diff options
Diffstat (limited to '')
-rw-r--r-- | security/nss/lib/freebl/sha_fast.c | 592 |
1 files changed, 592 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/sha_fast.c b/security/nss/lib/freebl/sha_fast.c new file mode 100644 index 0000000000..2a8ac576c1 --- /dev/null +++ b/security/nss/lib/freebl/sha_fast.c @@ -0,0 +1,592 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifdef FREEBL_NO_DEPEND +#include "stubs.h" +#endif + +#include <memory.h> +#include "blapi.h" +#include "sha_fast.h" +#include "prerror.h" +#include "secerr.h" + +#ifdef TRACING_SSL +#include "ssl.h" +#include "ssltrace.h" +#endif + +static void shaCompress(volatile SHA_HW_t *X, const PRUint32 *datain); + +#define W u.w +#define B u.b + +#define SHA_F1(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z)) +#define SHA_F2(X, Y, Z) ((X) ^ (Y) ^ (Z)) +#define SHA_F3(X, Y, Z) (((X) & (Y)) | ((Z) & ((X) | (Y)))) +#define SHA_F4(X, Y, Z) ((X) ^ (Y) ^ (Z)) + +#define SHA_MIX(n, a, b, c) XW(n) = SHA_ROTL(XW(a) ^ XW(b) ^ XW(c) ^ XW(n), 1) + +void SHA1_Compress_Native(SHA1Context *ctx); +void SHA1_Update_Native(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len); + +static void SHA1_Compress_Generic(SHA1Context *ctx); +static void SHA1_Update_Generic(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len); + +#ifndef USE_HW_SHA1 +void +SHA1_Compress_Native(SHA1Context *ctx) +{ + PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); + PORT_Assert(0); +} + +void +SHA1_Update_Native(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) +{ + PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); + PORT_Assert(0); +} +#endif + +/* + * SHA: initialize context + */ +void +SHA1_Begin(SHA1Context *ctx) +{ + ctx->size = 0; + /* + * Initialize H with constants from FIPS180-1. + */ + ctx->H[0] = 0x67452301L; + ctx->H[1] = 0xefcdab89L; + ctx->H[2] = 0x98badcfeL; + ctx->H[3] = 0x10325476L; + ctx->H[4] = 0xc3d2e1f0L; + +#if defined(USE_HW_SHA1) && defined(IS_LITTLE_ENDIAN) + /* arm's implementation is tested on little endian only */ + if (arm_sha1_support()) { + ctx->compress = SHA1_Compress_Native; + ctx->update = SHA1_Update_Native; + } else +#endif + { + ctx->compress = SHA1_Compress_Generic; + ctx->update = SHA1_Update_Generic; + } +} + +/* Explanation of H array and index values: + * The context's H array is actually the concatenation of two arrays + * defined by SHA1, the H array of state variables (5 elements), + * and the W array of intermediate values, of which there are 16 elements. + * The W array starts at H[5], that is W[0] is H[5]. + * Although these values are defined as 32-bit values, we use 64-bit + * variables to hold them because the AMD64 stores 64 bit values in + * memory MUCH faster than it stores any smaller values. + * + * Rather than passing the context structure to shaCompress, we pass + * this combined array of H and W values. We do not pass the address + * of the first element of this array, but rather pass the address of an + * element in the middle of the array, element X. Presently X[0] is H[11]. + * So we pass the address of H[11] as the address of array X to shaCompress. + * Then shaCompress accesses the members of the array using positive AND + * negative indexes. + * + * Pictorially: (each element is 8 bytes) + * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | + * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | + * + * The byte offset from X[0] to any member of H and W is always + * representable in a signed 8-bit value, which will be encoded + * as a single byte offset in the X86-64 instruction set. + * If we didn't pass the address of H[11], and instead passed the + * address of H[0], the offsets to elements H[16] and above would be + * greater than 127, not representable in a signed 8-bit value, and the + * x86-64 instruction set would encode every such offset as a 32-bit + * signed number in each instruction that accessed element H[16] or + * higher. This results in much bigger and slower code. + */ +#if !defined(SHA_PUT_W_IN_STACK) +#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ +#define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ +#else +#define H2X 0 +#endif + +/* + * SHA: Add data to context. + */ +void +SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) +{ + ctx->update(ctx, dataIn, len); +} + +static void +SHA1_Update_Generic(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) +{ + register unsigned int lenB; + register unsigned int togo; + + if (!len) + return; + + /* accumulate the byte count. */ + lenB = (unsigned int)(ctx->size) & 63U; + + ctx->size += len; + + /* + * Read the data into W and process blocks as they get full + */ + if (lenB > 0) { + togo = 64U - lenB; + if (len < togo) + togo = len; + memcpy(ctx->B + lenB, dataIn, togo); + len -= togo; + dataIn += togo; + lenB = (lenB + togo) & 63U; + if (!lenB) { + shaCompress(&ctx->H[H2X], ctx->W); + } + } +#if !defined(HAVE_UNALIGNED_ACCESS) + if ((ptrdiff_t)dataIn % sizeof(PRUint32)) { + while (len >= 64U) { + memcpy(ctx->B, dataIn, 64); + len -= 64U; + shaCompress(&ctx->H[H2X], ctx->W); + dataIn += 64U; + } + } else +#endif + { + while (len >= 64U) { + len -= 64U; + shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn); + dataIn += 64U; + } + } + if (len) { + memcpy(ctx->B, dataIn, len); + } +} + +/* + * SHA: Generate hash value from context + */ +void NO_SANITIZE_ALIGNMENT +SHA1_End(SHA1Context *ctx, unsigned char *hashout, + unsigned int *pDigestLen, unsigned int maxDigestLen) +{ + register PRUint64 size; + register PRUint32 lenB; + + static const unsigned char bulk_pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; +#define tmp lenB + + PORT_Assert(maxDigestLen >= SHA1_LENGTH); + + /* + * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits + */ + size = ctx->size; + + lenB = (PRUint32)size & 63; + SHA1_Update(ctx, bulk_pad, (((55 + 64) - lenB) & 63) + 1); + PORT_Assert(((PRUint32)ctx->size & 63) == 56); + /* Convert size from bytes to bits. */ + size <<= 3; + ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32)); + ctx->W[15] = SHA_HTONL((PRUint32)size); + ctx->compress(ctx); + + /* + * Output hash + */ + SHA_STORE_RESULT; + if (pDigestLen) { + *pDigestLen = SHA1_LENGTH; + } +#undef tmp +} + +void +SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout, + unsigned int *pDigestLen, unsigned int maxDigestLen) +{ +#if defined(SHA_NEED_TMP_VARIABLE) + register PRUint32 tmp; +#endif + PORT_Assert(maxDigestLen >= SHA1_LENGTH); + + SHA_STORE_RESULT; + if (pDigestLen) + *pDigestLen = SHA1_LENGTH; +} + +#undef B +/* + * SHA: Compression function, unrolled. + * + * Some operations in shaCompress are done as 5 groups of 16 operations. + * Others are done as 4 groups of 20 operations. + * The code below shows that structure. + * + * The functions that compute the new values of the 5 state variables + * A-E are done in 4 groups of 20 operations (or you may also think + * of them as being done in 16 groups of 5 operations). They are + * done by the SHA_RNDx macros below, in the right column. + * + * The functions that set the 16 values of the W array are done in + * 5 groups of 16 operations. The first group is done by the + * LOAD macros below, the latter 4 groups are done by SHA_MIX below, + * in the left column. + * + * gcc's optimizer observes that each member of the W array is assigned + * a value 5 times in this code. It reduces the number of store + * operations done to the W array in the context (that is, in the X array) + * by creating a W array on the stack, and storing the W values there for + * the first 4 groups of operations on W, and storing the values in the + * context's W array only in the fifth group. This is undesirable. + * It is MUCH bigger code than simply using the context's W array, because + * all the offsets to the W array in the stack are 32-bit signed offsets, + * and it is no faster than storing the values in the context's W array. + * + * The original code for sha_fast.c prevented this creation of a separate + * W array in the stack by creating a W array of 80 members, each of + * whose elements is assigned only once. It also separated the computations + * of the W array values and the computations of the values for the 5 + * state variables into two separate passes, W's, then A-E's so that the + * second pass could be done all in registers (except for accessing the W + * array) on machines with fewer registers. The method is suboptimal + * for machines with enough registers to do it all in one pass, and it + * necessitates using many instructions with 32-bit offsets. + * + * This code eliminates the separate W array on the stack by a completely + * different means: by declaring the X array volatile. This prevents + * the optimizer from trying to reduce the use of the X array by the + * creation of a MORE expensive W array on the stack. The result is + * that all instructions use signed 8-bit offsets and not 32-bit offsets. + * + * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 + * results in code that is 3 times faster than the previous NSS sha_fast + * code on AMD64. + */ +static void NO_SANITIZE_ALIGNMENT +shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) +{ + register SHA_HW_t A, B, C, D, E; + +#if defined(SHA_NEED_TMP_VARIABLE) + register PRUint32 tmp; +#endif + +#if !defined(SHA_PUT_W_IN_STACK) +#define XH(n) X[n - H2X] +#define XW(n) X[n - W2X] +#else + SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, + w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; +#define XW(n) w_##n +#define XH(n) X[n] +#endif + +#define K0 0x5a827999L +#define K1 0x6ed9eba1L +#define K2 0x8f1bbcdcL +#define K3 0xca62c1d6L + +#define SHA_RND1(a, b, c, d, e, n) \ + a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; \ + c = SHA_ROTL(c, 30) +#define SHA_RND2(a, b, c, d, e, n) \ + a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; \ + c = SHA_ROTL(c, 30) +#define SHA_RND3(a, b, c, d, e, n) \ + a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; \ + c = SHA_ROTL(c, 30) +#define SHA_RND4(a, b, c, d, e, n) \ + a = SHA_ROTL(b, 5) + SHA_F4(c, d, e) + a + XW(n) + K3; \ + c = SHA_ROTL(c, 30) + +#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n]) + + A = XH(0); + B = XH(1); + C = XH(2); + D = XH(3); + E = XH(4); + + LOAD(0); + SHA_RND1(E, A, B, C, D, 0); + LOAD(1); + SHA_RND1(D, E, A, B, C, 1); + LOAD(2); + SHA_RND1(C, D, E, A, B, 2); + LOAD(3); + SHA_RND1(B, C, D, E, A, 3); + LOAD(4); + SHA_RND1(A, B, C, D, E, 4); + LOAD(5); + SHA_RND1(E, A, B, C, D, 5); + LOAD(6); + SHA_RND1(D, E, A, B, C, 6); + LOAD(7); + SHA_RND1(C, D, E, A, B, 7); + LOAD(8); + SHA_RND1(B, C, D, E, A, 8); + LOAD(9); + SHA_RND1(A, B, C, D, E, 9); + LOAD(10); + SHA_RND1(E, A, B, C, D, 10); + LOAD(11); + SHA_RND1(D, E, A, B, C, 11); + LOAD(12); + SHA_RND1(C, D, E, A, B, 12); + LOAD(13); + SHA_RND1(B, C, D, E, A, 13); + LOAD(14); + SHA_RND1(A, B, C, D, E, 14); + LOAD(15); + SHA_RND1(E, A, B, C, D, 15); + + SHA_MIX(0, 13, 8, 2); + SHA_RND1(D, E, A, B, C, 0); + SHA_MIX(1, 14, 9, 3); + SHA_RND1(C, D, E, A, B, 1); + SHA_MIX(2, 15, 10, 4); + SHA_RND1(B, C, D, E, A, 2); + SHA_MIX(3, 0, 11, 5); + SHA_RND1(A, B, C, D, E, 3); + + SHA_MIX(4, 1, 12, 6); + SHA_RND2(E, A, B, C, D, 4); + SHA_MIX(5, 2, 13, 7); + SHA_RND2(D, E, A, B, C, 5); + SHA_MIX(6, 3, 14, 8); + SHA_RND2(C, D, E, A, B, 6); + SHA_MIX(7, 4, 15, 9); + SHA_RND2(B, C, D, E, A, 7); + SHA_MIX(8, 5, 0, 10); + SHA_RND2(A, B, C, D, E, 8); + SHA_MIX(9, 6, 1, 11); + SHA_RND2(E, A, B, C, D, 9); + SHA_MIX(10, 7, 2, 12); + SHA_RND2(D, E, A, B, C, 10); + SHA_MIX(11, 8, 3, 13); + SHA_RND2(C, D, E, A, B, 11); + SHA_MIX(12, 9, 4, 14); + SHA_RND2(B, C, D, E, A, 12); + SHA_MIX(13, 10, 5, 15); + SHA_RND2(A, B, C, D, E, 13); + SHA_MIX(14, 11, 6, 0); + SHA_RND2(E, A, B, C, D, 14); + SHA_MIX(15, 12, 7, 1); + SHA_RND2(D, E, A, B, C, 15); + + SHA_MIX(0, 13, 8, 2); + SHA_RND2(C, D, E, A, B, 0); + SHA_MIX(1, 14, 9, 3); + SHA_RND2(B, C, D, E, A, 1); + SHA_MIX(2, 15, 10, 4); + SHA_RND2(A, B, C, D, E, 2); + SHA_MIX(3, 0, 11, 5); + SHA_RND2(E, A, B, C, D, 3); + SHA_MIX(4, 1, 12, 6); + SHA_RND2(D, E, A, B, C, 4); + SHA_MIX(5, 2, 13, 7); + SHA_RND2(C, D, E, A, B, 5); + SHA_MIX(6, 3, 14, 8); + SHA_RND2(B, C, D, E, A, 6); + SHA_MIX(7, 4, 15, 9); + SHA_RND2(A, B, C, D, E, 7); + + SHA_MIX(8, 5, 0, 10); + SHA_RND3(E, A, B, C, D, 8); + SHA_MIX(9, 6, 1, 11); + SHA_RND3(D, E, A, B, C, 9); + SHA_MIX(10, 7, 2, 12); + SHA_RND3(C, D, E, A, B, 10); + SHA_MIX(11, 8, 3, 13); + SHA_RND3(B, C, D, E, A, 11); + SHA_MIX(12, 9, 4, 14); + SHA_RND3(A, B, C, D, E, 12); + SHA_MIX(13, 10, 5, 15); + SHA_RND3(E, A, B, C, D, 13); + SHA_MIX(14, 11, 6, 0); + SHA_RND3(D, E, A, B, C, 14); + SHA_MIX(15, 12, 7, 1); + SHA_RND3(C, D, E, A, B, 15); + + SHA_MIX(0, 13, 8, 2); + SHA_RND3(B, C, D, E, A, 0); + SHA_MIX(1, 14, 9, 3); + SHA_RND3(A, B, C, D, E, 1); + SHA_MIX(2, 15, 10, 4); + SHA_RND3(E, A, B, C, D, 2); + SHA_MIX(3, 0, 11, 5); + SHA_RND3(D, E, A, B, C, 3); + SHA_MIX(4, 1, 12, 6); + SHA_RND3(C, D, E, A, B, 4); + SHA_MIX(5, 2, 13, 7); + SHA_RND3(B, C, D, E, A, 5); + SHA_MIX(6, 3, 14, 8); + SHA_RND3(A, B, C, D, E, 6); + SHA_MIX(7, 4, 15, 9); + SHA_RND3(E, A, B, C, D, 7); + SHA_MIX(8, 5, 0, 10); + SHA_RND3(D, E, A, B, C, 8); + SHA_MIX(9, 6, 1, 11); + SHA_RND3(C, D, E, A, B, 9); + SHA_MIX(10, 7, 2, 12); + SHA_RND3(B, C, D, E, A, 10); + SHA_MIX(11, 8, 3, 13); + SHA_RND3(A, B, C, D, E, 11); + + SHA_MIX(12, 9, 4, 14); + SHA_RND4(E, A, B, C, D, 12); + SHA_MIX(13, 10, 5, 15); + SHA_RND4(D, E, A, B, C, 13); + SHA_MIX(14, 11, 6, 0); + SHA_RND4(C, D, E, A, B, 14); + SHA_MIX(15, 12, 7, 1); + SHA_RND4(B, C, D, E, A, 15); + + SHA_MIX(0, 13, 8, 2); + SHA_RND4(A, B, C, D, E, 0); + SHA_MIX(1, 14, 9, 3); + SHA_RND4(E, A, B, C, D, 1); + SHA_MIX(2, 15, 10, 4); + SHA_RND4(D, E, A, B, C, 2); + SHA_MIX(3, 0, 11, 5); + SHA_RND4(C, D, E, A, B, 3); + SHA_MIX(4, 1, 12, 6); + SHA_RND4(B, C, D, E, A, 4); + SHA_MIX(5, 2, 13, 7); + SHA_RND4(A, B, C, D, E, 5); + SHA_MIX(6, 3, 14, 8); + SHA_RND4(E, A, B, C, D, 6); + SHA_MIX(7, 4, 15, 9); + SHA_RND4(D, E, A, B, C, 7); + SHA_MIX(8, 5, 0, 10); + SHA_RND4(C, D, E, A, B, 8); + SHA_MIX(9, 6, 1, 11); + SHA_RND4(B, C, D, E, A, 9); + SHA_MIX(10, 7, 2, 12); + SHA_RND4(A, B, C, D, E, 10); + SHA_MIX(11, 8, 3, 13); + SHA_RND4(E, A, B, C, D, 11); + SHA_MIX(12, 9, 4, 14); + SHA_RND4(D, E, A, B, C, 12); + SHA_MIX(13, 10, 5, 15); + SHA_RND4(C, D, E, A, B, 13); + SHA_MIX(14, 11, 6, 0); + SHA_RND4(B, C, D, E, A, 14); + SHA_MIX(15, 12, 7, 1); + SHA_RND4(A, B, C, D, E, 15); + + XH(0) += A; + XH(1) += B; + XH(2) += C; + XH(3) += D; + XH(4) += E; +} + +static void +SHA1_Compress_Generic(SHA1Context *ctx) +{ + shaCompress(&ctx->H[H2X], ctx->u.w); +} + +/************************************************************************* +** Code below this line added to make SHA code support BLAPI interface +*/ + +SHA1Context * +SHA1_NewContext(void) +{ + SHA1Context *cx; + + /* no need to ZNew, SHA1_Begin will init the context */ + cx = PORT_New(SHA1Context); + return cx; +} + +/* Zero and free the context */ +void +SHA1_DestroyContext(SHA1Context *cx, PRBool freeit) +{ + memset(cx, 0, sizeof *cx); + if (freeit) { + PORT_Free(cx); + } +} + +SECStatus +SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length) +{ + SHA1Context ctx; + unsigned int outLen; + + SHA1_Begin(&ctx); + ctx.update(&ctx, src, src_length); + SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH); + memset(&ctx, 0, sizeof ctx); + return SECSuccess; +} + +/* Hash a null-terminated character string. */ +SECStatus +SHA1_Hash(unsigned char *dest, const char *src) +{ + return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen(src)); +} + +/* + * need to support save/restore state in pkcs11. Stores all the info necessary + * for a structure into just a stream of bytes. + */ +unsigned int +SHA1_FlattenSize(SHA1Context *cx) +{ + return sizeof(SHA1Context); +} + +SECStatus +SHA1_Flatten(SHA1Context *cx, unsigned char *space) +{ + PORT_Memcpy(space, cx, sizeof(SHA1Context)); + return SECSuccess; +} + +SHA1Context * +SHA1_Resurrect(unsigned char *space, void *arg) +{ + SHA1Context *cx = SHA1_NewContext(); + if (cx == NULL) + return NULL; + + PORT_Memcpy(cx, space, sizeof(SHA1Context)); + return cx; +} + +void +SHA1_Clone(SHA1Context *dest, SHA1Context *src) +{ + memcpy(dest, src, sizeof *dest); +} + +void +SHA1_TraceState(SHA1Context *ctx) +{ + PORT_SetError(PR_NOT_IMPLEMENTED_ERROR); +} |