summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_tools/frame_analyzer/linear_least_squares.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/rtc_tools/frame_analyzer/linear_least_squares.cc')
-rw-r--r--third_party/libwebrtc/rtc_tools/frame_analyzer/linear_least_squares.cc206
1 files changed, 206 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_tools/frame_analyzer/linear_least_squares.cc b/third_party/libwebrtc/rtc_tools/frame_analyzer/linear_least_squares.cc
new file mode 100644
index 0000000000..93a6f90e69
--- /dev/null
+++ b/third_party/libwebrtc/rtc_tools/frame_analyzer/linear_least_squares.cc
@@ -0,0 +1,206 @@
+/*
+ * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "rtc_tools/frame_analyzer/linear_least_squares.h"
+
+#include <math.h>
+
+#include <cstdint>
+#include <cstdlib>
+#include <functional>
+#include <numeric>
+#include <type_traits>
+#include <utility>
+
+#include "rtc_base/checks.h"
+#include "rtc_base/logging.h"
+
+namespace webrtc {
+namespace test {
+
+template <class T>
+using Matrix = std::valarray<std::valarray<T>>;
+
+namespace {
+
+template <typename R, typename T>
+R DotProduct(const std::valarray<T>& a, const std::valarray<T>& b) {
+ RTC_CHECK_EQ(a.size(), b.size());
+ return std::inner_product(std::begin(a), std::end(a), std::begin(b), R(0));
+}
+
+// Calculates a^T * b.
+template <typename R, typename T>
+Matrix<R> MatrixMultiply(const Matrix<T>& a, const Matrix<T>& b) {
+ Matrix<R> result(std::valarray<R>(a.size()), b.size());
+ for (size_t i = 0; i < a.size(); ++i) {
+ for (size_t j = 0; j < b.size(); ++j)
+ result[j][i] = DotProduct<R>(a[i], b[j]);
+ }
+
+ return result;
+}
+
+template <typename T>
+Matrix<T> Transpose(const Matrix<T>& matrix) {
+ if (matrix.size() == 0)
+ return Matrix<T>();
+ const size_t rows = matrix.size();
+ const size_t columns = matrix[0].size();
+ Matrix<T> result(std::valarray<T>(rows), columns);
+
+ for (size_t i = 0; i < rows; ++i) {
+ for (size_t j = 0; j < columns; ++j)
+ result[j][i] = matrix[i][j];
+ }
+
+ return result;
+}
+
+// Convert valarray from type T to type R.
+template <typename R, typename T>
+std::valarray<R> ConvertTo(const std::valarray<T>& v) {
+ std::valarray<R> result(v.size());
+ for (size_t i = 0; i < v.size(); ++i)
+ result[i] = static_cast<R>(v[i]);
+ return result;
+}
+
+// Convert valarray Matrix from type T to type R.
+template <typename R, typename T>
+Matrix<R> ConvertTo(const Matrix<T>& mat) {
+ Matrix<R> result(mat.size());
+ for (size_t i = 0; i < mat.size(); ++i)
+ result[i] = ConvertTo<R>(mat[i]);
+ return result;
+}
+
+// Convert from valarray Matrix back to the more conventional std::vector.
+template <typename T>
+std::vector<std::vector<T>> ToVectorMatrix(const Matrix<T>& m) {
+ std::vector<std::vector<T>> result;
+ for (const std::valarray<T>& v : m)
+ result.emplace_back(std::begin(v), std::end(v));
+ return result;
+}
+
+// Create a valarray Matrix from a conventional std::vector.
+template <typename T>
+Matrix<T> FromVectorMatrix(const std::vector<std::vector<T>>& mat) {
+ Matrix<T> result(mat.size());
+ for (size_t i = 0; i < mat.size(); ++i)
+ result[i] = std::valarray<T>(mat[i].data(), mat[i].size());
+ return result;
+}
+
+// Returns `matrix_to_invert`^-1 * `right_hand_matrix`. `matrix_to_invert` must
+// have square size.
+Matrix<double> GaussianElimination(Matrix<double> matrix_to_invert,
+ Matrix<double> right_hand_matrix) {
+ // `n` is the width/height of `matrix_to_invert`.
+ const size_t n = matrix_to_invert.size();
+ // Make sure `matrix_to_invert` has square size.
+ for (const std::valarray<double>& column : matrix_to_invert)
+ RTC_CHECK_EQ(n, column.size());
+ // Make sure `right_hand_matrix` has correct size.
+ for (const std::valarray<double>& column : right_hand_matrix)
+ RTC_CHECK_EQ(n, column.size());
+
+ // Transpose the matrices before and after so that we can perform Gaussian
+ // elimination on the columns instead of the rows, since that is easier with
+ // our representation.
+ matrix_to_invert = Transpose(matrix_to_invert);
+ right_hand_matrix = Transpose(right_hand_matrix);
+
+ // Loop over the diagonal of `matrix_to_invert` and perform column reduction.
+ // Column reduction is a sequence of elementary column operations that is
+ // performed on both `matrix_to_invert` and `right_hand_matrix` until
+ // `matrix_to_invert` has been transformed to the identity matrix.
+ for (size_t diagonal_index = 0; diagonal_index < n; ++diagonal_index) {
+ // Make sure the diagonal element has the highest absolute value by
+ // swapping columns if necessary.
+ for (size_t column = diagonal_index + 1; column < n; ++column) {
+ if (std::abs(matrix_to_invert[column][diagonal_index]) >
+ std::abs(matrix_to_invert[diagonal_index][diagonal_index])) {
+ std::swap(matrix_to_invert[column], matrix_to_invert[diagonal_index]);
+ std::swap(right_hand_matrix[column], right_hand_matrix[diagonal_index]);
+ }
+ }
+
+ // Reduce the diagonal element to be 1, by dividing the column with that
+ // value. If the diagonal element is 0, it means the system of equations has
+ // many solutions, and in that case we will return an arbitrary solution.
+ if (matrix_to_invert[diagonal_index][diagonal_index] == 0.0) {
+ RTC_LOG(LS_WARNING) << "Matrix is not invertible, ignoring.";
+ continue;
+ }
+ const double diagonal_element =
+ matrix_to_invert[diagonal_index][diagonal_index];
+ matrix_to_invert[diagonal_index] /= diagonal_element;
+ right_hand_matrix[diagonal_index] /= diagonal_element;
+
+ // Eliminate the other entries in row `diagonal_index` by making them zero.
+ for (size_t column = 0; column < n; ++column) {
+ if (column == diagonal_index)
+ continue;
+ const double row_element = matrix_to_invert[column][diagonal_index];
+ matrix_to_invert[column] -=
+ row_element * matrix_to_invert[diagonal_index];
+ right_hand_matrix[column] -=
+ row_element * right_hand_matrix[diagonal_index];
+ }
+ }
+
+ // Transpose the result before returning it, explained in comment above.
+ return Transpose(right_hand_matrix);
+}
+
+} // namespace
+
+IncrementalLinearLeastSquares::IncrementalLinearLeastSquares() = default;
+IncrementalLinearLeastSquares::~IncrementalLinearLeastSquares() = default;
+
+void IncrementalLinearLeastSquares::AddObservations(
+ const std::vector<std::vector<uint8_t>>& x,
+ const std::vector<std::vector<uint8_t>>& y) {
+ if (x.empty() || y.empty())
+ return;
+ // Make sure all columns are the same size.
+ const size_t n = x[0].size();
+ for (const std::vector<uint8_t>& column : x)
+ RTC_CHECK_EQ(n, column.size());
+ for (const std::vector<uint8_t>& column : y)
+ RTC_CHECK_EQ(n, column.size());
+
+ // We will multiply the uint8_t values together, so we need to expand to a
+ // type that can safely store those values, i.e. uint16_t.
+ const Matrix<uint16_t> unpacked_x = ConvertTo<uint16_t>(FromVectorMatrix(x));
+ const Matrix<uint16_t> unpacked_y = ConvertTo<uint16_t>(FromVectorMatrix(y));
+
+ const Matrix<uint64_t> xx = MatrixMultiply<uint64_t>(unpacked_x, unpacked_x);
+ const Matrix<uint64_t> xy = MatrixMultiply<uint64_t>(unpacked_x, unpacked_y);
+ if (sum_xx && sum_xy) {
+ *sum_xx += xx;
+ *sum_xy += xy;
+ } else {
+ sum_xx = xx;
+ sum_xy = xy;
+ }
+}
+
+std::vector<std::vector<double>>
+IncrementalLinearLeastSquares::GetBestSolution() const {
+ RTC_CHECK(sum_xx && sum_xy) << "No observations have been added";
+ return ToVectorMatrix(GaussianElimination(ConvertTo<double>(*sum_xx),
+ ConvertTo<double>(*sum_xy)));
+}
+
+} // namespace test
+} // namespace webrtc