diff options
Diffstat (limited to '')
-rw-r--r-- | security/nss/lib/freebl/ecl/ecp.h | 106 |
1 files changed, 106 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/ecl/ecp.h b/security/nss/lib/freebl/ecl/ecp.h new file mode 100644 index 0000000000..7e54e4e072 --- /dev/null +++ b/security/nss/lib/freebl/ecl/ecp.h @@ -0,0 +1,106 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef __ecp_h_ +#define __ecp_h_ + +#include "ecl-priv.h" + +/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ +mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); + +/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ +mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); + +/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, + * qy). Uses affine coordinates. */ +mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, + const mp_int *qx, const mp_int *qy, mp_int *rx, + mp_int *ry, const ECGroup *group); + +/* Computes R = P - Q. Uses affine coordinates. */ +mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, + const mp_int *qx, const mp_int *qy, mp_int *rx, + mp_int *ry, const ECGroup *group); + +/* Computes R = 2P. Uses affine coordinates. */ +mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, + mp_int *ry, const ECGroup *group); + +/* Validates a point on a GFp curve. */ +mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); + +#ifdef ECL_ENABLE_GFP_PT_MUL_AFF +/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters + * a, b and p are the elliptic curve coefficients and the prime that + * determines the field GFp. Uses affine coordinates. */ +mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, + const mp_int *py, mp_int *rx, mp_int *ry, + const ECGroup *group); +#endif + +/* Converts a point P(px, py) from affine coordinates to Jacobian + * projective coordinates R(rx, ry, rz). */ +mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, + mp_int *ry, mp_int *rz, const ECGroup *group); + +/* Converts a point P(px, py, pz) from Jacobian projective coordinates to + * affine coordinates R(rx, ry). */ +mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, + const mp_int *pz, mp_int *rx, mp_int *ry, + const ECGroup *group); + +/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian + * coordinates. */ +mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, + const mp_int *pz); + +/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian + * coordinates. */ +mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); + +/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is + * (qx, qy, qz). Uses Jacobian coordinates. */ +mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, + const mp_int *pz, const mp_int *qx, + const mp_int *qy, mp_int *rx, mp_int *ry, + mp_int *rz, const ECGroup *group); + +/* Computes R = 2P. Uses Jacobian coordinates. */ +mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, + const mp_int *pz, mp_int *rx, mp_int *ry, + mp_int *rz, const ECGroup *group); + +#ifdef ECL_ENABLE_GFP_PT_MUL_JAC +/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters + * a, b and p are the elliptic curve coefficients and the prime that + * determines the field GFp. Uses Jacobian coordinates. */ +mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, + const mp_int *py, mp_int *rx, mp_int *ry, + const ECGroup *group); +#endif + +/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator + * (base point) of the group of points on the elliptic curve. Allows k1 = + * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine + * coordinates. Input and output values are assumed to be NOT + * field-encoded and are in affine form. */ +mp_err +ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, + const mp_int *py, mp_int *rx, mp_int *ry, + const ECGroup *group); + +/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic + * curve points P and R can be identical. Uses mixed Modified-Jacobian + * co-ordinates for doubling and Chudnovsky Jacobian coordinates for + * additions. Assumes input is already field-encoded using field_enc, and + * returns output that is still field-encoded. Uses 5-bit window NAF + * method (algorithm 11) for scalar-point multiplication from Brown, + * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic + * Curves Over Prime Fields. */ +mp_err +ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, + mp_int *rx, mp_int *ry, const ECGroup *group); + +#endif /* __ecp_h_ */ |