From 36d22d82aa202bb199967e9512281e9a53db42c9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 21:33:14 +0200 Subject: Adding upstream version 115.7.0esr. Signed-off-by: Daniel Baumann --- intl/icu/source/common/ucnvsel.cpp | 823 +++++++++++++++++++++++++++++++++++++ 1 file changed, 823 insertions(+) create mode 100644 intl/icu/source/common/ucnvsel.cpp (limited to 'intl/icu/source/common/ucnvsel.cpp') diff --git a/intl/icu/source/common/ucnvsel.cpp b/intl/icu/source/common/ucnvsel.cpp new file mode 100644 index 0000000000..a286646395 --- /dev/null +++ b/intl/icu/source/common/ucnvsel.cpp @@ -0,0 +1,823 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +******************************************************************************* +* +* Copyright (C) 2008-2011, International Business Machines +* Corporation, Google and others. All Rights Reserved. +* +******************************************************************************* +*/ +// Author : eldawy@google.com (Mohamed Eldawy) +// ucnvsel.cpp +// +// Purpose: To generate a list of encodings capable of handling +// a given Unicode text +// +// Started 09-April-2008 + +/** + * \file + * + * This is an implementation of an encoding selector. + * The goal is, given a unicode string, find the encodings + * this string can be mapped to. To make processing faster + * a trie is built when you call ucnvsel_open() that + * stores all encodings a codepoint can map to + */ + +#include "unicode/ucnvsel.h" + +#if !UCONFIG_NO_CONVERSION + +#include + +#include "unicode/uchar.h" +#include "unicode/uniset.h" +#include "unicode/ucnv.h" +#include "unicode/ustring.h" +#include "unicode/uchriter.h" +#include "utrie2.h" +#include "propsvec.h" +#include "uassert.h" +#include "ucmndata.h" +#include "udataswp.h" +#include "uenumimp.h" +#include "cmemory.h" +#include "cstring.h" + +U_NAMESPACE_USE + +struct UConverterSelector { + UTrie2 *trie; // 16 bit trie containing offsets into pv + uint32_t* pv; // table of bits! + int32_t pvCount; + char** encodings; // which encodings did user ask to use? + int32_t encodingsCount; + int32_t encodingStrLength; + uint8_t* swapped; + UBool ownPv, ownEncodingStrings; +}; + +static void generateSelectorData(UConverterSelector* result, + UPropsVectors *upvec, + const USet* excludedCodePoints, + const UConverterUnicodeSet whichSet, + UErrorCode* status) { + if (U_FAILURE(*status)) { + return; + } + + int32_t columns = (result->encodingsCount+31)/32; + + // set errorValue to all-ones + for (int32_t col = 0; col < columns; col++) { + upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP, + col, static_cast(~0), static_cast(~0), status); + } + + for (int32_t i = 0; i < result->encodingsCount; ++i) { + uint32_t mask; + uint32_t column; + int32_t item_count; + int32_t j; + UConverter* test_converter = ucnv_open(result->encodings[i], status); + if (U_FAILURE(*status)) { + return; + } + USet* unicode_point_set; + unicode_point_set = uset_open(1, 0); // empty set + + ucnv_getUnicodeSet(test_converter, unicode_point_set, + whichSet, status); + if (U_FAILURE(*status)) { + ucnv_close(test_converter); + return; + } + + column = i / 32; + mask = 1 << (i%32); + // now iterate over intervals on set i! + item_count = uset_getItemCount(unicode_point_set); + + for (j = 0; j < item_count; ++j) { + UChar32 start_char; + UChar32 end_char; + UErrorCode smallStatus = U_ZERO_ERROR; + uset_getItem(unicode_point_set, j, &start_char, &end_char, nullptr, 0, + &smallStatus); + if (U_FAILURE(smallStatus)) { + // this will be reached for the converters that fill the set with + // strings. Those should be ignored by our system + } else { + upvec_setValue(upvec, start_char, end_char, column, static_cast(~0), mask, + status); + } + } + ucnv_close(test_converter); + uset_close(unicode_point_set); + if (U_FAILURE(*status)) { + return; + } + } + + // handle excluded encodings! Simply set their values to all 1's in the upvec + if (excludedCodePoints) { + int32_t item_count = uset_getItemCount(excludedCodePoints); + for (int32_t j = 0; j < item_count; ++j) { + UChar32 start_char; + UChar32 end_char; + + uset_getItem(excludedCodePoints, j, &start_char, &end_char, nullptr, 0, + status); + for (int32_t col = 0; col < columns; col++) { + upvec_setValue(upvec, start_char, end_char, col, static_cast(~0), static_cast(~0), + status); + } + } + } + + // alright. Now, let's put things in the same exact form you'd get when you + // unserialize things. + result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status); + result->pv = upvec_cloneArray(upvec, &result->pvCount, nullptr, status); + result->pvCount *= columns; // number of uint32_t = rows * columns + result->ownPv = true; +} + +/* open a selector. If converterListSize is 0, build for all converters. + If excludedCodePoints is nullptr, don't exclude any codepoints */ +U_CAPI UConverterSelector* U_EXPORT2 +ucnvsel_open(const char* const* converterList, int32_t converterListSize, + const USet* excludedCodePoints, + const UConverterUnicodeSet whichSet, UErrorCode* status) { + // check if already failed + if (U_FAILURE(*status)) { + return nullptr; + } + // ensure args make sense! + if (converterListSize < 0 || (converterList == nullptr && converterListSize != 0)) { + *status = U_ILLEGAL_ARGUMENT_ERROR; + return nullptr; + } + + // allocate a new converter + LocalUConverterSelectorPointer newSelector( + (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector))); + if (newSelector.isNull()) { + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector)); + + if (converterListSize == 0) { + converterList = nullptr; + converterListSize = ucnv_countAvailable(); + } + newSelector->encodings = + (char**)uprv_malloc(converterListSize * sizeof(char*)); + if (!newSelector->encodings) { + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + newSelector->encodings[0] = nullptr; // now we can call ucnvsel_close() + + // make a backup copy of the list of converters + int32_t totalSize = 0; + int32_t i; + for (i = 0; i < converterListSize; i++) { + totalSize += + (int32_t)uprv_strlen(converterList != nullptr ? converterList[i] : ucnv_getAvailableName(i)) + 1; + } + // 4-align the totalSize to 4-align the size of the serialized form + int32_t encodingStrPadding = totalSize & 3; + if (encodingStrPadding != 0) { + encodingStrPadding = 4 - encodingStrPadding; + } + newSelector->encodingStrLength = totalSize += encodingStrPadding; + char* allStrings = (char*) uprv_malloc(totalSize); + if (!allStrings) { + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + + for (i = 0; i < converterListSize; i++) { + newSelector->encodings[i] = allStrings; + uprv_strcpy(newSelector->encodings[i], + converterList != nullptr ? converterList[i] : ucnv_getAvailableName(i)); + allStrings += uprv_strlen(newSelector->encodings[i]) + 1; + } + while (encodingStrPadding > 0) { + *allStrings++ = 0; + --encodingStrPadding; + } + + newSelector->ownEncodingStrings = true; + newSelector->encodingsCount = converterListSize; + UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status); + generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status); + upvec_close(upvec); + + if (U_FAILURE(*status)) { + return nullptr; + } + + return newSelector.orphan(); +} + +/* close opened selector */ +U_CAPI void U_EXPORT2 +ucnvsel_close(UConverterSelector *sel) { + if (!sel) { + return; + } + if (sel->ownEncodingStrings) { + uprv_free(sel->encodings[0]); + } + uprv_free(sel->encodings); + if (sel->ownPv) { + uprv_free(sel->pv); + } + utrie2_close(sel->trie); + uprv_free(sel->swapped); + uprv_free(sel); +} + +static const UDataInfo dataInfo = { + sizeof(UDataInfo), + 0, + + U_IS_BIG_ENDIAN, + U_CHARSET_FAMILY, + U_SIZEOF_UCHAR, + 0, + + { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */ + { 1, 0, 0, 0 }, /* formatVersion */ + { 0, 0, 0, 0 } /* dataVersion */ +}; + +enum { + UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes + UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors + UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names + UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding + UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader + UCNVSEL_INDEX_COUNT = 16 +}; + +/* + * Serialized form of a UConverterSelector, formatVersion 1: + * + * The serialized form begins with a standard ICU DataHeader with a UDataInfo + * as the template above. + * This is followed by: + * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above + * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes + * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors + * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding + */ + +/* serialize a selector */ +U_CAPI int32_t U_EXPORT2 +ucnvsel_serialize(const UConverterSelector* sel, + void* buffer, int32_t bufferCapacity, UErrorCode* status) { + // check if already failed + if (U_FAILURE(*status)) { + return 0; + } + // ensure args make sense! + uint8_t *p = (uint8_t *)buffer; + if (bufferCapacity < 0 || + (bufferCapacity > 0 && (p == nullptr || (U_POINTER_MASK_LSB(p, 3) != 0))) + ) { + *status = U_ILLEGAL_ARGUMENT_ERROR; + return 0; + } + // add up the size of the serialized form + int32_t serializedTrieSize = utrie2_serialize(sel->trie, nullptr, 0, status); + if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { + return 0; + } + *status = U_ZERO_ERROR; + + DataHeader header; + uprv_memset(&header, 0, sizeof(header)); + header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15); + header.dataHeader.magic1 = 0xda; + header.dataHeader.magic2 = 0x27; + uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo)); + + int32_t indexes[UCNVSEL_INDEX_COUNT] = { + serializedTrieSize, + sel->pvCount, + sel->encodingsCount, + sel->encodingStrLength + }; + + int32_t totalSize = + header.dataHeader.headerSize + + (int32_t)sizeof(indexes) + + serializedTrieSize + + sel->pvCount * 4 + + sel->encodingStrLength; + indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize; + if (totalSize > bufferCapacity) { + *status = U_BUFFER_OVERFLOW_ERROR; + return totalSize; + } + // ok, save! + int32_t length = header.dataHeader.headerSize; + uprv_memcpy(p, &header, sizeof(header)); + uprv_memset(p + sizeof(header), 0, length - sizeof(header)); + p += length; + + length = (int32_t)sizeof(indexes); + uprv_memcpy(p, indexes, length); + p += length; + + utrie2_serialize(sel->trie, p, serializedTrieSize, status); + p += serializedTrieSize; + + length = sel->pvCount * 4; + uprv_memcpy(p, sel->pv, length); + p += length; + + uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength); + p += sel->encodingStrLength; + + return totalSize; +} + +/** + * swap a selector into the desired Endianness and Asciiness of + * the system. Just as FYI, selectors are always saved in the format + * of the system that created them. They are only converted if used + * on another system. In other words, selectors created on different + * system can be different even if the params are identical (endianness + * and Asciiness differences only) + * + * @param ds pointer to data swapper containing swapping info + * @param inData pointer to incoming data + * @param length length of inData in bytes + * @param outData pointer to output data. Capacity should + * be at least equal to capacity of inData + * @param status an in/out ICU UErrorCode + * @return 0 on failure, number of bytes swapped on success + * number of bytes swapped can be smaller than length + */ +static int32_t +ucnvsel_swap(const UDataSwapper *ds, + const void *inData, int32_t length, + void *outData, UErrorCode *status) { + /* udata_swapDataHeader checks the arguments */ + int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status); + if(U_FAILURE(*status)) { + return 0; + } + + /* check data format and format version */ + const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4); + if(!( + pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */ + pInfo->dataFormat[1] == 0x53 && + pInfo->dataFormat[2] == 0x65 && + pInfo->dataFormat[3] == 0x6c + )) { + udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n", + pInfo->dataFormat[0], pInfo->dataFormat[1], + pInfo->dataFormat[2], pInfo->dataFormat[3]); + *status = U_INVALID_FORMAT_ERROR; + return 0; + } + if(pInfo->formatVersion[0] != 1) { + udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n", + pInfo->formatVersion[0]); + *status = U_UNSUPPORTED_ERROR; + return 0; + } + + if(length >= 0) { + length -= headerSize; + if(length < 16*4) { + udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n", + length); + *status = U_INDEX_OUTOFBOUNDS_ERROR; + return 0; + } + } + + const uint8_t *inBytes = (const uint8_t *)inData + headerSize; + uint8_t *outBytes = (uint8_t *)outData + headerSize; + + /* read the indexes */ + const int32_t *inIndexes = (const int32_t *)inBytes; + int32_t indexes[16]; + int32_t i; + for(i = 0; i < 16; ++i) { + indexes[i] = udata_readInt32(ds, inIndexes[i]); + } + + /* get the total length of the data */ + int32_t size = indexes[UCNVSEL_INDEX_SIZE]; + if(length >= 0) { + if(length < size) { + udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n", + length); + *status = U_INDEX_OUTOFBOUNDS_ERROR; + return 0; + } + + /* copy the data for inaccessible bytes */ + if(inBytes != outBytes) { + uprv_memcpy(outBytes, inBytes, size); + } + + int32_t offset = 0, count; + + /* swap the int32_t indexes[] */ + count = UCNVSEL_INDEX_COUNT*4; + ds->swapArray32(ds, inBytes, count, outBytes, status); + offset += count; + + /* swap the UTrie2 */ + count = indexes[UCNVSEL_INDEX_TRIE_SIZE]; + utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status); + offset += count; + + /* swap the uint32_t pv[] */ + count = indexes[UCNVSEL_INDEX_PV_COUNT]*4; + ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status); + offset += count; + + /* swap the encoding names */ + count = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; + ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status); + offset += count; + + U_ASSERT(offset == size); + } + + return headerSize + size; +} + +/* unserialize a selector */ +U_CAPI UConverterSelector* U_EXPORT2 +ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) { + // check if already failed + if (U_FAILURE(*status)) { + return nullptr; + } + // ensure args make sense! + const uint8_t *p = (const uint8_t *)buffer; + if (length <= 0 || + (length > 0 && (p == nullptr || (U_POINTER_MASK_LSB(p, 3) != 0))) + ) { + *status = U_ILLEGAL_ARGUMENT_ERROR; + return nullptr; + } + // header + if (length < 32) { + // not even enough space for a minimal header + *status = U_INDEX_OUTOFBOUNDS_ERROR; + return nullptr; + } + const DataHeader *pHeader = (const DataHeader *)p; + if (!( + pHeader->dataHeader.magic1==0xda && + pHeader->dataHeader.magic2==0x27 && + pHeader->info.dataFormat[0] == 0x43 && + pHeader->info.dataFormat[1] == 0x53 && + pHeader->info.dataFormat[2] == 0x65 && + pHeader->info.dataFormat[3] == 0x6c + )) { + /* header not valid or dataFormat not recognized */ + *status = U_INVALID_FORMAT_ERROR; + return nullptr; + } + if (pHeader->info.formatVersion[0] != 1) { + *status = U_UNSUPPORTED_ERROR; + return nullptr; + } + uint8_t* swapped = nullptr; + if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN || + pHeader->info.charsetFamily != U_CHARSET_FAMILY + ) { + // swap the data + UDataSwapper *ds = + udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status); + int32_t totalSize = ucnvsel_swap(ds, p, -1, nullptr, status); + if (U_FAILURE(*status)) { + udata_closeSwapper(ds); + return nullptr; + } + if (length < totalSize) { + udata_closeSwapper(ds); + *status = U_INDEX_OUTOFBOUNDS_ERROR; + return nullptr; + } + swapped = (uint8_t*)uprv_malloc(totalSize); + if (swapped == nullptr) { + udata_closeSwapper(ds); + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + ucnvsel_swap(ds, p, length, swapped, status); + udata_closeSwapper(ds); + if (U_FAILURE(*status)) { + uprv_free(swapped); + return nullptr; + } + p = swapped; + pHeader = (const DataHeader *)p; + } + if (length < (pHeader->dataHeader.headerSize + 16 * 4)) { + // not even enough space for the header and the indexes + uprv_free(swapped); + *status = U_INDEX_OUTOFBOUNDS_ERROR; + return nullptr; + } + p += pHeader->dataHeader.headerSize; + length -= pHeader->dataHeader.headerSize; + // indexes + const int32_t *indexes = (const int32_t *)p; + if (length < indexes[UCNVSEL_INDEX_SIZE]) { + uprv_free(swapped); + *status = U_INDEX_OUTOFBOUNDS_ERROR; + return nullptr; + } + p += UCNVSEL_INDEX_COUNT * 4; + // create and populate the selector object + UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)); + char **encodings = + (char **)uprv_malloc( + indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *)); + if (sel == nullptr || encodings == nullptr) { + uprv_free(swapped); + uprv_free(sel); + uprv_free(encodings); + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + uprv_memset(sel, 0, sizeof(UConverterSelector)); + sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT]; + sel->encodings = encodings; + sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT]; + sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; + sel->swapped = swapped; + // trie + sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, + p, indexes[UCNVSEL_INDEX_TRIE_SIZE], nullptr, + status); + p += indexes[UCNVSEL_INDEX_TRIE_SIZE]; + if (U_FAILURE(*status)) { + ucnvsel_close(sel); + return nullptr; + } + // bit vectors + sel->pv = (uint32_t *)p; + p += sel->pvCount * 4; + // encoding names + char* s = (char*)p; + for (int32_t i = 0; i < sel->encodingsCount; ++i) { + sel->encodings[i] = s; + s += uprv_strlen(s) + 1; + } + p += sel->encodingStrLength; + + return sel; +} + +// a bunch of functions for the enumeration thingie! Nothing fancy here. Just +// iterate over the selected encodings +struct Enumerator { + int16_t* index; + int16_t length; + int16_t cur; + const UConverterSelector* sel; +}; + +U_CDECL_BEGIN + +static void U_CALLCONV +ucnvsel_close_selector_iterator(UEnumeration *enumerator) { + uprv_free(((Enumerator*)(enumerator->context))->index); + uprv_free(enumerator->context); + uprv_free(enumerator); +} + + +static int32_t U_CALLCONV +ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) { + // check if already failed + if (U_FAILURE(*status)) { + return 0; + } + return ((Enumerator*)(enumerator->context))->length; +} + + +static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator, + int32_t* resultLength, + UErrorCode* status) { + // check if already failed + if (U_FAILURE(*status)) { + return nullptr; + } + + int16_t cur = ((Enumerator*)(enumerator->context))->cur; + const UConverterSelector* sel; + const char* result; + if (cur >= ((Enumerator*)(enumerator->context))->length) { + return nullptr; + } + sel = ((Enumerator*)(enumerator->context))->sel; + result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ]; + ((Enumerator*)(enumerator->context))->cur++; + if (resultLength) { + *resultLength = (int32_t)uprv_strlen(result); + } + return result; +} + +static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator, + UErrorCode* status) { + // check if already failed + if (U_FAILURE(*status)) { + return ; + } + ((Enumerator*)(enumerator->context))->cur = 0; +} + +U_CDECL_END + + +static const UEnumeration defaultEncodings = { + nullptr, + nullptr, + ucnvsel_close_selector_iterator, + ucnvsel_count_encodings, + uenum_unextDefault, + ucnvsel_next_encoding, + ucnvsel_reset_iterator +}; + + +// internal fn to intersect two sets of masks +// returns whether the mask has reduced to all zeros +static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) { + int32_t i; + uint32_t oredDest = 0; + for (i = 0 ; i < len ; ++i) { + oredDest |= (dest[i] &= source1[i]); + } + return oredDest == 0; +} + +// internal fn to count how many 1's are there in a mask +// algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html +static int16_t countOnes(uint32_t* mask, int32_t len) { + int32_t i, totalOnes = 0; + for (i = 0 ; i < len ; ++i) { + uint32_t ent = mask[i]; + for (; ent; totalOnes++) + { + ent &= ent - 1; // clear the least significant bit set + } + } + return static_cast(totalOnes); +} + + +/* internal function! */ +static UEnumeration *selectForMask(const UConverterSelector* sel, + uint32_t *theMask, UErrorCode *status) { + LocalMemory mask(theMask); + // this is the context we will use. Store a table of indices to which + // encodings are legit. + LocalMemory result(static_cast(uprv_malloc(sizeof(Enumerator)))); + if (result.isNull()) { + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + result->index = nullptr; // this will be allocated later! + result->length = result->cur = 0; + result->sel = sel; + + LocalMemory en(static_cast(uprv_malloc(sizeof(UEnumeration)))); + if (en.isNull()) { + // TODO(markus): Combine Enumerator and UEnumeration into one struct. + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + memcpy(en.getAlias(), &defaultEncodings, sizeof(UEnumeration)); + + int32_t columns = (sel->encodingsCount+31)/32; + int16_t numOnes = countOnes(mask.getAlias(), columns); + // now, we know the exact space we need for index + if (numOnes > 0) { + result->index = static_cast(uprv_malloc(numOnes * sizeof(int16_t))); + if (result->index == nullptr) { + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + int32_t i, j; + int16_t k = 0; + for (j = 0 ; j < columns; j++) { + uint32_t v = mask[j]; + for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) { + if ((v & 1) != 0) { + result->index[result->length++] = k; + } + v >>= 1; + } + } + } //otherwise, index will remain nullptr (and will never be touched by + //the enumerator code anyway) + en->context = result.orphan(); + return en.orphan(); +} + +/* check a string against the selector - UTF16 version */ +U_CAPI UEnumeration * U_EXPORT2 +ucnvsel_selectForString(const UConverterSelector* sel, + const char16_t *s, int32_t length, UErrorCode *status) { + // check if already failed + if (U_FAILURE(*status)) { + return nullptr; + } + // ensure args make sense! + if (sel == nullptr || (s == nullptr && length != 0)) { + *status = U_ILLEGAL_ARGUMENT_ERROR; + return nullptr; + } + + int32_t columns = (sel->encodingsCount+31)/32; + uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); + if (mask == nullptr) { + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + uprv_memset(mask, ~0, columns *4); + + if(s!=nullptr) { + const char16_t *limit; + if (length >= 0) { + limit = s + length; + } else { + limit = nullptr; + } + + while (limit == nullptr ? *s != 0 : s != limit) { + UChar32 c; + uint16_t pvIndex; + UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex); + if (intersectMasks(mask, sel->pv+pvIndex, columns)) { + break; + } + } + } + return selectForMask(sel, mask, status); +} + +/* check a string against the selector - UTF8 version */ +U_CAPI UEnumeration * U_EXPORT2 +ucnvsel_selectForUTF8(const UConverterSelector* sel, + const char *s, int32_t length, UErrorCode *status) { + // check if already failed + if (U_FAILURE(*status)) { + return nullptr; + } + // ensure args make sense! + if (sel == nullptr || (s == nullptr && length != 0)) { + *status = U_ILLEGAL_ARGUMENT_ERROR; + return nullptr; + } + + int32_t columns = (sel->encodingsCount+31)/32; + uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); + if (mask == nullptr) { + *status = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + uprv_memset(mask, ~0, columns *4); + + if (length < 0) { + length = (int32_t)uprv_strlen(s); + } + + if(s!=nullptr) { + const char *limit = s + length; + + while (s != limit) { + uint16_t pvIndex; + UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex); + if (intersectMasks(mask, sel->pv+pvIndex, columns)) { + break; + } + } + } + return selectForMask(sel, mask, status); +} + +#endif // !UCONFIG_NO_CONVERSION -- cgit v1.2.3