diff options
Diffstat (limited to '')
-rw-r--r-- | third_party/rust/plane-split/.cargo-checksum.json | 1 | ||||
-rw-r--r-- | third_party/rust/plane-split/Cargo.toml | 34 | ||||
-rw-r--r-- | third_party/rust/plane-split/LICENSE | 374 | ||||
-rw-r--r-- | third_party/rust/plane-split/README.md | 6 | ||||
-rw-r--r-- | third_party/rust/plane-split/benches/split.rs | 20 | ||||
-rw-r--r-- | third_party/rust/plane-split/rustfmt.toml | 0 | ||||
-rw-r--r-- | third_party/rust/plane-split/src/bsp.rs | 187 | ||||
-rw-r--r-- | third_party/rust/plane-split/src/clip.rs | 142 | ||||
-rw-r--r-- | third_party/rust/plane-split/src/lib.rs | 239 | ||||
-rw-r--r-- | third_party/rust/plane-split/src/polygon.rs | 654 | ||||
-rw-r--r-- | third_party/rust/plane-split/tests/clip.rs | 147 | ||||
-rw-r--r-- | third_party/rust/plane-split/tests/main.rs | 341 | ||||
-rw-r--r-- | third_party/rust/plane-split/tests/split.rs | 138 |
13 files changed, 2283 insertions, 0 deletions
diff --git a/third_party/rust/plane-split/.cargo-checksum.json b/third_party/rust/plane-split/.cargo-checksum.json new file mode 100644 index 0000000000..bb9ba0d4c9 --- /dev/null +++ b/third_party/rust/plane-split/.cargo-checksum.json @@ -0,0 +1 @@ +{"files":{"Cargo.toml":"bf346898b621baab8a7667819a93ec9a31055012518bb8903da85abb1577d1b6","LICENSE":"b946744aeda89b467929585fe8eeb5461847695220c1b168fb375d8abd4ea3d0","README.md":"7d7930c1163595388512c4ca0b674f6755096a05ca226b1033256b46374b88c3","benches/split.rs":"686d3729a939e94cdf4c38fbc4bd52bd92e6487adbaa9cd4a7c57eb649b6f7d8","rustfmt.toml":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855","src/bsp.rs":"7a533feb7e60f376d64a53f9993eafeddce6fe6cfa22182ae0c342675cc576ae","src/clip.rs":"c1d20c0ee8fb324ca540722ca216dd8cb964d326fd1d77455ee1403c6dbb4148","src/lib.rs":"b2b28ebd7ff8157f6b0309da8cb95fa30b5d01f19c675b99ecbe481fc420e328","src/polygon.rs":"f790599d89625813d65d29d632e8871a8dcdd505e25a557f05d07ba0f6c26cd3","tests/clip.rs":"afb2a79edee4d5d986004a46e6e74bf5bd44b914739d7a92cfe57b7112dc9ca3","tests/main.rs":"b10ec5a7e2453095fbd932804e7a69909e1b06a26399932264d40758352ad2d9","tests/split.rs":"5e675c0aefa631d883f972e031bed19793acba9a649a9cd2126220dec400b71c"},"package":"8c1f7d82649829ecdef8e258790b0587acf0a8403f0ce963473d8e918acc1643"}
\ No newline at end of file diff --git a/third_party/rust/plane-split/Cargo.toml b/third_party/rust/plane-split/Cargo.toml new file mode 100644 index 0000000000..59b1e2ebe8 --- /dev/null +++ b/third_party/rust/plane-split/Cargo.toml @@ -0,0 +1,34 @@ +# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO +# +# When uploading crates to the registry Cargo will automatically +# "normalize" Cargo.toml files for maximal compatibility +# with all versions of Cargo and also rewrite `path` dependencies +# to registry (e.g., crates.io) dependencies. +# +# If you are reading this file be aware that the original Cargo.toml +# will likely look very different (and much more reasonable). +# See Cargo.toml.orig for the original contents. + +[package] +edition = "2018" +name = "plane-split" +version = "0.18.0" +authors = ["Dzmitry Malyshau <kvark@mozilla.com>"] +description = "Plane splitting" +documentation = "https://docs.rs/plane-split" +readme = "README.md" +keywords = [ + "geometry", + "math", +] +license = "MPL-2.0" +repository = "https://github.com/servo/plane-split" + +[dependencies.euclid] +version = "0.22" + +[dependencies.log] +version = "0.4" + +[dependencies.smallvec] +version = "1.9" diff --git a/third_party/rust/plane-split/LICENSE b/third_party/rust/plane-split/LICENSE new file mode 100644 index 0000000000..398385c9fb --- /dev/null +++ b/third_party/rust/plane-split/LICENSE @@ -0,0 +1,374 @@ + Mozilla Public License Version 2.0 +================================== + +1. Definitions +-------------- + +1.1. "Contributor" +means each individual or legal entity that creates, contributes to +the creation of, or owns Covered Software. + +1.2. "Contributor Version" +means the combination of the Contributions of others (if any) used +by a Contributor and that particular Contributor's Contribution. + +1.3. "Contribution" +means Covered Software of a particular Contributor. + +1.4. "Covered Software" +means Source Code Form to which the initial Contributor has attached +the notice in Exhibit A, the Executable Form of such Source Code +Form, and Modifications of such Source Code Form, in each case +including portions thereof. + +1.5. "Incompatible With Secondary Licenses" +means + +(a) that the initial Contributor has attached the notice described +in Exhibit B to the Covered Software; or + +(b) that the Covered Software was made available under the terms of +version 1.1 or earlier of the License, but not also under the +terms of a Secondary License. + +1.6. "Executable Form" +means any form of the work other than Source Code Form. + +1.7. "Larger Work" +means a work that combines Covered Software with other material, in +a separate file or files, that is not Covered Software. + +1.8. "License" +means this document. + +1.9. "Licensable" +means having the right to grant, to the maximum extent possible, +whether at the time of the initial grant or subsequently, any and +all of the rights conveyed by this License. + +1.10. "Modifications" +means any of the following: + +(a) any file in Source Code Form that results from an addition to, +deletion from, or modification of the contents of Covered +Software; or + +(b) any new file in Source Code Form that contains any Covered +Software. + +1.11. "Patent Claims" of a Contributor +means any patent claim(s), including without limitation, method, +process, and apparatus claims, in any patent Licensable by such +Contributor that would be infringed, but for the grant of the +License, by the making, using, selling, offering for sale, having +made, import, or transfer of either its Contributions or its +Contributor Version. + +1.12. "Secondary License" +means either the GNU General Public License, Version 2.0, the GNU +Lesser General Public License, Version 2.1, the GNU Affero General +Public License, Version 3.0, or any later versions of those +licenses. + +1.13. "Source Code Form" +means the form of the work preferred for making modifications. + +1.14. "You" (or "Your") +means an individual or a legal entity exercising rights under this +License. For legal entities, "You" includes any entity that +controls, is controlled by, or is under common control with You. For +purposes of this definition, "control" means (a) the power, direct +or indirect, to cause the direction or management of such entity, +whether by contract or otherwise, or (b) ownership of more than +fifty percent (50%) of the outstanding shares or beneficial +ownership of such entity. + +2. License Grants and Conditions +-------------------------------- + +2.1. Grants + +Each Contributor hereby grants You a world-wide, royalty-free, +non-exclusive license: + +(a) under intellectual property rights (other than patent or trademark) +Licensable by such Contributor to use, reproduce, make available, +modify, display, perform, distribute, and otherwise exploit its +Contributions, either on an unmodified basis, with Modifications, or +as part of a Larger Work; and + +(b) under Patent Claims of such Contributor to make, use, sell, offer +for sale, have made, import, and otherwise transfer either its +Contributions or its Contributor Version. + +2.2. Effective Date + +The licenses granted in Section 2.1 with respect to any Contribution +become effective for each Contribution on the date the Contributor first +distributes such Contribution. + +2.3. Limitations on Grant Scope + +The licenses granted in this Section 2 are the only rights granted under +this License. No additional rights or licenses will be implied from the +distribution or licensing of Covered Software under this License. +Notwithstanding Section 2.1(b) above, no patent license is granted by a +Contributor: + +(a) for any code that a Contributor has removed from Covered Software; +or + +(b) for infringements caused by: (i) Your and any other third party's +modifications of Covered Software, or (ii) the combination of its +Contributions with other software (except as part of its Contributor +Version); or + +(c) under Patent Claims infringed by Covered Software in the absence of +its Contributions. + +This License does not grant any rights in the trademarks, service marks, +or logos of any Contributor (except as may be necessary to comply with +the notice requirements in Section 3.4). + +2.4. Subsequent Licenses + +No Contributor makes additional grants as a result of Your choice to +distribute the Covered Software under a subsequent version of this +License (see Section 10.2) or under the terms of a Secondary License (if +permitted under the terms of Section 3.3). + +2.5. Representation + +Each Contributor represents that the Contributor believes its +Contributions are its original creation(s) or it has sufficient rights +to grant the rights to its Contributions conveyed by this License. + +2.6. Fair Use + +This License is not intended to limit any rights You have under +applicable copyright doctrines of fair use, fair dealing, or other +equivalents. + +2.7. Conditions + +Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted +in Section 2.1. + +3. Responsibilities +------------------- + +3.1. Distribution of Source Form + +All distribution of Covered Software in Source Code Form, including any +Modifications that You create or to which You contribute, must be under +the terms of this License. You must inform recipients that the Source +Code Form of the Covered Software is governed by the terms of this +License, and how they can obtain a copy of this License. You may not +attempt to alter or restrict the recipients' rights in the Source Code +Form. + +3.2. Distribution of Executable Form + +If You distribute Covered Software in Executable Form then: + +(a) such Covered Software must also be made available in Source Code +Form, as described in Section 3.1, and You must inform recipients of +the Executable Form how they can obtain a copy of such Source Code +Form by reasonable means in a timely manner, at a charge no more +than the cost of distribution to the recipient; and + +(b) You may distribute such Executable Form under the terms of this +License, or sublicense it under different terms, provided that the +license for the Executable Form does not attempt to limit or alter +the recipients' rights in the Source Code Form under this License. + +3.3. Distribution of a Larger Work + +You may create and distribute a Larger Work under terms of Your choice, +provided that You also comply with the requirements of this License for +the Covered Software. If the Larger Work is a combination of Covered +Software with a work governed by one or more Secondary Licenses, and the +Covered Software is not Incompatible With Secondary Licenses, this +License permits You to additionally distribute such Covered Software +under the terms of such Secondary License(s), so that the recipient of +the Larger Work may, at their option, further distribute the Covered +Software under the terms of either this License or such Secondary +License(s). + +3.4. Notices + +You may not remove or alter the substance of any license notices +(including copyright notices, patent notices, disclaimers of warranty, +or limitations of liability) contained within the Source Code Form of +the Covered Software, except that You may alter any license notices to +the extent required to remedy known factual inaccuracies. + +3.5. Application of Additional Terms + +You may choose to offer, and to charge a fee for, warranty, support, +indemnity or liability obligations to one or more recipients of Covered +Software. However, You may do so only on Your own behalf, and not on +behalf of any Contributor. You must make it absolutely clear that any +such warranty, support, indemnity, or liability obligation is offered by +You alone, and You hereby agree to indemnify every Contributor for any +liability incurred by such Contributor as a result of warranty, support, +indemnity or liability terms You offer. You may include additional +disclaimers of warranty and limitations of liability specific to any +jurisdiction. + +4. Inability to Comply Due to Statute or Regulation +--------------------------------------------------- + +If it is impossible for You to comply with any of the terms of this +License with respect to some or all of the Covered Software due to +statute, judicial order, or regulation then You must: (a) comply with +the terms of this License to the maximum extent possible; and (b) +describe the limitations and the code they affect. Such description must +be placed in a text file included with all distributions of the Covered +Software under this License. Except to the extent prohibited by statute +or regulation, such description must be sufficiently detailed for a +recipient of ordinary skill to be able to understand it. + +5. Termination +-------------- + +5.1. The rights granted under this License will terminate automatically +if You fail to comply with any of its terms. However, if You become +compliant, then the rights granted under this License from a particular +Contributor are reinstated (a) provisionally, unless and until such +Contributor explicitly and finally terminates Your grants, and (b) on an +ongoing basis, if such Contributor fails to notify You of the +non-compliance by some reasonable means prior to 60 days after You have +come back into compliance. Moreover, Your grants from a particular +Contributor are reinstated on an ongoing basis if such Contributor +notifies You of the non-compliance by some reasonable means, this is the +first time You have received notice of non-compliance with this License +from such Contributor, and You become compliant prior to 30 days after +Your receipt of the notice. + +5.2. If You initiate litigation against any entity by asserting a patent +infringement claim (excluding declaratory judgment actions, +counter-claims, and cross-claims) alleging that a Contributor Version +directly or indirectly infringes any patent, then the rights granted to +You by any and all Contributors for the Covered Software under Section +2.1 of this License shall terminate. + +5.3. In the event of termination under Sections 5.1 or 5.2 above, all +end user license agreements (excluding distributors and resellers) which +have been validly granted by You or Your distributors under this License +prior to termination shall survive termination. + +************************************************************************ +* * +* 6. Disclaimer of Warranty * +* ------------------------- * +* * +* Covered Software is provided under this License on an "as is" * +* basis, without warranty of any kind, either expressed, implied, or * +* statutory, including, without limitation, warranties that the * +* Covered Software is free of defects, merchantable, fit for a * +* particular purpose or non-infringing. The entire risk as to the * +* quality and performance of the Covered Software is with You. * +* Should any Covered Software prove defective in any respect, You * +* (not any Contributor) assume the cost of any necessary servicing, * +* repair, or correction. This disclaimer of warranty constitutes an * +* essential part of this License. No use of any Covered Software is * +* authorized under this License except under this disclaimer. * +* * +************************************************************************ + +************************************************************************ +* * +* 7. Limitation of Liability * +* -------------------------- * +* * +* Under no circumstances and under no legal theory, whether tort * +* (including negligence), contract, or otherwise, shall any * +* Contributor, or anyone who distributes Covered Software as * +* permitted above, be liable to You for any direct, indirect, * +* special, incidental, or consequential damages of any character * +* including, without limitation, damages for lost profits, loss of * +* goodwill, work stoppage, computer failure or malfunction, or any * +* and all other commercial damages or losses, even if such party * +* shall have been informed of the possibility of such damages. This * +* limitation of liability shall not apply to liability for death or * +* personal injury resulting from such party's negligence to the * +* extent applicable law prohibits such limitation. Some * +* jurisdictions do not allow the exclusion or limitation of * +* incidental or consequential damages, so this exclusion and * +* limitation may not apply to You. * +* * +************************************************************************ + +8. Litigation +------------- + +Any litigation relating to this License may be brought only in the +courts of a jurisdiction where the defendant maintains its principal +place of business and such litigation shall be governed by laws of that +jurisdiction, without reference to its conflict-of-law provisions. +Nothing in this Section shall prevent a party's ability to bring +cross-claims or counter-claims. + +9. Miscellaneous +---------------- + +This License represents the complete agreement concerning the subject +matter hereof. If any provision of this License is held to be +unenforceable, such provision shall be reformed only to the extent +necessary to make it enforceable. Any law or regulation which provides +that the language of a contract shall be construed against the drafter +shall not be used to construe this License against a Contributor. + +10. Versions of the License +--------------------------- + +10.1. New Versions + +Mozilla Foundation is the license steward. Except as provided in Section +10.3, no one other than the license steward has the right to modify or +publish new versions of this License. Each version will be given a +distinguishing version number. + +10.2. Effect of New Versions + +You may distribute the Covered Software under the terms of the version +of the License under which You originally received the Covered Software, +or under the terms of any subsequent version published by the license +steward. + +10.3. Modified Versions + +If you create software not governed by this License, and you want to +create a new license for such software, you may create and use a +modified version of this License if you rename the license and remove +any references to the name of the license steward (except to note that +such modified license differs from this License). + +10.4. Distributing Source Code Form that is Incompatible With Secondary +Licenses + +If You choose to distribute Source Code Form that is Incompatible With +Secondary Licenses under the terms of this version of the License, the +notice described in Exhibit B of this License must be attached. + +Exhibit A - Source Code Form License Notice +------------------------------------------- + +This Source Code Form is subject to the terms of the Mozilla Public +License, v. 2.0. If a copy of the MPL was not distributed with this +file, You can obtain one at http://mozilla.org/MPL/2.0/. + +If it is not possible or desirable to put the notice in a particular +file, then You may include the notice in a location (such as a LICENSE +file in a relevant directory) where a recipient would be likely to look +for such a notice. + +You may add additional accurate notices of copyright ownership. + +Exhibit B - "Incompatible With Secondary Licenses" Notice +--------------------------------------------------------- + +This Source Code Form is "Incompatible With Secondary Licenses", as +defined by the Mozilla Public License, v. 2.0. + diff --git a/third_party/rust/plane-split/README.md b/third_party/rust/plane-split/README.md new file mode 100644 index 0000000000..cd59852920 --- /dev/null +++ b/third_party/rust/plane-split/README.md @@ -0,0 +1,6 @@ +# plane-split +[![Build Status](https://github.com/servo/plane-split/actions/workflows/main.yml/badge.svg)](https://github.com/servo/plane-split/actions) +[![](https://img.shields.io/crates/v/plane-split.svg)](https://crates.io/crates/plane-split) +[![Documentation](https://docs.rs/plane-split/badge.svg)](https://docs.rs/plane-split) + +Plane splitting with [euclid](https://crates.io/crates/euclid), made for [WebRender](https://github.com/servo/webrender). diff --git a/third_party/rust/plane-split/benches/split.rs b/third_party/rust/plane-split/benches/split.rs new file mode 100644 index 0000000000..c224bd7de7 --- /dev/null +++ b/third_party/rust/plane-split/benches/split.rs @@ -0,0 +1,20 @@ +#![feature(test)] + +extern crate euclid; +extern crate plane_split; +extern crate test; + +use euclid::vec3; +use plane_split::{make_grid, BspSplitter}; +use std::sync::Arc; + +#[bench] +fn bench_bsp(b: &mut test::Bencher) { + let polys = Arc::new(make_grid(5)); + let mut splitter = BspSplitter::new(); + let view = vec3(0.0, 0.0, 1.0); + b.iter(|| { + let p = polys.clone(); + splitter.solve(&p, view); + }); +} diff --git a/third_party/rust/plane-split/rustfmt.toml b/third_party/rust/plane-split/rustfmt.toml new file mode 100644 index 0000000000..e69de29bb2 --- /dev/null +++ b/third_party/rust/plane-split/rustfmt.toml diff --git a/third_party/rust/plane-split/src/bsp.rs b/third_party/rust/plane-split/src/bsp.rs new file mode 100644 index 0000000000..0b72d759f8 --- /dev/null +++ b/third_party/rust/plane-split/src/bsp.rs @@ -0,0 +1,187 @@ +use crate::{Plane, PlaneCut, Polygon}; + +use euclid::default::{Point3D, Vector3D}; +use smallvec::SmallVec; + +use std::fmt; + +#[derive(Copy, Clone, Debug, PartialEq, Eq)] +pub struct PolygonIdx(usize); + +#[derive(Copy, Clone, Debug, PartialEq, Eq)] +pub struct NodeIdx(usize); + +/// Binary Space Partitioning splitter, uses a BSP tree. +pub struct BspSplitter<A: Copy> { + result: Vec<Polygon<A>>, + nodes: Vec<BspNode>, + polygons: Vec<Polygon<A>>, +} + +impl<A: Copy> BspSplitter<A> { + /// Create a new BSP splitter. + pub fn new() -> Self { + BspSplitter { + result: Vec::new(), + nodes: vec![BspNode::new()], + polygons: Vec::new(), + } + } +} + +impl<A> BspSplitter<A> +where + A: Copy + fmt::Debug + Default, +{ + /// Put the splitter back in it initial state. + /// + /// Call this at the beginning of every frame when reusing the splitter. + pub fn reset(&mut self) { + self.polygons.clear(); + self.nodes.clear(); + self.nodes.push(BspNode::new()); + } + + /// Add a polygon to the plane splitter. + /// + /// This is where most of the expensive computation happens. + pub fn add(&mut self, poly: Polygon<A>) { + let root = NodeIdx(0); + self.insert(root, &poly); + } + + /// Sort the added and split polygons against the view vector. + /// + /// Call this towards the end of the frame after having added all polygons. + pub fn sort(&mut self, view: Vector3D<f64>) -> &[Polygon<A>] { + //debug!("\t\ttree before sorting {:?}", self.tree); + let poly = Polygon { + points: [Point3D::origin(); 4], + plane: Plane { + normal: -view, //Note: BSP `order()` is back to front + offset: 0.0, + }, + anchor: A::default(), + }; + + let root = NodeIdx(0); + let mut result = std::mem::take(&mut self.result); + result.clear(); + self.order(root, &poly, &mut result); + self.result = result; + + &self.result + } + + /// Process a set of polygons at once. + pub fn solve(&mut self, input: &[Polygon<A>], view: Vector3D<f64>) -> &[Polygon<A>] + where + A: Copy, + { + self.reset(); + for p in input { + self.add(p.clone()); + } + self.sort(view) + } + + /// Insert a value into the sub-tree starting with this node. + /// This operation may spawn additional leafs/branches of the tree. + fn insert(&mut self, node_idx: NodeIdx, value: &Polygon<A>) { + let node = &mut self.nodes[node_idx.0]; + if node.values.is_empty() { + node.values.push(add_polygon(&mut self.polygons, value)); + return; + } + + let mut front: SmallVec<[Polygon<A>; 2]> = SmallVec::new(); + let mut back: SmallVec<[Polygon<A>; 2]> = SmallVec::new(); + let first = node.values[0].0; + match self.polygons[first].cut(value, &mut front, &mut back) { + PlaneCut::Sibling => { + node.values.push(add_polygon(&mut self.polygons, value)); + } + PlaneCut::Cut => { + if front.len() != 0 { + if self.nodes[node_idx.0].front.is_none() { + self.nodes[node_idx.0].front = Some(add_node(&mut self.nodes)); + } + let node_front = self.nodes[node_idx.0].front.unwrap(); + for p in &front { + self.insert(node_front, p) + } + } + if back.len() != 0 { + if self.nodes[node_idx.0].back.is_none() { + self.nodes[node_idx.0].back = Some(add_node(&mut self.nodes)); + } + let node_back = self.nodes[node_idx.0].back.unwrap(); + for p in &back { + self.insert(node_back, p) + } + } + } + } + } + + /// Build the draw order of this sub-tree into an `out` vector, + /// so that the contained planes are sorted back to front according + /// to the view vector defined as the `base` plane front direction. + pub fn order(&self, node: NodeIdx, base: &Polygon<A>, out: &mut Vec<Polygon<A>>) { + let node = &self.nodes[node.0]; + let (former, latter) = match node.values.first() { + None => return, + Some(first) => { + if base.is_aligned(&self.polygons[first.0]) { + (node.front, node.back) + } else { + (node.back, node.front) + } + } + }; + + if let Some(node) = former { + self.order(node, base, out); + } + + out.reserve(node.values.len()); + for poly_idx in &node.values { + out.push(self.polygons[poly_idx.0].clone()); + } + + if let Some(node) = latter { + self.order(node, base, out); + } + } +} + +pub fn add_polygon<A: Copy>(polygons: &mut Vec<Polygon<A>>, poly: &Polygon<A>) -> PolygonIdx { + let index = PolygonIdx(polygons.len()); + polygons.push(poly.clone()); + index +} + +pub fn add_node(nodes: &mut Vec<BspNode>) -> NodeIdx { + let index = NodeIdx(nodes.len()); + nodes.push(BspNode::new()); + index +} + +/// A node in the `BspTree`, which can be considered a tree itself. +#[derive(Clone, Debug)] +pub struct BspNode { + values: SmallVec<[PolygonIdx; 4]>, + front: Option<NodeIdx>, + back: Option<NodeIdx>, +} + +impl BspNode { + /// Create a new node. + pub fn new() -> Self { + BspNode { + values: SmallVec::new(), + front: None, + back: None, + } + } +} diff --git a/third_party/rust/plane-split/src/clip.rs b/third_party/rust/plane-split/src/clip.rs new file mode 100644 index 0000000000..4425692085 --- /dev/null +++ b/third_party/rust/plane-split/src/clip.rs @@ -0,0 +1,142 @@ +use crate::{Intersection, NegativeHemisphereError, Plane, Polygon}; + +use euclid::default::{Rect, Scale, Transform3D, Vector3D}; + +use std::{fmt, iter, mem}; + +/// A helper object to clip polygons by a number of planes. +#[derive(Debug)] +pub struct Clipper<A> { + clips: Vec<Plane>, + results: Vec<Polygon<A>>, + temp: Vec<Polygon<A>>, +} + +impl<A: Copy + fmt::Debug> Clipper<A> { + /// Create a new clipper object. + pub fn new() -> Self { + Clipper { + clips: Vec::new(), + results: Vec::new(), + temp: Vec::new(), + } + } + + /// Reset the clipper internals, but preserve the allocation. + pub fn reset(&mut self) { + self.clips.clear(); + } + + /// Extract the clipping planes that define the frustum for a given transformation. + pub fn frustum_planes( + t: &Transform3D<f64>, + bounds: Option<Rect<f64>>, + ) -> Result<impl Iterator<Item = Plane>, NegativeHemisphereError> { + let mw = Vector3D::new(t.m14, t.m24, t.m34); + let plane_positive = Plane::from_unnormalized(mw, t.m44)?; + + let bounds_iter_maybe = match bounds { + Some(bounds) => { + let mx = Vector3D::new(t.m11, t.m21, t.m31); + let left = bounds.origin.x; + let plane_left = + Plane::from_unnormalized(mx - mw * Scale::new(left), t.m41 - t.m44 * left)?; + let right = bounds.origin.x + bounds.size.width; + let plane_right = + Plane::from_unnormalized(mw * Scale::new(right) - mx, t.m44 * right - t.m41)?; + + let my = Vector3D::new(t.m12, t.m22, t.m32); + let top = bounds.origin.y; + let plane_top = + Plane::from_unnormalized(my - mw * Scale::new(top), t.m42 - t.m44 * top)?; + let bottom = bounds.origin.y + bounds.size.height; + let plane_bottom = + Plane::from_unnormalized(mw * Scale::new(bottom) - my, t.m44 * bottom - t.m42)?; + + Some( + plane_left + .into_iter() + .chain(plane_right) + .chain(plane_top) + .chain(plane_bottom), + ) + } + None => None, + }; + + Ok(bounds_iter_maybe + .into_iter() + .flat_map(|pi| pi) + .chain(plane_positive)) + } + + /// Add a clipping plane to the list. The plane will clip everything behind it, + /// where the direction is set by the plane normal. + pub fn add(&mut self, plane: Plane) { + self.clips.push(plane); + } + + /// Clip specified polygon by the contained planes, return the fragmented polygons. + pub fn clip(&mut self, polygon: Polygon<A>) -> &[Polygon<A>] { + log::debug!("\tClipping {:?}", polygon); + self.results.clear(); + self.results.push(polygon); + + for clip in &self.clips { + self.temp.clear(); + mem::swap(&mut self.results, &mut self.temp); + + for mut poly in self.temp.drain(..) { + let dist = match poly.intersect_plane(clip) { + Intersection::Inside(line) => { + let (res1, res2) = poly.split_with_normal(&line, &clip.normal); + self.results.extend( + iter::once(poly) + .chain(res1) + .chain(res2) + .filter(|p| clip.signed_distance_sum_to(p) > 0.0), + ); + continue; + } + Intersection::Coplanar => { + let ndot = poly.plane.normal.dot(clip.normal); + clip.offset - ndot * poly.plane.offset + } + Intersection::Outside => clip.signed_distance_sum_to(&poly), + }; + + if dist > 0.0 { + self.results.push(poly); + } + } + } + + &self.results + } + + /// Clip the primitive with the frustum of the specified transformation, + /// returning a sequence of polygons in the transformed space. + /// Returns None if the transformation can't be frustum clipped. + pub fn clip_transformed<'a>( + &'a mut self, + polygon: Polygon<A>, + transform: &'a Transform3D<f64>, + bounds: Option<Rect<f64>>, + ) -> Result<impl 'a + Iterator<Item = Polygon<A>>, NegativeHemisphereError> { + let planes = Self::frustum_planes(transform, bounds)?; + + let old_count = self.clips.len(); + self.clips.extend(planes); + self.clip(polygon); + // remove the frustum planes + while self.clips.len() > old_count { + self.clips.pop(); + } + + let polys = self + .results + .drain(..) + .flat_map(move |poly| poly.transform(transform)); + Ok(polys) + } +} diff --git a/third_party/rust/plane-split/src/lib.rs b/third_party/rust/plane-split/src/lib.rs new file mode 100644 index 0000000000..4d3936b137 --- /dev/null +++ b/third_party/rust/plane-split/src/lib.rs @@ -0,0 +1,239 @@ +/*! +Plane splitting. + +Uses [euclid](https://crates.io/crates/euclid) for the math basis. +Introduces new geometrical primitives and associated logic. + +Automatically splits a given set of 4-point polygons into sub-polygons +that don't intersect each other. This is useful for WebRender, to sort +the resulting sub-polygons by depth and avoid transparency blending issues. +*/ +#![warn(missing_docs)] + +mod bsp; +mod clip; +mod polygon; + +pub use polygon::PlaneCut; + +use euclid::{ + approxeq::ApproxEq, + default::{Point3D, Scale, Vector3D}, +}; + +use std::ops; + +pub use self::bsp::BspSplitter; +pub use self::clip::Clipper; +pub use self::polygon::{Intersection, LineProjection, Polygon}; + +fn is_zero(value: f64) -> bool { + //HACK: this is rough, but the original Epsilon is too strict + (value * value).approx_eq(&0.0) +} + +fn is_zero_vec(vec: Vector3D<f64>) -> bool { + vec.dot(vec).approx_eq(&0.0) +} + +/// A generic line. +#[derive(Debug)] +pub struct Line { + /// Arbitrary point on the line. + pub origin: Point3D<f64>, + /// Normalized direction of the line. + pub dir: Vector3D<f64>, +} + +impl Line { + /// Check if the line has consistent parameters. + pub fn is_valid(&self) -> bool { + is_zero(self.dir.dot(self.dir) - 1.0) + } + /// Check if two lines match each other. + pub fn matches(&self, other: &Self) -> bool { + let diff = self.origin - other.origin; + is_zero_vec(self.dir.cross(other.dir)) && is_zero_vec(self.dir.cross(diff)) + } + + /// Intersect an edge given by the end points. + /// Returns the fraction of the edge where the intersection occurs. + fn intersect_edge(&self, edge: ops::Range<Point3D<f64>>) -> Option<f64> { + let edge_vec = edge.end - edge.start; + let origin_vec = self.origin - edge.start; + // edge.start + edge_vec * t = r + k * d + // (edge.start, d) + t * (edge_vec, d) - (r, d) = k + // edge.start + t * edge_vec = r + t * (edge_vec, d) * d + (start-r, d) * d + // t * (edge_vec - (edge_vec, d)*d) = origin_vec - (origin_vec, d) * d + let pr = origin_vec - self.dir * self.dir.dot(origin_vec); + let pb = edge_vec - self.dir * self.dir.dot(edge_vec); + let denom = pb.dot(pb); + if denom.approx_eq(&0.0) { + None + } else { + Some(pr.dot(pb) / denom) + } + } +} + +/// An infinite plane in 3D space, defined by equation: +/// dot(v, normal) + offset = 0 +/// When used for plane splitting, it's defining a hemisphere +/// with equation "dot(v, normal) + offset > 0". +#[derive(Debug, PartialEq)] +pub struct Plane { + /// Normalized vector perpendicular to the plane. + pub normal: Vector3D<f64>, + /// Constant offset from the normal plane, specified in the + /// direction opposite to the normal. + pub offset: f64, +} + +impl Clone for Plane { + fn clone(&self) -> Self { + Plane { + normal: self.normal.clone(), + offset: self.offset.clone(), + } + } +} + +/// An error returned when everything would end up projected +/// to the negative hemisphere (W <= 0.0); +#[derive(Clone, Debug, Hash, PartialEq, PartialOrd)] +pub struct NegativeHemisphereError; + +impl Plane { + /// Construct a new plane from unnormalized equation. + pub fn from_unnormalized( + normal: Vector3D<f64>, + offset: f64, + ) -> Result<Option<Self>, NegativeHemisphereError> { + let square_len = normal.square_length(); + if square_len < f64::approx_epsilon() * f64::approx_epsilon() { + if offset > 0.0 { + Ok(None) + } else { + Err(NegativeHemisphereError) + } + } else { + let kf = 1.0 / square_len.sqrt(); + Ok(Some(Plane { + normal: normal * Scale::new(kf), + offset: offset * kf, + })) + } + } + + /// Check if this plane contains another one. + pub fn contains(&self, other: &Self) -> bool { + //TODO: actually check for inside/outside + self.normal == other.normal && self.offset == other.offset + } + + /// Return the signed distance from this plane to a point. + /// The distance is negative if the point is on the other side of the plane + /// from the direction of the normal. + pub fn signed_distance_to(&self, point: &Point3D<f64>) -> f64 { + point.to_vector().dot(self.normal) + self.offset + } + + /// Compute the distance across the line to the plane plane, + /// starting from the line origin. + pub fn distance_to_line(&self, line: &Line) -> f64 { + self.signed_distance_to(&line.origin) / -self.normal.dot(line.dir) + } + + /// Compute the sum of signed distances to each of the points + /// of another plane. Useful to know the relation of a plane that + /// is a product of a split, and we know it doesn't intersect `self`. + pub fn signed_distance_sum_to<A>(&self, poly: &Polygon<A>) -> f64 { + poly.points + .iter() + .fold(0.0, |u, p| u + self.signed_distance_to(p)) + } + + /// Check if a convex shape defined by a set of points is completely + /// outside of this plane. Merely touching the surface is not + /// considered an intersection. + pub fn are_outside(&self, points: &[Point3D<f64>]) -> bool { + let d0 = self.signed_distance_to(&points[0]); + points[1..] + .iter() + .all(|p| self.signed_distance_to(p) * d0 > 0.0) + } + + //TODO(breaking): turn this into Result<Line, DotProduct> + /// Compute the line of intersection with another plane. + pub fn intersect(&self, other: &Self) -> Option<Line> { + // compute any point on the intersection between planes + // (n1, v) + d1 = 0 + // (n2, v) + d2 = 0 + // v = a*n1/w + b*n2/w; w = (n1, n2) + // v = (d2*w - d1) / (1 - w*w) * n1 - (d2 - d1*w) / (1 - w*w) * n2 + let w = self.normal.dot(other.normal); + let divisor = 1.0 - w * w; + if divisor < f64::approx_epsilon() * f64::approx_epsilon() { + return None; + } + let origin = Point3D::origin() + self.normal * ((other.offset * w - self.offset) / divisor) + - other.normal * ((other.offset - self.offset * w) / divisor); + + let cross_dir = self.normal.cross(other.normal); + // note: the cross product isn't too close to zero + // due to the previous check + + Some(Line { + origin, + dir: cross_dir.normalize(), + }) + } +} + +/// Helper method used for benchmarks and tests. +/// Constructs a 3D grid of polygons. +#[doc(hidden)] +pub fn make_grid(count: usize) -> Vec<Polygon<usize>> { + let mut polys: Vec<Polygon<usize>> = Vec::with_capacity(count * 3); + let len = count as f64; + polys.extend((0..count).map(|i| Polygon { + points: [ + Point3D::new(0.0, i as f64, 0.0), + Point3D::new(len, i as f64, 0.0), + Point3D::new(len, i as f64, len), + Point3D::new(0.0, i as f64, len), + ], + plane: Plane { + normal: Vector3D::new(0.0, 1.0, 0.0), + offset: -(i as f64), + }, + anchor: 0, + })); + polys.extend((0..count).map(|i| Polygon { + points: [ + Point3D::new(i as f64, 0.0, 0.0), + Point3D::new(i as f64, len, 0.0), + Point3D::new(i as f64, len, len), + Point3D::new(i as f64, 0.0, len), + ], + plane: Plane { + normal: Vector3D::new(1.0, 0.0, 0.0), + offset: -(i as f64), + }, + anchor: 0, + })); + polys.extend((0..count).map(|i| Polygon { + points: [ + Point3D::new(0.0, 0.0, i as f64), + Point3D::new(len, 0.0, i as f64), + Point3D::new(len, len, i as f64), + Point3D::new(0.0, len, i as f64), + ], + plane: Plane { + normal: Vector3D::new(0.0, 0.0, 1.0), + offset: -(i as f64), + }, + anchor: 0, + })); + polys +} diff --git a/third_party/rust/plane-split/src/polygon.rs b/third_party/rust/plane-split/src/polygon.rs new file mode 100644 index 0000000000..5929263346 --- /dev/null +++ b/third_party/rust/plane-split/src/polygon.rs @@ -0,0 +1,654 @@ +use crate::{is_zero, Line, Plane}; + +use euclid::{ + approxeq::ApproxEq, + default::{Point2D, Point3D, Rect, Transform3D, Vector3D}, +}; +use smallvec::SmallVec; + +use std::{iter, mem}; + +/// The projection of a `Polygon` on a line. +pub struct LineProjection { + /// Projected value of each point in the polygon. + pub markers: [f64; 4], +} + +impl LineProjection { + /// Get the min/max of the line projection markers. + pub fn get_bounds(&self) -> (f64, f64) { + let (mut a, mut b, mut c, mut d) = ( + self.markers[0], + self.markers[1], + self.markers[2], + self.markers[3], + ); + // bitonic sort of 4 elements + // we could not just use `min/max` since they require `Ord` bound + //TODO: make it nicer + if a > c { + mem::swap(&mut a, &mut c); + } + if b > d { + mem::swap(&mut b, &mut d); + } + if a > b { + mem::swap(&mut a, &mut b); + } + if c > d { + mem::swap(&mut c, &mut d); + } + if b > c { + mem::swap(&mut b, &mut c); + } + debug_assert!(a <= b && b <= c && c <= d); + (a, d) + } + + /// Check intersection with another line projection. + pub fn intersect(&self, other: &Self) -> bool { + // compute the bounds of both line projections + let span = self.get_bounds(); + let other_span = other.get_bounds(); + // compute the total footprint + let left = if span.0 < other_span.0 { + span.0 + } else { + other_span.0 + }; + let right = if span.1 > other_span.1 { + span.1 + } else { + other_span.1 + }; + // they intersect if the footprint is smaller than the sum + right - left < span.1 - span.0 + other_span.1 - other_span.0 + } +} + +/// Polygon intersection results. +pub enum Intersection<T> { + /// Polygons are coplanar, including the case of being on the same plane. + Coplanar, + /// Polygon planes are intersecting, but polygons are not. + Outside, + /// Polygons are actually intersecting. + Inside(T), +} + +impl<T> Intersection<T> { + /// Return true if the intersection is completely outside. + pub fn is_outside(&self) -> bool { + match *self { + Intersection::Outside => true, + _ => false, + } + } + /// Return true if the intersection cuts the source polygon. + pub fn is_inside(&self) -> bool { + match *self { + Intersection::Inside(_) => true, + _ => false, + } + } +} + +/// A convex polygon with 4 points lying on a plane. +#[derive(Debug, PartialEq)] +pub struct Polygon<A> { + /// Points making the polygon. + pub points: [Point3D<f64>; 4], + /// A plane describing polygon orientation. + pub plane: Plane, + /// A simple anchoring index to allow association of the + /// produced split polygons with the original one. + pub anchor: A, +} + +impl<A: Copy> Clone for Polygon<A> { + fn clone(&self) -> Self { + Polygon { + points: [ + self.points[0].clone(), + self.points[1].clone(), + self.points[2].clone(), + self.points[3].clone(), + ], + plane: self.plane.clone(), + anchor: self.anchor, + } + } +} + +impl<A> Polygon<A> +where + A: Copy, +{ + /// Construct a polygon from points that are already transformed. + /// Return None if the polygon doesn't contain any space. + pub fn from_points(points: [Point3D<f64>; 4], anchor: A) -> Option<Self> { + let edge1 = points[1] - points[0]; + let edge2 = points[2] - points[0]; + let edge3 = points[3] - points[0]; + let edge4 = points[3] - points[1]; + + if edge2.square_length() < f64::EPSILON || edge4.square_length() < f64::EPSILON { + return None; + } + + // one of them can be zero for redundant polygons produced by plane splitting + //Note: this would be nicer if we used triangles instead of quads in the first place... + // see https://github.com/servo/plane-split/issues/17 + let normal_rough1 = edge1.cross(edge2); + let normal_rough2 = edge2.cross(edge3); + let square_length1 = normal_rough1.square_length(); + let square_length2 = normal_rough2.square_length(); + let normal = if square_length1 > square_length2 { + normal_rough1 / square_length1.sqrt() + } else { + normal_rough2 / square_length2.sqrt() + }; + + let offset = -points[0].to_vector().dot(normal); + + Some(Polygon { + points, + plane: Plane { normal, offset }, + anchor, + }) + } + + /// Construct a polygon from a non-transformed rectangle. + pub fn from_rect(rect: Rect<f64>, anchor: A) -> Self { + let min = rect.min(); + let max = rect.max(); + Polygon { + points: [ + min.to_3d(), + Point3D::new(max.x, min.y, 0.0), + max.to_3d(), + Point3D::new(min.x, max.y, 0.0), + ], + plane: Plane { + normal: Vector3D::new(0.0, 0.0, 1.0), + offset: 0.0, + }, + anchor, + } + } + + /// Construct a polygon from a rectangle with 3D transform. + pub fn from_transformed_rect( + rect: Rect<f64>, + transform: Transform3D<f64>, + anchor: A, + ) -> Option<Self> { + let min = rect.min(); + let max = rect.max(); + let points = [ + transform.transform_point3d(min.to_3d())?, + transform.transform_point3d(Point3D::new(max.x, min.y, 0.0))?, + transform.transform_point3d(max.to_3d())?, + transform.transform_point3d(Point3D::new(min.x, max.y, 0.0))?, + ]; + Self::from_points(points, anchor) + } + + /// Construct a polygon from a rectangle with an invertible 3D transform. + pub fn from_transformed_rect_with_inverse( + rect: Rect<f64>, + transform: &Transform3D<f64>, + inv_transform: &Transform3D<f64>, + anchor: A, + ) -> Option<Self> { + let min = rect.min(); + let max = rect.max(); + let points = [ + transform.transform_point3d(min.to_3d())?, + transform.transform_point3d(Point3D::new(max.x, min.y, 0.0))?, + transform.transform_point3d(max.to_3d())?, + transform.transform_point3d(Point3D::new(min.x, max.y, 0.0))?, + ]; + + // Compute the normal directly from the transformation. This guarantees consistent polygons + // generated from various local rectanges on the same geometry plane. + let normal_raw = Vector3D::new(inv_transform.m13, inv_transform.m23, inv_transform.m33); + let normal_sql = normal_raw.square_length(); + if normal_sql.approx_eq(&0.0) || transform.m44.approx_eq(&0.0) { + None + } else { + let normal = normal_raw / normal_sql.sqrt(); + let offset = -Vector3D::new(transform.m41, transform.m42, transform.m43).dot(normal) + / transform.m44; + + Some(Polygon { + points, + plane: Plane { normal, offset }, + anchor, + }) + } + } + + /// Bring a point into the local coordinate space, returning + /// the 2D normalized coordinates. + pub fn untransform_point(&self, point: Point3D<f64>) -> Point2D<f64> { + //debug_assert!(self.contains(point)); + // get axises and target vector + let a = self.points[1] - self.points[0]; + let b = self.points[3] - self.points[0]; + let c = point - self.points[0]; + // get pair-wise dot products + let a2 = a.dot(a); + let ab = a.dot(b); + let b2 = b.dot(b); + let ca = c.dot(a); + let cb = c.dot(b); + // compute the final coordinates + let denom = ab * ab - a2 * b2; + let x = ab * cb - b2 * ca; + let y = ab * ca - a2 * cb; + Point2D::new(x, y) / denom + } + + /// Transform a polygon by an affine transform (preserving straight lines). + pub fn transform(&self, transform: &Transform3D<f64>) -> Option<Polygon<A>> { + let mut points = [Point3D::origin(); 4]; + for (out, point) in points.iter_mut().zip(self.points.iter()) { + let mut homo = transform.transform_point3d_homogeneous(*point); + homo.w = homo.w.max(f64::approx_epsilon()); + *out = homo.to_point3d()?; + } + + //Note: this code path could be more efficient if we had inverse-transpose + //let n4 = transform.transform_point4d(&Point4D::new(0.0, 0.0, T::one(), 0.0)); + //let normal = Point3D::new(n4.x, n4.y, n4.z); + Polygon::from_points(points, self.anchor) + } + + /// Check if all the points are indeed placed on the plane defined by + /// the normal and offset, and the winding order is consistent. + pub fn is_valid(&self) -> bool { + let is_planar = self + .points + .iter() + .all(|p| is_zero(self.plane.signed_distance_to(p))); + let edges = [ + self.points[1] - self.points[0], + self.points[2] - self.points[1], + self.points[3] - self.points[2], + self.points[0] - self.points[3], + ]; + let anchor = edges[3].cross(edges[0]); + let is_winding = edges + .iter() + .zip(edges[1..].iter()) + .all(|(a, &b)| a.cross(b).dot(anchor) >= 0.0); + is_planar && is_winding + } + + /// Check if the polygon doesn't contain any space. This may happen + /// after a sequence of splits, and such polygons should be discarded. + pub fn is_empty(&self) -> bool { + (self.points[0] - self.points[2]).square_length() < f64::EPSILON + || (self.points[1] - self.points[3]).square_length() < f64::EPSILON + } + + /// Check if this polygon contains another one. + pub fn contains(&self, other: &Self) -> bool { + //TODO: actually check for inside/outside + self.plane.contains(&other.plane) + } + + /// Project this polygon onto a 3D vector, returning a line projection. + /// Note: we can think of it as a projection to a ray placed at the origin. + pub fn project_on(&self, vector: &Vector3D<f64>) -> LineProjection { + LineProjection { + markers: [ + vector.dot(self.points[0].to_vector()), + vector.dot(self.points[1].to_vector()), + vector.dot(self.points[2].to_vector()), + vector.dot(self.points[3].to_vector()), + ], + } + } + + /// Compute the line of intersection with an infinite plane. + pub fn intersect_plane(&self, other: &Plane) -> Intersection<Line> { + if other.are_outside(&self.points) { + log::debug!("\t\tOutside of the plane"); + return Intersection::Outside; + } + match self.plane.intersect(&other) { + Some(line) => Intersection::Inside(line), + None => { + log::debug!("\t\tCoplanar"); + Intersection::Coplanar + } + } + } + + /// Compute the line of intersection with another polygon. + pub fn intersect(&self, other: &Self) -> Intersection<Line> { + if self.plane.are_outside(&other.points) || other.plane.are_outside(&self.points) { + log::debug!("\t\tOne is completely outside of the other"); + return Intersection::Outside; + } + match self.plane.intersect(&other.plane) { + Some(line) => { + let self_proj = self.project_on(&line.dir); + let other_proj = other.project_on(&line.dir); + if self_proj.intersect(&other_proj) { + Intersection::Inside(line) + } else { + // projections on the line don't intersect + log::debug!("\t\tProjection is outside"); + Intersection::Outside + } + } + None => { + log::debug!("\t\tCoplanar"); + Intersection::Coplanar + } + } + } + + fn split_impl( + &mut self, + first: (usize, Point3D<f64>), + second: (usize, Point3D<f64>), + ) -> (Option<Self>, Option<Self>) { + //TODO: can be optimized for when the polygon has a redundant 4th vertex + //TODO: can be simplified greatly if only working with triangles + log::debug!("\t\tReached complex case [{}, {}]", first.0, second.0); + let base = first.0; + assert!(base < self.points.len()); + match second.0 - first.0 { + 1 => { + // rect between the cut at the diagonal + let other1 = Polygon { + points: [ + first.1, + second.1, + self.points[(base + 2) & 3], + self.points[base], + ], + ..self.clone() + }; + // triangle on the near side of the diagonal + let other2 = Polygon { + points: [ + self.points[(base + 2) & 3], + self.points[(base + 3) & 3], + self.points[base], + self.points[base], + ], + ..self.clone() + }; + // triangle being cut out + self.points = [first.1, self.points[(base + 1) & 3], second.1, second.1]; + (Some(other1), Some(other2)) + } + 2 => { + // rect on the far side + let other = Polygon { + points: [ + first.1, + self.points[(base + 1) & 3], + self.points[(base + 2) & 3], + second.1, + ], + ..self.clone() + }; + // rect on the near side + self.points = [ + first.1, + second.1, + self.points[(base + 3) & 3], + self.points[base], + ]; + (Some(other), None) + } + 3 => { + // rect between the cut at the diagonal + let other1 = Polygon { + points: [ + first.1, + self.points[(base + 1) & 3], + self.points[(base + 3) & 3], + second.1, + ], + ..self.clone() + }; + // triangle on the far side of the diagonal + let other2 = Polygon { + points: [ + self.points[(base + 1) & 3], + self.points[(base + 2) & 3], + self.points[(base + 3) & 3], + self.points[(base + 3) & 3], + ], + ..self.clone() + }; + // triangle being cut out + self.points = [first.1, second.1, self.points[base], self.points[base]]; + (Some(other1), Some(other2)) + } + _ => panic!("Unexpected indices {} {}", first.0, second.0), + } + } + + /// Split the polygon along the specified `Line`. + /// Will do nothing if the line doesn't belong to the polygon plane. + #[deprecated(note = "Use split_with_normal instead")] + pub fn split(&mut self, line: &Line) -> (Option<Self>, Option<Self>) { + log::debug!("\tSplitting"); + // check if the cut is within the polygon plane first + if !is_zero(self.plane.normal.dot(line.dir)) + || !is_zero(self.plane.signed_distance_to(&line.origin)) + { + log::debug!( + "\t\tDoes not belong to the plane, normal dot={:?}, origin distance={:?}", + self.plane.normal.dot(line.dir), + self.plane.signed_distance_to(&line.origin) + ); + return (None, None); + } + // compute the intersection points for each edge + let mut cuts = [None; 4]; + for ((&b, &a), cut) in self + .points + .iter() + .cycle() + .skip(1) + .zip(self.points.iter()) + .zip(cuts.iter_mut()) + { + if let Some(t) = line.intersect_edge(a..b) { + if t >= 0.0 && t < 1.0 { + *cut = Some(a + (b - a) * t); + } + } + } + + let first = match cuts.iter().position(|c| c.is_some()) { + Some(pos) => pos, + None => return (None, None), + }; + let second = match cuts[first + 1..].iter().position(|c| c.is_some()) { + Some(pos) => first + 1 + pos, + None => return (None, None), + }; + self.split_impl( + (first, cuts[first].unwrap()), + (second, cuts[second].unwrap()), + ) + } + + /// Split the polygon along the specified `Line`, with a normal to the split line provided. + /// This is useful when called by the plane splitter, since the other plane's normal + /// forms the side direction here, and figuring out the actual line of split isn't needed. + /// Will do nothing if the line doesn't belong to the polygon plane. + pub fn split_with_normal( + &mut self, + line: &Line, + normal: &Vector3D<f64>, + ) -> (Option<Self>, Option<Self>) { + log::debug!("\tSplitting with normal"); + // figure out which side of the split does each point belong to + let mut sides = [0.0; 4]; + let (mut cut_positive, mut cut_negative) = (None, None); + for (side, point) in sides.iter_mut().zip(&self.points) { + *side = normal.dot(*point - line.origin); + } + // compute the edge intersection points + for (i, ((&side1, point1), (&side0, point0))) in sides[1..] + .iter() + .chain(iter::once(&sides[0])) + .zip(self.points[1..].iter().chain(iter::once(&self.points[0]))) + .zip(sides.iter().zip(&self.points)) + .enumerate() + { + // figure out if an edge between 0 and 1 needs to be cut + let cut = if side0 < 0.0 && side1 >= 0.0 { + &mut cut_positive + } else if side0 > 0.0 && side1 <= 0.0 { + &mut cut_negative + } else { + continue; + }; + // compute the cut point by weighting the opposite distances + // + // Note: this algorithm is designed to not favor one end of the edge over the other. + // The previous approach of calling `intersect_edge` sometimes ended up with "t" ever + // slightly outside of [0, 1] range, since it was computing it relative to the first point only. + // + // Given that we are intersecting two straight lines, the triangles on both + // sides of intersection are alike, so distances along the [point0, point1] line + // are proportional to the side vector lengths we just computed: (side0, side1). + let point = + (*point0 * side1.abs() + point1.to_vector() * side0.abs()) / (side0 - side1).abs(); + if cut.is_some() { + // We don't expect that the direction changes more than once, unless + // the polygon is close to redundant, and we hit precision issues when + // computing the sides. + log::warn!("Splitting failed due to precision issues: {:?}", sides); + break; + } + *cut = Some((i, point)); + } + // form new polygons + if let (Some(first), Some(mut second)) = (cut_positive, cut_negative) { + if second.0 < first.0 { + second.0 += 4; + } + self.split_impl(first, second) + } else { + (None, None) + } + } + + /// Cut a polygon with another one. + /// + /// Write the resulting polygons in `front` and `back` if the polygon needs to be split. + pub fn cut( + &self, + poly: &Self, + front: &mut SmallVec<[Polygon<A>; 2]>, + back: &mut SmallVec<[Polygon<A>; 2]>, + ) -> PlaneCut { + //Note: we treat `self` as a plane, and `poly` as a concrete polygon here + let (intersection, dist) = match self.plane.intersect(&poly.plane) { + None => { + let ndot = self.plane.normal.dot(poly.plane.normal); + let dist = self.plane.offset - ndot * poly.plane.offset; + (Intersection::Coplanar, dist) + } + Some(_) if self.plane.are_outside(&poly.points[..]) => { + //Note: we can't start with `are_outside` because it's subject to FP precision + let dist = self.plane.signed_distance_sum_to(&poly); + (Intersection::Outside, dist) + } + Some(line) => { + //Note: distance isn't relevant here + (Intersection::Inside(line), 0.0) + } + }; + + match intersection { + //Note: we deliberately make the comparison wider than just with T::epsilon(). + // This is done to avoid mistakenly ordering items that should be on the same + // plane but end up slightly different due to the floating point precision. + Intersection::Coplanar if is_zero(dist) => PlaneCut::Sibling, + Intersection::Coplanar | Intersection::Outside => { + if dist > 0.0 { + front.push(poly.clone()); + } else { + back.push(poly.clone()); + } + + PlaneCut::Cut + } + Intersection::Inside(line) => { + let mut poly = poly.clone(); + let (res_add1, res_add2) = poly.split_with_normal(&line, &self.plane.normal); + + for sub in iter::once(poly) + .chain(res_add1) + .chain(res_add2) + .filter(|p| !p.is_empty()) + { + let dist = self.plane.signed_distance_sum_to(&sub); + if dist > 0.0 { + front.push(sub) + } else { + back.push(sub) + } + } + + PlaneCut::Cut + } + } + } + + /// Returns whether both polygon's planes are parallel. + pub fn is_aligned(&self, other: &Self) -> bool { + self.plane.normal.dot(other.plane.normal) > 0.0 + } +} + +/// The result of a polygon being cut by a plane. +/// The "cut" here is an attempt to classify a plane as being +/// in front or in the back of another one. +#[derive(Debug, PartialEq)] +pub enum PlaneCut { + /// The planes are one the same geometrical plane. + Sibling, + /// Planes are different, thus we can either determine that + /// our plane is completely in front/back of another one, + /// or split it into these sub-groups. + Cut, +} + +#[test] +fn test_split_precision() { + // regression test for https://bugzilla.mozilla.org/show_bug.cgi?id=1678454 + let mut polygon = Polygon::<()> { + points: [ + Point3D::new(300.0102, 150.00958, 0.0), + Point3D::new(606.0, 306.0, 0.0), + Point3D::new(300.21954, 150.11946, 0.0), + Point3D::new(300.08844, 150.05064, 0.0), + ], + plane: Plane { + normal: Vector3D::zero(), + offset: 0.0, + }, + anchor: (), + }; + let line = Line { + origin: Point3D::new(3.0690663, -5.8472385, 0.0), + dir: Vector3D::new(0.8854436, 0.46474677, -0.0), + }; + let normal = Vector3D::new(0.46474662, -0.8854434, -0.0006389789); + polygon.split_with_normal(&line, &normal); +} diff --git a/third_party/rust/plane-split/tests/clip.rs b/third_party/rust/plane-split/tests/clip.rs new file mode 100644 index 0000000000..f243c3e843 --- /dev/null +++ b/third_party/rust/plane-split/tests/clip.rs @@ -0,0 +1,147 @@ +use euclid::{ + default::{Rect, Transform3D}, + point3, rect, vec3, Angle, +}; +use plane_split::{Clipper, Plane, Polygon}; + +use std::f64::consts::FRAC_PI_4; + +#[test] +fn clip_in() { + let plane = Plane::from_unnormalized(vec3(1.0, 0.0, 1.0), 20.0) + .unwrap() + .unwrap(); + let mut clipper = Clipper::new(); + clipper.add(plane); + + let poly = Polygon::from_points( + [ + point3(-10.0, -10.0, 0.0), + point3(10.0, -10.0, 0.0), + point3(10.0, 10.0, 0.0), + point3(-10.0, 10.0, 0.0), + ], + 0, + ) + .unwrap(); + + let results = clipper.clip(poly.clone()); + assert_eq!(results[0], poly); + assert_eq!(results.len(), 1); +} + +#[test] +fn clip_out() { + let plane = Plane::from_unnormalized(vec3(1.0, 0.0, 1.0), -20.0) + .unwrap() + .unwrap(); + let mut clipper = Clipper::new(); + clipper.add(plane); + + let poly = Polygon::from_points( + [ + point3(-10.0, -10.0, 0.0), + point3(10.0, -10.0, 0.0), + point3(10.0, 10.0, 0.0), + point3(-10.0, 10.0, 0.0), + ], + 0, + ) + .unwrap(); + + let results = clipper.clip(poly); + assert!(results.is_empty()); +} + +#[test] +fn clip_parallel() { + let plane = Plane { + normal: vec3(0.0, 0.0, 1.0), + offset: 0.0, + }; + let mut clipper = Clipper::new(); + clipper.add(plane); + + let poly = Polygon::from_points( + [ + point3(-10.0, -10.0, 0.0), + point3(10.0, -10.0, 0.0), + point3(10.0, 10.0, 0.0), + point3(-10.0, 10.0, 0.0), + ], + 0, + ) + .unwrap(); + + let results = clipper.clip(poly); + assert!(results.is_empty()); +} + +#[test] +fn clip_repeat() { + let plane = Plane::from_unnormalized(vec3(1.0, 0.0, 1.0), 0.0) + .unwrap() + .unwrap(); + let mut clipper = Clipper::new(); + clipper.add(plane.clone()); + clipper.add(plane.clone()); + + let poly = Polygon::from_points( + [ + point3(-10.0, -10.0, 0.0), + point3(10.0, -10.0, 0.0), + point3(10.0, 10.0, 0.0), + point3(-10.0, 10.0, 0.0), + ], + 0, + ) + .unwrap(); + + let results = clipper.clip(poly); + assert_eq!(results.len(), 1); + assert!(plane.signed_distance_sum_to(&results[0]) > 0.0); +} + +#[test] +fn clip_transformed() { + let t_rot: Transform3D<f64> = Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(-FRAC_PI_4)); + let t_div: Transform3D<f64> = Transform3D::perspective(5.0); + let transform = t_rot.then(&t_div); + + let polygon = Polygon::from_rect(rect(-10.0, -10.0, 20.0, 20.0), 0); + let bounds: Rect<f64> = rect(-1.0, -1.0, 2.0, 2.0); + + let mut clipper = Clipper::new(); + let results = clipper.clip_transformed(polygon, &transform, Some(bounds)); + // iterating enforces the transformation checks/unwraps + assert_ne!(0, results.unwrap().count()); +} + +#[test] +fn clip_badly_transformed() { + let mut tx = Transform3D::<f64>::identity(); + tx.m14 = -0.0000001; + tx.m44 = 0.0; + + let mut clipper = Clipper::new(); + let polygon = Polygon::from_rect(rect(-10.0, -10.0, 20.0, 20.0), 0); + let results = clipper.clip_transformed(polygon, &tx, None); + assert!(results.is_err()); +} + +#[test] +fn clip_near_coplanar() { + let tx = Transform3D::<f64>::new( + 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -960.0, -625.0, 1.0, -1.0, 100.0, -2852.0, 0.0, 1.0, + ); + let mut clipper = Clipper::new(); + let polygon = Polygon::from_rect(rect(0.0, 0.0, 1703.0, 4020.0), 0); + + let bounds1 = rect(0.0, -430.0, 2048.0, 2048.0); + let results1 = clipper.clip_transformed(polygon.clone(), &tx, Some(bounds1)); + assert_ne!(0, results1.unwrap().count()); + + let bounds2 = rect(0.0, 0.0, 816.0, 1039.0); + let results2 = clipper.clip_transformed(polygon, &tx, Some(bounds2)); + assert_ne!(0, results2.unwrap().count()); +} diff --git a/third_party/rust/plane-split/tests/main.rs b/third_party/rust/plane-split/tests/main.rs new file mode 100644 index 0000000000..0bcac5a179 --- /dev/null +++ b/third_party/rust/plane-split/tests/main.rs @@ -0,0 +1,341 @@ +use euclid::{ + approxeq::ApproxEq, + default::{Rect, Size2D, Transform3D}, + point2, point3, vec3, Angle, +}; +use plane_split::{Intersection, Line, LineProjection, NegativeHemisphereError, Plane, Polygon}; + +#[test] +fn line_proj_bounds() { + assert_eq!( + (-5.0f64, 4.0), + LineProjection { + markers: [-5.0f64, 1.0, 4.0, 2.0] + } + .get_bounds() + ); + assert_eq!( + (1f64, 4.0), + LineProjection { + markers: [4f64, 3.0, 2.0, 1.0] + } + .get_bounds() + ); +} + +#[test] +fn valid() { + let poly_a: Polygon<usize> = Polygon { + points: [ + point3(0.0, 0.0, 0.0), + point3(1.0, 1.0, 1.0), + point3(1.0, 1.0, 0.0), + point3(0.0, 1.0, 1.0), + ], + plane: Plane { + normal: vec3(0.0, 1.0, 0.0), + offset: -1.0, + }, + anchor: 0, + }; + assert!(!poly_a.is_valid()); // points[0] is outside + let poly_b: Polygon<usize> = Polygon { + points: [ + point3(0.0, 1.0, 0.0), + point3(1.0, 1.0, 1.0), + point3(1.0, 1.0, 0.0), + point3(0.0, 1.0, 1.0), + ], + plane: Plane { + normal: vec3(0.0, 1.0, 0.0), + offset: -1.0, + }, + anchor: 0, + }; + assert!(!poly_b.is_valid()); // winding is incorrect + let poly_c: Polygon<usize> = Polygon { + points: [ + point3(0.0, 0.0, 1.0), + point3(1.0, 0.0, 1.0), + point3(1.0, 1.0, 1.0), + point3(0.0, 1.0, 1.0), + ], + plane: Plane { + normal: vec3(0.0, 0.0, 1.0), + offset: -1.0, + }, + anchor: 0, + }; + assert!(poly_c.is_valid()); +} + +#[test] +fn empty() { + let poly = Polygon::from_points( + [ + point3(0.0, 0.0, 1.0), + point3(0.0, 0.0, 1.0), + point3(0.0, 0.00000001, 1.0), + point3(1.0, 0.0, 0.0), + ], + 1usize, + ); + assert_eq!(None, poly); +} + +fn test_transformed(rect: Rect<f64>, transform: Transform3D<f64>) { + let poly = Polygon::from_transformed_rect(rect, transform, 0).unwrap(); + assert!(poly.is_valid()); + + let inv_transform = transform.inverse().unwrap(); + let poly2 = + Polygon::from_transformed_rect_with_inverse(rect, &transform, &inv_transform, 0).unwrap(); + assert_eq!(poly.points, poly2.points); + assert!(poly.plane.offset.approx_eq(&poly2.plane.offset)); + assert!(poly.plane.normal.dot(poly2.plane.normal).approx_eq(&1.0)); +} + +#[test] +fn from_transformed_rect() { + let rect = Rect::new(point2(10.0, 10.0), Size2D::new(20.0, 30.0)); + let transform = Transform3D::rotation(0.5f64.sqrt(), 0.0, 0.5f64.sqrt(), Angle::radians(5.0)) + .pre_translate(vec3(0.0, 0.0, 10.0)); + test_transformed(rect, transform); +} + +#[test] +fn from_transformed_rect_perspective() { + let rect = Rect::new(point2(-10.0, -5.0), Size2D::new(20.0, 30.0)); + let mut transform = Transform3D::perspective(400.0).pre_translate(vec3(0.0, 0.0, 100.0)); + transform.m44 = 0.7; //for fun + test_transformed(rect, transform); +} + +#[test] +fn untransform_point() { + let poly: Polygon<usize> = Polygon { + points: [ + point3(0.0, 0.0, 0.0), + point3(0.5, 1.0, 0.0), + point3(1.5, 1.0, 0.0), + point3(1.0, 0.0, 0.0), + ], + plane: Plane { + normal: vec3(0.0, 1.0, 0.0), + offset: 0.0, + }, + anchor: 0, + }; + assert_eq!(poly.untransform_point(poly.points[0]), point2(0.0, 0.0)); + assert_eq!(poly.untransform_point(poly.points[1]), point2(1.0, 0.0)); + assert_eq!(poly.untransform_point(poly.points[2]), point2(1.0, 1.0)); + assert_eq!(poly.untransform_point(poly.points[3]), point2(0.0, 1.0)); +} + +#[test] +fn are_outside() { + let plane = Plane { + normal: vec3(0.0, 0.0, 1.0), + offset: -1.0, + }; + assert!(plane.are_outside(&[point3(0.0, 0.0, 1.1), point3(1.0, 1.0, 2.0),])); + assert!(plane.are_outside(&[point3(0.5, 0.5, 1.0),])); + assert!(!plane.are_outside(&[point3(0.0, 0.0, 1.0), point3(0.0, 0.0, -1.0),])); +} + +#[test] +fn intersect() { + let poly_a: Polygon<usize> = Polygon { + points: [ + point3(0.0, 0.0, 1.0), + point3(1.0, 0.0, 1.0), + point3(1.0, 1.0, 1.0), + point3(0.0, 1.0, 1.0), + ], + plane: Plane { + normal: vec3(0.0, 0.0, 1.0), + offset: -1.0, + }, + anchor: 0, + }; + assert!(poly_a.is_valid()); + let poly_b: Polygon<usize> = Polygon { + points: [ + point3(0.5, 0.0, 2.0), + point3(0.5, 1.0, 2.0), + point3(0.5, 1.0, 0.0), + point3(0.5, 0.0, 0.0), + ], + plane: Plane { + normal: vec3(1.0, 0.0, 0.0), + offset: -0.5, + }, + anchor: 0, + }; + assert!(poly_b.is_valid()); + + let intersection = match poly_a.intersect(&poly_b) { + Intersection::Inside(result) => result, + _ => panic!("Bad intersection"), + }; + assert!(intersection.is_valid()); + // confirm the origin is on both planes + assert!(poly_a + .plane + .signed_distance_to(&intersection.origin) + .approx_eq(&0.0)); + assert!(poly_b + .plane + .signed_distance_to(&intersection.origin) + .approx_eq(&0.0)); + // confirm the direction is coplanar to both planes + assert!(poly_a.plane.normal.dot(intersection.dir).approx_eq(&0.0)); + assert!(poly_b.plane.normal.dot(intersection.dir).approx_eq(&0.0)); + + let poly_c: Polygon<usize> = Polygon { + points: [ + point3(0.0, -1.0, 2.0), + point3(0.0, -1.0, 0.0), + point3(0.0, 0.0, 0.0), + point3(0.0, 0.0, 2.0), + ], + plane: Plane { + normal: vec3(1.0, 0.0, 0.0), + offset: 0.0, + }, + anchor: 0, + }; + assert!(poly_c.is_valid()); + let poly_d: Polygon<usize> = Polygon { + points: [ + point3(0.0, 0.0, 0.5), + point3(1.0, 0.0, 0.5), + point3(1.0, 1.0, 0.5), + point3(0.0, 1.0, 0.5), + ], + plane: Plane { + normal: vec3(0.0, 0.0, 1.0), + offset: -0.5, + }, + anchor: 0, + }; + assert!(poly_d.is_valid()); + + assert!(poly_a.intersect(&poly_c).is_outside()); + assert!(poly_a.intersect(&poly_d).is_outside()); +} + +fn test_cut(poly_base: &Polygon<usize>, extra_count: u8, line: Line) { + assert!(line.is_valid()); + + let normal = poly_base.plane.normal.cross(line.dir).normalize(); + let mut poly = poly_base.clone(); + let (extra1, extra2) = poly.split_with_normal(&line, &normal); + assert!(poly.is_valid() && poly_base.contains(&poly)); + assert_eq!(extra_count > 0, extra1.is_some()); + assert_eq!(extra_count > 1, extra2.is_some()); + if let Some(extra) = extra1 { + assert!(extra.is_valid() && poly_base.contains(&extra)); + } + if let Some(extra) = extra2 { + assert!(extra.is_valid() && poly_base.contains(&extra)); + } +} + +#[test] +fn split() { + let poly: Polygon<usize> = Polygon { + points: [ + point3(0.0, 1.0, 0.0), + point3(1.0, 1.0, 0.0), + point3(1.0, 1.0, 1.0), + point3(0.0, 1.0, 1.0), + ], + plane: Plane { + normal: vec3(0.0, 1.0, 0.0), + offset: -1.0, + }, + anchor: 0, + }; + + // non-intersecting line + test_cut( + &poly, + 0, + Line { + origin: point3(0.0, 1.0, 0.5), + dir: vec3(0.0, 1.0, 0.0), + }, + ); + + // simple cut (diff=2) + test_cut( + &poly, + 1, + Line { + origin: point3(0.0, 1.0, 0.5), + dir: vec3(1.0, 0.0, 0.0), + }, + ); + + // complex cut (diff=1, wrapped) + test_cut( + &poly, + 2, + Line { + origin: point3(0.0, 1.0, 0.5), + dir: vec3(0.5f64.sqrt(), 0.0, -0.5f64.sqrt()), + }, + ); + + // complex cut (diff=1, non-wrapped) + test_cut( + &poly, + 2, + Line { + origin: point3(0.5, 1.0, 0.0), + dir: vec3(0.5f64.sqrt(), 0.0, 0.5f64.sqrt()), + }, + ); + + // complex cut (diff=3) + test_cut( + &poly, + 2, + Line { + origin: point3(0.5, 1.0, 0.0), + dir: vec3(-0.5f64.sqrt(), 0.0, 0.5f64.sqrt()), + }, + ); + + // perfect diagonal + test_cut( + &poly, + 1, + Line { + origin: point3(0.0, 1.0, 0.0), + dir: vec3(0.5f64.sqrt(), 0.0, 0.5f64.sqrt()), + }, + ); +} + +#[test] +fn plane_unnormalized() { + let zero_vec = vec3(0.0000001, 0.0, 0.0); + let mut plane: Result<Option<Plane>, _> = Plane::from_unnormalized(zero_vec, 1.0); + assert_eq!(plane, Ok(None)); + plane = Plane::from_unnormalized(zero_vec, 0.0); + assert_eq!(plane, Err(NegativeHemisphereError)); + plane = Plane::from_unnormalized(zero_vec, -0.5); + assert_eq!(plane, Err(NegativeHemisphereError)); + + let plane = Plane::from_unnormalized(vec3(-3.0, 4.0, 0.0), 2.0) + .unwrap() + .unwrap(); + let expected = Plane { + normal: vec3(-3.0 / 5.0, 4.0 / 5.0, 0.0), + offset: 2.0 / 5.0, + }; + assert!(plane.normal.approx_eq(&expected.normal)); + assert!(plane.offset.approx_eq(&expected.offset)); +} diff --git a/third_party/rust/plane-split/tests/split.rs b/third_party/rust/plane-split/tests/split.rs new file mode 100644 index 0000000000..60d1d8035f --- /dev/null +++ b/third_party/rust/plane-split/tests/split.rs @@ -0,0 +1,138 @@ +use euclid::{ + default::{Rect, Transform3D}, + rect, vec3, Angle, +}; +use plane_split::PlaneCut; +use plane_split::{make_grid, BspSplitter, Polygon}; +use std::f64::consts::FRAC_PI_4; + +fn grid_impl(count: usize, splitter: &mut BspSplitter<usize>) { + let polys = make_grid(count); + let result = splitter.solve(&polys, vec3(0.0, 0.0, 1.0)); + assert_eq!(result.len(), count + count * count + count * count * count); +} + +#[test] +fn grid_bsp() { + grid_impl(2, &mut BspSplitter::new()); +} + +fn sort_rotation(splitter: &mut BspSplitter<usize>) { + let transform0: Transform3D<f64> = + Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(-FRAC_PI_4)); + let transform1: Transform3D<f64> = Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(0.0)); + let transform2: Transform3D<f64> = + Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(FRAC_PI_4)); + + let rect: Rect<f64> = rect(-10.0, -10.0, 20.0, 20.0); + let p1 = Polygon::from_transformed_rect(rect, transform0, 0); + let p2 = Polygon::from_transformed_rect(rect, transform1, 1); + let p3 = Polygon::from_transformed_rect(rect, transform2, 2); + assert!( + p1.is_some() && p2.is_some() && p3.is_some(), + "Cannot construct transformed polygons" + ); + + let polys = [p1.unwrap(), p2.unwrap(), p3.unwrap()]; + let result = splitter.solve(&polys, vec3(0.0, 0.0, -1.0)); + let ids: Vec<_> = result.iter().map(|poly| poly.anchor).collect(); + assert_eq!(&ids, &[2, 1, 0, 1, 2]); +} + +#[test] +fn rotation_bsp() { + sort_rotation(&mut BspSplitter::new()); +} + +fn sort_trivial(splitter: &mut BspSplitter<usize>) { + let anchors: Vec<_> = (0usize..10).collect(); + let rect: Rect<f64> = rect(-10.0, -10.0, 20.0, 20.0); + let polys: Vec<_> = anchors + .iter() + .map(|&anchor| { + let transform: Transform3D<f64> = Transform3D::translation(0.0, 0.0, anchor as f64); + let poly = Polygon::from_transformed_rect(rect, transform, anchor); + assert!(poly.is_some(), "Cannot construct transformed polygons"); + poly.unwrap() + }) + .collect(); + + let result = splitter.solve(&polys, vec3(0.0, 0.0, -1.0)); + let anchors1: Vec<_> = result.iter().map(|p| p.anchor).collect(); + let mut anchors2 = anchors1.clone(); + anchors2.sort_by_key(|&a| -(a as i32)); + //make sure Z is sorted backwards + assert_eq!(anchors1, anchors2); +} + +fn sort_external(splitter: &mut BspSplitter<usize>) { + let rect0: Rect<f64> = rect(-10.0, -10.0, 20.0, 20.0); + let poly0 = Polygon::from_rect(rect0, 0); + let poly1 = { + let transform0: Transform3D<f64> = + Transform3D::rotation(1.0, 0.0, 0.0, Angle::radians(2.0 * FRAC_PI_4)); + let transform1: Transform3D<f64> = Transform3D::translation(0.0, 100.0, 0.0); + Polygon::from_transformed_rect(rect0, transform0.then(&transform1), 1).unwrap() + }; + + let result = splitter.solve(&[poly0, poly1], vec3(1.0, 1.0, 0.0).normalize()); + let anchors: Vec<_> = result.iter().map(|p| p.anchor).collect(); + // make sure the second polygon is split in half around the plane of the first one, + // even if geometrically their polygons don't intersect. + assert_eq!(anchors, vec![1, 0, 1]); +} + +#[test] +fn trivial_bsp() { + sort_trivial(&mut BspSplitter::new()); +} + +#[test] +fn external_bsp() { + sort_external(&mut BspSplitter::new()); +} + +#[test] +fn test_cut() { + use smallvec::SmallVec; + let rect: Rect<f64> = rect(-10.0, -10.0, 20.0, 20.0); + let poly = Polygon::from_rect(rect, 0); + let mut poly2 = Polygon::from_rect(rect, 0); + // test robustness for positions + for p in &mut poly2.points { + p.z += 0.00000001; + } + + let mut front: SmallVec<[Polygon<i32>; 2]> = SmallVec::new(); + let mut back: SmallVec<[Polygon<i32>; 2]> = SmallVec::new(); + + assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Sibling); + assert!(front.is_empty()); + assert!(back.is_empty()); + + // test robustness for normal + poly2.plane.normal.z += 0.00000001; + assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Sibling); + assert!(front.is_empty()); + assert!(back.is_empty()); + + // test opposite normal handling + poly2.plane.normal *= -1.0; + assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Sibling); + assert!(front.is_empty()); + assert!(back.is_empty()); + + // test grouping front + poly2.plane.offset += 0.1; + assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Cut); + assert_eq!(front.len(), 1); + assert!(back.is_empty()); + + front.clear(); + + // test grouping back + poly2.plane.normal *= -1.0; + assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Cut); + assert_eq!(back.len(), 1); + assert!(front.is_empty()); +} |