summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/aec3/coarse_filter_update_gain_unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/modules/audio_processing/aec3/coarse_filter_update_gain_unittest.cc')
-rw-r--r--third_party/libwebrtc/modules/audio_processing/aec3/coarse_filter_update_gain_unittest.cc268
1 files changed, 268 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/audio_processing/aec3/coarse_filter_update_gain_unittest.cc b/third_party/libwebrtc/modules/audio_processing/aec3/coarse_filter_update_gain_unittest.cc
new file mode 100644
index 0000000000..55b79bb812
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_processing/aec3/coarse_filter_update_gain_unittest.cc
@@ -0,0 +1,268 @@
+/*
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "modules/audio_processing/aec3/coarse_filter_update_gain.h"
+
+#include <algorithm>
+#include <memory>
+#include <numeric>
+#include <string>
+#include <vector>
+
+#include "modules/audio_processing/aec3/adaptive_fir_filter.h"
+#include "modules/audio_processing/aec3/aec3_common.h"
+#include "modules/audio_processing/aec3/aec_state.h"
+#include "modules/audio_processing/aec3/render_delay_buffer.h"
+#include "modules/audio_processing/test/echo_canceller_test_tools.h"
+#include "rtc_base/numerics/safe_minmax.h"
+#include "rtc_base/random.h"
+#include "rtc_base/strings/string_builder.h"
+#include "test/gtest.h"
+
+namespace webrtc {
+namespace {
+// Method for performing the simulations needed to test the refined filter
+// update gain functionality.
+void RunFilterUpdateTest(int num_blocks_to_process,
+ size_t delay_samples,
+ size_t num_render_channels,
+ int filter_length_blocks,
+ const std::vector<int>& blocks_with_saturation,
+ std::array<float, kBlockSize>* e_last_block,
+ std::array<float, kBlockSize>* y_last_block,
+ FftData* G_last_block) {
+ ApmDataDumper data_dumper(42);
+ EchoCanceller3Config config;
+ config.filter.refined.length_blocks = filter_length_blocks;
+ AdaptiveFirFilter refined_filter(
+ config.filter.refined.length_blocks, config.filter.refined.length_blocks,
+ config.filter.config_change_duration_blocks, num_render_channels,
+ DetectOptimization(), &data_dumper);
+ AdaptiveFirFilter coarse_filter(
+ config.filter.coarse.length_blocks, config.filter.coarse.length_blocks,
+ config.filter.config_change_duration_blocks, num_render_channels,
+ DetectOptimization(), &data_dumper);
+ Aec3Fft fft;
+
+ constexpr int kSampleRateHz = 48000;
+ config.delay.default_delay = 1;
+ std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
+ RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
+
+ CoarseFilterUpdateGain coarse_gain(
+ config.filter.coarse, config.filter.config_change_duration_blocks);
+ Random random_generator(42U);
+ Block x(NumBandsForRate(kSampleRateHz), num_render_channels);
+ std::array<float, kBlockSize> y;
+ RenderSignalAnalyzer render_signal_analyzer(config);
+ std::array<float, kFftLength> s;
+ FftData S;
+ FftData G;
+ FftData E_coarse;
+ std::array<float, kBlockSize> e_coarse;
+
+ constexpr float kScale = 1.0f / kFftLengthBy2;
+
+ DelayBuffer<float> delay_buffer(delay_samples);
+ for (int k = 0; k < num_blocks_to_process; ++k) {
+ // Handle saturation.
+ bool saturation =
+ std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(),
+ k) != blocks_with_saturation.end();
+
+ // Create the render signal.
+ for (int band = 0; band < x.NumBands(); ++band) {
+ for (int channel = 0; channel < x.NumChannels(); ++channel) {
+ RandomizeSampleVector(&random_generator, x.View(band, channel));
+ }
+ }
+ delay_buffer.Delay(x.View(/*band=*/0, /*channel*/ 0), y);
+
+ render_delay_buffer->Insert(x);
+ if (k == 0) {
+ render_delay_buffer->Reset();
+ }
+ render_delay_buffer->PrepareCaptureProcessing();
+
+ render_signal_analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
+ delay_samples / kBlockSize);
+
+ coarse_filter.Filter(*render_delay_buffer->GetRenderBuffer(), &S);
+ fft.Ifft(S, &s);
+ std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2,
+ e_coarse.begin(),
+ [&](float a, float b) { return a - b * kScale; });
+ std::for_each(e_coarse.begin(), e_coarse.end(),
+ [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
+ fft.ZeroPaddedFft(e_coarse, Aec3Fft::Window::kRectangular, &E_coarse);
+
+ std::array<float, kFftLengthBy2Plus1> render_power;
+ render_delay_buffer->GetRenderBuffer()->SpectralSum(
+ coarse_filter.SizePartitions(), &render_power);
+ coarse_gain.Compute(render_power, render_signal_analyzer, E_coarse,
+ coarse_filter.SizePartitions(), saturation, &G);
+ coarse_filter.Adapt(*render_delay_buffer->GetRenderBuffer(), G);
+ }
+
+ std::copy(e_coarse.begin(), e_coarse.end(), e_last_block->begin());
+ std::copy(y.begin(), y.end(), y_last_block->begin());
+ std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin());
+ std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin());
+}
+
+std::string ProduceDebugText(int filter_length_blocks) {
+ rtc::StringBuilder ss;
+ ss << "Length: " << filter_length_blocks;
+ return ss.Release();
+}
+
+std::string ProduceDebugText(size_t delay, int filter_length_blocks) {
+ rtc::StringBuilder ss;
+ ss << "Delay: " << delay << ", ";
+ ss << ProduceDebugText(filter_length_blocks);
+ return ss.Release();
+}
+
+} // namespace
+
+#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
+
+// Verifies that the check for non-null output gain parameter works.
+TEST(CoarseFilterUpdateGainDeathTest, NullDataOutputGain) {
+ ApmDataDumper data_dumper(42);
+ FftBuffer fft_buffer(1, 1);
+ RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
+ FftData E;
+ const EchoCanceller3Config::Filter::CoarseConfiguration& config = {
+ 12, 0.5f, 220075344.f};
+ CoarseFilterUpdateGain gain(config, 250);
+ std::array<float, kFftLengthBy2Plus1> render_power;
+ render_power.fill(0.f);
+ EXPECT_DEATH(gain.Compute(render_power, analyzer, E, 1, false, nullptr), "");
+}
+
+#endif
+
+class CoarseFilterUpdateGainOneTwoEightRenderChannels
+ : public ::testing::Test,
+ public ::testing::WithParamInterface<size_t> {};
+
+INSTANTIATE_TEST_SUITE_P(MultiChannel,
+ CoarseFilterUpdateGainOneTwoEightRenderChannels,
+ ::testing::Values(1, 2, 8));
+
+// Verifies that the gain formed causes the filter using it to converge.
+TEST_P(CoarseFilterUpdateGainOneTwoEightRenderChannels,
+ GainCausesFilterToConverge) {
+ const size_t num_render_channels = GetParam();
+ std::vector<int> blocks_with_echo_path_changes;
+ std::vector<int> blocks_with_saturation;
+
+ for (size_t filter_length_blocks : {12, 20, 30}) {
+ for (size_t delay_samples : {0, 64, 150, 200, 301}) {
+ SCOPED_TRACE(ProduceDebugText(delay_samples, filter_length_blocks));
+
+ std::array<float, kBlockSize> e;
+ std::array<float, kBlockSize> y;
+ FftData G;
+
+ RunFilterUpdateTest(5000, delay_samples, num_render_channels,
+ filter_length_blocks, blocks_with_saturation, &e, &y,
+ &G);
+
+ // Verify that the refined filter is able to perform well.
+ // Use different criteria to take overmodelling into account.
+ if (filter_length_blocks == 12) {
+ EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
+ std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
+ } else {
+ EXPECT_LT(std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
+ std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
+ }
+ }
+ }
+}
+
+// Verifies that the gain is zero when there is saturation.
+TEST_P(CoarseFilterUpdateGainOneTwoEightRenderChannels, SaturationBehavior) {
+ const size_t num_render_channels = GetParam();
+ std::vector<int> blocks_with_echo_path_changes;
+ std::vector<int> blocks_with_saturation;
+ for (int k = 99; k < 200; ++k) {
+ blocks_with_saturation.push_back(k);
+ }
+ for (size_t filter_length_blocks : {12, 20, 30}) {
+ SCOPED_TRACE(ProduceDebugText(filter_length_blocks));
+
+ std::array<float, kBlockSize> e;
+ std::array<float, kBlockSize> y;
+ FftData G_a;
+ FftData G_a_ref;
+ G_a_ref.re.fill(0.f);
+ G_a_ref.im.fill(0.f);
+
+ RunFilterUpdateTest(100, 65, num_render_channels, filter_length_blocks,
+ blocks_with_saturation, &e, &y, &G_a);
+
+ EXPECT_EQ(G_a_ref.re, G_a.re);
+ EXPECT_EQ(G_a_ref.im, G_a.im);
+ }
+}
+
+class CoarseFilterUpdateGainOneTwoFourRenderChannels
+ : public ::testing::Test,
+ public ::testing::WithParamInterface<size_t> {};
+
+INSTANTIATE_TEST_SUITE_P(
+ MultiChannel,
+ CoarseFilterUpdateGainOneTwoFourRenderChannels,
+ ::testing::Values(1, 2, 4),
+ [](const ::testing::TestParamInfo<
+ CoarseFilterUpdateGainOneTwoFourRenderChannels::ParamType>& info) {
+ return (rtc::StringBuilder() << "Render" << info.param).str();
+ });
+
+// Verifies that the magnitude of the gain on average decreases for a
+// persistently exciting signal.
+TEST_P(CoarseFilterUpdateGainOneTwoFourRenderChannels, DecreasingGain) {
+ const size_t num_render_channels = GetParam();
+ for (size_t filter_length_blocks : {12, 20, 30}) {
+ SCOPED_TRACE(ProduceDebugText(filter_length_blocks));
+ std::vector<int> blocks_with_echo_path_changes;
+ std::vector<int> blocks_with_saturation;
+
+ std::array<float, kBlockSize> e;
+ std::array<float, kBlockSize> y;
+ FftData G_a;
+ FftData G_b;
+ FftData G_c;
+ std::array<float, kFftLengthBy2Plus1> G_a_power;
+ std::array<float, kFftLengthBy2Plus1> G_b_power;
+ std::array<float, kFftLengthBy2Plus1> G_c_power;
+
+ RunFilterUpdateTest(100, 65, num_render_channels, filter_length_blocks,
+ blocks_with_saturation, &e, &y, &G_a);
+ RunFilterUpdateTest(200, 65, num_render_channels, filter_length_blocks,
+ blocks_with_saturation, &e, &y, &G_b);
+ RunFilterUpdateTest(300, 65, num_render_channels, filter_length_blocks,
+ blocks_with_saturation, &e, &y, &G_c);
+
+ G_a.Spectrum(Aec3Optimization::kNone, G_a_power);
+ G_b.Spectrum(Aec3Optimization::kNone, G_b_power);
+ G_c.Spectrum(Aec3Optimization::kNone, G_c_power);
+
+ EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
+ std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
+
+ EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.),
+ std::accumulate(G_c_power.begin(), G_c_power.end(), 0.));
+ }
+}
+} // namespace webrtc