summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_tools/rtc_event_log_visualizer/analyzer.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/rtc_tools/rtc_event_log_visualizer/analyzer.cc')
-rw-r--r--third_party/libwebrtc/rtc_tools/rtc_event_log_visualizer/analyzer.cc1831
1 files changed, 1831 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_tools/rtc_event_log_visualizer/analyzer.cc b/third_party/libwebrtc/rtc_tools/rtc_event_log_visualizer/analyzer.cc
new file mode 100644
index 0000000000..a5b8b49302
--- /dev/null
+++ b/third_party/libwebrtc/rtc_tools/rtc_event_log_visualizer/analyzer.cc
@@ -0,0 +1,1831 @@
+/*
+ * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "rtc_tools/rtc_event_log_visualizer/analyzer.h"
+
+#include <algorithm>
+#include <cmath>
+#include <limits>
+#include <map>
+#include <memory>
+#include <string>
+#include <utility>
+
+#include "absl/algorithm/container.h"
+#include "absl/functional/bind_front.h"
+#include "absl/strings/string_view.h"
+#include "api/function_view.h"
+#include "api/network_state_predictor.h"
+#include "api/transport/field_trial_based_config.h"
+#include "api/transport/goog_cc_factory.h"
+#include "call/audio_receive_stream.h"
+#include "call/audio_send_stream.h"
+#include "call/call.h"
+#include "call/video_receive_stream.h"
+#include "call/video_send_stream.h"
+#include "logging/rtc_event_log/rtc_event_processor.h"
+#include "logging/rtc_event_log/rtc_stream_config.h"
+#include "modules/audio_coding/audio_network_adaptor/include/audio_network_adaptor.h"
+#include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator.h"
+#include "modules/congestion_controller/goog_cc/bitrate_estimator.h"
+#include "modules/congestion_controller/goog_cc/delay_based_bwe.h"
+#include "modules/congestion_controller/include/receive_side_congestion_controller.h"
+#include "modules/congestion_controller/rtp/transport_feedback_adapter.h"
+#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
+#include "modules/rtp_rtcp/source/rtcp_packet.h"
+#include "modules/rtp_rtcp/source/rtcp_packet/common_header.h"
+#include "modules/rtp_rtcp/source/rtcp_packet/receiver_report.h"
+#include "modules/rtp_rtcp/source/rtcp_packet/remb.h"
+#include "modules/rtp_rtcp/source/rtcp_packet/sender_report.h"
+#include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
+#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
+#include "modules/rtp_rtcp/source/rtp_rtcp_interface.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/numerics/sequence_number_unwrapper.h"
+#include "rtc_base/rate_statistics.h"
+#include "rtc_base/strings/string_builder.h"
+#include "rtc_tools/rtc_event_log_visualizer/log_simulation.h"
+#include "test/explicit_key_value_config.h"
+
+namespace webrtc {
+
+namespace {
+
+std::string SsrcToString(uint32_t ssrc) {
+ rtc::StringBuilder ss;
+ ss << "SSRC " << ssrc;
+ return ss.Release();
+}
+
+// Checks whether an SSRC is contained in the list of desired SSRCs.
+// Note that an empty SSRC list matches every SSRC.
+bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) {
+ if (desired_ssrc.empty())
+ return true;
+ return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) !=
+ desired_ssrc.end();
+}
+
+double AbsSendTimeToMicroseconds(int64_t abs_send_time) {
+ // The timestamp is a fixed point representation with 6 bits for seconds
+ // and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the
+ // time in seconds and then multiply by kNumMicrosecsPerSec to convert to
+ // microseconds.
+ static constexpr double kTimestampToMicroSec =
+ static_cast<double>(kNumMicrosecsPerSec) / static_cast<double>(1ul << 18);
+ return abs_send_time * kTimestampToMicroSec;
+}
+
+// Computes the difference `later` - `earlier` where `later` and `earlier`
+// are counters that wrap at `modulus`. The difference is chosen to have the
+// least absolute value. For example if `modulus` is 8, then the difference will
+// be chosen in the range [-3, 4]. If `modulus` is 9, then the difference will
+// be in [-4, 4].
+int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) {
+ RTC_DCHECK_LE(1, modulus);
+ RTC_DCHECK_LT(later, modulus);
+ RTC_DCHECK_LT(earlier, modulus);
+ int64_t difference =
+ static_cast<int64_t>(later) - static_cast<int64_t>(earlier);
+ int64_t max_difference = modulus / 2;
+ int64_t min_difference = max_difference - modulus + 1;
+ if (difference > max_difference) {
+ difference -= modulus;
+ }
+ if (difference < min_difference) {
+ difference += modulus;
+ }
+ if (difference > max_difference / 2 || difference < min_difference / 2) {
+ RTC_LOG(LS_WARNING) << "Difference between" << later << " and " << earlier
+ << " expected to be in the range ("
+ << min_difference / 2 << "," << max_difference / 2
+ << ") but is " << difference
+ << ". Correct unwrapping is uncertain.";
+ }
+ return difference;
+}
+
+// This is much more reliable for outgoing streams than for incoming streams.
+template <typename RtpPacketContainer>
+absl::optional<uint32_t> EstimateRtpClockFrequency(
+ const RtpPacketContainer& packets,
+ int64_t end_time_us) {
+ RTC_CHECK(packets.size() >= 2);
+ SeqNumUnwrapper<uint32_t> unwrapper;
+ int64_t first_rtp_timestamp =
+ unwrapper.Unwrap(packets[0].rtp.header.timestamp);
+ int64_t first_log_timestamp = packets[0].log_time_us();
+ int64_t last_rtp_timestamp = first_rtp_timestamp;
+ int64_t last_log_timestamp = first_log_timestamp;
+ for (size_t i = 1; i < packets.size(); i++) {
+ if (packets[i].log_time_us() > end_time_us)
+ break;
+ last_rtp_timestamp = unwrapper.Unwrap(packets[i].rtp.header.timestamp);
+ last_log_timestamp = packets[i].log_time_us();
+ }
+ if (last_log_timestamp - first_log_timestamp < kNumMicrosecsPerSec) {
+ RTC_LOG(LS_WARNING)
+ << "Failed to estimate RTP clock frequency: Stream too short. ("
+ << packets.size() << " packets, "
+ << last_log_timestamp - first_log_timestamp << " us)";
+ return absl::nullopt;
+ }
+ double duration =
+ static_cast<double>(last_log_timestamp - first_log_timestamp) /
+ kNumMicrosecsPerSec;
+ double estimated_frequency =
+ (last_rtp_timestamp - first_rtp_timestamp) / duration;
+ for (uint32_t f : {8000, 16000, 32000, 48000, 90000}) {
+ if (std::fabs(estimated_frequency - f) < 0.15 * f) {
+ return f;
+ }
+ }
+ RTC_LOG(LS_WARNING) << "Failed to estimate RTP clock frequency: Estimate "
+ << estimated_frequency
+ << " not close to any standard RTP frequency."
+ << " Last timestamp " << last_rtp_timestamp
+ << " first timestamp " << first_rtp_timestamp;
+ return absl::nullopt;
+}
+
+absl::optional<double> NetworkDelayDiff_AbsSendTime(
+ const LoggedRtpPacketIncoming& old_packet,
+ const LoggedRtpPacketIncoming& new_packet) {
+ if (old_packet.rtp.header.extension.hasAbsoluteSendTime &&
+ new_packet.rtp.header.extension.hasAbsoluteSendTime) {
+ int64_t send_time_diff = WrappingDifference(
+ new_packet.rtp.header.extension.absoluteSendTime,
+ old_packet.rtp.header.extension.absoluteSendTime, 1ul << 24);
+ int64_t recv_time_diff =
+ new_packet.log_time_us() - old_packet.log_time_us();
+ double delay_change_us =
+ recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff);
+ return delay_change_us / 1000;
+ } else {
+ return absl::nullopt;
+ }
+}
+
+absl::optional<double> NetworkDelayDiff_CaptureTime(
+ const LoggedRtpPacketIncoming& old_packet,
+ const LoggedRtpPacketIncoming& new_packet,
+ const double sample_rate) {
+ int64_t send_time_diff =
+ WrappingDifference(new_packet.rtp.header.timestamp,
+ old_packet.rtp.header.timestamp, 1ull << 32);
+ int64_t recv_time_diff = new_packet.log_time_us() - old_packet.log_time_us();
+
+ double delay_change =
+ static_cast<double>(recv_time_diff) / 1000 -
+ static_cast<double>(send_time_diff) / sample_rate * 1000;
+ if (delay_change < -10000 || 10000 < delay_change) {
+ RTC_LOG(LS_WARNING) << "Very large delay change. Timestamps correct?";
+ RTC_LOG(LS_WARNING) << "Old capture time "
+ << old_packet.rtp.header.timestamp << ", received time "
+ << old_packet.log_time_us();
+ RTC_LOG(LS_WARNING) << "New capture time "
+ << new_packet.rtp.header.timestamp << ", received time "
+ << new_packet.log_time_us();
+ RTC_LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = "
+ << static_cast<double>(recv_time_diff) /
+ kNumMicrosecsPerSec
+ << "s";
+ RTC_LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = "
+ << static_cast<double>(send_time_diff) / sample_rate
+ << "s";
+ }
+ return delay_change;
+}
+
+template <typename T>
+TimeSeries CreateRtcpTypeTimeSeries(const std::vector<T>& rtcp_list,
+ AnalyzerConfig config,
+ std::string rtcp_name,
+ int category_id) {
+ TimeSeries time_series(rtcp_name, LineStyle::kNone, PointStyle::kHighlight);
+ for (const auto& rtcp : rtcp_list) {
+ float x = config.GetCallTimeSec(rtcp.timestamp);
+ float y = category_id;
+ time_series.points.emplace_back(x, y);
+ }
+ return time_series;
+}
+
+const char kUnknownEnumValue[] = "unknown";
+
+const char kIceCandidateTypeLocal[] = "local";
+const char kIceCandidateTypeStun[] = "stun";
+const char kIceCandidateTypePrflx[] = "prflx";
+const char kIceCandidateTypeRelay[] = "relay";
+
+const char kProtocolUdp[] = "udp";
+const char kProtocolTcp[] = "tcp";
+const char kProtocolSsltcp[] = "ssltcp";
+const char kProtocolTls[] = "tls";
+
+const char kAddressFamilyIpv4[] = "ipv4";
+const char kAddressFamilyIpv6[] = "ipv6";
+
+const char kNetworkTypeEthernet[] = "ethernet";
+const char kNetworkTypeLoopback[] = "loopback";
+const char kNetworkTypeWifi[] = "wifi";
+const char kNetworkTypeVpn[] = "vpn";
+const char kNetworkTypeCellular[] = "cellular";
+
+std::string GetIceCandidateTypeAsString(webrtc::IceCandidateType type) {
+ switch (type) {
+ case webrtc::IceCandidateType::kLocal:
+ return kIceCandidateTypeLocal;
+ case webrtc::IceCandidateType::kStun:
+ return kIceCandidateTypeStun;
+ case webrtc::IceCandidateType::kPrflx:
+ return kIceCandidateTypePrflx;
+ case webrtc::IceCandidateType::kRelay:
+ return kIceCandidateTypeRelay;
+ default:
+ return kUnknownEnumValue;
+ }
+}
+
+std::string GetProtocolAsString(webrtc::IceCandidatePairProtocol protocol) {
+ switch (protocol) {
+ case webrtc::IceCandidatePairProtocol::kUdp:
+ return kProtocolUdp;
+ case webrtc::IceCandidatePairProtocol::kTcp:
+ return kProtocolTcp;
+ case webrtc::IceCandidatePairProtocol::kSsltcp:
+ return kProtocolSsltcp;
+ case webrtc::IceCandidatePairProtocol::kTls:
+ return kProtocolTls;
+ default:
+ return kUnknownEnumValue;
+ }
+}
+
+std::string GetAddressFamilyAsString(
+ webrtc::IceCandidatePairAddressFamily family) {
+ switch (family) {
+ case webrtc::IceCandidatePairAddressFamily::kIpv4:
+ return kAddressFamilyIpv4;
+ case webrtc::IceCandidatePairAddressFamily::kIpv6:
+ return kAddressFamilyIpv6;
+ default:
+ return kUnknownEnumValue;
+ }
+}
+
+std::string GetNetworkTypeAsString(webrtc::IceCandidateNetworkType type) {
+ switch (type) {
+ case webrtc::IceCandidateNetworkType::kEthernet:
+ return kNetworkTypeEthernet;
+ case webrtc::IceCandidateNetworkType::kLoopback:
+ return kNetworkTypeLoopback;
+ case webrtc::IceCandidateNetworkType::kWifi:
+ return kNetworkTypeWifi;
+ case webrtc::IceCandidateNetworkType::kVpn:
+ return kNetworkTypeVpn;
+ case webrtc::IceCandidateNetworkType::kCellular:
+ return kNetworkTypeCellular;
+ default:
+ return kUnknownEnumValue;
+ }
+}
+
+std::string GetCandidatePairLogDescriptionAsString(
+ const LoggedIceCandidatePairConfig& config) {
+ // Example: stun:wifi->relay(tcp):cellular@udp:ipv4
+ // represents a pair of a local server-reflexive candidate on a WiFi network
+ // and a remote relay candidate using TCP as the relay protocol on a cell
+ // network, when the candidate pair communicates over UDP using IPv4.
+ rtc::StringBuilder ss;
+ std::string local_candidate_type =
+ GetIceCandidateTypeAsString(config.local_candidate_type);
+ std::string remote_candidate_type =
+ GetIceCandidateTypeAsString(config.remote_candidate_type);
+ if (config.local_candidate_type == webrtc::IceCandidateType::kRelay) {
+ local_candidate_type +=
+ "(" + GetProtocolAsString(config.local_relay_protocol) + ")";
+ }
+ ss << local_candidate_type << ":"
+ << GetNetworkTypeAsString(config.local_network_type) << ":"
+ << GetAddressFamilyAsString(config.local_address_family) << "->"
+ << remote_candidate_type << ":"
+ << GetAddressFamilyAsString(config.remote_address_family) << "@"
+ << GetProtocolAsString(config.candidate_pair_protocol);
+ return ss.Release();
+}
+
+std::string GetDirectionAsString(PacketDirection direction) {
+ if (direction == kIncomingPacket) {
+ return "Incoming";
+ } else {
+ return "Outgoing";
+ }
+}
+
+std::string GetDirectionAsShortString(PacketDirection direction) {
+ if (direction == kIncomingPacket) {
+ return "In";
+ } else {
+ return "Out";
+ }
+}
+
+} // namespace
+
+EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log,
+ bool normalize_time)
+ : parsed_log_(log) {
+ config_.window_duration_ = TimeDelta::Millis(250);
+ config_.step_ = TimeDelta::Millis(10);
+ if (!log.start_log_events().empty()) {
+ config_.rtc_to_utc_offset_ = log.start_log_events()[0].utc_time() -
+ log.start_log_events()[0].log_time();
+ }
+ config_.normalize_time_ = normalize_time;
+ config_.begin_time_ = parsed_log_.first_timestamp();
+ config_.end_time_ = parsed_log_.last_timestamp();
+ if (config_.end_time_ < config_.begin_time_) {
+ RTC_LOG(LS_WARNING) << "No useful events in the log.";
+ config_.begin_time_ = config_.end_time_ = Timestamp::Zero();
+ }
+
+ RTC_LOG(LS_INFO) << "Log is "
+ << (parsed_log_.last_timestamp().ms() -
+ parsed_log_.first_timestamp().ms()) /
+ 1000
+ << " seconds long.";
+}
+
+EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log,
+ const AnalyzerConfig& config)
+ : parsed_log_(log), config_(config) {
+ RTC_LOG(LS_INFO) << "Log is "
+ << (parsed_log_.last_timestamp().ms() -
+ parsed_log_.first_timestamp().ms()) /
+ 1000
+ << " seconds long.";
+}
+
+class BitrateObserver : public RemoteBitrateObserver {
+ public:
+ BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {}
+
+ void Update(NetworkControlUpdate update) {
+ if (update.target_rate) {
+ last_bitrate_bps_ = update.target_rate->target_rate.bps();
+ bitrate_updated_ = true;
+ }
+ }
+
+ void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
+ uint32_t bitrate) override {}
+
+ uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
+ bool GetAndResetBitrateUpdated() {
+ bool bitrate_updated = bitrate_updated_;
+ bitrate_updated_ = false;
+ return bitrate_updated;
+ }
+
+ private:
+ uint32_t last_bitrate_bps_;
+ bool bitrate_updated_;
+};
+
+void EventLogAnalyzer::CreatePacketGraph(PacketDirection direction,
+ Plot* plot) {
+ for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
+ // Filter on SSRC.
+ if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
+ continue;
+ }
+
+ TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc),
+ LineStyle::kBar);
+ auto GetPacketSize = [](const LoggedRtpPacket& packet) {
+ return absl::optional<float>(packet.total_length);
+ };
+ auto ToCallTime = [this](const LoggedRtpPacket& packet) {
+ return this->config_.GetCallTimeSec(packet.timestamp);
+ };
+ ProcessPoints<LoggedRtpPacket>(ToCallTime, GetPacketSize,
+ stream.packet_view, &time_series);
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin,
+ kTopMargin);
+ plot->SetTitle(GetDirectionAsString(direction) + " RTP packets");
+}
+
+void EventLogAnalyzer::CreateRtcpTypeGraph(PacketDirection direction,
+ Plot* plot) {
+ plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
+ parsed_log_.transport_feedbacks(direction), config_, "TWCC", 1));
+ plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
+ parsed_log_.receiver_reports(direction), config_, "RR", 2));
+ plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
+ parsed_log_.sender_reports(direction), config_, "SR", 3));
+ plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
+ parsed_log_.extended_reports(direction), config_, "XR", 4));
+ plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(parsed_log_.nacks(direction),
+ config_, "NACK", 5));
+ plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(parsed_log_.rembs(direction),
+ config_, "REMB", 6));
+ plot->AppendTimeSeries(
+ CreateRtcpTypeTimeSeries(parsed_log_.firs(direction), config_, "FIR", 7));
+ plot->AppendTimeSeries(
+ CreateRtcpTypeTimeSeries(parsed_log_.plis(direction), config_, "PLI", 8));
+ plot->AppendTimeSeries(
+ CreateRtcpTypeTimeSeries(parsed_log_.byes(direction), config_, "BYE", 9));
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "RTCP type", kBottomMargin, kTopMargin);
+ plot->SetTitle(GetDirectionAsString(direction) + " RTCP packets");
+ plot->SetYAxisTickLabels({{1, "TWCC"},
+ {2, "RR"},
+ {3, "SR"},
+ {4, "XR"},
+ {5, "NACK"},
+ {6, "REMB"},
+ {7, "FIR"},
+ {8, "PLI"},
+ {9, "BYE"}});
+}
+
+template <typename IterableType>
+void EventLogAnalyzer::CreateAccumulatedPacketsTimeSeries(
+ Plot* plot,
+ const IterableType& packets,
+ const std::string& label) {
+ TimeSeries time_series(label, LineStyle::kStep);
+ for (size_t i = 0; i < packets.size(); i++) {
+ float x = config_.GetCallTimeSec(packets[i].log_time());
+ time_series.points.emplace_back(x, i + 1);
+ }
+ plot->AppendTimeSeries(std::move(time_series));
+}
+
+void EventLogAnalyzer::CreateAccumulatedPacketsGraph(PacketDirection direction,
+ Plot* plot) {
+ for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
+ if (!MatchingSsrc(stream.ssrc, desired_ssrc_))
+ continue;
+ std::string label = std::string("RTP ") +
+ GetStreamName(parsed_log_, direction, stream.ssrc);
+ CreateAccumulatedPacketsTimeSeries(plot, stream.packet_view, label);
+ }
+ std::string label =
+ std::string("RTCP ") + "(" + GetDirectionAsShortString(direction) + ")";
+ if (direction == kIncomingPacket) {
+ CreateAccumulatedPacketsTimeSeries(
+ plot, parsed_log_.incoming_rtcp_packets(), label);
+ } else {
+ CreateAccumulatedPacketsTimeSeries(
+ plot, parsed_log_.outgoing_rtcp_packets(), label);
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Received Packets", kBottomMargin, kTopMargin);
+ plot->SetTitle(std::string("Accumulated ") + GetDirectionAsString(direction) +
+ " RTP/RTCP packets");
+}
+
+void EventLogAnalyzer::CreatePacketRateGraph(PacketDirection direction,
+ Plot* plot) {
+ auto CountPackets = [](auto packet) { return 1.0; };
+ for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
+ // Filter on SSRC.
+ if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
+ continue;
+ }
+ TimeSeries time_series(
+ std::string("RTP ") +
+ GetStreamName(parsed_log_, direction, stream.ssrc),
+ LineStyle::kLine);
+ MovingAverage<LoggedRtpPacket, double>(CountPackets, stream.packet_view,
+ config_, &time_series);
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+ TimeSeries time_series(
+ std::string("RTCP ") + "(" + GetDirectionAsShortString(direction) + ")",
+ LineStyle::kLine);
+ if (direction == kIncomingPacket) {
+ MovingAverage<LoggedRtcpPacketIncoming, double>(
+ CountPackets, parsed_log_.incoming_rtcp_packets(), config_,
+ &time_series);
+ } else {
+ MovingAverage<LoggedRtcpPacketOutgoing, double>(
+ CountPackets, parsed_log_.outgoing_rtcp_packets(), config_,
+ &time_series);
+ }
+ plot->AppendTimeSeries(std::move(time_series));
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Packet Rate (packets/s)", kBottomMargin,
+ kTopMargin);
+ plot->SetTitle("Rate of " + GetDirectionAsString(direction) +
+ " RTP/RTCP packets");
+}
+
+void EventLogAnalyzer::CreateTotalPacketRateGraph(PacketDirection direction,
+ Plot* plot) {
+ // Contains a log timestamp to enable counting logged events of different
+ // types using MovingAverage().
+ class LogTime {
+ public:
+ explicit LogTime(Timestamp log_time) : log_time_(log_time) {}
+ Timestamp log_time() const { return log_time_; }
+
+ private:
+ Timestamp log_time_;
+ };
+ std::vector<LogTime> packet_times;
+ auto handle_rtp = [&](const LoggedRtpPacket& packet) {
+ packet_times.emplace_back(packet.log_time());
+ };
+ RtcEventProcessor process;
+ for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
+ process.AddEvents(stream.packet_view, handle_rtp);
+ }
+ if (direction == kIncomingPacket) {
+ auto handle_incoming_rtcp = [&](const LoggedRtcpPacketIncoming& packet) {
+ packet_times.emplace_back(packet.log_time());
+ };
+ process.AddEvents(parsed_log_.incoming_rtcp_packets(),
+ handle_incoming_rtcp);
+ } else {
+ auto handle_outgoing_rtcp = [&](const LoggedRtcpPacketOutgoing& packet) {
+ packet_times.emplace_back(packet.log_time());
+ };
+ process.AddEvents(parsed_log_.outgoing_rtcp_packets(),
+ handle_outgoing_rtcp);
+ }
+ process.ProcessEventsInOrder();
+ TimeSeries time_series(std::string("Total ") + "(" +
+ GetDirectionAsShortString(direction) + ") packets",
+ LineStyle::kLine);
+ MovingAverage<LogTime, uint64_t>([](auto packet) { return 1; }, packet_times,
+ config_, &time_series);
+ plot->AppendTimeSeries(std::move(time_series));
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Packet Rate (packets/s)", kBottomMargin,
+ kTopMargin);
+ plot->SetTitle("Rate of all " + GetDirectionAsString(direction) +
+ " RTP/RTCP packets");
+}
+
+// For each SSRC, plot the time between the consecutive playouts.
+void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) {
+ for (const auto& playout_stream : parsed_log_.audio_playout_events()) {
+ uint32_t ssrc = playout_stream.first;
+ if (!MatchingSsrc(ssrc, desired_ssrc_))
+ continue;
+ absl::optional<int64_t> last_playout_ms;
+ TimeSeries time_series(SsrcToString(ssrc), LineStyle::kBar);
+ for (const auto& playout_event : playout_stream.second) {
+ float x = config_.GetCallTimeSec(playout_event.log_time());
+ int64_t playout_time_ms = playout_event.log_time_ms();
+ // If there were no previous playouts, place the point on the x-axis.
+ float y = playout_time_ms - last_playout_ms.value_or(playout_time_ms);
+ time_series.points.push_back(TimeSeriesPoint(x, y));
+ last_playout_ms.emplace(playout_time_ms);
+ }
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin,
+ kTopMargin);
+ plot->SetTitle("Audio playout");
+}
+
+void EventLogAnalyzer::CreateNetEqSetMinimumDelay(Plot* plot) {
+ for (const auto& playout_stream :
+ parsed_log_.neteq_set_minimum_delay_events()) {
+ uint32_t ssrc = playout_stream.first;
+ if (!MatchingSsrc(ssrc, desired_ssrc_))
+ continue;
+
+ TimeSeries time_series(SsrcToString(ssrc), LineStyle::kStep,
+ PointStyle::kHighlight);
+ for (const auto& event : playout_stream.second) {
+ float x = config_.GetCallTimeSec(event.log_time());
+ float y = event.minimum_delay_ms;
+ time_series.points.push_back(TimeSeriesPoint(x, y));
+ }
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1000, "Minimum Delay (ms)", kBottomMargin,
+ kTopMargin);
+ plot->SetTitle("Set Minimum Delay");
+}
+
+// For audio SSRCs, plot the audio level.
+void EventLogAnalyzer::CreateAudioLevelGraph(PacketDirection direction,
+ Plot* plot) {
+ for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
+ if (!IsAudioSsrc(parsed_log_, direction, stream.ssrc))
+ continue;
+ TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc),
+ LineStyle::kLine);
+ for (auto& packet : stream.packet_view) {
+ if (packet.header.extension.hasAudioLevel) {
+ float x = config_.GetCallTimeSec(packet.log_time());
+ // The audio level is stored in -dBov (so e.g. -10 dBov is stored as 10)
+ // Here we convert it to dBov.
+ float y = static_cast<float>(-packet.header.extension.audioLevel);
+ time_series.points.emplace_back(TimeSeriesPoint(x, y));
+ }
+ }
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetYAxis(-127, 0, "Audio level (dBov)", kBottomMargin, kTopMargin);
+ plot->SetTitle(GetDirectionAsString(direction) + " audio level");
+}
+
+// For each SSRC, plot the sequence number difference between consecutive
+// incoming packets.
+void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) {
+ for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
+ // Filter on SSRC.
+ if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
+ continue;
+ }
+
+ TimeSeries time_series(
+ GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc),
+ LineStyle::kBar);
+ auto GetSequenceNumberDiff = [](const LoggedRtpPacketIncoming& old_packet,
+ const LoggedRtpPacketIncoming& new_packet) {
+ int64_t diff =
+ WrappingDifference(new_packet.rtp.header.sequenceNumber,
+ old_packet.rtp.header.sequenceNumber, 1ul << 16);
+ return diff;
+ };
+ auto ToCallTime = [this](const LoggedRtpPacketIncoming& packet) {
+ return this->config_.GetCallTimeSec(packet.log_time());
+ };
+ ProcessPairs<LoggedRtpPacketIncoming, float>(
+ ToCallTime, GetSequenceNumberDiff, stream.incoming_packets,
+ &time_series);
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin,
+ kTopMargin);
+ plot->SetTitle("Incoming sequence number delta");
+}
+
+void EventLogAnalyzer::CreateIncomingPacketLossGraph(Plot* plot) {
+ for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
+ const std::vector<LoggedRtpPacketIncoming>& packets =
+ stream.incoming_packets;
+ // Filter on SSRC.
+ if (!MatchingSsrc(stream.ssrc, desired_ssrc_) || packets.empty()) {
+ continue;
+ }
+
+ TimeSeries time_series(
+ GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc),
+ LineStyle::kLine, PointStyle::kHighlight);
+ // TODO(terelius): Should the window and step size be read from the class
+ // instead?
+ const TimeDelta kWindow = TimeDelta::Millis(1000);
+ const TimeDelta kStep = TimeDelta::Millis(1000);
+ SeqNumUnwrapper<uint16_t> unwrapper_;
+ SeqNumUnwrapper<uint16_t> prior_unwrapper_;
+ size_t window_index_begin = 0;
+ size_t window_index_end = 0;
+ uint64_t highest_seq_number =
+ unwrapper_.Unwrap(packets[0].rtp.header.sequenceNumber) - 1;
+ uint64_t highest_prior_seq_number =
+ prior_unwrapper_.Unwrap(packets[0].rtp.header.sequenceNumber) - 1;
+
+ for (Timestamp t = config_.begin_time_; t < config_.end_time_ + kStep;
+ t += kStep) {
+ while (window_index_end < packets.size() &&
+ packets[window_index_end].rtp.log_time() < t) {
+ uint64_t sequence_number = unwrapper_.Unwrap(
+ packets[window_index_end].rtp.header.sequenceNumber);
+ highest_seq_number = std::max(highest_seq_number, sequence_number);
+ ++window_index_end;
+ }
+ while (window_index_begin < packets.size() &&
+ packets[window_index_begin].rtp.log_time() < t - kWindow) {
+ uint64_t sequence_number = prior_unwrapper_.Unwrap(
+ packets[window_index_begin].rtp.header.sequenceNumber);
+ highest_prior_seq_number =
+ std::max(highest_prior_seq_number, sequence_number);
+ ++window_index_begin;
+ }
+ float x = config_.GetCallTimeSec(t);
+ uint64_t expected_packets = highest_seq_number - highest_prior_seq_number;
+ if (expected_packets > 0) {
+ int64_t received_packets = window_index_end - window_index_begin;
+ int64_t lost_packets = expected_packets - received_packets;
+ float y = static_cast<float>(lost_packets) / expected_packets * 100;
+ time_series.points.emplace_back(x, y);
+ }
+ }
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Loss rate (in %)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Incoming packet loss (derived from incoming packets)");
+}
+
+void EventLogAnalyzer::CreateIncomingDelayGraph(Plot* plot) {
+ for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
+ // Filter on SSRC.
+ if (!MatchingSsrc(stream.ssrc, desired_ssrc_) ||
+ IsRtxSsrc(parsed_log_, kIncomingPacket, stream.ssrc)) {
+ continue;
+ }
+
+ const std::vector<LoggedRtpPacketIncoming>& packets =
+ stream.incoming_packets;
+ if (packets.size() < 100) {
+ RTC_LOG(LS_WARNING) << "Can't estimate the RTP clock frequency with "
+ << packets.size() << " packets in the stream.";
+ continue;
+ }
+ int64_t segment_end_us = parsed_log_.first_log_segment().stop_time_us();
+ absl::optional<uint32_t> estimated_frequency =
+ EstimateRtpClockFrequency(packets, segment_end_us);
+ if (!estimated_frequency)
+ continue;
+ const double frequency_hz = *estimated_frequency;
+ if (IsVideoSsrc(parsed_log_, kIncomingPacket, stream.ssrc) &&
+ frequency_hz != 90000) {
+ RTC_LOG(LS_WARNING)
+ << "Video stream should use a 90 kHz clock but appears to use "
+ << frequency_hz / 1000 << ". Discarding.";
+ continue;
+ }
+
+ auto ToCallTime = [this](const LoggedRtpPacketIncoming& packet) {
+ return this->config_.GetCallTimeSec(packet.log_time());
+ };
+ auto ToNetworkDelay = [frequency_hz](
+ const LoggedRtpPacketIncoming& old_packet,
+ const LoggedRtpPacketIncoming& new_packet) {
+ return NetworkDelayDiff_CaptureTime(old_packet, new_packet, frequency_hz);
+ };
+
+ TimeSeries capture_time_data(
+ GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc) +
+ " capture-time",
+ LineStyle::kLine);
+ AccumulatePairs<LoggedRtpPacketIncoming, double>(
+ ToCallTime, ToNetworkDelay, packets, &capture_time_data);
+ plot->AppendTimeSeries(std::move(capture_time_data));
+
+ TimeSeries send_time_data(
+ GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc) +
+ " abs-send-time",
+ LineStyle::kLine);
+ AccumulatePairs<LoggedRtpPacketIncoming, double>(
+ ToCallTime, NetworkDelayDiff_AbsSendTime, packets, &send_time_data);
+ plot->AppendTimeSeriesIfNotEmpty(std::move(send_time_data));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Delay (ms)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Incoming network delay (relative to first packet)");
+}
+
+// Plot the fraction of packets lost (as perceived by the loss-based BWE).
+void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) {
+ TimeSeries time_series("Fraction lost", LineStyle::kLine,
+ PointStyle::kHighlight);
+ for (auto& bwe_update : parsed_log_.bwe_loss_updates()) {
+ float x = config_.GetCallTimeSec(bwe_update.log_time());
+ float y = static_cast<float>(bwe_update.fraction_lost) / 255 * 100;
+ time_series.points.emplace_back(x, y);
+ }
+
+ plot->AppendTimeSeries(std::move(time_series));
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 10, "Loss rate (in %)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Outgoing packet loss (as reported by BWE)");
+}
+
+// Plot the total bandwidth used by all RTP streams.
+void EventLogAnalyzer::CreateTotalIncomingBitrateGraph(Plot* plot) {
+ // TODO(terelius): This could be provided by the parser.
+ std::multimap<Timestamp, size_t> packets_in_order;
+ for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
+ for (const LoggedRtpPacketIncoming& packet : stream.incoming_packets)
+ packets_in_order.insert(
+ std::make_pair(packet.rtp.log_time(), packet.rtp.total_length));
+ }
+
+ auto window_begin = packets_in_order.begin();
+ auto window_end = packets_in_order.begin();
+ size_t bytes_in_window = 0;
+
+ if (!packets_in_order.empty()) {
+ // Calculate a moving average of the bitrate and store in a TimeSeries.
+ TimeSeries bitrate_series("Bitrate", LineStyle::kLine);
+ for (Timestamp time = config_.begin_time_;
+ time < config_.end_time_ + config_.step_; time += config_.step_) {
+ while (window_end != packets_in_order.end() && window_end->first < time) {
+ bytes_in_window += window_end->second;
+ ++window_end;
+ }
+ while (window_begin != packets_in_order.end() &&
+ window_begin->first < time - config_.window_duration_) {
+ RTC_DCHECK_LE(window_begin->second, bytes_in_window);
+ bytes_in_window -= window_begin->second;
+ ++window_begin;
+ }
+ float window_duration_in_seconds =
+ static_cast<float>(config_.window_duration_.us()) /
+ kNumMicrosecsPerSec;
+ float x = config_.GetCallTimeSec(time);
+ float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
+ bitrate_series.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeries(std::move(bitrate_series));
+ }
+
+ // Overlay the outgoing REMB over incoming bitrate.
+ TimeSeries remb_series("Remb", LineStyle::kStep);
+ for (const auto& rtcp : parsed_log_.rembs(kOutgoingPacket)) {
+ float x = config_.GetCallTimeSec(rtcp.log_time());
+ float y = static_cast<float>(rtcp.remb.bitrate_bps()) / 1000;
+ remb_series.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series));
+
+ if (!parsed_log_.generic_packets_received().empty()) {
+ TimeSeries time_series("Incoming generic bitrate", LineStyle::kLine);
+ auto GetPacketSizeKilobits = [](const LoggedGenericPacketReceived& packet) {
+ return packet.packet_length * 8.0 / 1000.0;
+ };
+ MovingAverage<LoggedGenericPacketReceived, double>(
+ GetPacketSizeKilobits, parsed_log_.generic_packets_received(), config_,
+ &time_series);
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Incoming RTP bitrate");
+}
+
+// Plot the total bandwidth used by all RTP streams.
+void EventLogAnalyzer::CreateTotalOutgoingBitrateGraph(
+ Plot* plot,
+ bool show_detector_state,
+ bool show_alr_state,
+ bool show_link_capacity) {
+ // TODO(terelius): This could be provided by the parser.
+ std::multimap<Timestamp, size_t> packets_in_order;
+ for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
+ for (const LoggedRtpPacketOutgoing& packet : stream.outgoing_packets)
+ packets_in_order.insert(
+ std::make_pair(packet.rtp.log_time(), packet.rtp.total_length));
+ }
+
+ auto window_begin = packets_in_order.begin();
+ auto window_end = packets_in_order.begin();
+ size_t bytes_in_window = 0;
+
+ if (!packets_in_order.empty()) {
+ // Calculate a moving average of the bitrate and store in a TimeSeries.
+ TimeSeries bitrate_series("Bitrate", LineStyle::kLine);
+ for (Timestamp time = config_.begin_time_;
+ time < config_.end_time_ + config_.step_; time += config_.step_) {
+ while (window_end != packets_in_order.end() && window_end->first < time) {
+ bytes_in_window += window_end->second;
+ ++window_end;
+ }
+ while (window_begin != packets_in_order.end() &&
+ window_begin->first < time - config_.window_duration_) {
+ RTC_DCHECK_LE(window_begin->second, bytes_in_window);
+ bytes_in_window -= window_begin->second;
+ ++window_begin;
+ }
+ float window_duration_in_seconds =
+ static_cast<float>(config_.window_duration_.us()) /
+ kNumMicrosecsPerSec;
+ float x = config_.GetCallTimeSec(time);
+ float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
+ bitrate_series.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeries(std::move(bitrate_series));
+ }
+
+ // Overlay the send-side bandwidth estimate over the outgoing bitrate.
+ TimeSeries loss_series("Loss-based estimate", LineStyle::kStep);
+ for (auto& loss_update : parsed_log_.bwe_loss_updates()) {
+ float x = config_.GetCallTimeSec(loss_update.log_time());
+ float y = static_cast<float>(loss_update.bitrate_bps) / 1000;
+ loss_series.points.emplace_back(x, y);
+ }
+
+ TimeSeries link_capacity_lower_series("Link-capacity-lower",
+ LineStyle::kStep);
+ TimeSeries link_capacity_upper_series("Link-capacity-upper",
+ LineStyle::kStep);
+ for (auto& remote_estimate_event : parsed_log_.remote_estimate_events()) {
+ float x = config_.GetCallTimeSec(remote_estimate_event.log_time());
+ if (remote_estimate_event.link_capacity_lower.has_value()) {
+ float link_capacity_lower = static_cast<float>(
+ remote_estimate_event.link_capacity_lower.value().kbps());
+ link_capacity_lower_series.points.emplace_back(x, link_capacity_lower);
+ }
+ if (remote_estimate_event.link_capacity_upper.has_value()) {
+ float link_capacity_upper = static_cast<float>(
+ remote_estimate_event.link_capacity_upper.value().kbps());
+ link_capacity_upper_series.points.emplace_back(x, link_capacity_upper);
+ }
+ }
+
+ TimeSeries delay_series("Delay-based estimate", LineStyle::kStep);
+ IntervalSeries overusing_series("Overusing", "#ff8e82",
+ IntervalSeries::kHorizontal);
+ IntervalSeries underusing_series("Underusing", "#5092fc",
+ IntervalSeries::kHorizontal);
+ IntervalSeries normal_series("Normal", "#c4ffc4",
+ IntervalSeries::kHorizontal);
+ IntervalSeries* last_series = &normal_series;
+ float last_detector_switch = 0.0;
+
+ BandwidthUsage last_detector_state = BandwidthUsage::kBwNormal;
+
+ for (auto& delay_update : parsed_log_.bwe_delay_updates()) {
+ float x = config_.GetCallTimeSec(delay_update.log_time());
+ float y = static_cast<float>(delay_update.bitrate_bps) / 1000;
+
+ if (last_detector_state != delay_update.detector_state) {
+ last_series->intervals.emplace_back(last_detector_switch, x);
+ last_detector_state = delay_update.detector_state;
+ last_detector_switch = x;
+
+ switch (delay_update.detector_state) {
+ case BandwidthUsage::kBwNormal:
+ last_series = &normal_series;
+ break;
+ case BandwidthUsage::kBwUnderusing:
+ last_series = &underusing_series;
+ break;
+ case BandwidthUsage::kBwOverusing:
+ last_series = &overusing_series;
+ break;
+ case BandwidthUsage::kLast:
+ RTC_DCHECK_NOTREACHED();
+ }
+ }
+
+ delay_series.points.emplace_back(x, y);
+ }
+
+ RTC_CHECK(last_series);
+ last_series->intervals.emplace_back(last_detector_switch,
+ config_.CallEndTimeSec());
+
+ TimeSeries created_series("Probe cluster created.", LineStyle::kNone,
+ PointStyle::kHighlight);
+ for (auto& cluster : parsed_log_.bwe_probe_cluster_created_events()) {
+ float x = config_.GetCallTimeSec(cluster.log_time());
+ float y = static_cast<float>(cluster.bitrate_bps) / 1000;
+ created_series.points.emplace_back(x, y);
+ }
+
+ TimeSeries result_series("Probing results.", LineStyle::kNone,
+ PointStyle::kHighlight);
+ for (auto& result : parsed_log_.bwe_probe_success_events()) {
+ float x = config_.GetCallTimeSec(result.log_time());
+ float y = static_cast<float>(result.bitrate_bps) / 1000;
+ result_series.points.emplace_back(x, y);
+ }
+
+ TimeSeries probe_failures_series("Probe failed", LineStyle::kNone,
+ PointStyle::kHighlight);
+ for (auto& failure : parsed_log_.bwe_probe_failure_events()) {
+ float x = config_.GetCallTimeSec(failure.log_time());
+ probe_failures_series.points.emplace_back(x, 0);
+ }
+
+ IntervalSeries alr_state("ALR", "#555555", IntervalSeries::kHorizontal);
+ bool previously_in_alr = false;
+ Timestamp alr_start = Timestamp::Zero();
+ for (auto& alr : parsed_log_.alr_state_events()) {
+ float y = config_.GetCallTimeSec(alr.log_time());
+ if (!previously_in_alr && alr.in_alr) {
+ alr_start = alr.log_time();
+ previously_in_alr = true;
+ } else if (previously_in_alr && !alr.in_alr) {
+ float x = config_.GetCallTimeSec(alr_start);
+ alr_state.intervals.emplace_back(x, y);
+ previously_in_alr = false;
+ }
+ }
+
+ if (previously_in_alr) {
+ float x = config_.GetCallTimeSec(alr_start);
+ float y = config_.GetCallTimeSec(config_.end_time_);
+ alr_state.intervals.emplace_back(x, y);
+ }
+
+ if (show_detector_state) {
+ plot->AppendIntervalSeries(std::move(overusing_series));
+ plot->AppendIntervalSeries(std::move(underusing_series));
+ plot->AppendIntervalSeries(std::move(normal_series));
+ }
+
+ if (show_alr_state) {
+ plot->AppendIntervalSeries(std::move(alr_state));
+ }
+
+ if (show_link_capacity) {
+ plot->AppendTimeSeriesIfNotEmpty(std::move(link_capacity_lower_series));
+ plot->AppendTimeSeriesIfNotEmpty(std::move(link_capacity_upper_series));
+ }
+
+ plot->AppendTimeSeries(std::move(loss_series));
+ plot->AppendTimeSeriesIfNotEmpty(std::move(probe_failures_series));
+ plot->AppendTimeSeries(std::move(delay_series));
+ plot->AppendTimeSeries(std::move(created_series));
+ plot->AppendTimeSeries(std::move(result_series));
+
+ // Overlay the incoming REMB over the outgoing bitrate.
+ TimeSeries remb_series("Remb", LineStyle::kStep);
+ for (const auto& rtcp : parsed_log_.rembs(kIncomingPacket)) {
+ float x = config_.GetCallTimeSec(rtcp.log_time());
+ float y = static_cast<float>(rtcp.remb.bitrate_bps()) / 1000;
+ remb_series.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series));
+
+ if (!parsed_log_.generic_packets_sent().empty()) {
+ {
+ TimeSeries time_series("Outgoing generic total bitrate",
+ LineStyle::kLine);
+ auto GetPacketSizeKilobits = [](const LoggedGenericPacketSent& packet) {
+ return packet.packet_length() * 8.0 / 1000.0;
+ };
+ MovingAverage<LoggedGenericPacketSent, double>(
+ GetPacketSizeKilobits, parsed_log_.generic_packets_sent(), config_,
+ &time_series);
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ {
+ TimeSeries time_series("Outgoing generic payload bitrate",
+ LineStyle::kLine);
+ auto GetPacketSizeKilobits = [](const LoggedGenericPacketSent& packet) {
+ return packet.payload_length * 8.0 / 1000.0;
+ };
+ MovingAverage<LoggedGenericPacketSent, double>(
+ GetPacketSizeKilobits, parsed_log_.generic_packets_sent(), config_,
+ &time_series);
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Outgoing RTP bitrate");
+}
+
+// For each SSRC, plot the bandwidth used by that stream.
+void EventLogAnalyzer::CreateStreamBitrateGraph(PacketDirection direction,
+ Plot* plot) {
+ for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
+ // Filter on SSRC.
+ if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
+ continue;
+ }
+
+ TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc),
+ LineStyle::kLine);
+ auto GetPacketSizeKilobits = [](const LoggedRtpPacket& packet) {
+ return packet.total_length * 8.0 / 1000.0;
+ };
+ MovingAverage<LoggedRtpPacket, double>(
+ GetPacketSizeKilobits, stream.packet_view, config_, &time_series);
+ plot->AppendTimeSeries(std::move(time_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
+ plot->SetTitle(GetDirectionAsString(direction) + " bitrate per stream");
+}
+
+// Plot the bitrate allocation for each temporal and spatial layer.
+// Computed from RTCP XR target bitrate block, so the graph is only populated if
+// those are sent.
+void EventLogAnalyzer::CreateBitrateAllocationGraph(PacketDirection direction,
+ Plot* plot) {
+ std::map<LayerDescription, TimeSeries> time_series;
+ const auto& xr_list = parsed_log_.extended_reports(direction);
+ for (const auto& rtcp : xr_list) {
+ const absl::optional<rtcp::TargetBitrate>& target_bitrate =
+ rtcp.xr.target_bitrate();
+ if (!target_bitrate.has_value())
+ continue;
+ for (const auto& bitrate_item : target_bitrate->GetTargetBitrates()) {
+ LayerDescription layer(rtcp.xr.sender_ssrc(), bitrate_item.spatial_layer,
+ bitrate_item.temporal_layer);
+ auto time_series_it = time_series.find(layer);
+ if (time_series_it == time_series.end()) {
+ std::string layer_name = GetLayerName(layer);
+ bool inserted;
+ std::tie(time_series_it, inserted) = time_series.insert(
+ std::make_pair(layer, TimeSeries(layer_name, LineStyle::kStep)));
+ RTC_DCHECK(inserted);
+ }
+ float x = config_.GetCallTimeSec(rtcp.log_time());
+ float y = bitrate_item.target_bitrate_kbps;
+ time_series_it->second.points.emplace_back(x, y);
+ }
+ }
+ for (auto& layer : time_series) {
+ plot->AppendTimeSeries(std::move(layer.second));
+ }
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
+ if (direction == kIncomingPacket)
+ plot->SetTitle("Target bitrate per incoming layer");
+ else
+ plot->SetTitle("Target bitrate per outgoing layer");
+}
+
+void EventLogAnalyzer::CreateGoogCcSimulationGraph(Plot* plot) {
+ TimeSeries target_rates("Simulated target rate", LineStyle::kStep,
+ PointStyle::kHighlight);
+ TimeSeries delay_based("Logged delay-based estimate", LineStyle::kStep,
+ PointStyle::kHighlight);
+ TimeSeries loss_based("Logged loss-based estimate", LineStyle::kStep,
+ PointStyle::kHighlight);
+ TimeSeries probe_results("Logged probe success", LineStyle::kNone,
+ PointStyle::kHighlight);
+
+ LogBasedNetworkControllerSimulation simulation(
+ std::make_unique<GoogCcNetworkControllerFactory>(),
+ [&](const NetworkControlUpdate& update, Timestamp at_time) {
+ if (update.target_rate) {
+ target_rates.points.emplace_back(
+ config_.GetCallTimeSec(at_time),
+ update.target_rate->target_rate.kbps<float>());
+ }
+ });
+
+ simulation.ProcessEventsInLog(parsed_log_);
+ for (const auto& logged : parsed_log_.bwe_delay_updates())
+ delay_based.points.emplace_back(config_.GetCallTimeSec(logged.log_time()),
+ logged.bitrate_bps / 1000);
+ for (const auto& logged : parsed_log_.bwe_probe_success_events())
+ probe_results.points.emplace_back(config_.GetCallTimeSec(logged.log_time()),
+ logged.bitrate_bps / 1000);
+ for (const auto& logged : parsed_log_.bwe_loss_updates())
+ loss_based.points.emplace_back(config_.GetCallTimeSec(logged.log_time()),
+ logged.bitrate_bps / 1000);
+
+ plot->AppendTimeSeries(std::move(delay_based));
+ plot->AppendTimeSeries(std::move(loss_based));
+ plot->AppendTimeSeries(std::move(probe_results));
+ plot->AppendTimeSeries(std::move(target_rates));
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Simulated BWE behavior");
+}
+
+void EventLogAnalyzer::CreateSendSideBweSimulationGraph(Plot* plot) {
+ using RtpPacketType = LoggedRtpPacketOutgoing;
+ using TransportFeedbackType = LoggedRtcpPacketTransportFeedback;
+
+ // TODO(terelius): This could be provided by the parser.
+ std::multimap<int64_t, const RtpPacketType*> outgoing_rtp;
+ for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
+ for (const RtpPacketType& rtp_packet : stream.outgoing_packets)
+ outgoing_rtp.insert(
+ std::make_pair(rtp_packet.rtp.log_time_us(), &rtp_packet));
+ }
+
+ const std::vector<TransportFeedbackType>& incoming_rtcp =
+ parsed_log_.transport_feedbacks(kIncomingPacket);
+
+ SimulatedClock clock(0);
+ BitrateObserver observer;
+ RtcEventLogNull null_event_log;
+ TransportFeedbackAdapter transport_feedback;
+ auto factory = GoogCcNetworkControllerFactory();
+ TimeDelta process_interval = factory.GetProcessInterval();
+ // TODO(holmer): Log the call config and use that here instead.
+ static const uint32_t kDefaultStartBitrateBps = 300000;
+ NetworkControllerConfig cc_config;
+ cc_config.constraints.at_time = Timestamp::Micros(clock.TimeInMicroseconds());
+ cc_config.constraints.starting_rate =
+ DataRate::BitsPerSec(kDefaultStartBitrateBps);
+ cc_config.event_log = &null_event_log;
+ auto goog_cc = factory.Create(cc_config);
+
+ TimeSeries time_series("Delay-based estimate", LineStyle::kStep,
+ PointStyle::kHighlight);
+ TimeSeries acked_time_series("Raw acked bitrate", LineStyle::kLine,
+ PointStyle::kHighlight);
+ TimeSeries robust_time_series("Robust throughput estimate", LineStyle::kLine,
+ PointStyle::kHighlight);
+ TimeSeries acked_estimate_time_series("Ackednowledged bitrate estimate",
+ LineStyle::kLine,
+ PointStyle::kHighlight);
+
+ auto rtp_iterator = outgoing_rtp.begin();
+ auto rtcp_iterator = incoming_rtcp.begin();
+
+ auto NextRtpTime = [&]() {
+ if (rtp_iterator != outgoing_rtp.end())
+ return static_cast<int64_t>(rtp_iterator->first);
+ return std::numeric_limits<int64_t>::max();
+ };
+
+ auto NextRtcpTime = [&]() {
+ if (rtcp_iterator != incoming_rtcp.end())
+ return static_cast<int64_t>(rtcp_iterator->log_time_us());
+ return std::numeric_limits<int64_t>::max();
+ };
+ int64_t next_process_time_us_ = std::min({NextRtpTime(), NextRtcpTime()});
+
+ auto NextProcessTime = [&]() {
+ if (rtcp_iterator != incoming_rtcp.end() ||
+ rtp_iterator != outgoing_rtp.end()) {
+ return next_process_time_us_;
+ }
+ return std::numeric_limits<int64_t>::max();
+ };
+
+ RateStatistics raw_acked_bitrate(750, 8000);
+ test::ExplicitKeyValueConfig throughput_config(
+ "WebRTC-Bwe-RobustThroughputEstimatorSettings/"
+ "enabled:true,required_packets:10,"
+ "window_packets:25,window_duration:1000ms,unacked_weight:1.0/");
+ std::unique_ptr<AcknowledgedBitrateEstimatorInterface>
+ robust_throughput_estimator(
+ AcknowledgedBitrateEstimatorInterface::Create(&throughput_config));
+ FieldTrialBasedConfig field_trial_config;
+ std::unique_ptr<AcknowledgedBitrateEstimatorInterface>
+ acknowledged_bitrate_estimator(
+ AcknowledgedBitrateEstimatorInterface::Create(&field_trial_config));
+ int64_t time_us =
+ std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
+ int64_t last_update_us = 0;
+ while (time_us != std::numeric_limits<int64_t>::max()) {
+ clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
+ if (clock.TimeInMicroseconds() >= NextRtpTime()) {
+ RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
+ const RtpPacketType& rtp_packet = *rtp_iterator->second;
+ if (rtp_packet.rtp.header.extension.hasTransportSequenceNumber) {
+ RtpPacketSendInfo packet_info;
+ packet_info.media_ssrc = rtp_packet.rtp.header.ssrc;
+ packet_info.transport_sequence_number =
+ rtp_packet.rtp.header.extension.transportSequenceNumber;
+ packet_info.rtp_sequence_number = rtp_packet.rtp.header.sequenceNumber;
+ packet_info.length = rtp_packet.rtp.total_length;
+ if (IsRtxSsrc(parsed_log_, PacketDirection::kOutgoingPacket,
+ rtp_packet.rtp.header.ssrc)) {
+ // Don't set the optional media type as we don't know if it is
+ // a retransmission, FEC or padding.
+ } else if (IsVideoSsrc(parsed_log_, PacketDirection::kOutgoingPacket,
+ rtp_packet.rtp.header.ssrc)) {
+ packet_info.packet_type = RtpPacketMediaType::kVideo;
+ } else if (IsAudioSsrc(parsed_log_, PacketDirection::kOutgoingPacket,
+ rtp_packet.rtp.header.ssrc)) {
+ packet_info.packet_type = RtpPacketMediaType::kAudio;
+ }
+ transport_feedback.AddPacket(
+ packet_info,
+ 0u, // Per packet overhead bytes.
+ Timestamp::Micros(rtp_packet.rtp.log_time_us()));
+ }
+ rtc::SentPacket sent_packet;
+ sent_packet.send_time_ms = rtp_packet.rtp.log_time_ms();
+ sent_packet.info.included_in_allocation = true;
+ sent_packet.info.packet_size_bytes = rtp_packet.rtp.total_length;
+ if (rtp_packet.rtp.header.extension.hasTransportSequenceNumber) {
+ sent_packet.packet_id =
+ rtp_packet.rtp.header.extension.transportSequenceNumber;
+ sent_packet.info.included_in_feedback = true;
+ }
+ auto sent_msg = transport_feedback.ProcessSentPacket(sent_packet);
+ if (sent_msg)
+ observer.Update(goog_cc->OnSentPacket(*sent_msg));
+ ++rtp_iterator;
+ }
+ if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
+ RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
+
+ auto feedback_msg = transport_feedback.ProcessTransportFeedback(
+ rtcp_iterator->transport_feedback,
+ Timestamp::Millis(clock.TimeInMilliseconds()));
+ if (feedback_msg) {
+ observer.Update(goog_cc->OnTransportPacketsFeedback(*feedback_msg));
+ std::vector<PacketResult> feedback =
+ feedback_msg->SortedByReceiveTime();
+ if (!feedback.empty()) {
+ acknowledged_bitrate_estimator->IncomingPacketFeedbackVector(
+ feedback);
+ robust_throughput_estimator->IncomingPacketFeedbackVector(feedback);
+ for (const PacketResult& packet : feedback) {
+ raw_acked_bitrate.Update(packet.sent_packet.size.bytes(),
+ packet.receive_time.ms());
+ }
+ absl::optional<uint32_t> raw_bitrate_bps =
+ raw_acked_bitrate.Rate(feedback.back().receive_time.ms());
+ float x = config_.GetCallTimeSec(clock.CurrentTime());
+ if (raw_bitrate_bps) {
+ float y = raw_bitrate_bps.value() / 1000;
+ acked_time_series.points.emplace_back(x, y);
+ }
+ absl::optional<DataRate> robust_estimate =
+ robust_throughput_estimator->bitrate();
+ if (robust_estimate) {
+ float y = robust_estimate.value().kbps();
+ robust_time_series.points.emplace_back(x, y);
+ }
+ absl::optional<DataRate> acked_estimate =
+ acknowledged_bitrate_estimator->bitrate();
+ if (acked_estimate) {
+ float y = acked_estimate.value().kbps();
+ acked_estimate_time_series.points.emplace_back(x, y);
+ }
+ }
+ }
+ ++rtcp_iterator;
+ }
+ if (clock.TimeInMicroseconds() >= NextProcessTime()) {
+ RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime());
+ ProcessInterval msg;
+ msg.at_time = Timestamp::Micros(clock.TimeInMicroseconds());
+ observer.Update(goog_cc->OnProcessInterval(msg));
+ next_process_time_us_ += process_interval.us();
+ }
+ if (observer.GetAndResetBitrateUpdated() ||
+ time_us - last_update_us >= 1e6) {
+ uint32_t y = observer.last_bitrate_bps() / 1000;
+ float x = config_.GetCallTimeSec(clock.CurrentTime());
+ time_series.points.emplace_back(x, y);
+ last_update_us = time_us;
+ }
+ time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
+ }
+ // Add the data set to the plot.
+ plot->AppendTimeSeries(std::move(time_series));
+ plot->AppendTimeSeries(std::move(robust_time_series));
+ plot->AppendTimeSeries(std::move(acked_time_series));
+ plot->AppendTimeSeriesIfNotEmpty(std::move(acked_estimate_time_series));
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Simulated send-side BWE behavior");
+}
+
+void EventLogAnalyzer::CreateReceiveSideBweSimulationGraph(Plot* plot) {
+ using RtpPacketType = LoggedRtpPacketIncoming;
+ class RembInterceptor {
+ public:
+ void SendRemb(uint32_t bitrate_bps, std::vector<uint32_t> ssrcs) {
+ last_bitrate_bps_ = bitrate_bps;
+ bitrate_updated_ = true;
+ }
+ uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
+ bool GetAndResetBitrateUpdated() {
+ bool bitrate_updated = bitrate_updated_;
+ bitrate_updated_ = false;
+ return bitrate_updated;
+ }
+
+ private:
+ // We don't know the start bitrate, but assume that it is the default 300
+ // kbps.
+ uint32_t last_bitrate_bps_ = 300000;
+ bool bitrate_updated_ = false;
+ };
+
+ std::multimap<int64_t, const RtpPacketType*> incoming_rtp;
+
+ for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
+ if (IsVideoSsrc(parsed_log_, kIncomingPacket, stream.ssrc)) {
+ for (const auto& rtp_packet : stream.incoming_packets)
+ incoming_rtp.insert(
+ std::make_pair(rtp_packet.rtp.log_time_us(), &rtp_packet));
+ }
+ }
+
+ SimulatedClock clock(0);
+ RembInterceptor remb_interceptor;
+ ReceiveSideCongestionController rscc(
+ &clock, [](auto...) {},
+ absl::bind_front(&RembInterceptor::SendRemb, &remb_interceptor), nullptr);
+ // TODO(holmer): Log the call config and use that here instead.
+ // static const uint32_t kDefaultStartBitrateBps = 300000;
+ // rscc.SetBweBitrates(0, kDefaultStartBitrateBps, -1);
+
+ TimeSeries time_series("Receive side estimate", LineStyle::kLine,
+ PointStyle::kHighlight);
+ TimeSeries acked_time_series("Received bitrate", LineStyle::kLine);
+
+ RateStatistics acked_bitrate(250, 8000);
+ int64_t last_update_us = 0;
+ for (const auto& kv : incoming_rtp) {
+ const RtpPacketType& packet = *kv.second;
+ int64_t arrival_time_ms = packet.rtp.log_time_us() / 1000;
+ size_t payload = packet.rtp.total_length; /*Should subtract header?*/
+ clock.AdvanceTimeMicroseconds(packet.rtp.log_time_us() -
+ clock.TimeInMicroseconds());
+ rscc.OnReceivedPacket(arrival_time_ms, payload, packet.rtp.header);
+ acked_bitrate.Update(payload, arrival_time_ms);
+ absl::optional<uint32_t> bitrate_bps = acked_bitrate.Rate(arrival_time_ms);
+ if (bitrate_bps) {
+ uint32_t y = *bitrate_bps / 1000;
+ float x = config_.GetCallTimeSec(clock.CurrentTime());
+ acked_time_series.points.emplace_back(x, y);
+ }
+ if (remb_interceptor.GetAndResetBitrateUpdated() ||
+ clock.TimeInMicroseconds() - last_update_us >= 1e6) {
+ uint32_t y = remb_interceptor.last_bitrate_bps() / 1000;
+ float x = config_.GetCallTimeSec(clock.CurrentTime());
+ time_series.points.emplace_back(x, y);
+ last_update_us = clock.TimeInMicroseconds();
+ }
+ }
+ // Add the data set to the plot.
+ plot->AppendTimeSeries(std::move(time_series));
+ plot->AppendTimeSeries(std::move(acked_time_series));
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Simulated receive-side BWE behavior");
+}
+
+void EventLogAnalyzer::CreateNetworkDelayFeedbackGraph(Plot* plot) {
+ TimeSeries time_series("Network delay", LineStyle::kLine,
+ PointStyle::kHighlight);
+ int64_t min_send_receive_diff_ms = std::numeric_limits<int64_t>::max();
+ int64_t min_rtt_ms = std::numeric_limits<int64_t>::max();
+
+ std::vector<MatchedSendArrivalTimes> matched_rtp_rtcp =
+ GetNetworkTrace(parsed_log_);
+ absl::c_stable_sort(matched_rtp_rtcp, [](const MatchedSendArrivalTimes& a,
+ const MatchedSendArrivalTimes& b) {
+ return a.feedback_arrival_time_ms < b.feedback_arrival_time_ms ||
+ (a.feedback_arrival_time_ms == b.feedback_arrival_time_ms &&
+ a.arrival_time_ms < b.arrival_time_ms);
+ });
+ for (const auto& packet : matched_rtp_rtcp) {
+ if (packet.arrival_time_ms == MatchedSendArrivalTimes::kNotReceived)
+ continue;
+ float x = config_.GetCallTimeSecFromMs(packet.feedback_arrival_time_ms);
+ int64_t y = packet.arrival_time_ms - packet.send_time_ms;
+ int64_t rtt_ms = packet.feedback_arrival_time_ms - packet.send_time_ms;
+ min_rtt_ms = std::min(rtt_ms, min_rtt_ms);
+ min_send_receive_diff_ms = std::min(y, min_send_receive_diff_ms);
+ time_series.points.emplace_back(x, y);
+ }
+
+ // We assume that the base network delay (w/o queues) is equal to half
+ // the minimum RTT. Therefore rescale the delays by subtracting the minimum
+ // observed 1-ways delay and add half the minimum RTT.
+ const int64_t estimated_clock_offset_ms =
+ min_send_receive_diff_ms - min_rtt_ms / 2;
+ for (TimeSeriesPoint& point : time_series.points)
+ point.y -= estimated_clock_offset_ms;
+
+ // Add the data set to the plot.
+ plot->AppendTimeSeriesIfNotEmpty(std::move(time_series));
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin);
+ plot->SetTitle("Outgoing network delay (based on per-packet feedback)");
+}
+
+void EventLogAnalyzer::CreatePacerDelayGraph(Plot* plot) {
+ for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
+ const std::vector<LoggedRtpPacketOutgoing>& packets =
+ stream.outgoing_packets;
+
+ if (IsRtxSsrc(parsed_log_, kOutgoingPacket, stream.ssrc)) {
+ continue;
+ }
+
+ if (packets.size() < 2) {
+ RTC_LOG(LS_WARNING)
+ << "Can't estimate a the RTP clock frequency or the "
+ "pacer delay with less than 2 packets in the stream";
+ continue;
+ }
+ int64_t segment_end_us = parsed_log_.first_log_segment().stop_time_us();
+ absl::optional<uint32_t> estimated_frequency =
+ EstimateRtpClockFrequency(packets, segment_end_us);
+ if (!estimated_frequency)
+ continue;
+ if (IsVideoSsrc(parsed_log_, kOutgoingPacket, stream.ssrc) &&
+ *estimated_frequency != 90000) {
+ RTC_LOG(LS_WARNING)
+ << "Video stream should use a 90 kHz clock but appears to use "
+ << *estimated_frequency / 1000 << ". Discarding.";
+ continue;
+ }
+
+ TimeSeries pacer_delay_series(
+ GetStreamName(parsed_log_, kOutgoingPacket, stream.ssrc) + "(" +
+ std::to_string(*estimated_frequency / 1000) + " kHz)",
+ LineStyle::kLine, PointStyle::kHighlight);
+ SeqNumUnwrapper<uint32_t> timestamp_unwrapper;
+ uint64_t first_capture_timestamp =
+ timestamp_unwrapper.Unwrap(packets.front().rtp.header.timestamp);
+ uint64_t first_send_timestamp = packets.front().rtp.log_time_us();
+ for (const auto& packet : packets) {
+ double capture_time_ms = (static_cast<double>(timestamp_unwrapper.Unwrap(
+ packet.rtp.header.timestamp)) -
+ first_capture_timestamp) /
+ *estimated_frequency * 1000;
+ double send_time_ms =
+ static_cast<double>(packet.rtp.log_time_us() - first_send_timestamp) /
+ 1000;
+ float x = config_.GetCallTimeSec(packet.rtp.log_time());
+ float y = send_time_ms - capture_time_ms;
+ pacer_delay_series.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeries(std::move(pacer_delay_series));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 10, "Pacer delay (ms)", kBottomMargin, kTopMargin);
+ plot->SetTitle(
+ "Delay from capture to send time. (First packet normalized to 0.)");
+}
+
+void EventLogAnalyzer::CreateTimestampGraph(PacketDirection direction,
+ Plot* plot) {
+ for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
+ TimeSeries rtp_timestamps(
+ GetStreamName(parsed_log_, direction, stream.ssrc) + " capture-time",
+ LineStyle::kLine, PointStyle::kHighlight);
+ for (const auto& packet : stream.packet_view) {
+ float x = config_.GetCallTimeSec(packet.log_time());
+ float y = packet.header.timestamp;
+ rtp_timestamps.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeries(std::move(rtp_timestamps));
+
+ TimeSeries rtcp_timestamps(
+ GetStreamName(parsed_log_, direction, stream.ssrc) +
+ " rtcp capture-time",
+ LineStyle::kLine, PointStyle::kHighlight);
+ // TODO(terelius): Why only sender reports?
+ const auto& sender_reports = parsed_log_.sender_reports(direction);
+ for (const auto& rtcp : sender_reports) {
+ if (rtcp.sr.sender_ssrc() != stream.ssrc)
+ continue;
+ float x = config_.GetCallTimeSec(rtcp.log_time());
+ float y = rtcp.sr.rtp_timestamp();
+ rtcp_timestamps.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeriesIfNotEmpty(std::move(rtcp_timestamps));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "RTP timestamp", kBottomMargin, kTopMargin);
+ plot->SetTitle(GetDirectionAsString(direction) + " timestamps");
+}
+
+void EventLogAnalyzer::CreateSenderAndReceiverReportPlot(
+ PacketDirection direction,
+ rtc::FunctionView<float(const rtcp::ReportBlock&)> fy,
+ std::string title,
+ std::string yaxis_label,
+ Plot* plot) {
+ std::map<uint32_t, TimeSeries> sr_reports_by_ssrc;
+ const auto& sender_reports = parsed_log_.sender_reports(direction);
+ for (const auto& rtcp : sender_reports) {
+ float x = config_.GetCallTimeSec(rtcp.log_time());
+ uint32_t ssrc = rtcp.sr.sender_ssrc();
+ for (const auto& block : rtcp.sr.report_blocks()) {
+ float y = fy(block);
+ auto sr_report_it = sr_reports_by_ssrc.find(ssrc);
+ bool inserted;
+ if (sr_report_it == sr_reports_by_ssrc.end()) {
+ std::tie(sr_report_it, inserted) = sr_reports_by_ssrc.emplace(
+ ssrc, TimeSeries(GetStreamName(parsed_log_, direction, ssrc) +
+ " Sender Reports",
+ LineStyle::kLine, PointStyle::kHighlight));
+ }
+ sr_report_it->second.points.emplace_back(x, y);
+ }
+ }
+ for (auto& kv : sr_reports_by_ssrc) {
+ plot->AppendTimeSeries(std::move(kv.second));
+ }
+
+ std::map<uint32_t, TimeSeries> rr_reports_by_ssrc;
+ const auto& receiver_reports = parsed_log_.receiver_reports(direction);
+ for (const auto& rtcp : receiver_reports) {
+ float x = config_.GetCallTimeSec(rtcp.log_time());
+ uint32_t ssrc = rtcp.rr.sender_ssrc();
+ for (const auto& block : rtcp.rr.report_blocks()) {
+ float y = fy(block);
+ auto rr_report_it = rr_reports_by_ssrc.find(ssrc);
+ bool inserted;
+ if (rr_report_it == rr_reports_by_ssrc.end()) {
+ std::tie(rr_report_it, inserted) = rr_reports_by_ssrc.emplace(
+ ssrc, TimeSeries(GetStreamName(parsed_log_, direction, ssrc) +
+ " Receiver Reports",
+ LineStyle::kLine, PointStyle::kHighlight));
+ }
+ rr_report_it->second.points.emplace_back(x, y);
+ }
+ }
+ for (auto& kv : rr_reports_by_ssrc) {
+ plot->AppendTimeSeries(std::move(kv.second));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, yaxis_label, kBottomMargin, kTopMargin);
+ plot->SetTitle(title);
+}
+
+void EventLogAnalyzer::CreateIceCandidatePairConfigGraph(Plot* plot) {
+ std::map<uint32_t, TimeSeries> configs_by_cp_id;
+ for (const auto& config : parsed_log_.ice_candidate_pair_configs()) {
+ if (configs_by_cp_id.find(config.candidate_pair_id) ==
+ configs_by_cp_id.end()) {
+ const std::string candidate_pair_desc =
+ GetCandidatePairLogDescriptionAsString(config);
+ configs_by_cp_id[config.candidate_pair_id] =
+ TimeSeries("[" + std::to_string(config.candidate_pair_id) + "]" +
+ candidate_pair_desc,
+ LineStyle::kNone, PointStyle::kHighlight);
+ candidate_pair_desc_by_id_[config.candidate_pair_id] =
+ candidate_pair_desc;
+ }
+ float x = config_.GetCallTimeSec(config.log_time());
+ float y = static_cast<float>(config.type);
+ configs_by_cp_id[config.candidate_pair_id].points.emplace_back(x, y);
+ }
+
+ // TODO(qingsi): There can be a large number of candidate pairs generated by
+ // certain calls and the frontend cannot render the chart in this case due to
+ // the failure of generating a palette with the same number of colors.
+ for (auto& kv : configs_by_cp_id) {
+ plot->AppendTimeSeries(std::move(kv.second));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 3, "Config Type", kBottomMargin, kTopMargin);
+ plot->SetTitle("[IceEventLog] ICE candidate pair configs");
+ plot->SetYAxisTickLabels(
+ {{static_cast<float>(IceCandidatePairConfigType::kAdded), "ADDED"},
+ {static_cast<float>(IceCandidatePairConfigType::kUpdated), "UPDATED"},
+ {static_cast<float>(IceCandidatePairConfigType::kDestroyed),
+ "DESTROYED"},
+ {static_cast<float>(IceCandidatePairConfigType::kSelected),
+ "SELECTED"}});
+}
+
+std::string EventLogAnalyzer::GetCandidatePairLogDescriptionFromId(
+ uint32_t candidate_pair_id) {
+ if (candidate_pair_desc_by_id_.find(candidate_pair_id) !=
+ candidate_pair_desc_by_id_.end()) {
+ return candidate_pair_desc_by_id_[candidate_pair_id];
+ }
+ for (const auto& config : parsed_log_.ice_candidate_pair_configs()) {
+ // TODO(qingsi): Add the handling of the "Updated" config event after the
+ // visualization of property change for candidate pairs is introduced.
+ if (candidate_pair_desc_by_id_.find(config.candidate_pair_id) ==
+ candidate_pair_desc_by_id_.end()) {
+ const std::string candidate_pair_desc =
+ GetCandidatePairLogDescriptionAsString(config);
+ candidate_pair_desc_by_id_[config.candidate_pair_id] =
+ candidate_pair_desc;
+ }
+ }
+ return candidate_pair_desc_by_id_[candidate_pair_id];
+}
+
+void EventLogAnalyzer::CreateIceConnectivityCheckGraph(Plot* plot) {
+ constexpr int kEventTypeOffset =
+ static_cast<int>(IceCandidatePairConfigType::kNumValues);
+ std::map<uint32_t, TimeSeries> checks_by_cp_id;
+ for (const auto& event : parsed_log_.ice_candidate_pair_events()) {
+ if (checks_by_cp_id.find(event.candidate_pair_id) ==
+ checks_by_cp_id.end()) {
+ checks_by_cp_id[event.candidate_pair_id] = TimeSeries(
+ "[" + std::to_string(event.candidate_pair_id) + "]" +
+ GetCandidatePairLogDescriptionFromId(event.candidate_pair_id),
+ LineStyle::kNone, PointStyle::kHighlight);
+ }
+ float x = config_.GetCallTimeSec(event.log_time());
+ float y = static_cast<float>(event.type) + kEventTypeOffset;
+ checks_by_cp_id[event.candidate_pair_id].points.emplace_back(x, y);
+ }
+
+ // TODO(qingsi): The same issue as in CreateIceCandidatePairConfigGraph.
+ for (auto& kv : checks_by_cp_id) {
+ plot->AppendTimeSeries(std::move(kv.second));
+ }
+
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 4, "Connectivity State", kBottomMargin,
+ kTopMargin);
+ plot->SetTitle("[IceEventLog] ICE connectivity checks");
+
+ plot->SetYAxisTickLabels(
+ {{static_cast<float>(IceCandidatePairEventType::kCheckSent) +
+ kEventTypeOffset,
+ "CHECK SENT"},
+ {static_cast<float>(IceCandidatePairEventType::kCheckReceived) +
+ kEventTypeOffset,
+ "CHECK RECEIVED"},
+ {static_cast<float>(IceCandidatePairEventType::kCheckResponseSent) +
+ kEventTypeOffset,
+ "RESPONSE SENT"},
+ {static_cast<float>(IceCandidatePairEventType::kCheckResponseReceived) +
+ kEventTypeOffset,
+ "RESPONSE RECEIVED"}});
+}
+
+void EventLogAnalyzer::CreateDtlsTransportStateGraph(Plot* plot) {
+ TimeSeries states("DTLS Transport State", LineStyle::kNone,
+ PointStyle::kHighlight);
+ for (const auto& event : parsed_log_.dtls_transport_states()) {
+ float x = config_.GetCallTimeSec(event.log_time());
+ float y = static_cast<float>(event.dtls_transport_state);
+ states.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeries(std::move(states));
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, static_cast<float>(DtlsTransportState::kNumValues),
+ "Transport State", kBottomMargin, kTopMargin);
+ plot->SetTitle("DTLS Transport State");
+ plot->SetYAxisTickLabels(
+ {{static_cast<float>(DtlsTransportState::kNew), "NEW"},
+ {static_cast<float>(DtlsTransportState::kConnecting), "CONNECTING"},
+ {static_cast<float>(DtlsTransportState::kConnected), "CONNECTED"},
+ {static_cast<float>(DtlsTransportState::kClosed), "CLOSED"},
+ {static_cast<float>(DtlsTransportState::kFailed), "FAILED"}});
+}
+
+void EventLogAnalyzer::CreateDtlsWritableStateGraph(Plot* plot) {
+ TimeSeries writable("DTLS Writable", LineStyle::kNone,
+ PointStyle::kHighlight);
+ for (const auto& event : parsed_log_.dtls_writable_states()) {
+ float x = config_.GetCallTimeSec(event.log_time());
+ float y = static_cast<float>(event.writable);
+ writable.points.emplace_back(x, y);
+ }
+ plot->AppendTimeSeries(std::move(writable));
+ plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
+ "Time (s)", kLeftMargin, kRightMargin);
+ plot->SetSuggestedYAxis(0, 1, "Writable", kBottomMargin, kTopMargin);
+ plot->SetTitle("DTLS Writable State");
+}
+
+} // namespace webrtc