sb_flags[],ptrdiff_t _frag0,int _hfrags,int _vfrags){
+ /*Contains the (macro_block,block) indices for a 4x4 grid of
+ fragments.
+ The pattern is a 4x4 Hilbert space-filling curve.
+ A Hilbert curve has the nice property that as the curve grows larger, its
+ fractal dimension approaches 2.
+ The intuition is that nearby blocks in the curve are also close spatially,
+ with the previous element always an immediate neighbor, so that runs of
+ blocks should be well correlated.*/
+ static const int SB_MAP[4][4][2]={
+ {{0,0},{0,1},{3,2},{3,3}},
+ {{0,3},{0,2},{3,1},{3,0}},
+ {{1,0},{1,3},{2,0},{2,3}},
+ {{1,1},{1,2},{2,1},{2,2}}
+ };
+ ptrdiff_t yfrag;
+ unsigned sbi;
+ int y;
+ sbi=0;
+ yfrag=_frag0;
+ for(y=0;;y+=4){
+ int imax;
+ int x;
+ /*Figure out how many columns of blocks in this super block lie within the
+ image.*/
+ imax=_vfrags-y;
+ if(imax>4)imax=4;
+ else if(imax<=0)break;
+ for(x=0;;x+=4,sbi++){
+ ptrdiff_t xfrag;
+ int jmax;
+ int quadi;
+ int i;
+ /*Figure out how many rows of blocks in this super block lie within the
+ image.*/
+ jmax=_hfrags-x;
+ if(jmax>4)jmax=4;
+ else if(jmax<=0)break;
+ /*By default, set all fragment indices to -1.*/
+ memset(_sb_maps[sbi],0xFF,sizeof(_sb_maps[sbi]));
+ /*Fill in the fragment map for this super block.*/
+ xfrag=yfrag+x;
+ for(i=0;i<imax;i++){
+ int j;
+ for(j=0;j<jmax;j++){
+ _sb_maps[sbi][SB_MAP[i][j][0]][SB_MAP[i][j][1]]=xfrag+j;
+ }
+ xfrag+=_hfrags;
+ }
+ /*Mark which quadrants of this super block lie within the image.*/
+ for(quadi=0;quadi<4;quadi++){
+ _sb_flags[sbi].quad_valid|=
+ (oc_sb_quad_top_left_frag(_sb_maps[sbi],quadi)>=0)<<quadi;
+ }
+ }
+ yfrag+=_hfrags<<2;
+ }
+}
+
+/*Fills in the Y plane fragment map for a macro block given the fragment
+ coordinates of its upper-left hand corner.
+ _mb_map: The macro block map to fill.
+ _fplane: The description of the Y plane.
+ _xfrag0: The X location of the upper-left hand fragment in the luma plane.
+ _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_ymapping(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane *_fplane,int _xfrag0,int _yfrag0){
+ int i;
+ int j;
+ for(i=0;i<2;i++)for(j=0;j<2;j++){
+ _mb_map[0][i<<1|j]=(_yfrag0+i)*(ptrdiff_t)_fplane->nhfrags+_xfrag0+j;
+ }
+}
+
+/*Fills in the chroma plane fragment maps for a macro block.
+ This version is for use with chroma decimated in the X and Y directions
+ (4:2:0).
+ _mb_map: The macro block map to fill.
+ _fplanes: The descriptions of the fragment planes.
+ _xfrag0: The X location of the upper-left hand fragment in the luma plane.
+ _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_cmapping00(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
+ ptrdiff_t fragi;
+ _xfrag0>>=1;
+ _yfrag0>>=1;
+ fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
+ _mb_map[1][0]=fragi+_fplanes[1].froffset;
+ _mb_map[2][0]=fragi+_fplanes[2].froffset;
+}
+
+/*Fills in the chroma plane fragment maps for a macro block.
+ This version is for use with chroma decimated in the Y direction.
+ _mb_map: The macro block map to fill.
+ _fplanes: The descriptions of the fragment planes.
+ _xfrag0: The X location of the upper-left hand fragment in the luma plane.
+ _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_cmapping01(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
+ ptrdiff_t fragi;
+ int j;
+ _yfrag0>>=1;
+ fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
+ for(j=0;j<2;j++){
+ _mb_map[1][j]=fragi+_fplanes[1].froffset;
+ _mb_map[2][j]=fragi+_fplanes[2].froffset;
+ fragi++;
+ }
+}
+
+/*Fills in the chroma plane fragment maps for a macro block.
+ This version is for use with chroma decimated in the X direction (4:2:2).
+ _mb_map: The macro block map to fill.
+ _fplanes: The descriptions of the fragment planes.
+ _xfrag0: The X location of the upper-left hand fragment in the luma plane.
+ _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_cmapping10(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
+ ptrdiff_t fragi;
+ int i;
+ _xfrag0>>=1;
+ fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
+ for(i=0;i<2;i++){
+ _mb_map[1][i<<1]=fragi+_fplanes[1].froffset;
+ _mb_map[2][i<<1]=fragi+_fplanes[2].froffset;
+ fragi+=_fplanes[1].nhfrags;
+ }
+}
+
+/*Fills in the chroma plane fragment maps for a macro block.
+ This version is for use with no chroma decimation (4:4:4).
+ This uses the already filled-in luma plane values.
+ _mb_map: The macro block map to fill.
+ _fplanes: The descriptions of the fragment planes.
+ _xfrag0: The X location of the upper-left hand fragment in the luma plane.
+ _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_cmapping11(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
+ int k;
+ (void)_xfrag0;
+ (void)_yfrag0;
+ for(k=0;k<4;k++){
+ _mb_map[1][k]=_mb_map[0][k]+_fplanes[1].froffset;
+ _mb_map[2][k]=_mb_map[0][k]+_fplanes[2].froffset;
+ }
+}
+
+/*The function type used to fill in the chroma plane fragment maps for a
+ macro block.
+ _mb_map: The macro block map to fill.
+ _fplanes: The descriptions of the fragment planes.
+ _xfrag0: The X location of the upper-left hand fragment in the luma plane.
+ _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
+typedef void (*oc_mb_fill_cmapping_func)(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0);
+
+/*A table of functions used to fill in the chroma plane fragment maps for a
+ macro block for each type of chrominance decimation.*/
+static const oc_mb_fill_cmapping_func OC_MB_FILL_CMAPPING_TABLE[4]={
+ oc_mb_fill_cmapping00,
+ oc_mb_fill_cmapping01,
+ oc_mb_fill_cmapping10,
+ oc_mb_fill_cmapping11
+};
+
+/*Fills in the mapping from macro blocks to their corresponding fragment
+ numbers in each plane.
+ _mb_maps: The list of macro block maps.
+ _mb_modes: The list of macro block modes; macro blocks completely outside
+ the coded region are marked invalid.
+ _fplanes: The descriptions of the fragment planes.
+ _pixel_fmt: The chroma decimation type.*/
+static void oc_mb_create_mapping(oc_mb_map _mb_maps[],
+ signed char _mb_modes[],const oc_fragment_plane _fplanes[3],int _pixel_fmt){
+ oc_mb_fill_cmapping_func mb_fill_cmapping;
+ unsigned sbi;
+ int y;
+ mb_fill_cmapping=OC_MB_FILL_CMAPPING_TABLE[_pixel_fmt];
+ /*Loop through the luma plane super blocks.*/
+ for(sbi=y=0;y<_fplanes[0].nvfrags;y+=4){
+ int x;
+ for(x=0;x<_fplanes[0].nhfrags;x+=4,sbi++){
+ int ymb;
+ /*Loop through the macro blocks in each super block in display order.*/
+ for(ymb=0;ymb<2;ymb++){
+ int xmb;
+ for(xmb=0;xmb<2;xmb++){
+ unsigned mbi;
+ int mbx;
+ int mby;
+ mbi=sbi<<2|OC_MB_MAP[ymb][xmb];
+ mbx=x|xmb<<1;
+ mby=y|ymb<<1;
+ /*Initialize fragment indices to -1.*/
+ memset(_mb_maps[mbi],0xFF,sizeof(_mb_maps[mbi]));
+ /*Make sure this macro block is within the encoded region.*/
+ if(mbx>=_fplanes[0].nhfrags||mby>=_fplanes[0].nvfrags){
+ _mb_modes[mbi]=OC_MODE_INVALID;
+ continue;
+ }
+ /*Fill in the fragment indices for the luma plane.*/
+ oc_mb_fill_ymapping(_mb_maps[mbi],_fplanes,mbx,mby);
+ /*Fill in the fragment indices for the chroma planes.*/
+ (*mb_fill_cmapping)(_mb_maps[mbi],_fplanes,mbx,mby);
+ }
+ }
+ }
+ }
+}
+
+/*Marks the fragments which fall all or partially outside the displayable
+ region of the frame.
+ _state: The Theora state containing the fragments to be marked.*/
+static void oc_state_border_init(oc_theora_state *_state){
+ oc_fragment *frag;
+ oc_fragment *yfrag_end;
+ oc_fragment *xfrag_end;
+ oc_fragment_plane *fplane;
+ int crop_x0;
+ int crop_y0;
+ int crop_xf;
+ int crop_yf;
+ int pli;
+ int y;
+ int x;
+ /*The method we use here is slow, but the code is dead simple and handles
+ all the special cases easily.
+ We only ever need to do it once.*/
+ /*Loop through the fragments, marking those completely outside the
+ displayable region and constructing a border mask for those that straddle
+ the border.*/
+ _state->nborders=0;
+ yfrag_end=frag=_state->frags;
+ for(pli=0;pli<3;pli++){
+ fplane=_state->fplanes+pli;
+ /*Set up the cropping rectangle for this plane.*/
+ crop_x0=_state->info.pic_x;
+ crop_xf=_state->info.pic_x+_state->info.pic_width;
+ crop_y0=_state->info.pic_y;
+ crop_yf=_state->info.pic_y+_state->info.pic_height;
+ if(pli>0){
+ if(!(_state->info.pixel_fmt&1)){
+ crop_x0=crop_x0>>1;
+ crop_xf=crop_xf+1>>1;
+ }
+ if(!(_state->info.pixel_fmt&2)){
+ crop_y0=crop_y0>>1;
+ crop_yf=crop_yf+1>>1;
+ }
+ }
+ y=0;
+ for(yfrag_end+=fplane->nfrags;frag<yfrag_end;y+=8){
+ x=0;
+ for(xfrag_end=frag+fplane->nhfrags;frag<xfrag_end;frag++,x+=8){
+ /*First check to see if this fragment is completely outside the
+ displayable region.*/
+ /*Note the special checks for an empty cropping rectangle.
+ This guarantees that if we count a fragment as straddling the
+ border below, at least one pixel in the fragment will be inside
+ the displayable region.*/
+ if(x+8<=crop_x0||crop_xf<=x||y+8<=crop_y0||crop_yf<=y||
+ crop_x0>=crop_xf||crop_y0>=crop_yf){
+ frag->invalid=1;
+ }
+ /*Otherwise, check to see if it straddles the border.*/
+ else if(x<crop_x0&&crop_x0<x+8||x<crop_xf&&crop_xf<x+8||
+ y<crop_y0&&crop_y0<y+8||y<crop_yf&&crop_yf<y+8){
+ ogg_int64_t mask;
+ int npixels;
+ int i;
+ mask=npixels=0;
+ for(i=0;i<8;i++){
+ int j;
+ for(j=0;j<8;j++){
+ if(x+j>=crop_x0&&x+j<crop_xf&&y+i>=crop_y0&&y+i<crop_yf){
+ mask|=(ogg_int64_t)1<<(i<<3|j);
+ npixels++;
+ }
+ }
+ }
+ /*Search the fragment array for border info with the same pattern.
+ In general, there will be at most 8 different patterns (per
+ plane).*/
+ for(i=0;;i++){
+ if(i>=_state->nborders){
+ _state->nborders++;
+ _state->borders[i].mask=mask;
+ _state->borders[i].npixels=npixels;
+ }
+ else if(_state->borders[i].mask!=mask)continue;
+ frag->borderi=i;
+ break;
+ }
+ }
+ else frag->borderi=-1;
+ }
+ }
+ }
+}
+
+static int oc_state_frarray_init(oc_theora_state *_state){
+ int yhfrags;
+ int yvfrags;
+ int chfrags;
+ int cvfrags;
+ ptrdiff_t yfrags;
+ ptrdiff_t cfrags;
+ ptrdiff_t nfrags;
+ unsigned yhsbs;
+ unsigned yvsbs;
+ unsigned chsbs;
+ unsigned cvsbs;
+ unsigned ysbs;
+ unsigned csbs;
+ unsigned nsbs;
+ size_t nmbs;
+ int hdec;
+ int vdec;
+ int pli;
+ /*Figure out the number of fragments in each plane.*/
+ /*These parameters have already been validated to be multiples of 16.*/
+ yhfrags=_state->info.frame_width>>3;
+ yvfrags=_state->info.frame_height>>3;
+ hdec=!(_state->info.pixel_fmt&1);
+ vdec=!(_state->info.pixel_fmt&2);
+ chfrags=yhfrags+hdec>>hdec;
+ cvfrags=yvfrags+vdec>>vdec;
+ yfrags=yhfrags*(ptrdiff_t)yvfrags;
+ cfrags=chfrags*(ptrdiff_t)cvfrags;
+ nfrags=yfrags+2*cfrags;
+ /*Figure out the number of super blocks in each plane.*/
+ yhsbs=yhfrags+3>>2;
+ yvsbs=yvfrags+3>>2;
+ chsbs=chfrags+3>>2;
+ cvsbs=cvfrags+3>>2;
+ ysbs=yhsbs*yvsbs;
+ csbs=chsbs*cvsbs;
+ nsbs=ysbs+2*csbs;
+ nmbs=(size_t)ysbs<<2;
+ /*Check for overflow.
+ We support the ridiculous upper limits of the specification (1048560 by
+ 1048560, or 3 TB frames) if the target architecture has 64-bit pointers,
+ but for those with 32-bit pointers (or smaller!) we have to check.
+ If the caller wants to prevent denial-of-service by imposing a more
+ reasonable upper limit on the size of attempted allocations, they must do
+ so themselves; we have no platform independent way to determine how much
+ system memory there is nor an application-independent way to decide what a
+ "reasonable" allocation is.*/
+ if(yfrags/yhfrags!=yvfrags||2*cfrags<cfrags||nfrags<yfrags||
+ ysbs/yhsbs!=yvsbs||2*csbs<csbs||nsbs<ysbs||nmbs>>2!=ysbs){
+ return TH_EIMPL;
+ }
+ /*Initialize the fragment array.*/
+ _state->fplanes[0].nhfrags=yhfrags;
+ _state->fplanes[0].nvfrags=yvfrags;
+ _state->fplanes[0].froffset=0;
+ _state->fplanes[0].nfrags=yfrags;
+ _state->fplanes[0].nhsbs=yhsbs;
+ _state->fplanes[0].nvsbs=yvsbs;
+ _state->fplanes[0].sboffset=0;
+ _state->fplanes[0].nsbs=ysbs;
+ _state->fplanes[1].nhfrags=_state->fplanes[2].nhfrags=chfrags;
+ _state->fplanes[1].nvfrags=_state->fplanes[2].nvfrags=cvfrags;
+ _state->fplanes[1].froffset=yfrags;
+ _state->fplanes[2].froffset=yfrags+cfrags;
+ _state->fplanes[1].nfrags=_state->fplanes[2].nfrags=cfrags;
+ _state->fplanes[1].nhsbs=_state->fplanes[2].nhsbs=chsbs;
+ _state->fplanes[1].nvsbs=_state->fplanes[2].nvsbs=cvsbs;
+ _state->fplanes[1].sboffset=ysbs;
+ _state->fplanes[2].sboffset=ysbs+csbs;
+ _state->fplanes[1].nsbs=_state->fplanes[2].nsbs=csbs;
+ _state->nfrags=nfrags;
+ _state->frags=_ogg_calloc(nfrags,sizeof(*_state->frags));
+ _state->frag_mvs=_ogg_malloc(nfrags*sizeof(*_state->frag_mvs));
+ _state->nsbs=nsbs;
+ _state->sb_maps=_ogg_malloc(nsbs*sizeof(*_state->sb_maps));
+ _state->sb_flags=_ogg_calloc(nsbs,sizeof(*_state->sb_flags));
+ _state->nhmbs=yhsbs<<1;
+ _state->nvmbs=yvsbs<<1;
+ _state->nmbs=nmbs;
+ _state->mb_maps=_ogg_calloc(nmbs,sizeof(*_state->mb_maps));
+ _state->mb_modes=_ogg_calloc(nmbs,sizeof(*_state->mb_modes));
+ _state->coded_fragis=_ogg_malloc(nfrags*sizeof(*_state->coded_fragis));
+ if(_state->frags==NULL||_state->frag_mvs==NULL||_state->sb_maps==NULL||
+ _state->sb_flags==NULL||_state->mb_maps==NULL||_state->mb_modes==NULL||
+ _state->coded_fragis==NULL){
+ return TH_EFAULT;
+ }
+ /*Create the mapping from super blocks to fragments.*/
+ for(pli=0;pli<3;pli++){
+ oc_fragment_plane *fplane;
+ fplane=_state->fplanes+pli;
+ oc_sb_create_plane_mapping(_state->sb_maps+fplane->sboffset,
+ _state->sb_flags+fplane->sboffset,fplane->froffset,
+ fplane->nhfrags,fplane->nvfrags);
+ }
+ /*Create the mapping from macro blocks to fragments.*/
+ oc_mb_create_mapping(_state->mb_maps,_state->mb_modes,
+ _state->fplanes,_state->info.pixel_fmt);
+ /*Initialize the invalid and borderi fields of each fragment.*/
+ oc_state_border_init(_state);
+ return 0;
+}
+
+static void oc_state_frarray_clear(oc_theora_state *_state){
+ _ogg_free(_state->coded_fragis);
+ _ogg_free(_state->mb_modes);
+ _ogg_free(_state->mb_maps);
+ _ogg_free(_state->sb_flags);
+ _ogg_free(_state->sb_maps);
+ _ogg_free(_state->frag_mvs);
+ _ogg_free(_state->frags);
+}
+
+
+/*Initializes the buffers used for reconstructed frames.
+ These buffers are padded with 16 extra pixels on each side, to allow
+ unrestricted motion vectors without special casing the boundary.
+ If chroma is decimated in either direction, the padding is reduced by a
+ factor of 2 on the appropriate sides.
+ _nrefs: The number of reference buffers to init; must be in the range 3...6.*/
+static int oc_state_ref_bufs_init(oc_theora_state *_state,int _nrefs){
+ th_info *info;
+ unsigned char *ref_frame_data;
+ size_t ref_frame_data_sz;
+ size_t ref_frame_sz;
+ size_t yplane_sz;
+ size_t cplane_sz;
+ int yhstride;
+ int yheight;
+ int chstride;
+ int cheight;
+ ptrdiff_t align;
+ ptrdiff_t yoffset;
+ ptrdiff_t coffset;
+ ptrdiff_t *frag_buf_offs;
+ ptrdiff_t fragi;
+ int hdec;
+ int vdec;
+ int rfi;
+ int pli;
+ if(_nrefs<3||_nrefs>6)return TH_EINVAL;
+ info=&_state->info;
+ /*Compute the image buffer parameters for each plane.*/
+ hdec=!(info->pixel_fmt&1);
+ vdec=!(info->pixel_fmt&2);
+ yhstride=info->frame_width+2*OC_UMV_PADDING;
+ yheight=info->frame_height+2*OC_UMV_PADDING;
+ /*Require 16-byte aligned rows in the chroma planes.*/
+ chstride=(yhstride>>hdec)+15&~15;
+ cheight=yheight>>vdec;
+ yplane_sz=yhstride*(size_t)yheight;
+ cplane_sz=chstride*(size_t)cheight;
+ yoffset=OC_UMV_PADDING+OC_UMV_PADDING*(ptrdiff_t)yhstride;
+ coffset=(OC_UMV_PADDING>>hdec)+(OC_UMV_PADDING>>vdec)*(ptrdiff_t)chstride;
+ /*Although we guarantee the rows of the chroma planes are a multiple of 16
+ bytes, the initial padding on the first row may only be 8 bytes.
+ Compute the offset needed to the actual image data to a multiple of 16.*/
+ align=-coffset&15;
+ ref_frame_sz=yplane_sz+2*cplane_sz+16;
+ ref_frame_data_sz=_nrefs*ref_frame_sz;
+ /*Check for overflow.
+ The same caveats apply as for oc_state_frarray_init().*/
+ if(yplane_sz/yhstride!=(size_t)yheight||2*cplane_sz+16<cplane_sz||
+ ref_frame_sz<yplane_sz||ref_frame_data_sz/_nrefs!=ref_frame_sz){
+ return TH_EIMPL;
+ }
+ ref_frame_data=oc_aligned_malloc(ref_frame_data_sz,16);
+ frag_buf_offs=_state->frag_buf_offs=
+ _ogg_malloc(_state->nfrags*sizeof(*frag_buf_offs));
+ if(ref_frame_data==NULL||frag_buf_offs==NULL){
+ _ogg_free(frag_buf_offs);
+ oc_aligned_free(ref_frame_data);
+ return TH_EFAULT;
+ }
+ /*Set up the width, height and stride for the image buffers.*/
+ _state->ref_frame_bufs[0][0].width=info->frame_width;
+ _state->ref_frame_bufs[0][0].height=info->frame_height;
+ _state->ref_frame_bufs[0][0].stride=yhstride;
+ _state->ref_frame_bufs[0][1].width=_state->ref_frame_bufs[0][2].width=
+ info->frame_width>>hdec;
+ _state->ref_frame_bufs[0][1].height=_state->ref_frame_bufs[0][2].height=
+ info->frame_height>>vdec;
+ _state->ref_frame_bufs[0][1].stride=_state->ref_frame_bufs[0][2].stride=
+ chstride;
+ for(rfi=1;rfi<_nrefs;rfi++){
+ memcpy(_state->ref_frame_bufs[rfi],_state->ref_frame_bufs[0],
+ sizeof(_state->ref_frame_bufs[0]));
+ }
+ _state->ref_frame_handle=ref_frame_data;
+ /*Set up the data pointers for the image buffers.*/
+ for(rfi=0;rfi<_nrefs;rfi++){
+ _state->ref_frame_bufs[rfi][0].data=ref_frame_data+yoffset;
+ ref_frame_data+=yplane_sz+align;
+ _state->ref_frame_bufs[rfi][1].data=ref_frame_data+coffset;
+ ref_frame_data+=cplane_sz;
+ _state->ref_frame_bufs[rfi][2].data=ref_frame_data+coffset;
+ ref_frame_data+=cplane_sz+(16-align);
+ /*Flip the buffer upside down.
+ This allows us to decode Theora's bottom-up frames in their natural
+ order, yet return a top-down buffer with a positive stride to the user.*/
+ oc_ycbcr_buffer_flip(_state->ref_frame_bufs[rfi],
+ _state->ref_frame_bufs[rfi]);
+ }
+ _state->ref_ystride[0]=-yhstride;
+ _state->ref_ystride[1]=_state->ref_ystride[2]=-chstride;
+ /*Initialize the fragment buffer offsets.*/
+ ref_frame_data=_state->ref_frame_bufs[0][0].data;
+ fragi=0;
+ for(pli=0;pli<3;pli++){
+ th_img_plane *iplane;
+ oc_fragment_plane *fplane;
+ unsigned char *vpix;
+ ptrdiff_t stride;
+ ptrdiff_t vfragi_end;
+ int nhfrags;
+ iplane=_state->ref_frame_bufs[0]+pli;
+ fplane=_state->fplanes+pli;
+ vpix=iplane->data;
+ vfragi_end=fplane->froffset+fplane->nfrags;
+ nhfrags=fplane->nhfrags;
+ stride=iplane->stride;
+ while(fragi<vfragi_end){
+ ptrdiff_t hfragi_end;
+ unsigned char *hpix;
+ hpix=vpix;
+ for(hfragi_end=fragi+nhfrags;fragi<hfragi_end;fragi++){
+ frag_buf_offs[fragi]=hpix-ref_frame_data;
+ hpix+=8;
+ }
+ vpix+=stride<<3;
+ }
+ }
+ /*Initialize the reference frame pointers and indices.*/
+ _state->ref_frame_idx[OC_FRAME_GOLD]=
+ _state->ref_frame_idx[OC_FRAME_PREV]=
+ _state->ref_frame_idx[OC_FRAME_GOLD_ORIG]=
+ _state->ref_frame_idx[OC_FRAME_PREV_ORIG]=
+ _state->ref_frame_idx[OC_FRAME_SELF]=
+ _state->ref_frame_idx[OC_FRAME_IO]=-1;
+ _state->ref_frame_data[OC_FRAME_GOLD]=
+ _state->ref_frame_data[OC_FRAME_PREV]=
+ _state->ref_frame_data[OC_FRAME_GOLD_ORIG]=
+ _state->ref_frame_data[OC_FRAME_PREV_ORIG]=
+ _state->ref_frame_data[OC_FRAME_SELF]=
+ _state->ref_frame_data[OC_FRAME_IO]=NULL;
+ return 0;
+}
+
+static void oc_state_ref_bufs_clear(oc_theora_state *_state){
+ _ogg_free(_state->frag_buf_offs);
+ oc_aligned_free(_state->ref_frame_handle);
+}
+
+
+void oc_state_accel_init_c(oc_theora_state *_state){
+ _state->cpu_flags=0;
+#if defined(OC_STATE_USE_VTABLE)
+ _state->opt_vtable.frag_copy=oc_frag_copy_c;
+ _state->opt_vtable.frag_copy_list=oc_frag_copy_list_c;
+ _state->opt_vtable.frag_recon_intra=oc_frag_recon_intra_c;
+ _state->opt_vtable.frag_recon_inter=oc_frag_recon_inter_c;
+ _state->opt_vtable.frag_recon_inter2=oc_frag_recon_inter2_c;
+ _state->opt_vtable.idct8x8=oc_idct8x8_c;
+ _state->opt_vtable.state_frag_recon=oc_state_frag_recon_c;
+ _state->opt_vtable.loop_filter_init=oc_loop_filter_init_c;
+ _state->opt_vtable.state_loop_filter_frag_rows=
+ oc_state_loop_filter_frag_rows_c;
+ _state->opt_vtable.restore_fpu=oc_restore_fpu_c;
+#endif
+ _state->opt_data.dct_fzig_zag=OC_FZIG_ZAG;
+}
+
+
+int oc_state_init(oc_theora_state *_state,const th_info *_info,int _nrefs){
+ int ret;
+ /*First validate the parameters.*/
+ if(_info==NULL)return TH_EFAULT;
+ /*The width and height of the encoded frame must be multiples of 16.
+ They must also, when divided by 16, fit into a 16-bit unsigned integer.
+ The displayable frame offset coordinates must fit into an 8-bit unsigned
+ integer.
+ Note that the offset Y in the API is specified on the opposite side from
+ how it is specified in the bitstream, because the Y axis is flipped in
+ the bitstream.
+ The displayable frame must fit inside the encoded frame.
+ The color space must be one known by the encoder.
+ The framerate ratio must not contain a zero value.*/
+ if((_info->frame_width&0xF)||(_info->frame_height&0xF)||
+ _info->frame_width<=0||_info->frame_width>=0x100000||
+ _info->frame_height<=0||_info->frame_height>=0x100000||
+ _info->pic_x+_info->pic_width>_info->frame_width||
+ _info->pic_y+_info->pic_height>_info->frame_height||
+ _info->pic_x>255||_info->frame_height-_info->pic_height-_info->pic_y>255||
+ /*Note: the following <0 comparisons may generate spurious warnings on
+ platforms where enums are unsigned.
+ We could cast them to unsigned and just use the following >= comparison,
+ but there are a number of compilers which will mis-optimize this.
+ It's better to live with the spurious warnings.*/
+ _info->colorspace<0||_info->colorspace>=TH_CS_NSPACES||
+ _info->pixel_fmt<0||_info->pixel_fmt>=TH_PF_NFORMATS||
+ _info->fps_numerator<1||_info->fps_denominator<1){
+ return TH_EINVAL;
+ }
+ memset(_state,0,sizeof(*_state));
+ memcpy(&_state->info,_info,sizeof(*_info));
+ /*Invert the sense of pic_y to match Theora's right-handed coordinate
+ system.*/
+ _state->info.pic_y=_info->frame_height-_info->pic_height-_info->pic_y;
+ _state->frame_type=OC_UNKWN_FRAME;
+ oc_state_accel_init(_state);
+ ret=oc_state_frarray_init(_state);
+ if(ret>=0)ret=oc_state_ref_bufs_init(_state,_nrefs);
+ if(ret<0){
+ oc_state_frarray_clear(_state);
+ return ret;
+ }
+ /*If the keyframe_granule_shift is out of range, use the maximum allowable
+ value.*/
+ if(_info->keyframe_granule_shift<0||_info->keyframe_granule_shift>31){
+ _state->info.keyframe_granule_shift=31;
+ }
+ _state->keyframe_num=0;
+ _state->curframe_num=-1;
+ /*3.2.0 streams mark the frame index instead of the frame count.
+ This was changed with stream version 3.2.1 to conform to other Ogg
+ codecs.
+ We add an extra bias when computing granule positions for new streams.*/
+ _state->granpos_bias=TH_VERSION_CHECK(_info,3,2,1);
+ return 0;
+}
+
+void oc_state_clear(oc_theora_state *_state){
+ oc_state_ref_bufs_clear(_state);
+ oc_state_frarray_clear(_state);
+}
+
+
+/*Duplicates the pixels on the border of the image plane out into the
+ surrounding padding for use by unrestricted motion vectors.
+ This function only adds the left and right borders, and only for the fragment
+ rows specified.
+ _refi: The index of the reference buffer to pad.
+ _pli: The color plane.
+ _y0: The Y coordinate of the first row to pad.
+ _yend: The Y coordinate of the row to stop padding at.*/
+void oc_state_borders_fill_rows(oc_theora_state *_state,int _refi,int _pli,
+ int _y0,int _yend){
+ th_img_plane *iplane;
+ unsigned char *apix;
+ unsigned char *bpix;
+ unsigned char *epix;
+ int stride;
+ int hpadding;
+ hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
+ iplane=_state->ref_frame_bufs[_refi]+_pli;
+ stride=iplane->stride;
+ apix=iplane->data+_y0*(ptrdiff_t)stride;
+ bpix=apix+iplane->width-1;
+ epix=iplane->data+_yend*(ptrdiff_t)stride;
+ /*Note the use of != instead of <, which allows the stride to be negative.*/
+ while(apix!=epix){
+ memset(apix-hpadding,apix[0],hpadding);
+ memset(bpix+1,bpix[0],hpadding);
+ apix+=stride;
+ bpix+=stride;
+ }
+}
+
+/*Duplicates the pixels on the border of the image plane out into the
+ surrounding padding for use by unrestricted motion vectors.
+ This function only adds the top and bottom borders, and must be called after
+ the left and right borders are added.
+ _refi: The index of the reference buffer to pad.
+ _pli: The color plane.*/
+void oc_state_borders_fill_caps(oc_theora_state *_state,int _refi,int _pli){
+ th_img_plane *iplane;
+ unsigned char *apix;
+ unsigned char *bpix;
+ unsigned char *epix;
+ int stride;
+ int hpadding;
+ int vpadding;
+ int fullw;
+ hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
+ vpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&2));
+ iplane=_state->ref_frame_bufs[_refi]+_pli;
+ stride=iplane->stride;
+ fullw=iplane->width+(hpadding<<1);
+ apix=iplane->data-hpadding;
+ bpix=iplane->data+(iplane->height-1)*(ptrdiff_t)stride-hpadding;
+ epix=apix-stride*(ptrdiff_t)vpadding;
+ while(apix!=epix){
+ memcpy(apix-stride,apix,fullw);
+ memcpy(bpix+stride,bpix,fullw);
+ apix-=stride;
+ bpix+=stride;
+ }
+}
+
+/*Duplicates the pixels on the border of the given reference image out into
+ the surrounding padding for use by unrestricted motion vectors.
+ _state: The context containing the reference buffers.
+ _refi: The index of the reference buffer to pad.*/
+void oc_state_borders_fill(oc_theora_state *_state,int _refi){
+ int pli;
+ for(pli=0;pli<3;pli++){
+ oc_state_borders_fill_rows(_state,_refi,pli,0,
+ _state->ref_frame_bufs[_refi][pli].height);
+ oc_state_borders_fill_caps(_state,_refi,pli);
+ }
+}
+
+/*Determines the offsets in an image buffer to use for motion compensation.
+ _state: The Theora state the offsets are to be computed with.
+ _offsets: Returns the offset for the buffer(s).
+ _offsets[0] is always set.
+ _offsets[1] is set if the motion vector has non-zero fractional
+ components.
+ _pli: The color plane index.
+ _mv: The motion vector.
+ Return: The number of offsets returned: 1 or 2.*/
+int oc_state_get_mv_offsets(const oc_theora_state *_state,int _offsets[2],
+ int _pli,oc_mv _mv){
+ /*Here is a brief description of how Theora handles motion vectors:
+ Motion vector components are specified to half-pixel accuracy in
+ undecimated directions of each plane, and quarter-pixel accuracy in
+ decimated directions.
+ Integer parts are extracted by dividing (not shifting) by the
+ appropriate amount, with truncation towards zero.
+ These integer values are used to calculate the first offset.
+
+ If either of the fractional parts are non-zero, then a second offset is
+ computed.
+ No third or fourth offsets are computed, even if both components have
+ non-zero fractional parts.
+ The second offset is computed by dividing (not shifting) by the
+ appropriate amount, always truncating _away_ from zero.*/
+#if 0
+ /*This version of the code doesn't use any tables, but is slower.*/
+ int ystride;
+ int xprec;
+ int yprec;
+ int xfrac;
+ int yfrac;
+ int offs;
+ int dx;
+ int dy;
+ ystride=_state->ref_ystride[_pli];
+ /*These two variables decide whether we are in half- or quarter-pixel
+ precision in each component.*/
+ xprec=1+(_pli!=0&&!(_state->info.pixel_fmt&1));
+ yprec=1+(_pli!=0&&!(_state->info.pixel_fmt&2));
+ dx=OC_MV_X(_mv);
+ dy=OC_MV_Y(_mv);
+ /*These two variables are either 0 if all the fractional bits are zero or -1
+ if any of them are non-zero.*/
+ xfrac=OC_SIGNMASK(-(dx&(xprec|1)));
+ yfrac=OC_SIGNMASK(-(dy&(yprec|1)));
+ offs=(dx>>xprec)+(dy>>yprec)*ystride;
+ if(xfrac||yfrac){
+ int xmask;
+ int ymask;
+ xmask=OC_SIGNMASK(dx);
+ ymask=OC_SIGNMASK(dy);
+ yfrac&=ystride;
+ _offsets[0]=offs-(xfrac&xmask)+(yfrac&ymask);
+ _offsets[1]=offs-(xfrac&~xmask)+(yfrac&~ymask);
+ return 2;
+ }
+ else{
+ _offsets[0]=offs;
+ return 1;
+ }
+#else
+ /*Using tables simplifies the code, and there's enough arithmetic to hide the
+ latencies of the memory references.*/
+ static const signed char OC_MVMAP[2][64]={
+ {
+ -15,-15,-14,-14,-13,-13,-12,-12,-11,-11,-10,-10, -9, -9, -8,
+ -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1, 0,
+ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
+ 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15
+ },
+ {
+ -7, -7, -7, -7, -6, -6, -6, -6, -5, -5, -5, -5, -4, -4, -4,
+ -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1, 0, 0, 0,
+ 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
+ 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7
+ }
+ };
+ static const signed char OC_MVMAP2[2][64]={
+ {
+ -1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1,
+ 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1,
+ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
+ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
+ },
+ {
+ -1,-1,-1, 0,-1,-1,-1, 0,-1,-1,-1, 0,-1,-1,-1,
+ 0,-1,-1,-1, 0,-1,-1,-1, 0,-1,-1,-1, 0,-1,-1,-1,
+ 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
+ 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
+ }
+ };
+ int ystride;
+ int qpx;
+ int qpy;
+ int mx;
+ int my;
+ int mx2;
+ int my2;
+ int offs;
+ int dx;
+ int dy;
+ ystride=_state->ref_ystride[_pli];
+ qpy=_pli!=0&&!(_state->info.pixel_fmt&2);
+ dx=OC_MV_X(_mv);
+ dy=OC_MV_Y(_mv);
+ my=OC_MVMAP[qpy][dy+31];
+ my2=OC_MVMAP2[qpy][dy+31];
+ qpx=_pli!=0&&!(_state->info.pixel_fmt&1);
+ mx=OC_MVMAP[qpx][dx+31];
+ mx2=OC_MVMAP2[qpx][dx+31];
+ offs=my*ystride+mx;
+ if(mx2||my2){
+ _offsets[1]=offs+my2*ystride+mx2;
+ _offsets[0]=offs;
+ return 2;
+ }
+ _offsets[0]=offs;
+ return 1;
+#endif
+}
+
+void oc_state_frag_recon_c(const oc_theora_state *_state,ptrdiff_t _fragi,
+ int _pli,ogg_int16_t _dct_coeffs[128],int _last_zzi,ogg_uint16_t _dc_quant){
+ unsigned char *dst;
+ ptrdiff_t frag_buf_off;
+ int ystride;
+ int refi;
+ /*Apply the inverse transform.*/
+ /*Special case only having a DC component.*/
+ if(_last_zzi<2){
+ ogg_int16_t p;
+ int ci;
+ /*We round this dequant product (and not any of the others) because there's
+ no iDCT rounding.*/
+ p=(ogg_int16_t)(_dct_coeffs[0]*(ogg_int32_t)_dc_quant+15>>5);
+ /*LOOP VECTORIZES.*/
+ for(ci=0;ci<64;ci++)_dct_coeffs[64+ci]=p;
+ }
+ else{
+ /*First, dequantize the DC coefficient.*/
+ _dct_coeffs[0]=(ogg_int16_t)(_dct_coeffs[0]*(int)_dc_quant);
+ oc_idct8x8(_state,_dct_coeffs+64,_dct_coeffs,_last_zzi);
+ }
+ /*Fill in the target buffer.*/
+ frag_buf_off=_state->frag_buf_offs[_fragi];
+ refi=_state->frags[_fragi].refi;
+ ystride=_state->ref_ystride[_pli];
+ dst=_state->ref_frame_data[OC_FRAME_SELF]+frag_buf_off;
+ if(refi==OC_FRAME_SELF)oc_frag_recon_intra(_state,dst,ystride,_dct_coeffs+64);
+ else{
+ const unsigned char *ref;
+ int mvoffsets[2];
+ ref=_state->ref_frame_data[refi]+frag_buf_off;
+ if(oc_state_get_mv_offsets(_state,mvoffsets,_pli,
+ _state->frag_mvs[_fragi])>1){
+ oc_frag_recon_inter2(_state,
+ dst,ref+mvoffsets[0],ref+mvoffsets[1],ystride,_dct_coeffs+64);
+ }
+ else{
+ oc_frag_recon_inter(_state,dst,ref+mvoffsets[0],ystride,_dct_coeffs+64);
+ }
+ }
+}
+
+static void loop_filter_h(unsigned char *_pix,int _ystride,signed char *_bv){
+ int y;
+ _pix-=2;
+ for(y=0;y<8;y++){
+ int f;
+ f=_pix[0]-_pix[3]+3*(_pix[2]-_pix[1]);
+ /*The _bv array is used to compute the function
+ f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
+ where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
+ f=*(_bv+(f+4>>3));
+ _pix[1]=OC_CLAMP255(_pix[1]+f);
+ _pix[2]=OC_CLAMP255(_pix[2]-f);
+ _pix+=_ystride;
+ }
+}
+
+static void loop_filter_v(unsigned char *_pix,int _ystride,signed char *_bv){
+ int x;
+ _pix-=_ystride*2;
+ for(x=0;x<8;x++){
+ int f;
+ f=_pix[x]-_pix[_ystride*3+x]+3*(_pix[_ystride*2+x]-_pix[_ystride+x]);
+ /*The _bv array is used to compute the function
+ f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
+ where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
+ f=*(_bv+(f+4>>3));
+ _pix[_ystride+x]=OC_CLAMP255(_pix[_ystride+x]+f);
+ _pix[_ystride*2+x]=OC_CLAMP255(_pix[_ystride*2+x]-f);
+ }
+}
+
+/*Initialize the bounding values array used by the loop filter.
+ _bv: Storage for the array.
+ _flimit: The filter limit as defined in Section 7.10 of the spec.*/
+void oc_loop_filter_init_c(signed char _bv[256],int _flimit){
+ int i;
+ memset(_bv,0,sizeof(_bv[0])*256);
+ for(i=0;i<_flimit;i++){
+ if(127-i-_flimit>=0)_bv[127-i-_flimit]=(signed char)(i-_flimit);
+ _bv[127-i]=(signed char)(-i);
+ _bv[127+i]=(signed char)(i);
+ if(127+i+_flimit<256)_bv[127+i+_flimit]=(signed char)(_flimit-i);
+ }
+}
+
+/*Apply the loop filter to a given set of fragment rows in the given plane.
+ The filter may be run on the bottom edge, affecting pixels in the next row of
+ fragments, so this row also needs to be available.
+ _bv: The bounding values array.
+ _refi: The index of the frame buffer to filter.
+ _pli: The color plane to filter.
+ _fragy0: The Y coordinate of the first fragment row to filter.
+ _fragy_end: The Y coordinate of the fragment row to stop filtering at.*/
+void oc_state_loop_filter_frag_rows_c(const oc_theora_state *_state,
+ signed char *_bv,int _refi,int _pli,int _fragy0,int _fragy_end){
+ const oc_fragment_plane *fplane;
+ const oc_fragment *frags;
+ const ptrdiff_t *frag_buf_offs;
+ unsigned char *ref_frame_data;
+ ptrdiff_t fragi_top;
+ ptrdiff_t fragi_bot;
+ ptrdiff_t fragi0;
+ ptrdiff_t fragi0_end;
+ int ystride;
+ int nhfrags;
+ _bv+=127;
+ fplane=_state->fplanes+_pli;
+ nhfrags=fplane->nhfrags;
+ fragi_top=fplane->froffset;
+ fragi_bot=fragi_top+fplane->nfrags;
+ fragi0=fragi_top+_fragy0*(ptrdiff_t)nhfrags;
+ fragi0_end=fragi_top+_fragy_end*(ptrdiff_t)nhfrags;
+ ystride=_state->ref_ystride[_pli];
+ frags=_state->frags;
+ frag_buf_offs=_state->frag_buf_offs;
+ ref_frame_data=_state->ref_frame_data[_refi];
+ /*The following loops are constructed somewhat non-intuitively on purpose.
+ The main idea is: if a block boundary has at least one coded fragment on
+ it, the filter is applied to it.
+ However, the order that the filters are applied in matters, and VP3 chose
+ the somewhat strange ordering used below.*/
+ while(fragi0<fragi0_end){
+ ptrdiff_t fragi;
+ ptrdiff_t fragi_end;
+ fragi=fragi0;
+ fragi_end=fragi+nhfrags;
+ while(fragi<fragi_end){
+ if(frags[fragi].coded){
+ unsigned char *ref;
+ ref=ref_frame_data+frag_buf_offs[fragi];
+ if(fragi>fragi0)loop_filter_h(ref,ystride,_bv);
+ if(fragi0>fragi_top)loop_filter_v(ref,ystride,_bv);
+ if(fragi+1<fragi_end&&!frags[fragi+1].coded){
+ loop_filter_h(ref+8,ystride,_bv);
+ }
+ if(fragi+nhfrags<fragi_bot&&!frags[fragi+nhfrags].coded){
+ loop_filter_v(ref+(ystride<<3),ystride,_bv);
+ }
+ }
+ fragi++;
+ }
+ fragi0+=nhfrags;
+ }
+}
+
+#if defined(OC_DUMP_IMAGES)
+int oc_state_dump_frame(const oc_theora_state *_state,int _frame,
+ const char *_suf){
+ /*Dump a PNG of the reconstructed image.*/
+ png_structp png;
+ png_infop info;
+ png_bytep *image;
+ FILE *fp;
+ char fname[16];
+ unsigned char *y_row;
+ unsigned char *u_row;
+ unsigned char *v_row;
+ unsigned char *y;
+ unsigned char *u;
+ unsigned char *v;
+ ogg_int64_t iframe;
+ ogg_int64_t pframe;
+ int y_stride;
+ int u_stride;
+ int v_stride;
+ int framei;
+ int width;
+ int height;
+ int imgi;
+ int imgj;
+ width=_state->info.frame_width;
+ height=_state->info.frame_height;
+ iframe=_state->granpos>>_state->info.keyframe_granule_shift;
+ pframe=_state->granpos-(iframe<<_state->info.keyframe_granule_shift);
+ sprintf(fname,"%08i%s.png",(int)(iframe+pframe),_suf);
+ fp=fopen(fname,"wb");
+ if(fp==NULL)return TH_EFAULT;
+ image=(png_bytep *)oc_malloc_2d(height,6*width,sizeof(**image));
+ if(image==NULL){
+ fclose(fp);
+ return TH_EFAULT;
+ }
+ png=png_create_write_struct(PNG_LIBPNG_VER_STRING,NULL,NULL,NULL);
+ if(png==NULL){
+ oc_free_2d(image);
+ fclose(fp);
+ return TH_EFAULT;
+ }
+ info=png_create_info_struct(png);
+ if(info==NULL){
+ png_destroy_write_struct(&png,NULL);
+ oc_free_2d(image);
+ fclose(fp);
+ return TH_EFAULT;
+ }
+ if(setjmp(png_jmpbuf(png))){
+ png_destroy_write_struct(&png,&info);
+ oc_free_2d(image);
+ fclose(fp);
+ return TH_EFAULT;
+ }
+ framei=_state->ref_frame_idx[_frame];
+ y_row=_state->ref_frame_bufs[framei][0].data;
+ u_row=_state->ref_frame_bufs[framei][1].data;
+ v_row=_state->ref_frame_bufs[framei][2].data;
+ y_stride=_state->ref_frame_bufs[framei][0].stride;
+ u_stride=_state->ref_frame_bufs[framei][1].stride;
+ v_stride=_state->ref_frame_bufs[framei][2].stride;
+ /*Chroma up-sampling is just done with a box filter.
+ This is very likely what will actually be used in practice on a real
+ display, and also removes one more layer to search in for the source of
+ artifacts.
+ As an added bonus, it's dead simple.*/
+ for(imgi=height;imgi-->0;){
+ int dc;
+ y=y_row;
+ u=u_row;
+ v=v_row;
+ for(imgj=0;imgj<6*width;){
+ float yval;
+ float uval;
+ float vval;
+ unsigned rval;
+ unsigned gval;
+ unsigned bval;
+ /*This is intentionally slow and very accurate.*/
+ yval=(*y-16)*(1.0F/219);
+ uval=(*u-128)*(2*(1-0.114F)/224);
+ vval=(*v-128)*(2*(1-0.299F)/224);
+ rval=OC_CLAMPI(0,(int)(65535*(yval+vval)+0.5F),65535);
+ gval=OC_CLAMPI(0,(int)(65535*(
+ yval-uval*(0.114F/0.587F)-vval*(0.299F/0.587F))+0.5F),65535);
+ bval=OC_CLAMPI(0,(int)(65535*(yval+uval)+0.5F),65535);
+ image[imgi][imgj++]=(unsigned char)(rval>>8);
+ image[imgi][imgj++]=(unsigned char)(rval&0xFF);
+ image[imgi][imgj++]=(unsigned char)(gval>>8);
+ image[imgi][imgj++]=(unsigned char)(gval&0xFF);
+ image[imgi][imgj++]=(unsigned char)(bval>>8);
+ image[imgi][imgj++]=(unsigned char)(bval&0xFF);
+ dc=(y-y_row&1)|(_state->info.pixel_fmt&1);
+ y++;
+ u+=dc;
+ v+=dc;
+ }
+ dc=-((height-1-imgi&1)|_state->info.pixel_fmt>>1);
+ y_row+=y_stride;
+ u_row+=dc&u_stride;
+ v_row+=dc&v_stride;
+ }
+ png_init_io(png,fp);
+ png_set_compression_level(png,Z_BEST_COMPRESSION);
+ png_set_IHDR(png,info,width,height,16,PNG_COLOR_TYPE_RGB,
+ PNG_INTERLACE_NONE,PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
+ switch(_state->info.colorspace){
+ case TH_CS_ITU_REC_470M:{
+ png_set_gAMA(png,info,2.2);
+ png_set_cHRM_fixed(png,info,31006,31616,
+ 67000,32000,21000,71000,14000,8000);
+ }break;
+ case TH_CS_ITU_REC_470BG:{
+ png_set_gAMA(png,info,2.67);
+ png_set_cHRM_fixed(png,info,31271,32902,
+ 64000,33000,29000,60000,15000,6000);
+ }break;
+ default:break;
+ }
+ png_set_pHYs(png,info,_state->info.aspect_numerator,
+ _state->info.aspect_denominator,0);
+ png_set_rows(png,info,image);
+ png_write_png(png,info,PNG_TRANSFORM_IDENTITY,NULL);
+ png_write_end(png,info);
+ png_destroy_write_struct(&png,&info);
+ oc_free_2d(image);
+ fclose(fp);
+ return 0;
+}
+#endif
+
+
+
+ogg_int64_t th_granule_frame(void *_encdec,ogg_int64_t _granpos){
+ oc_theora_state *state;
+ state=(oc_theora_state *)_encdec;
+ if(_granpos>=0){
+ ogg_int64_t iframe;
+ ogg_int64_t pframe;
+ iframe=_granpos>>state->info.keyframe_granule_shift;
+ pframe=_granpos-(iframe<<state->info.keyframe_granule_shift);
+ /*3.2.0 streams store the frame index in the granule position.
+ 3.2.1 and later store the frame count.
+ We return the index, so adjust the value if we have a 3.2.1 or later
+ stream.*/
+ return iframe+pframe-TH_VERSION_CHECK(&state->info,3,2,1);
+ }
+ return -1;
+}
+
+double th_granule_time(void *_encdec,ogg_int64_t _granpos){
+ oc_theora_state *state;
+ state=(oc_theora_state *)_encdec;
+ if(_granpos>=0){
+ return (th_granule_frame(_encdec, _granpos)+1)*(
+ (double)state->info.fps_denominator/state->info.fps_numerator);
+ }
+ return -1;
+}