summaryrefslogtreecommitdiffstats
path: root/security/nss/gtests/pk11_gtest/pk11_aes_gcm_unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/gtests/pk11_gtest/pk11_aes_gcm_unittest.cc')
-rw-r--r--security/nss/gtests/pk11_gtest/pk11_aes_gcm_unittest.cc428
1 files changed, 428 insertions, 0 deletions
diff --git a/security/nss/gtests/pk11_gtest/pk11_aes_gcm_unittest.cc b/security/nss/gtests/pk11_gtest/pk11_aes_gcm_unittest.cc
new file mode 100644
index 0000000000..211da288d6
--- /dev/null
+++ b/security/nss/gtests/pk11_gtest/pk11_aes_gcm_unittest.cc
@@ -0,0 +1,428 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this file,
+ * You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include <memory>
+#include "nss.h"
+#include "pk11pub.h"
+#include "pk11priv.h"
+#include "secerr.h"
+#include "sechash.h"
+
+#include "nss_scoped_ptrs.h"
+
+#include "testvectors/gcm-vectors.h"
+#include "gtest/gtest.h"
+#include "util.h"
+
+namespace nss_test {
+
+class Pkcs11AesGcmTest : public ::testing::TestWithParam<AesGcmKatValue> {
+ protected:
+ void RunTest(const AesGcmKatValue vec) {
+ std::vector<uint8_t> key = hex_string_to_bytes(vec.key);
+ std::vector<uint8_t> iv = hex_string_to_bytes(vec.iv);
+ std::vector<uint8_t> plaintext = hex_string_to_bytes(vec.plaintext);
+ std::vector<uint8_t> aad = hex_string_to_bytes(vec.additional_data);
+ std::vector<uint8_t> result = hex_string_to_bytes(vec.result);
+ bool invalid_ct = vec.invalid_ct;
+ bool invalid_iv = vec.invalid_iv;
+ std::string msg = "Test #" + std::to_string(vec.id) + " failed";
+ // Ignore GHASH-only vectors.
+ if (key.empty()) {
+ return;
+ }
+
+ // Prepare AEAD params.
+ CK_NSS_GCM_PARAMS gcm_params;
+ gcm_params.pIv = iv.data();
+ gcm_params.ulIvLen = iv.size();
+ gcm_params.pAAD = aad.data();
+ gcm_params.ulAADLen = aad.size();
+ gcm_params.ulTagBits = 128;
+
+ SECItem params = {siBuffer, reinterpret_cast<unsigned char*>(&gcm_params),
+ sizeof(gcm_params)};
+
+ ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
+ SECItem key_item = {siBuffer, key.data(),
+ static_cast<unsigned int>(key.size())};
+
+ // Import key.
+ ScopedPK11SymKey sym_key(PK11_ImportSymKey(
+ slot.get(), mech, PK11_OriginUnwrap, CKA_ENCRYPT, &key_item, nullptr));
+ ASSERT_TRUE(!!sym_key) << msg;
+
+ // Encrypt with bogus parameters.
+ unsigned int output_len = 0;
+ std::vector<uint8_t> output(plaintext.size() + gcm_params.ulTagBits / 8);
+ // "maxout" must be at least "inlen + tagBytes", or, in this case:
+ // "output.size()" must be at least "plaintext.size() + tagBytes"
+ gcm_params.ulTagBits = 128;
+ SECStatus rv =
+ PK11_Encrypt(sym_key.get(), mech, &params, output.data(), &output_len,
+ output.size() - 10, plaintext.data(), plaintext.size());
+ EXPECT_EQ(SECFailure, rv);
+ EXPECT_EQ(0U, output_len);
+
+ // The valid values for tag size in AES_GCM are:
+ // 32, 64, 96, 104, 112, 120 and 128.
+ gcm_params.ulTagBits = 110;
+ rv = PK11_Encrypt(sym_key.get(), mech, &params, output.data(), &output_len,
+ output.size(), plaintext.data(), plaintext.size());
+ EXPECT_EQ(SECFailure, rv);
+ EXPECT_EQ(0U, output_len);
+
+ // Encrypt.
+ gcm_params.ulTagBits = 128;
+ rv = PK11_Encrypt(sym_key.get(), mech, &params, output.data(), &output_len,
+ output.size(), plaintext.data(), plaintext.size());
+ if (invalid_iv) {
+ EXPECT_EQ(SECFailure, rv) << msg;
+ EXPECT_EQ(0U, output_len);
+ return;
+ }
+ EXPECT_EQ(SECSuccess, rv) << msg;
+
+ ASSERT_EQ(output_len, output.size()) << msg;
+
+ // Check ciphertext and tag.
+ if (invalid_ct) {
+ EXPECT_NE(result, output) << msg;
+ } else {
+ EXPECT_EQ(result, output) << msg;
+ }
+
+ // Decrypt.
+ unsigned int decrypted_len = 0;
+ // The PK11 AES API is stupid, it expects an explicit IV and thus wants
+ // a block more of available output memory.
+ std::vector<uint8_t> decrypted(output.size());
+ rv = PK11_Decrypt(sym_key.get(), mech, &params, decrypted.data(),
+ &decrypted_len, decrypted.size(), output.data(),
+ output_len);
+ EXPECT_EQ(SECSuccess, rv) << msg;
+ ASSERT_EQ(decrypted_len, plaintext.size()) << msg;
+
+ // Check the plaintext.
+ EXPECT_EQ(plaintext,
+ std::vector<uint8_t>(decrypted.begin(),
+ decrypted.begin() + decrypted_len))
+ << msg;
+ }
+
+ SECStatus EncryptWithIV(std::vector<uint8_t>& iv) {
+ // Generate a random key.
+ ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
+ ScopedPK11SymKey sym_key(
+ PK11_KeyGen(slot.get(), mech, nullptr, 16, nullptr));
+ EXPECT_TRUE(!!sym_key);
+
+ std::vector<uint8_t> data(17);
+ std::vector<uint8_t> output(33);
+ std::vector<uint8_t> aad(0);
+
+ // Prepare AEAD params.
+ CK_NSS_GCM_PARAMS gcm_params;
+ gcm_params.pIv = iv.data();
+ gcm_params.ulIvLen = iv.size();
+ gcm_params.pAAD = aad.data();
+ gcm_params.ulAADLen = aad.size();
+ gcm_params.ulTagBits = 128;
+
+ SECItem params = {siBuffer, reinterpret_cast<unsigned char*>(&gcm_params),
+ sizeof(gcm_params)};
+
+ // Try to encrypt.
+ unsigned int output_len = 0;
+ return PK11_Encrypt(sym_key.get(), mech, &params, output.data(),
+ &output_len, output.size(), data.data(), data.size());
+ }
+
+ SECStatus MessageInterfaceTest(int iterations, int ivFixedBits,
+ CK_GENERATOR_FUNCTION ivGen,
+ PRBool separateTag) {
+ // Generate a random key.
+ ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
+ EXPECT_NE(nullptr, slot);
+ ScopedPK11SymKey sym_key(
+ PK11_KeyGen(slot.get(), mech, nullptr, 16, nullptr));
+ EXPECT_NE(nullptr, sym_key);
+
+ const int kTagSize = 16;
+ int cipher_simulated_size;
+ int output_len_message = 0;
+ int output_len_simulated = 0;
+ unsigned int output_len_v24 = 0;
+
+ std::vector<uint8_t> plainIn(17);
+ std::vector<uint8_t> plainOut_message(17);
+ std::vector<uint8_t> plainOut_simulated(17);
+ std::vector<uint8_t> plainOut_v24(17);
+ std::vector<uint8_t> iv(16);
+ std::vector<uint8_t> iv_init(16);
+ std::vector<uint8_t> iv_simulated(16);
+ std::vector<uint8_t> cipher_message(33);
+ std::vector<uint8_t> cipher_simulated(33);
+ std::vector<uint8_t> cipher_v24(33);
+ std::vector<uint8_t> aad(16);
+ std::vector<uint8_t> tag_message(16);
+ std::vector<uint8_t> tag_simulated(16);
+
+ // Prepare AEAD v2.40 params.
+ CK_GCM_PARAMS_V3 gcm_params;
+ gcm_params.pIv = iv.data();
+ gcm_params.ulIvLen = iv.size();
+ gcm_params.ulIvBits = iv.size() * 8;
+ gcm_params.pAAD = aad.data();
+ gcm_params.ulAADLen = aad.size();
+ gcm_params.ulTagBits = kTagSize * 8;
+
+ // Prepare AEAD MESSAGE params.
+ CK_GCM_MESSAGE_PARAMS gcm_message_params;
+ gcm_message_params.pIv = iv.data();
+ gcm_message_params.ulIvLen = iv.size();
+ gcm_message_params.ulTagBits = kTagSize * 8;
+ gcm_message_params.ulIvFixedBits = ivFixedBits;
+ gcm_message_params.ivGenerator = ivGen;
+ if (separateTag) {
+ gcm_message_params.pTag = tag_message.data();
+ } else {
+ gcm_message_params.pTag = cipher_message.data() + plainIn.size();
+ }
+
+ // Prepare AEAD MESSAGE params for simulated case
+ CK_GCM_MESSAGE_PARAMS gcm_simulated_params;
+ gcm_simulated_params = gcm_message_params;
+ if (separateTag) {
+ // The simulated case, we have to allocate temp bufs for separate
+ // tags, make sure that works in both the encrypt and the decrypt
+ // cases.
+ gcm_simulated_params.pTag = tag_simulated.data();
+ cipher_simulated_size = cipher_simulated.size() - kTagSize;
+ } else {
+ gcm_simulated_params.pTag = cipher_simulated.data() + plainIn.size();
+ cipher_simulated_size = cipher_simulated.size();
+ }
+ /* when we are using CKG_GENERATE_RANDOM, don't independently generate
+ * the IV in the simulated case. Since the IV's would be random, none of
+ * the generated results would be the same. Just use the IV we generated
+ * in message interface */
+ if (ivGen == CKG_GENERATE_RANDOM) {
+ gcm_simulated_params.ivGenerator = CKG_NO_GENERATE;
+ } else {
+ gcm_simulated_params.pIv = iv_simulated.data();
+ }
+
+ SECItem params = {siBuffer, reinterpret_cast<unsigned char*>(&gcm_params),
+ sizeof(gcm_params)};
+ SECItem empty = {siBuffer, NULL, 0};
+
+ // initialize our plain text, IV and aad.
+ EXPECT_EQ(PK11_GenerateRandom(plainIn.data(), plainIn.size()), SECSuccess);
+ EXPECT_EQ(PK11_GenerateRandom(aad.data(), aad.size()), SECSuccess);
+ EXPECT_EQ(PK11_GenerateRandom(iv_init.data(), iv_init.size()), SECSuccess);
+ iv_simulated = iv_init; // vector assignment actually copies data
+ iv = iv_init;
+
+ // Initialize message encrypt context
+ ScopedPK11Context encrypt_message_context(PK11_CreateContextBySymKey(
+ mech, CKA_NSS_MESSAGE | CKA_ENCRYPT, sym_key.get(), &empty));
+ EXPECT_NE(nullptr, encrypt_message_context);
+ if (!encrypt_message_context) {
+ return SECFailure;
+ }
+ EXPECT_FALSE(_PK11_ContextGetAEADSimulation(encrypt_message_context.get()));
+
+ // Initialize simulated encrypt context
+ ScopedPK11Context encrypt_simulated_context(PK11_CreateContextBySymKey(
+ mech, CKA_NSS_MESSAGE | CKA_ENCRYPT, sym_key.get(), &empty));
+ EXPECT_NE(nullptr, encrypt_simulated_context);
+ if (!encrypt_simulated_context) {
+ return SECFailure;
+ }
+ EXPECT_EQ(SECSuccess,
+ _PK11_ContextSetAEADSimulation(encrypt_simulated_context.get()));
+
+ // Initialize message decrypt context
+ ScopedPK11Context decrypt_message_context(PK11_CreateContextBySymKey(
+ mech, CKA_NSS_MESSAGE | CKA_DECRYPT, sym_key.get(), &empty));
+ EXPECT_NE(nullptr, decrypt_message_context);
+ if (!decrypt_message_context) {
+ return SECFailure;
+ }
+ EXPECT_FALSE(_PK11_ContextGetAEADSimulation(decrypt_message_context.get()));
+
+ // Initialize simulated decrypt context
+ ScopedPK11Context decrypt_simulated_context(PK11_CreateContextBySymKey(
+ mech, CKA_NSS_MESSAGE | CKA_DECRYPT, sym_key.get(), &empty));
+ EXPECT_NE(nullptr, decrypt_simulated_context);
+ if (!decrypt_simulated_context) {
+ return SECFailure;
+ }
+ EXPECT_EQ(SECSuccess,
+ _PK11_ContextSetAEADSimulation(decrypt_simulated_context.get()));
+
+ // Now walk down our iterations. Each method of calculating the operation
+ // should agree at each step.
+ for (int i = 0; i < iterations; i++) {
+ SECStatus rv;
+ /* recopy the initial vector each time */
+ iv_simulated = iv_init;
+ iv = iv_init;
+
+ // First encrypt. We don't test the error code here, because
+ // we may be testing error conditions with this function (namely
+ // do we fail if we try to generate to many Random IV's).
+ rv =
+ PK11_AEADRawOp(encrypt_message_context.get(), &gcm_message_params,
+ sizeof(gcm_message_params), aad.data(), aad.size(),
+ cipher_message.data(), &output_len_message,
+ cipher_message.size(), plainIn.data(), plainIn.size());
+ if (rv != SECSuccess) {
+ return rv;
+ }
+ rv =
+ PK11_AEADRawOp(encrypt_simulated_context.get(), &gcm_simulated_params,
+ sizeof(gcm_simulated_params), aad.data(), aad.size(),
+ cipher_simulated.data(), &output_len_simulated,
+ cipher_simulated_size, plainIn.data(), plainIn.size());
+ if (rv != SECSuccess) {
+ return rv;
+ }
+ // make sure simulated and message is the same
+ EXPECT_EQ(output_len_message, output_len_simulated);
+ EXPECT_EQ(0, memcmp(cipher_message.data(), cipher_simulated.data(),
+ output_len_message));
+ EXPECT_EQ(0, memcmp(gcm_message_params.pTag, gcm_simulated_params.pTag,
+ kTagSize));
+ EXPECT_EQ(0, memcmp(iv.data(), gcm_simulated_params.pIv, iv.size()));
+ // make sure v2.40 is the same. it inherits the generated iv from
+ // encrypt_message_context.
+ EXPECT_EQ(SECSuccess,
+ PK11_Encrypt(sym_key.get(), mech, &params, cipher_v24.data(),
+ &output_len_v24, cipher_v24.size(), plainIn.data(),
+ plainIn.size()));
+ EXPECT_EQ(output_len_message, (int)output_len_v24 - kTagSize);
+ EXPECT_EQ(0, memcmp(cipher_message.data(), cipher_v24.data(),
+ output_len_message));
+ EXPECT_EQ(0, memcmp(gcm_message_params.pTag,
+ cipher_v24.data() + output_len_message, kTagSize));
+ // now make sure we can decrypt
+ EXPECT_EQ(SECSuccess,
+ PK11_AEADRawOp(decrypt_message_context.get(),
+ &gcm_message_params, sizeof(gcm_message_params),
+ aad.data(), aad.size(), plainOut_message.data(),
+ &output_len_message, plainOut_message.size(),
+ cipher_message.data(), output_len_message));
+ EXPECT_EQ(output_len_message, (int)plainIn.size());
+ EXPECT_EQ(
+ 0, memcmp(plainOut_message.data(), plainIn.data(), plainIn.size()));
+ EXPECT_EQ(
+ SECSuccess,
+ PK11_AEADRawOp(decrypt_simulated_context.get(), &gcm_simulated_params,
+ sizeof(gcm_simulated_params), aad.data(), aad.size(),
+ plainOut_simulated.data(), &output_len_simulated,
+ plainOut_simulated.size(), cipher_message.data(),
+ output_len_simulated));
+ EXPECT_EQ(output_len_simulated, (int)plainIn.size());
+ EXPECT_EQ(
+ 0, memcmp(plainOut_simulated.data(), plainIn.data(), plainIn.size()));
+ if (separateTag) {
+ // in the separateTag case, we need to copy the tag back to the
+ // end of the cipher_message.data() before using the v2.4 interface
+ memcpy(cipher_message.data() + output_len_message,
+ gcm_message_params.pTag, kTagSize);
+ }
+ EXPECT_EQ(SECSuccess,
+ PK11_Decrypt(sym_key.get(), mech, &params, plainOut_v24.data(),
+ &output_len_v24, plainOut_v24.size(),
+ cipher_message.data(), output_len_v24));
+ EXPECT_EQ(output_len_v24, plainIn.size());
+ EXPECT_EQ(0, memcmp(plainOut_v24.data(), plainIn.data(), plainIn.size()));
+ }
+ return SECSuccess;
+ }
+
+ const CK_MECHANISM_TYPE mech = CKM_AES_GCM;
+};
+
+TEST_P(Pkcs11AesGcmTest, TestVectors) { RunTest(GetParam()); }
+
+INSTANTIATE_TEST_SUITE_P(NISTTestVector, Pkcs11AesGcmTest,
+ ::testing::ValuesIn(kGcmKatValues));
+
+INSTANTIATE_TEST_SUITE_P(WycheproofTestVector, Pkcs11AesGcmTest,
+ ::testing::ValuesIn(kGcmWycheproofVectors));
+
+TEST_F(Pkcs11AesGcmTest, ZeroLengthIV) {
+ std::vector<uint8_t> iv(0);
+ EXPECT_EQ(SECFailure, EncryptWithIV(iv));
+}
+
+TEST_F(Pkcs11AesGcmTest, AllZeroIV) {
+ std::vector<uint8_t> iv(16, 0);
+ EXPECT_EQ(SECSuccess, EncryptWithIV(iv));
+}
+
+TEST_F(Pkcs11AesGcmTest, TwelveByteZeroIV) {
+ std::vector<uint8_t> iv(12, 0);
+ EXPECT_EQ(SECSuccess, EncryptWithIV(iv));
+}
+
+// basic message interface it's the most common configuration
+TEST_F(Pkcs11AesGcmTest, MessageInterfaceBasic) {
+ EXPECT_EQ(SECSuccess,
+ MessageInterfaceTest(16, 0, CKG_GENERATE_COUNTER, PR_FALSE));
+}
+
+// basic interface, but return the tags in a separate buffer. This triggers
+// different behaviour in the simulated case, which has to buffer the
+// intermediate values in a separate buffer.
+TEST_F(Pkcs11AesGcmTest, MessageInterfaceSeparateTags) {
+ EXPECT_EQ(SECSuccess,
+ MessageInterfaceTest(16, 0, CKG_GENERATE_COUNTER, PR_TRUE));
+}
+
+// test the case where we are only allowing a portion of the iv to be generated
+TEST_F(Pkcs11AesGcmTest, MessageInterfaceIVMask) {
+ EXPECT_EQ(SECSuccess,
+ MessageInterfaceTest(16, 124, CKG_GENERATE_COUNTER, PR_FALSE));
+}
+
+// test the case where we using the tls1.3 iv generation
+TEST_F(Pkcs11AesGcmTest, MessageInterfaceXorCounter) {
+ EXPECT_EQ(SECSuccess,
+ MessageInterfaceTest(16, 0, CKG_GENERATE_COUNTER_XOR, PR_FALSE));
+}
+
+// test the case where we overflow the counter (requires restricted iv)
+// 128-124 = 4 bits;
+TEST_F(Pkcs11AesGcmTest, MessageInterfaceCounterOverflow) {
+ EXPECT_EQ(SECFailure,
+ MessageInterfaceTest(17, 124, CKG_GENERATE_COUNTER, PR_FALSE));
+}
+
+// overflow the tla1.2 iv case
+TEST_F(Pkcs11AesGcmTest, MessageInterfaceXorCounterOverflow) {
+ EXPECT_EQ(SECFailure,
+ MessageInterfaceTest(17, 124, CKG_GENERATE_COUNTER_XOR, PR_FALSE));
+}
+
+// test random generation of the IV (uses an aligned restricted iv)
+TEST_F(Pkcs11AesGcmTest, MessageInterfaceRandomIV) {
+ EXPECT_EQ(SECSuccess,
+ MessageInterfaceTest(16, 56, CKG_GENERATE_RANDOM, PR_FALSE));
+}
+
+// test the case where we try to generate too many random IVs for the size of
+// our our restricted IV (notice for counters, we can generate 16 IV with
+// 4 bits, but for random we need at least 72 bits to generate 16 IVs).
+// 128-56 = 72 bits
+TEST_F(Pkcs11AesGcmTest, MessageInterfaceRandomOverflow) {
+ EXPECT_EQ(SECFailure,
+ MessageInterfaceTest(17, 56, CKG_GENERATE_RANDOM, PR_FALSE));
+}
+} // namespace nss_test