summaryrefslogtreecommitdiffstats
path: root/third_party/rust/rand/src/rng.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/rand/src/rng.rs')
-rw-r--r--third_party/rust/rand/src/rng.rs600
1 files changed, 600 insertions, 0 deletions
diff --git a/third_party/rust/rand/src/rng.rs b/third_party/rust/rand/src/rng.rs
new file mode 100644
index 0000000000..79a9fbff46
--- /dev/null
+++ b/third_party/rust/rand/src/rng.rs
@@ -0,0 +1,600 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2013-2017 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! [`Rng`] trait
+
+use rand_core::{Error, RngCore};
+use crate::distributions::uniform::{SampleRange, SampleUniform};
+use crate::distributions::{self, Distribution, Standard};
+use core::num::Wrapping;
+use core::{mem, slice};
+
+/// An automatically-implemented extension trait on [`RngCore`] providing high-level
+/// generic methods for sampling values and other convenience methods.
+///
+/// This is the primary trait to use when generating random values.
+///
+/// # Generic usage
+///
+/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
+/// things are worth noting here:
+///
+/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
+/// difference whether we use `R: Rng` or `R: RngCore`.
+/// - The `+ ?Sized` un-bounding allows functions to be called directly on
+/// type-erased references; i.e. `foo(r)` where `r: &mut dyn RngCore`. Without
+/// this it would be necessary to write `foo(&mut r)`.
+///
+/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
+/// trade-offs. It allows the argument to be consumed directly without a `&mut`
+/// (which is how `from_rng(thread_rng())` works); also it still works directly
+/// on references (including type-erased references). Unfortunately within the
+/// function `foo` it is not known whether `rng` is a reference type or not,
+/// hence many uses of `rng` require an extra reference, either explicitly
+/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
+/// optimiser can remove redundant references later.
+///
+/// Example:
+///
+/// ```
+/// # use rand::thread_rng;
+/// use rand::Rng;
+///
+/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
+/// rng.gen()
+/// }
+///
+/// # let v = foo(&mut thread_rng());
+/// ```
+pub trait Rng: RngCore {
+ /// Return a random value supporting the [`Standard`] distribution.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// let x: u32 = rng.gen();
+ /// println!("{}", x);
+ /// println!("{:?}", rng.gen::<(f64, bool)>());
+ /// ```
+ ///
+ /// # Arrays and tuples
+ ///
+ /// The `rng.gen()` method is able to generate arrays (up to 32 elements)
+ /// and tuples (up to 12 elements), so long as all element types can be
+ /// generated.
+ /// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support
+ /// arrays larger than 32 elements.
+ ///
+ /// For arrays of integers, especially for those with small element types
+ /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`].
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support
+ ///
+ /// let arr1: [f32; 32] = rng.gen(); // array construction
+ /// let mut arr2 = [0u8; 128];
+ /// rng.fill(&mut arr2); // array fill
+ /// ```
+ ///
+ /// [`Standard`]: distributions::Standard
+ #[inline]
+ fn gen<T>(&mut self) -> T
+ where Standard: Distribution<T> {
+ Standard.sample(self)
+ }
+
+ /// Generate a random value in the given range.
+ ///
+ /// This function is optimised for the case that only a single sample is
+ /// made from the given range. See also the [`Uniform`] distribution
+ /// type which may be faster if sampling from the same range repeatedly.
+ ///
+ /// Only `gen_range(low..high)` and `gen_range(low..=high)` are supported.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the range is empty.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ ///
+ /// // Exclusive range
+ /// let n: u32 = rng.gen_range(0..10);
+ /// println!("{}", n);
+ /// let m: f64 = rng.gen_range(-40.0..1.3e5);
+ /// println!("{}", m);
+ ///
+ /// // Inclusive range
+ /// let n: u32 = rng.gen_range(0..=10);
+ /// println!("{}", n);
+ /// ```
+ ///
+ /// [`Uniform`]: distributions::uniform::Uniform
+ fn gen_range<T, R>(&mut self, range: R) -> T
+ where
+ T: SampleUniform,
+ R: SampleRange<T>
+ {
+ assert!(!range.is_empty(), "cannot sample empty range");
+ range.sample_single(self)
+ }
+
+ /// Sample a new value, using the given distribution.
+ ///
+ /// ### Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ /// use rand::distributions::Uniform;
+ ///
+ /// let mut rng = thread_rng();
+ /// let x = rng.sample(Uniform::new(10u32, 15));
+ /// // Type annotation requires two types, the type and distribution; the
+ /// // distribution can be inferred.
+ /// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
+ /// ```
+ fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
+ distr.sample(self)
+ }
+
+ /// Create an iterator that generates values using the given distribution.
+ ///
+ /// Note that this function takes its arguments by value. This works since
+ /// `(&mut R): Rng where R: Rng` and
+ /// `(&D): Distribution where D: Distribution`,
+ /// however borrowing is not automatic hence `rng.sample_iter(...)` may
+ /// need to be replaced with `(&mut rng).sample_iter(...)`.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ /// use rand::distributions::{Alphanumeric, Uniform, Standard};
+ ///
+ /// let mut rng = thread_rng();
+ ///
+ /// // Vec of 16 x f32:
+ /// let v: Vec<f32> = (&mut rng).sample_iter(Standard).take(16).collect();
+ ///
+ /// // String:
+ /// let s: String = (&mut rng).sample_iter(Alphanumeric)
+ /// .take(7)
+ /// .map(char::from)
+ /// .collect();
+ ///
+ /// // Combined values
+ /// println!("{:?}", (&mut rng).sample_iter(Standard).take(5)
+ /// .collect::<Vec<(f64, bool)>>());
+ ///
+ /// // Dice-rolling:
+ /// let die_range = Uniform::new_inclusive(1, 6);
+ /// let mut roll_die = (&mut rng).sample_iter(die_range);
+ /// while roll_die.next().unwrap() != 6 {
+ /// println!("Not a 6; rolling again!");
+ /// }
+ /// ```
+ fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T>
+ where
+ D: Distribution<T>,
+ Self: Sized,
+ {
+ distr.sample_iter(self)
+ }
+
+ /// Fill any type implementing [`Fill`] with random data
+ ///
+ /// The distribution is expected to be uniform with portable results, but
+ /// this cannot be guaranteed for third-party implementations.
+ ///
+ /// This is identical to [`try_fill`] except that it panics on error.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut arr = [0i8; 20];
+ /// thread_rng().fill(&mut arr[..]);
+ /// ```
+ ///
+ /// [`fill_bytes`]: RngCore::fill_bytes
+ /// [`try_fill`]: Rng::try_fill
+ fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T) {
+ dest.try_fill(self).unwrap_or_else(|_| panic!("Rng::fill failed"))
+ }
+
+ /// Fill any type implementing [`Fill`] with random data
+ ///
+ /// The distribution is expected to be uniform with portable results, but
+ /// this cannot be guaranteed for third-party implementations.
+ ///
+ /// This is identical to [`fill`] except that it forwards errors.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use rand::Error;
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// # fn try_inner() -> Result<(), Error> {
+ /// let mut arr = [0u64; 4];
+ /// thread_rng().try_fill(&mut arr[..])?;
+ /// # Ok(())
+ /// # }
+ ///
+ /// # try_inner().unwrap()
+ /// ```
+ ///
+ /// [`try_fill_bytes`]: RngCore::try_fill_bytes
+ /// [`fill`]: Rng::fill
+ fn try_fill<T: Fill + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
+ dest.try_fill(self)
+ }
+
+ /// Return a bool with a probability `p` of being true.
+ ///
+ /// See also the [`Bernoulli`] distribution, which may be faster if
+ /// sampling from the same probability repeatedly.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// println!("{}", rng.gen_bool(1.0 / 3.0));
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// If `p < 0` or `p > 1`.
+ ///
+ /// [`Bernoulli`]: distributions::Bernoulli
+ #[inline]
+ fn gen_bool(&mut self, p: f64) -> bool {
+ let d = distributions::Bernoulli::new(p).unwrap();
+ self.sample(d)
+ }
+
+ /// Return a bool with a probability of `numerator/denominator` of being
+ /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
+ /// returning true. If `numerator == denominator`, then the returned value
+ /// is guaranteed to be `true`. If `numerator == 0`, then the returned
+ /// value is guaranteed to be `false`.
+ ///
+ /// See also the [`Bernoulli`] distribution, which may be faster if
+ /// sampling from the same `numerator` and `denominator` repeatedly.
+ ///
+ /// # Panics
+ ///
+ /// If `denominator == 0` or `numerator > denominator`.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// println!("{}", rng.gen_ratio(2, 3));
+ /// ```
+ ///
+ /// [`Bernoulli`]: distributions::Bernoulli
+ #[inline]
+ fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
+ let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap();
+ self.sample(d)
+ }
+}
+
+impl<R: RngCore + ?Sized> Rng for R {}
+
+/// Types which may be filled with random data
+///
+/// This trait allows arrays to be efficiently filled with random data.
+///
+/// Implementations are expected to be portable across machines unless
+/// clearly documented otherwise (see the
+/// [Chapter on Portability](https://rust-random.github.io/book/portability.html)).
+pub trait Fill {
+ /// Fill self with random data
+ fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error>;
+}
+
+macro_rules! impl_fill_each {
+ () => {};
+ ($t:ty) => {
+ impl Fill for [$t] {
+ fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
+ for elt in self.iter_mut() {
+ *elt = rng.gen();
+ }
+ Ok(())
+ }
+ }
+ };
+ ($t:ty, $($tt:ty,)*) => {
+ impl_fill_each!($t);
+ impl_fill_each!($($tt,)*);
+ };
+}
+
+impl_fill_each!(bool, char, f32, f64,);
+
+impl Fill for [u8] {
+ fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
+ rng.try_fill_bytes(self)
+ }
+}
+
+macro_rules! impl_fill {
+ () => {};
+ ($t:ty) => {
+ impl Fill for [$t] {
+ #[inline(never)] // in micro benchmarks, this improves performance
+ fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
+ if self.len() > 0 {
+ rng.try_fill_bytes(unsafe {
+ slice::from_raw_parts_mut(self.as_mut_ptr()
+ as *mut u8,
+ self.len() * mem::size_of::<$t>()
+ )
+ })?;
+ for x in self {
+ *x = x.to_le();
+ }
+ }
+ Ok(())
+ }
+ }
+
+ impl Fill for [Wrapping<$t>] {
+ #[inline(never)]
+ fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
+ if self.len() > 0 {
+ rng.try_fill_bytes(unsafe {
+ slice::from_raw_parts_mut(self.as_mut_ptr()
+ as *mut u8,
+ self.len() * mem::size_of::<$t>()
+ )
+ })?;
+ for x in self {
+ *x = Wrapping(x.0.to_le());
+ }
+ }
+ Ok(())
+ }
+ }
+ };
+ ($t:ty, $($tt:ty,)*) => {
+ impl_fill!($t);
+ // TODO: this could replace above impl once Rust #32463 is fixed
+ // impl_fill!(Wrapping<$t>);
+ impl_fill!($($tt,)*);
+ }
+}
+
+impl_fill!(u16, u32, u64, usize, u128,);
+impl_fill!(i8, i16, i32, i64, isize, i128,);
+
+#[cfg_attr(doc_cfg, doc(cfg(feature = "min_const_gen")))]
+#[cfg(feature = "min_const_gen")]
+impl<T, const N: usize> Fill for [T; N]
+where [T]: Fill
+{
+ fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
+ self[..].try_fill(rng)
+ }
+}
+
+#[cfg(not(feature = "min_const_gen"))]
+macro_rules! impl_fill_arrays {
+ ($n:expr,) => {};
+ ($n:expr, $N:ident) => {
+ impl<T> Fill for [T; $n] where [T]: Fill {
+ fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
+ self[..].try_fill(rng)
+ }
+ }
+ };
+ ($n:expr, $N:ident, $($NN:ident,)*) => {
+ impl_fill_arrays!($n, $N);
+ impl_fill_arrays!($n - 1, $($NN,)*);
+ };
+ (!div $n:expr,) => {};
+ (!div $n:expr, $N:ident, $($NN:ident,)*) => {
+ impl_fill_arrays!($n, $N);
+ impl_fill_arrays!(!div $n / 2, $($NN,)*);
+ };
+}
+#[cfg(not(feature = "min_const_gen"))]
+#[rustfmt::skip]
+impl_fill_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
+#[cfg(not(feature = "min_const_gen"))]
+impl_fill_arrays!(!div 4096, N,N,N,N,N,N,N,);
+
+#[cfg(test)]
+mod test {
+ use super::*;
+ use crate::test::rng;
+ use crate::rngs::mock::StepRng;
+ #[cfg(feature = "alloc")] use alloc::boxed::Box;
+
+ #[test]
+ fn test_fill_bytes_default() {
+ let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
+
+ // check every remainder mod 8, both in small and big vectors.
+ let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87];
+ for &n in lengths.iter() {
+ let mut buffer = [0u8; 87];
+ let v = &mut buffer[0..n];
+ r.fill_bytes(v);
+
+ // use this to get nicer error messages.
+ for (i, &byte) in v.iter().enumerate() {
+ if byte == 0 {
+ panic!("byte {} of {} is zero", i, n)
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_fill() {
+ let x = 9041086907909331047; // a random u64
+ let mut rng = StepRng::new(x, 0);
+
+ // Convert to byte sequence and back to u64; byte-swap twice if BE.
+ let mut array = [0u64; 2];
+ rng.fill(&mut array[..]);
+ assert_eq!(array, [x, x]);
+ assert_eq!(rng.next_u64(), x);
+
+ // Convert to bytes then u32 in LE order
+ let mut array = [0u32; 2];
+ rng.fill(&mut array[..]);
+ assert_eq!(array, [x as u32, (x >> 32) as u32]);
+ assert_eq!(rng.next_u32(), x as u32);
+
+ // Check equivalence using wrapped arrays
+ let mut warray = [Wrapping(0u32); 2];
+ rng.fill(&mut warray[..]);
+ assert_eq!(array[0], warray[0].0);
+ assert_eq!(array[1], warray[1].0);
+
+ // Check equivalence for generated floats
+ let mut array = [0f32; 2];
+ rng.fill(&mut array);
+ let gen: [f32; 2] = rng.gen();
+ assert_eq!(array, gen);
+ }
+
+ #[test]
+ fn test_fill_empty() {
+ let mut array = [0u32; 0];
+ let mut rng = StepRng::new(0, 1);
+ rng.fill(&mut array);
+ rng.fill(&mut array[..]);
+ }
+
+ #[test]
+ fn test_gen_range_int() {
+ let mut r = rng(101);
+ for _ in 0..1000 {
+ let a = r.gen_range(-4711..17);
+ assert!((-4711..17).contains(&a));
+ let a: i8 = r.gen_range(-3..42);
+ assert!((-3..42).contains(&a));
+ let a: u16 = r.gen_range(10..99);
+ assert!((10..99).contains(&a));
+ let a: i32 = r.gen_range(-100..2000);
+ assert!((-100..2000).contains(&a));
+ let a: u32 = r.gen_range(12..=24);
+ assert!((12..=24).contains(&a));
+
+ assert_eq!(r.gen_range(0u32..1), 0u32);
+ assert_eq!(r.gen_range(-12i64..-11), -12i64);
+ assert_eq!(r.gen_range(3_000_000..3_000_001), 3_000_000);
+ }
+ }
+
+ #[test]
+ fn test_gen_range_float() {
+ let mut r = rng(101);
+ for _ in 0..1000 {
+ let a = r.gen_range(-4.5..1.7);
+ assert!((-4.5..1.7).contains(&a));
+ let a = r.gen_range(-1.1..=-0.3);
+ assert!((-1.1..=-0.3).contains(&a));
+
+ assert_eq!(r.gen_range(0.0f32..=0.0), 0.);
+ assert_eq!(r.gen_range(-11.0..=-11.0), -11.);
+ assert_eq!(r.gen_range(3_000_000.0..=3_000_000.0), 3_000_000.);
+ }
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_gen_range_panic_int() {
+ #![allow(clippy::reversed_empty_ranges)]
+ let mut r = rng(102);
+ r.gen_range(5..-2);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_gen_range_panic_usize() {
+ #![allow(clippy::reversed_empty_ranges)]
+ let mut r = rng(103);
+ r.gen_range(5..2);
+ }
+
+ #[test]
+ fn test_gen_bool() {
+ #![allow(clippy::bool_assert_comparison)]
+
+ let mut r = rng(105);
+ for _ in 0..5 {
+ assert_eq!(r.gen_bool(0.0), false);
+ assert_eq!(r.gen_bool(1.0), true);
+ }
+ }
+
+ #[test]
+ fn test_rng_trait_object() {
+ use crate::distributions::{Distribution, Standard};
+ let mut rng = rng(109);
+ let mut r = &mut rng as &mut dyn RngCore;
+ r.next_u32();
+ r.gen::<i32>();
+ assert_eq!(r.gen_range(0..1), 0);
+ let _c: u8 = Standard.sample(&mut r);
+ }
+
+ #[test]
+ #[cfg(feature = "alloc")]
+ fn test_rng_boxed_trait() {
+ use crate::distributions::{Distribution, Standard};
+ let rng = rng(110);
+ let mut r = Box::new(rng) as Box<dyn RngCore>;
+ r.next_u32();
+ r.gen::<i32>();
+ assert_eq!(r.gen_range(0..1), 0);
+ let _c: u8 = Standard.sample(&mut r);
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_gen_ratio_average() {
+ const NUM: u32 = 3;
+ const DENOM: u32 = 10;
+ const N: u32 = 100_000;
+
+ let mut sum: u32 = 0;
+ let mut rng = rng(111);
+ for _ in 0..N {
+ if rng.gen_ratio(NUM, DENOM) {
+ sum += 1;
+ }
+ }
+ // Have Binomial(N, NUM/DENOM) distribution
+ let expected = (NUM * N) / DENOM; // exact integer
+ assert!(((sum - expected) as i32).abs() < 500);
+ }
+}