From 36d22d82aa202bb199967e9512281e9a53db42c9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 21:33:14 +0200 Subject: Adding upstream version 115.7.0esr. Signed-off-by: Daniel Baumann --- js/src/builtin/Array.cpp | 5562 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 5562 insertions(+) create mode 100644 js/src/builtin/Array.cpp (limited to 'js/src/builtin/Array.cpp') diff --git a/js/src/builtin/Array.cpp b/js/src/builtin/Array.cpp new file mode 100644 index 0000000000..24d13c118e --- /dev/null +++ b/js/src/builtin/Array.cpp @@ -0,0 +1,5562 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "builtin/Array-inl.h" + +#include "mozilla/CheckedInt.h" +#include "mozilla/DebugOnly.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/Maybe.h" +#include "mozilla/SIMD.h" +#include "mozilla/TextUtils.h" + +#include +#include +#include + +#include "jsfriendapi.h" +#include "jsnum.h" +#include "jstypes.h" + +#include "ds/Sort.h" +#include "gc/Allocator.h" +#include "jit/InlinableNatives.h" +#include "js/Class.h" +#include "js/Conversions.h" +#include "js/experimental/JitInfo.h" // JSJitGetterOp, JSJitInfo +#include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_* +#include "js/PropertySpec.h" +#include "util/Poison.h" +#include "util/StringBuffer.h" +#include "util/Text.h" +#include "vm/ArgumentsObject.h" +#include "vm/EqualityOperations.h" +#include "vm/Interpreter.h" +#include "vm/Iteration.h" +#include "vm/JSContext.h" +#include "vm/JSFunction.h" +#include "vm/JSObject.h" +#include "vm/PlainObject.h" // js::PlainObject +#include "vm/SelfHosting.h" +#include "vm/Shape.h" +#include "vm/ToSource.h" // js::ValueToSource +#include "vm/TypedArrayObject.h" +#include "vm/WellKnownAtom.h" // js_*_str +#include "vm/WrapperObject.h" +#ifdef ENABLE_RECORD_TUPLE +# include "vm/TupleType.h" +#endif + +#include "vm/ArgumentsObject-inl.h" +#include "vm/ArrayObject-inl.h" +#include "vm/GeckoProfiler-inl.h" +#include "vm/IsGivenTypeObject-inl.h" +#include "vm/JSAtom-inl.h" +#include "vm/NativeObject-inl.h" + +using namespace js; + +using mozilla::Abs; +using mozilla::CeilingLog2; +using mozilla::CheckedInt; +using mozilla::DebugOnly; +using mozilla::IsAsciiDigit; +using mozilla::Maybe; +using mozilla::SIMD; + +using JS::AutoCheckCannotGC; +using JS::IsArrayAnswer; +using JS::ToUint32; + +static inline bool ObjectMayHaveExtraIndexedOwnProperties(JSObject* obj) { + if (!obj->is()) { + return true; + } + + if (obj->as().isIndexed()) { + return true; + } + + if (obj->is()) { + return true; + } + + return ClassMayResolveId(*obj->runtimeFromAnyThread()->commonNames, + obj->getClass(), PropertyKey::Int(0), obj); +} + +bool js::PrototypeMayHaveIndexedProperties(NativeObject* obj) { + do { + MOZ_ASSERT(obj->hasStaticPrototype(), + "dynamic-prototype objects must be non-native"); + + JSObject* proto = obj->staticPrototype(); + if (!proto) { + return false; // no extra indexed properties found + } + + if (ObjectMayHaveExtraIndexedOwnProperties(proto)) { + return true; + } + obj = &proto->as(); + if (obj->getDenseInitializedLength() != 0) { + return true; + } + } while (true); +} + +/* + * Whether obj may have indexed properties anywhere besides its dense + * elements. This includes other indexed properties in its shape hierarchy, and + * indexed properties or elements along its prototype chain. + */ +static bool ObjectMayHaveExtraIndexedProperties(JSObject* obj) { + MOZ_ASSERT_IF(obj->hasDynamicPrototype(), !obj->is()); + + if (ObjectMayHaveExtraIndexedOwnProperties(obj)) { + return true; + } + + return PrototypeMayHaveIndexedProperties(&obj->as()); +} + +bool JS::IsArray(JSContext* cx, HandleObject obj, IsArrayAnswer* answer) { + if (obj->is()) { + *answer = IsArrayAnswer::Array; + return true; + } + + if (obj->is()) { + return Proxy::isArray(cx, obj, answer); + } + + *answer = IsArrayAnswer::NotArray; + return true; +} + +bool JS::IsArray(JSContext* cx, HandleObject obj, bool* isArray) { + IsArrayAnswer answer; + if (!IsArray(cx, obj, &answer)) { + return false; + } + + if (answer == IsArrayAnswer::RevokedProxy) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_PROXY_REVOKED); + return false; + } + + *isArray = answer == IsArrayAnswer::Array; + return true; +} + +bool js::IsArrayFromJit(JSContext* cx, HandleObject obj, bool* isArray) { + return JS::IsArray(cx, obj, isArray); +} + +// ES2017 7.1.15 ToLength. +bool js::ToLength(JSContext* cx, HandleValue v, uint64_t* out) { + if (v.isInt32()) { + int32_t i = v.toInt32(); + *out = i < 0 ? 0 : i; + return true; + } + + double d; + if (v.isDouble()) { + d = v.toDouble(); + } else { + if (!ToNumber(cx, v, &d)) { + return false; + } + } + + d = JS::ToInteger(d); + if (d <= 0.0) { + *out = 0; + } else { + *out = uint64_t(std::min(d, DOUBLE_INTEGRAL_PRECISION_LIMIT - 1)); + } + return true; +} + +bool js::GetLengthProperty(JSContext* cx, HandleObject obj, uint64_t* lengthp) { + if (obj->is()) { + *lengthp = obj->as().length(); + return true; + } + + if (obj->is()) { + ArgumentsObject& argsobj = obj->as(); + if (!argsobj.hasOverriddenLength()) { + *lengthp = argsobj.initialLength(); + return true; + } + } + + RootedValue value(cx); + if (!GetProperty(cx, obj, obj, cx->names().length, &value)) { + return false; + } + + return ToLength(cx, value, lengthp); +} + +// Fast path for array functions where the object is expected to be an array. +static MOZ_ALWAYS_INLINE bool GetLengthPropertyInlined(JSContext* cx, + HandleObject obj, + uint64_t* lengthp) { + if (obj->is()) { + *lengthp = obj->as().length(); + return true; + } + + return GetLengthProperty(cx, obj, lengthp); +} + +/* + * Determine if the id represents an array index. + * + * An id is an array index according to ECMA by (15.4): + * + * "Array objects give special treatment to a certain class of property names. + * A property name P (in the form of a string value) is an array index if and + * only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal + * to 2^32-1." + * + * This means the largest allowed index is actually 2^32-2 (4294967294). + * + * In our implementation, it would be sufficient to check for id.isInt32() + * except that by using signed 31-bit integers we miss the top half of the + * valid range. This function checks the string representation itself; note + * that calling a standard conversion routine might allow strings such as + * "08" or "4.0" as array indices, which they are not. + * + */ +JS_PUBLIC_API bool js::StringIsArrayIndex(JSLinearString* str, + uint32_t* indexp) { + if (!str->isIndex(indexp)) { + return false; + } + MOZ_ASSERT(*indexp <= MAX_ARRAY_INDEX); + return true; +} + +JS_PUBLIC_API bool js::StringIsArrayIndex(const char16_t* str, uint32_t length, + uint32_t* indexp) { + if (length == 0 || length > UINT32_CHAR_BUFFER_LENGTH) { + return false; + } + if (!mozilla::IsAsciiDigit(str[0])) { + return false; + } + if (!CheckStringIsIndex(str, length, indexp)) { + return false; + } + MOZ_ASSERT(*indexp <= MAX_ARRAY_INDEX); + return true; +} + +template +static bool ToId(JSContext* cx, T index, MutableHandleId id); + +template <> +bool ToId(JSContext* cx, uint32_t index, MutableHandleId id) { + return IndexToId(cx, index, id); +} + +template <> +bool ToId(JSContext* cx, uint64_t index, MutableHandleId id) { + MOZ_ASSERT(index < uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)); + + if (index == uint32_t(index)) { + return IndexToId(cx, uint32_t(index), id); + } + + Value tmp = DoubleValue(index); + return PrimitiveValueToId(cx, HandleValue::fromMarkedLocation(&tmp), + id); +} + +/* + * If the property at the given index exists, get its value into |vp| and set + * |*hole| to false. Otherwise set |*hole| to true and |vp| to Undefined. + */ +template +static bool HasAndGetElement(JSContext* cx, HandleObject obj, + HandleObject receiver, T index, bool* hole, + MutableHandleValue vp) { + if (obj->is()) { + NativeObject* nobj = &obj->as(); + if (index < nobj->getDenseInitializedLength()) { + vp.set(nobj->getDenseElement(size_t(index))); + if (!vp.isMagic(JS_ELEMENTS_HOLE)) { + *hole = false; + return true; + } + } + if (nobj->is() && index <= UINT32_MAX) { + if (nobj->as().maybeGetElement(uint32_t(index), vp)) { + *hole = false; + return true; + } + } + } + + RootedId id(cx); + if (!ToId(cx, index, &id)) { + return false; + } + + bool found; + if (!HasProperty(cx, obj, id, &found)) { + return false; + } + + if (found) { + if (!GetProperty(cx, obj, receiver, id, vp)) { + return false; + } + } else { + vp.setUndefined(); + } + *hole = !found; + return true; +} + +template +static inline bool HasAndGetElement(JSContext* cx, HandleObject obj, T index, + bool* hole, MutableHandleValue vp) { + return HasAndGetElement(cx, obj, obj, index, hole, vp); +} + +bool ElementAdder::append(JSContext* cx, HandleValue v) { + MOZ_ASSERT(index_ < length_); + if (resObj_) { + NativeObject* resObj = &resObj_->as(); + DenseElementResult result = + resObj->setOrExtendDenseElements(cx, index_, v.address(), 1); + if (result == DenseElementResult::Failure) { + return false; + } + if (result == DenseElementResult::Incomplete) { + if (!DefineDataElement(cx, resObj_, index_, v)) { + return false; + } + } + } else { + vp_[index_] = v; + } + index_++; + return true; +} + +void ElementAdder::appendHole() { + MOZ_ASSERT(getBehavior_ == ElementAdder::CheckHasElemPreserveHoles); + MOZ_ASSERT(index_ < length_); + if (!resObj_) { + vp_[index_].setMagic(JS_ELEMENTS_HOLE); + } + index_++; +} + +bool js::GetElementsWithAdder(JSContext* cx, HandleObject obj, + HandleObject receiver, uint32_t begin, + uint32_t end, ElementAdder* adder) { + MOZ_ASSERT(begin <= end); + + RootedValue val(cx); + for (uint32_t i = begin; i < end; i++) { + if (adder->getBehavior() == ElementAdder::CheckHasElemPreserveHoles) { + bool hole; + if (!HasAndGetElement(cx, obj, receiver, i, &hole, &val)) { + return false; + } + if (hole) { + adder->appendHole(); + continue; + } + } else { + MOZ_ASSERT(adder->getBehavior() == ElementAdder::GetElement); + if (!GetElement(cx, obj, receiver, i, &val)) { + return false; + } + } + if (!adder->append(cx, val)) { + return false; + } + } + + return true; +} + +static inline bool IsPackedArrayOrNoExtraIndexedProperties(JSObject* obj, + uint64_t length) { + return (IsPackedArray(obj) && obj->as().length() == length) || + !ObjectMayHaveExtraIndexedProperties(obj); +} + +static bool GetDenseElements(NativeObject* aobj, uint32_t length, Value* vp) { + MOZ_ASSERT(IsPackedArrayOrNoExtraIndexedProperties(aobj, length)); + + if (length > aobj->getDenseInitializedLength()) { + return false; + } + + for (size_t i = 0; i < length; i++) { + vp[i] = aobj->getDenseElement(i); + + // No other indexed properties so hole => undefined. + if (vp[i].isMagic(JS_ELEMENTS_HOLE)) { + vp[i] = UndefinedValue(); + } + } + + return true; +} + +bool js::GetElements(JSContext* cx, HandleObject aobj, uint32_t length, + Value* vp) { + if (IsPackedArrayOrNoExtraIndexedProperties(aobj, length)) { + if (GetDenseElements(&aobj->as(), length, vp)) { + return true; + } + } + + if (aobj->is()) { + ArgumentsObject& argsobj = aobj->as(); + if (!argsobj.hasOverriddenLength()) { + if (argsobj.maybeGetElements(0, length, vp)) { + return true; + } + } + } + + if (aobj->is()) { + Handle typedArray = aobj.as(); + if (typedArray->length() == length) { + return TypedArrayObject::getElements(cx, typedArray, vp); + } + } + + if (js::GetElementsOp op = aobj->getOpsGetElements()) { + ElementAdder adder(cx, vp, length, ElementAdder::GetElement); + return op(cx, aobj, 0, length, &adder); + } + + for (uint32_t i = 0; i < length; i++) { + if (!GetElement(cx, aobj, aobj, i, + MutableHandleValue::fromMarkedLocation(&vp[i]))) { + return false; + } + } + + return true; +} + +static inline bool GetArrayElement(JSContext* cx, HandleObject obj, + uint64_t index, MutableHandleValue vp) { + if (obj->is()) { + NativeObject* nobj = &obj->as(); + if (index < nobj->getDenseInitializedLength()) { + vp.set(nobj->getDenseElement(size_t(index))); + if (!vp.isMagic(JS_ELEMENTS_HOLE)) { + return true; + } + } + + if (nobj->is() && index <= UINT32_MAX) { + if (nobj->as().maybeGetElement(uint32_t(index), vp)) { + return true; + } + } + } + + RootedId id(cx); + if (!ToId(cx, index, &id)) { + return false; + } + return GetProperty(cx, obj, obj, id, vp); +} + +static inline bool DefineArrayElement(JSContext* cx, HandleObject obj, + uint64_t index, HandleValue value) { + RootedId id(cx); + if (!ToId(cx, index, &id)) { + return false; + } + return DefineDataProperty(cx, obj, id, value); +} + +// Set the value of the property at the given index to v. +static inline bool SetArrayElement(JSContext* cx, HandleObject obj, + uint64_t index, HandleValue v) { + RootedId id(cx); + if (!ToId(cx, index, &id)) { + return false; + } + + return SetProperty(cx, obj, id, v); +} + +/* + * Attempt to delete the element |index| from |obj| as if by + * |obj.[[Delete]](index)|. + * + * If an error occurs while attempting to delete the element (that is, the call + * to [[Delete]] threw), return false. + * + * Otherwise call result.succeed() or result.fail() to indicate whether the + * deletion attempt succeeded (that is, whether the call to [[Delete]] returned + * true or false). (Deletes generally fail only when the property is + * non-configurable, but proxies may implement different semantics.) + */ +static bool DeleteArrayElement(JSContext* cx, HandleObject obj, uint64_t index, + ObjectOpResult& result) { + if (obj->is() && !obj->as().isIndexed() && + !obj->as().denseElementsAreSealed()) { + ArrayObject* aobj = &obj->as(); + if (index <= UINT32_MAX) { + uint32_t idx = uint32_t(index); + if (idx < aobj->getDenseInitializedLength()) { + if (idx + 1 == aobj->getDenseInitializedLength()) { + aobj->setDenseInitializedLengthMaybeNonExtensible(cx, idx); + } else { + aobj->setDenseElementHole(idx); + } + if (!SuppressDeletedElement(cx, obj, idx)) { + return false; + } + } + } + + return result.succeed(); + } + + RootedId id(cx); + if (!ToId(cx, index, &id)) { + return false; + } + return DeleteProperty(cx, obj, id, result); +} + +/* ES6 draft rev 32 (2 Febr 2015) 7.3.7 */ +static bool DeletePropertyOrThrow(JSContext* cx, HandleObject obj, + uint64_t index) { + ObjectOpResult success; + if (!DeleteArrayElement(cx, obj, index, success)) { + return false; + } + if (!success) { + RootedId id(cx); + if (!ToId(cx, index, &id)) { + return false; + } + return success.reportError(cx, obj, id); + } + return true; +} + +static bool DeletePropertiesOrThrow(JSContext* cx, HandleObject obj, + uint64_t len, uint64_t finalLength) { + if (obj->is() && !obj->as().isIndexed() && + !obj->as().denseElementsAreSealed()) { + if (len <= UINT32_MAX) { + // Skip forward to the initialized elements of this array. + len = std::min(uint32_t(len), + obj->as().getDenseInitializedLength()); + } + } + + for (uint64_t k = len; k > finalLength; k--) { + if (!CheckForInterrupt(cx)) { + return false; + } + + if (!DeletePropertyOrThrow(cx, obj, k - 1)) { + return false; + } + } + return true; +} + +static bool SetArrayLengthProperty(JSContext* cx, Handle obj, + HandleValue value) { + RootedId id(cx, NameToId(cx->names().length)); + ObjectOpResult result; + if (obj->lengthIsWritable()) { + Rooted desc( + cx, PropertyDescriptor::Data(value, JS::PropertyAttribute::Writable)); + if (!ArraySetLength(cx, obj, id, desc, result)) { + return false; + } + } else { + MOZ_ALWAYS_TRUE(result.fail(JSMSG_READ_ONLY)); + } + return result.checkStrict(cx, obj, id); +} + +static bool SetLengthProperty(JSContext* cx, HandleObject obj, + uint64_t length) { + MOZ_ASSERT(length < uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)); + + RootedValue v(cx, NumberValue(length)); + if (obj->is()) { + return SetArrayLengthProperty(cx, obj.as(), v); + } + return SetProperty(cx, obj, cx->names().length, v); +} + +bool js::SetLengthProperty(JSContext* cx, HandleObject obj, uint32_t length) { + RootedValue v(cx, NumberValue(length)); + if (obj->is()) { + return SetArrayLengthProperty(cx, obj.as(), v); + } + return SetProperty(cx, obj, cx->names().length, v); +} + +bool js::ArrayLengthGetter(JSContext* cx, HandleObject obj, HandleId id, + MutableHandleValue vp) { + MOZ_ASSERT(id == NameToId(cx->names().length)); + + vp.setNumber(obj->as().length()); + return true; +} + +bool js::ArrayLengthSetter(JSContext* cx, HandleObject obj, HandleId id, + HandleValue v, ObjectOpResult& result) { + MOZ_ASSERT(id == NameToId(cx->names().length)); + + Handle arr = obj.as(); + MOZ_ASSERT(arr->lengthIsWritable(), + "setter shouldn't be called if property is non-writable"); + + Rooted desc( + cx, PropertyDescriptor::Data(v, JS::PropertyAttribute::Writable)); + return ArraySetLength(cx, arr, id, desc, result); +} + +struct ReverseIndexComparator { + bool operator()(const uint32_t& a, const uint32_t& b, bool* lessOrEqualp) { + MOZ_ASSERT(a != b, "how'd we get duplicate indexes?"); + *lessOrEqualp = b <= a; + return true; + } +}; + +/* ES6 draft rev 34 (2015 Feb 20) 9.4.2.4 ArraySetLength */ +bool js::ArraySetLength(JSContext* cx, Handle arr, HandleId id, + Handle desc, + ObjectOpResult& result) { + MOZ_ASSERT(id == NameToId(cx->names().length)); + MOZ_ASSERT(desc.isDataDescriptor() || desc.isGenericDescriptor()); + + // Step 1. + uint32_t newLen; + if (!desc.hasValue()) { + // The spec has us calling OrdinaryDefineOwnProperty if + // Desc.[[Value]] is absent, but our implementation is so different that + // this is impossible. Instead, set newLen to the current length and + // proceed to step 9. + newLen = arr->length(); + } else { + // Step 2 is irrelevant in our implementation. + + // Step 3. + if (!ToUint32(cx, desc.value(), &newLen)) { + return false; + } + + // Step 4. + double d; + if (!ToNumber(cx, desc.value(), &d)) { + return false; + } + + // Step 5. + if (d != newLen) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return false; + } + + // Steps 6-8 are irrelevant in our implementation. + } + + // Steps 9-11. + bool lengthIsWritable = arr->lengthIsWritable(); +#ifdef DEBUG + { + mozilla::Maybe lengthProp = arr->lookupPure(id); + MOZ_ASSERT(lengthProp.isSome()); + MOZ_ASSERT(lengthProp->writable() == lengthIsWritable); + } +#endif + uint32_t oldLen = arr->length(); + + // Part of steps 1.a, 12.a, and 16: Fail if we're being asked to change + // enumerability or configurability, or otherwise break the object + // invariants. (ES6 checks these by calling OrdinaryDefineOwnProperty, but + // in SM, the array length property is hardly ordinary.) + if ((desc.hasConfigurable() && desc.configurable()) || + (desc.hasEnumerable() && desc.enumerable()) || + (!lengthIsWritable && desc.hasWritable() && desc.writable())) { + return result.fail(JSMSG_CANT_REDEFINE_PROP); + } + + // Steps 12-13 for arrays with non-writable length. + if (!lengthIsWritable) { + if (newLen == oldLen) { + return result.succeed(); + } + + return result.fail(JSMSG_CANT_REDEFINE_ARRAY_LENGTH); + } + + // Step 19. + bool succeeded = true; + do { + // The initialized length and capacity of an array only need updating + // when non-hole elements are added or removed, which doesn't happen + // when array length stays the same or increases. + if (newLen >= oldLen) { + break; + } + + // Attempt to propagate dense-element optimization tricks, if possible, + // and avoid the generic (and accordingly slow) deletion code below. + // We can only do this if there are only densely-indexed elements. + // Once there's a sparse indexed element, there's no good way to know, + // save by enumerating all the properties to find it. But we *have* to + // know in case that sparse indexed element is non-configurable, as + // that element must prevent any deletions below it. Bug 586842 should + // fix this inefficiency by moving indexed storage to be entirely + // separate from non-indexed storage. + // A second reason for this optimization to be invalid is an active + // for..in iteration over the array. Keys deleted before being reached + // during the iteration must not be visited, and suppressing them here + // would be too costly. + // This optimization is also invalid when there are sealed + // (non-configurable) elements. + if (!arr->isIndexed() && !arr->denseElementsMaybeInIteration() && + !arr->denseElementsAreSealed()) { + uint32_t oldCapacity = arr->getDenseCapacity(); + uint32_t oldInitializedLength = arr->getDenseInitializedLength(); + MOZ_ASSERT(oldCapacity >= oldInitializedLength); + if (oldInitializedLength > newLen) { + arr->setDenseInitializedLengthMaybeNonExtensible(cx, newLen); + } + if (oldCapacity > newLen) { + if (arr->isExtensible()) { + arr->shrinkElements(cx, newLen); + } else { + MOZ_ASSERT(arr->getDenseInitializedLength() == + arr->getDenseCapacity()); + } + } + + // We've done the work of deleting any dense elements needing + // deletion, and there are no sparse elements. Thus we can skip + // straight to defining the length. + break; + } + + // Step 15. + // + // Attempt to delete all elements above the new length, from greatest + // to least. If any of these deletions fails, we're supposed to define + // the length to one greater than the index that couldn't be deleted, + // *with the property attributes specified*. This might convert the + // length to be not the value specified, yet non-writable. (You may be + // forgiven for thinking these are interesting semantics.) Example: + // + // var arr = + // Object.defineProperty([0, 1, 2, 3], 1, { writable: false }); + // Object.defineProperty(arr, "length", + // { value: 0, writable: false }); + // + // will convert |arr| to an array of non-writable length two, then + // throw a TypeError. + // + // We implement this behavior, in the relevant lops below, by setting + // |succeeded| to false. Then we exit the loop, define the length + // appropriately, and only then throw a TypeError, if necessary. + uint32_t gap = oldLen - newLen; + const uint32_t RemoveElementsFastLimit = 1 << 24; + if (gap < RemoveElementsFastLimit) { + // If we're removing a relatively small number of elements, just do + // it exactly by the spec. + while (newLen < oldLen) { + // Step 15a. + oldLen--; + + // Steps 15b-d. + ObjectOpResult deleteSucceeded; + if (!DeleteElement(cx, arr, oldLen, deleteSucceeded)) { + return false; + } + if (!deleteSucceeded) { + newLen = oldLen + 1; + succeeded = false; + break; + } + } + } else { + // If we're removing a large number of elements from an array + // that's probably sparse, try a different tack. Get all the own + // property names, sift out the indexes in the deletion range into + // a vector, sort the vector greatest to least, then delete the + // indexes greatest to least using that vector. See bug 322135. + // + // This heuristic's kind of a huge guess -- "large number of + // elements" and "probably sparse" are completely unprincipled + // predictions. In the long run, bug 586842 will support the right + // fix: store sparse elements in a sorted data structure that + // permits fast in-reverse-order traversal and concurrent removals. + + Vector indexes(cx); + { + RootedIdVector props(cx); + if (!GetPropertyKeys(cx, arr, JSITER_OWNONLY | JSITER_HIDDEN, &props)) { + return false; + } + + for (size_t i = 0; i < props.length(); i++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + uint32_t index; + if (!IdIsIndex(props[i], &index)) { + continue; + } + + if (index >= newLen && index < oldLen) { + if (!indexes.append(index)) { + return false; + } + } + } + } + + uint32_t count = indexes.length(); + { + // We should use radix sort to be O(n), but this is uncommon + // enough that we'll punt til someone complains. + Vector scratch(cx); + if (!scratch.resize(count)) { + return false; + } + MOZ_ALWAYS_TRUE(MergeSort(indexes.begin(), count, scratch.begin(), + ReverseIndexComparator())); + } + + uint32_t index = UINT32_MAX; + for (uint32_t i = 0; i < count; i++) { + MOZ_ASSERT(indexes[i] < index, "indexes should never repeat"); + index = indexes[i]; + + // Steps 15b-d. + ObjectOpResult deleteSucceeded; + if (!DeleteElement(cx, arr, index, deleteSucceeded)) { + return false; + } + if (!deleteSucceeded) { + newLen = index + 1; + succeeded = false; + break; + } + } + } + } while (false); + + // Update array length. Technically we should have been doing this + // throughout the loop, in step 19.d.iii. + arr->setLength(newLen); + + // Step 20. + if (desc.hasWritable() && !desc.writable()) { + Maybe lengthProp = arr->lookup(cx, id); + MOZ_ASSERT(lengthProp.isSome()); + MOZ_ASSERT(lengthProp->isCustomDataProperty()); + PropertyFlags flags = lengthProp->flags(); + flags.clearFlag(PropertyFlag::Writable); + if (!NativeObject::changeCustomDataPropAttributes(cx, arr, id, flags)) { + return false; + } + } + + // All operations past here until the |!succeeded| code must be infallible, + // so that all element fields remain properly synchronized. + + // Trim the initialized length, if needed, to preserve the <= length + // invariant. (Capacity was already reduced during element deletion, if + // necessary.) + ObjectElements* header = arr->getElementsHeader(); + header->initializedLength = std::min(header->initializedLength, newLen); + + if (!arr->isExtensible()) { + arr->shrinkCapacityToInitializedLength(cx); + } + + if (desc.hasWritable() && !desc.writable()) { + arr->setNonWritableLength(cx); + } + + if (!succeeded) { + return result.fail(JSMSG_CANT_TRUNCATE_ARRAY); + } + + return result.succeed(); +} + +static bool array_addProperty(JSContext* cx, HandleObject obj, HandleId id, + HandleValue v) { + ArrayObject* arr = &obj->as(); + + uint32_t index; + if (!IdIsIndex(id, &index)) { + return true; + } + + uint32_t length = arr->length(); + if (index >= length) { + MOZ_ASSERT(arr->lengthIsWritable(), + "how'd this element get added if length is non-writable?"); + arr->setLength(index + 1); + } + return true; +} + +static SharedShape* AddLengthProperty(JSContext* cx, + Handle shape) { + // Add the 'length' property for a newly created array shape. + + MOZ_ASSERT(shape->propMapLength() == 0); + MOZ_ASSERT(shape->getObjectClass() == &ArrayObject::class_); + + RootedId lengthId(cx, NameToId(cx->names().length)); + constexpr PropertyFlags flags = {PropertyFlag::CustomDataProperty, + PropertyFlag::Writable}; + + Rooted map(cx, shape->propMap()); + uint32_t mapLength = shape->propMapLength(); + ObjectFlags objectFlags = shape->objectFlags(); + + if (!SharedPropMap::addCustomDataProperty(cx, &ArrayObject::class_, &map, + &mapLength, lengthId, flags, + &objectFlags)) { + return nullptr; + } + + return SharedShape::getPropMapShape(cx, shape->base(), shape->numFixedSlots(), + map, mapLength, objectFlags); +} + +static bool IsArrayConstructor(const JSObject* obj) { + // Note: this also returns true for cross-realm Array constructors in the + // same compartment. + return IsNativeFunction(obj, ArrayConstructor); +} + +static bool IsArrayConstructor(const Value& v) { + return v.isObject() && IsArrayConstructor(&v.toObject()); +} + +bool js::IsCrossRealmArrayConstructor(JSContext* cx, JSObject* obj, + bool* result) { + if (obj->is()) { + obj = CheckedUnwrapDynamic(obj, cx); + if (!obj) { + ReportAccessDenied(cx); + return false; + } + } + + *result = + IsArrayConstructor(obj) && obj->as().realm() != cx->realm(); + return true; +} + +static MOZ_ALWAYS_INLINE bool IsArraySpecies(JSContext* cx, + HandleObject origArray) { + if (MOZ_UNLIKELY(origArray->is())) { + if (origArray->getClass()->isDOMClass()) { +#ifdef DEBUG + // We assume DOM proxies never return true for IsArray. + IsArrayAnswer answer; + MOZ_ASSERT(Proxy::isArray(cx, origArray, &answer)); + MOZ_ASSERT(answer == IsArrayAnswer::NotArray); +#endif + return true; + } + return false; + } + + // 9.4.2.3 Step 4. Non-array objects always use the default constructor. + if (!origArray->is()) { + return true; + } + + if (cx->realm()->arraySpeciesLookup.tryOptimizeArray( + cx, &origArray->as())) { + return true; + } + + Value ctor; + if (!GetPropertyPure(cx, origArray, NameToId(cx->names().constructor), + &ctor)) { + return false; + } + + if (!IsArrayConstructor(ctor)) { + return ctor.isUndefined(); + } + + // 9.4.2.3 Step 6.c. Use the current realm's constructor if |ctor| is a + // cross-realm Array constructor. + if (cx->realm() != ctor.toObject().as().realm()) { + return true; + } + + jsid speciesId = PropertyKey::Symbol(cx->wellKnownSymbols().species); + JSFunction* getter; + if (!GetGetterPure(cx, &ctor.toObject(), speciesId, &getter)) { + return false; + } + + if (!getter) { + return false; + } + + return IsSelfHostedFunctionWithName(getter, cx->names().ArraySpecies); +} + +static bool ArraySpeciesCreate(JSContext* cx, HandleObject origArray, + uint64_t length, MutableHandleObject arr) { + MOZ_ASSERT(length < DOUBLE_INTEGRAL_PRECISION_LIMIT); + + FixedInvokeArgs<2> args(cx); + + args[0].setObject(*origArray); + args[1].set(NumberValue(length)); + + RootedValue rval(cx); + if (!CallSelfHostedFunction(cx, cx->names().ArraySpeciesCreate, + UndefinedHandleValue, args, &rval)) { + return false; + } + + MOZ_ASSERT(rval.isObject()); + arr.set(&rval.toObject()); + return true; +} + +JSString* js::ArrayToSource(JSContext* cx, HandleObject obj) { + AutoCycleDetector detector(cx, obj); + if (!detector.init()) { + return nullptr; + } + + JSStringBuilder sb(cx); + + if (detector.foundCycle()) { + if (!sb.append("[]")) { + return nullptr; + } + return sb.finishString(); + } + + if (!sb.append('[')) { + return nullptr; + } + + uint64_t length; + if (!GetLengthPropertyInlined(cx, obj, &length)) { + return nullptr; + } + + RootedValue elt(cx); + for (uint64_t index = 0; index < length; index++) { + bool hole; + if (!CheckForInterrupt(cx) || + !HasAndGetElement(cx, obj, index, &hole, &elt)) { + return nullptr; + } + + /* Get element's character string. */ + JSString* str; + if (hole) { + str = cx->runtime()->emptyString; + } else { + str = ValueToSource(cx, elt); + if (!str) { + return nullptr; + } + } + + /* Append element to buffer. */ + if (!sb.append(str)) { + return nullptr; + } + if (index + 1 != length) { + if (!sb.append(", ")) { + return nullptr; + } + } else if (hole) { + if (!sb.append(',')) { + return nullptr; + } + } + } + + /* Finalize the buffer. */ + if (!sb.append(']')) { + return nullptr; + } + + return sb.finishString(); +} + +static bool array_toSource(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "toSource"); + CallArgs args = CallArgsFromVp(argc, vp); + + if (!args.thisv().isObject()) { + ReportIncompatible(cx, args); + return false; + } + + Rooted obj(cx, &args.thisv().toObject()); + + JSString* str = ArrayToSource(cx, obj); + if (!str) { + return false; + } + + args.rval().setString(str); + return true; +} + +template +static bool ArrayJoinDenseKernel(JSContext* cx, SeparatorOp sepOp, + Handle obj, uint64_t length, + StringBuffer& sb, uint32_t* numProcessed) { + // This loop handles all elements up to initializedLength. If + // length > initLength we rely on the second loop to add the + // other elements. + MOZ_ASSERT(*numProcessed == 0); + uint64_t initLength = + std::min(obj->getDenseInitializedLength(), length); + MOZ_ASSERT(initLength <= UINT32_MAX, + "initialized length shouldn't exceed UINT32_MAX"); + uint32_t initLengthClamped = uint32_t(initLength); + while (*numProcessed < initLengthClamped) { + if (!CheckForInterrupt(cx)) { + return false; + } + + // Step 7.b. + Value elem = obj->getDenseElement(*numProcessed); + + // Steps 7.c-d. + if (elem.isString()) { + if (!sb.append(elem.toString())) { + return false; + } + } else if (elem.isNumber()) { + if (!NumberValueToStringBuffer(elem, sb)) { + return false; + } + } else if (elem.isBoolean()) { + if (!BooleanToStringBuffer(elem.toBoolean(), sb)) { + return false; + } + } else if (elem.isObject() || elem.isSymbol()) { + /* + * Object stringifying could modify the initialized length or make + * the array sparse. Delegate it to a separate loop to keep this + * one tight. + * + * Symbol stringifying is a TypeError, so into the slow path + * with those as well. + */ + break; + } else if (elem.isBigInt()) { + // ToString(bigint) doesn't access bigint.toString or + // anything like that, so it can't mutate the array we're + // walking through, so it *could* be handled here. We don't + // do so yet for reasons of initial-implementation economy. + break; + } else { + MOZ_ASSERT(elem.isMagic(JS_ELEMENTS_HOLE) || elem.isNullOrUndefined()); + } + + // Steps 7.a, 7.e. + if (++(*numProcessed) != length && !sepOp(sb)) { + return false; + } + } + + return true; +} + +template +static bool ArrayJoinKernel(JSContext* cx, SeparatorOp sepOp, HandleObject obj, + uint64_t length, StringBuffer& sb) { + // Step 6. + uint32_t numProcessed = 0; + + if (IsPackedArrayOrNoExtraIndexedProperties(obj, length)) { + if (!ArrayJoinDenseKernel(cx, sepOp, obj.as(), + length, sb, &numProcessed)) { + return false; + } + } + + // Step 7. + if (numProcessed != length) { + RootedValue v(cx); + for (uint64_t i = numProcessed; i < length;) { + if (!CheckForInterrupt(cx)) { + return false; + } + + // Step 7.b. + if (!GetArrayElement(cx, obj, i, &v)) { + return false; + } + + // Steps 7.c-d. + if (!v.isNullOrUndefined()) { + if (!ValueToStringBuffer(cx, v, sb)) { + return false; + } + } + + // Steps 7.a, 7.e. + if (++i != length && !sepOp(sb)) { + return false; + } + } + } + + return true; +} + +// ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce +// 22.1.3.13 Array.prototype.join ( separator ) +bool js::array_join(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "join"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + AutoCycleDetector detector(cx, obj); + if (!detector.init()) { + return false; + } + + if (detector.foundCycle()) { + args.rval().setString(cx->names().empty); + return true; + } + + // Step 2. + uint64_t length; + if (!GetLengthPropertyInlined(cx, obj, &length)) { + return false; + } + + // Steps 3-4. + Rooted sepstr(cx); + if (args.hasDefined(0)) { + JSString* s = ToString(cx, args[0]); + if (!s) { + return false; + } + sepstr = s->ensureLinear(cx); + if (!sepstr) { + return false; + } + } else { + sepstr = cx->names().comma; + } + + // Steps 5-8 (When the length is zero, directly return the empty string). + if (length == 0) { + args.rval().setString(cx->emptyString()); + return true; + } + + // An optimized version of a special case of steps 5-8: when length==1 and + // the 0th element is a string, ToString() of that element is a no-op and + // so it can be immediately returned as the result. + if (length == 1 && obj->is()) { + NativeObject* nobj = &obj->as(); + if (nobj->getDenseInitializedLength() == 1) { + Value elem0 = nobj->getDenseElement(0); + if (elem0.isString()) { + args.rval().set(elem0); + return true; + } + } + } + + // Step 5. + JSStringBuilder sb(cx); + if (sepstr->hasTwoByteChars() && !sb.ensureTwoByteChars()) { + return false; + } + + // The separator will be added |length - 1| times, reserve space for that + // so that we don't have to unnecessarily grow the buffer. + size_t seplen = sepstr->length(); + if (seplen > 0) { + if (length > UINT32_MAX) { + ReportAllocationOverflow(cx); + return false; + } + CheckedInt res = + CheckedInt(seplen) * (uint32_t(length) - 1); + if (!res.isValid()) { + ReportAllocationOverflow(cx); + return false; + } + + if (!sb.reserve(res.value())) { + return false; + } + } + + // Various optimized versions of steps 6-7. + if (seplen == 0) { + auto sepOp = [](StringBuffer&) { return true; }; + if (!ArrayJoinKernel(cx, sepOp, obj, length, sb)) { + return false; + } + } else if (seplen == 1) { + char16_t c = sepstr->latin1OrTwoByteChar(0); + if (c <= JSString::MAX_LATIN1_CHAR) { + Latin1Char l1char = Latin1Char(c); + auto sepOp = [l1char](StringBuffer& sb) { return sb.append(l1char); }; + if (!ArrayJoinKernel(cx, sepOp, obj, length, sb)) { + return false; + } + } else { + auto sepOp = [c](StringBuffer& sb) { return sb.append(c); }; + if (!ArrayJoinKernel(cx, sepOp, obj, length, sb)) { + return false; + } + } + } else { + Handle sepHandle = sepstr; + auto sepOp = [sepHandle](StringBuffer& sb) { return sb.append(sepHandle); }; + if (!ArrayJoinKernel(cx, sepOp, obj, length, sb)) { + return false; + } + } + + // Step 8. + JSString* str = sb.finishString(); + if (!str) { + return false; + } + + args.rval().setString(str); + return true; +} + +// ES2017 draft rev f8a9be8ea4bd97237d176907a1e3080dce20c68f +// 22.1.3.27 Array.prototype.toLocaleString ([ reserved1 [ , reserved2 ] ]) +// ES2017 Intl draft rev 78bbe7d1095f5ff3760ac4017ed366026e4cb276 +// 13.4.1 Array.prototype.toLocaleString ([ locales [ , options ]]) +static bool array_toLocaleString(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", + "toLocaleString"); + + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1 + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Avoid calling into self-hosted code if the array is empty. + if (obj->is() && obj->as().length() == 0) { + args.rval().setString(cx->names().empty); + return true; + } + + AutoCycleDetector detector(cx, obj); + if (!detector.init()) { + return false; + } + + if (detector.foundCycle()) { + args.rval().setString(cx->names().empty); + return true; + } + + FixedInvokeArgs<2> args2(cx); + + args2[0].set(args.get(0)); + args2[1].set(args.get(1)); + + // Steps 2-10. + RootedValue thisv(cx, ObjectValue(*obj)); + return CallSelfHostedFunction(cx, cx->names().ArrayToLocaleString, thisv, + args2, args.rval()); +} + +/* vector must point to rooted memory. */ +static bool SetArrayElements(JSContext* cx, HandleObject obj, uint64_t start, + uint32_t count, const Value* vector) { + MOZ_ASSERT(count <= MAX_ARRAY_INDEX); + MOZ_ASSERT(start + count < uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)); + + if (count == 0) { + return true; + } + + if (!ObjectMayHaveExtraIndexedProperties(obj) && start <= UINT32_MAX) { + NativeObject* nobj = &obj->as(); + DenseElementResult result = + nobj->setOrExtendDenseElements(cx, uint32_t(start), vector, count); + if (result != DenseElementResult::Incomplete) { + return result == DenseElementResult::Success; + } + } + + RootedId id(cx); + const Value* end = vector + count; + while (vector < end) { + if (!CheckForInterrupt(cx)) { + return false; + } + + if (!ToId(cx, start++, &id)) { + return false; + } + + if (!SetProperty(cx, obj, id, HandleValue::fromMarkedLocation(vector++))) { + return false; + } + } + + return true; +} + +static DenseElementResult ArrayReverseDenseKernel(JSContext* cx, + Handle obj, + uint32_t length) { + MOZ_ASSERT(length > 1); + + // If there are no elements, we're done. + if (obj->getDenseInitializedLength() == 0) { + return DenseElementResult::Success; + } + + if (!obj->isExtensible()) { + return DenseElementResult::Incomplete; + } + + if (!IsPackedArray(obj)) { + /* + * It's actually surprisingly complicated to reverse an array due + * to the orthogonality of array length and array capacity while + * handling leading and trailing holes correctly. Reversing seems + * less likely to be a common operation than other array + * mass-mutation methods, so for now just take a probably-small + * memory hit (in the absence of too many holes in the array at + * its start) and ensure that the capacity is sufficient to hold + * all the elements in the array if it were full. + */ + DenseElementResult result = obj->ensureDenseElements(cx, length, 0); + if (result != DenseElementResult::Success) { + return result; + } + + /* Fill out the array's initialized length to its proper length. */ + obj->ensureDenseInitializedLength(length, 0); + } + + if (!obj->denseElementsMaybeInIteration() && + !cx->zone()->needsIncrementalBarrier()) { + obj->reverseDenseElementsNoPreBarrier(length); + return DenseElementResult::Success; + } + + auto setElementMaybeHole = [](JSContext* cx, Handle obj, + uint32_t index, const Value& val) { + if (MOZ_LIKELY(!val.isMagic(JS_ELEMENTS_HOLE))) { + obj->setDenseElement(index, val); + return true; + } + + obj->setDenseElementHole(index); + return SuppressDeletedProperty(cx, obj, PropertyKey::Int(index)); + }; + + RootedValue origlo(cx), orighi(cx); + + uint32_t lo = 0, hi = length - 1; + for (; lo < hi; lo++, hi--) { + origlo = obj->getDenseElement(lo); + orighi = obj->getDenseElement(hi); + if (!setElementMaybeHole(cx, obj, lo, orighi)) { + return DenseElementResult::Failure; + } + if (!setElementMaybeHole(cx, obj, hi, origlo)) { + return DenseElementResult::Failure; + } + } + + return DenseElementResult::Success; +} + +// ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce +// 22.1.3.21 Array.prototype.reverse ( ) +static bool array_reverse(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "reverse"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + // An empty array or an array with length 1 is already reversed. + if (len <= 1) { + args.rval().setObject(*obj); + return true; + } + + if (IsPackedArrayOrNoExtraIndexedProperties(obj, len) && len <= UINT32_MAX) { + DenseElementResult result = + ArrayReverseDenseKernel(cx, obj.as(), uint32_t(len)); + if (result != DenseElementResult::Incomplete) { + /* + * Per ECMA-262, don't update the length of the array, even if the new + * array has trailing holes (and thus the original array began with + * holes). + */ + args.rval().setObject(*obj); + return result == DenseElementResult::Success; + } + } + + // Steps 3-5. + RootedValue lowval(cx), hival(cx); + for (uint64_t i = 0, half = len / 2; i < half; i++) { + bool hole, hole2; + if (!CheckForInterrupt(cx) || + !HasAndGetElement(cx, obj, i, &hole, &lowval) || + !HasAndGetElement(cx, obj, len - i - 1, &hole2, &hival)) { + return false; + } + + if (!hole && !hole2) { + if (!SetArrayElement(cx, obj, i, hival)) { + return false; + } + if (!SetArrayElement(cx, obj, len - i - 1, lowval)) { + return false; + } + } else if (hole && !hole2) { + if (!SetArrayElement(cx, obj, i, hival)) { + return false; + } + if (!DeletePropertyOrThrow(cx, obj, len - i - 1)) { + return false; + } + } else if (!hole && hole2) { + if (!DeletePropertyOrThrow(cx, obj, i)) { + return false; + } + if (!SetArrayElement(cx, obj, len - i - 1, lowval)) { + return false; + } + } else { + // No action required. + } + } + + // Step 6. + args.rval().setObject(*obj); + return true; +} + +static inline bool CompareStringValues(JSContext* cx, const Value& a, + const Value& b, bool* lessOrEqualp) { + if (!CheckForInterrupt(cx)) { + return false; + } + + JSString* astr = a.toString(); + JSString* bstr = b.toString(); + int32_t result; + if (!CompareStrings(cx, astr, bstr, &result)) { + return false; + } + + *lessOrEqualp = (result <= 0); + return true; +} + +static const uint64_t powersOf10[] = { + 1, 10, 100, 1000, 10000, 100000, + 1000000, 10000000, 100000000, 1000000000, 1000000000000ULL}; + +static inline unsigned NumDigitsBase10(uint32_t n) { + /* + * This is just floor_log10(n) + 1 + * Algorithm taken from + * http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 + */ + uint32_t log2 = CeilingLog2(n); + uint32_t t = log2 * 1233 >> 12; + return t - (n < powersOf10[t]) + 1; +} + +static inline bool CompareLexicographicInt32(const Value& a, const Value& b, + bool* lessOrEqualp) { + int32_t aint = a.toInt32(); + int32_t bint = b.toInt32(); + + /* + * If both numbers are equal ... trivial + * If only one of both is negative --> arithmetic comparison as char code + * of '-' is always less than any other digit + * If both numbers are negative convert them to positive and continue + * handling ... + */ + if (aint == bint) { + *lessOrEqualp = true; + } else if ((aint < 0) && (bint >= 0)) { + *lessOrEqualp = true; + } else if ((aint >= 0) && (bint < 0)) { + *lessOrEqualp = false; + } else { + uint32_t auint = Abs(aint); + uint32_t buint = Abs(bint); + + /* + * ... get number of digits of both integers. + * If they have the same number of digits --> arithmetic comparison. + * If digits_a > digits_b: a < b*10e(digits_a - digits_b). + * If digits_b > digits_a: a*10e(digits_b - digits_a) <= b. + */ + unsigned digitsa = NumDigitsBase10(auint); + unsigned digitsb = NumDigitsBase10(buint); + if (digitsa == digitsb) { + *lessOrEqualp = (auint <= buint); + } else if (digitsa > digitsb) { + MOZ_ASSERT((digitsa - digitsb) < std::size(powersOf10)); + *lessOrEqualp = + (uint64_t(auint) < uint64_t(buint) * powersOf10[digitsa - digitsb]); + } else { /* if (digitsb > digitsa) */ + MOZ_ASSERT((digitsb - digitsa) < std::size(powersOf10)); + *lessOrEqualp = + (uint64_t(auint) * powersOf10[digitsb - digitsa] <= uint64_t(buint)); + } + } + + return true; +} + +template +static inline bool CompareSubStringValues(JSContext* cx, const Char1* s1, + size_t len1, const Char2* s2, + size_t len2, bool* lessOrEqualp) { + if (!CheckForInterrupt(cx)) { + return false; + } + + if (!s1 || !s2) { + return false; + } + + int32_t result = CompareChars(s1, len1, s2, len2); + *lessOrEqualp = (result <= 0); + return true; +} + +namespace { + +struct SortComparatorStrings { + JSContext* const cx; + + explicit SortComparatorStrings(JSContext* cx) : cx(cx) {} + + bool operator()(const Value& a, const Value& b, bool* lessOrEqualp) { + return CompareStringValues(cx, a, b, lessOrEqualp); + } +}; + +struct SortComparatorLexicographicInt32 { + bool operator()(const Value& a, const Value& b, bool* lessOrEqualp) { + return CompareLexicographicInt32(a, b, lessOrEqualp); + } +}; + +struct StringifiedElement { + size_t charsBegin; + size_t charsEnd; + size_t elementIndex; +}; + +struct SortComparatorStringifiedElements { + JSContext* const cx; + const StringBuffer& sb; + + SortComparatorStringifiedElements(JSContext* cx, const StringBuffer& sb) + : cx(cx), sb(sb) {} + + bool operator()(const StringifiedElement& a, const StringifiedElement& b, + bool* lessOrEqualp) { + size_t lenA = a.charsEnd - a.charsBegin; + size_t lenB = b.charsEnd - b.charsBegin; + + if (sb.isUnderlyingBufferLatin1()) { + return CompareSubStringValues(cx, sb.rawLatin1Begin() + a.charsBegin, + lenA, sb.rawLatin1Begin() + b.charsBegin, + lenB, lessOrEqualp); + } + + return CompareSubStringValues(cx, sb.rawTwoByteBegin() + a.charsBegin, lenA, + sb.rawTwoByteBegin() + b.charsBegin, lenB, + lessOrEqualp); + } +}; + +struct NumericElement { + double dv; + size_t elementIndex; +}; + +static bool ComparatorNumericLeftMinusRight(const NumericElement& a, + const NumericElement& b, + bool* lessOrEqualp) { + *lessOrEqualp = std::isunordered(a.dv, b.dv) || (a.dv <= b.dv); + return true; +} + +static bool ComparatorNumericRightMinusLeft(const NumericElement& a, + const NumericElement& b, + bool* lessOrEqualp) { + *lessOrEqualp = std::isunordered(a.dv, b.dv) || (b.dv <= a.dv); + return true; +} + +using ComparatorNumeric = bool (*)(const NumericElement&, const NumericElement&, + bool*); + +static const ComparatorNumeric SortComparatorNumerics[] = { + nullptr, nullptr, ComparatorNumericLeftMinusRight, + ComparatorNumericRightMinusLeft}; + +static bool ComparatorInt32LeftMinusRight(const Value& a, const Value& b, + bool* lessOrEqualp) { + *lessOrEqualp = (a.toInt32() <= b.toInt32()); + return true; +} + +static bool ComparatorInt32RightMinusLeft(const Value& a, const Value& b, + bool* lessOrEqualp) { + *lessOrEqualp = (b.toInt32() <= a.toInt32()); + return true; +} + +using ComparatorInt32 = bool (*)(const Value&, const Value&, bool*); + +static const ComparatorInt32 SortComparatorInt32s[] = { + nullptr, nullptr, ComparatorInt32LeftMinusRight, + ComparatorInt32RightMinusLeft}; + +// Note: Values for this enum must match up with SortComparatorNumerics +// and SortComparatorInt32s. +enum ComparatorMatchResult { + Match_Failure = 0, + Match_None, + Match_LeftMinusRight, + Match_RightMinusLeft +}; + +} // namespace + +/* + * Specialize behavior for comparator functions with particular common bytecode + * patterns: namely, |return x - y| and |return y - x|. + */ +static ComparatorMatchResult MatchNumericComparator(JSContext* cx, + JSObject* obj) { + if (!obj->is()) { + return Match_None; + } + + RootedFunction fun(cx, &obj->as()); + if (!fun->isInterpreted() || fun->isClassConstructor()) { + return Match_None; + } + + JSScript* script = JSFunction::getOrCreateScript(cx, fun); + if (!script) { + return Match_Failure; + } + + jsbytecode* pc = script->code(); + + uint16_t arg0, arg1; + if (JSOp(*pc) != JSOp::GetArg) { + return Match_None; + } + arg0 = GET_ARGNO(pc); + pc += JSOpLength_GetArg; + + if (JSOp(*pc) != JSOp::GetArg) { + return Match_None; + } + arg1 = GET_ARGNO(pc); + pc += JSOpLength_GetArg; + + if (JSOp(*pc) != JSOp::Sub) { + return Match_None; + } + pc += JSOpLength_Sub; + + if (JSOp(*pc) != JSOp::Return) { + return Match_None; + } + + if (arg0 == 0 && arg1 == 1) { + return Match_LeftMinusRight; + } + + if (arg0 == 1 && arg1 == 0) { + return Match_RightMinusLeft; + } + + return Match_None; +} + +template +static inline bool MergeSortByKey(K keys, size_t len, K scratch, C comparator, + MutableHandle> vec) { + MOZ_ASSERT(vec.length() >= len); + + /* Sort keys. */ + if (!MergeSort(keys, len, scratch, comparator)) { + return false; + } + + /* + * Reorder vec by keys in-place, going element by element. When an out-of- + * place element is encountered, move that element to its proper position, + * displacing whatever element was at *that* point to its proper position, + * and so on until an element must be moved to the current position. + * + * At each outer iteration all elements up to |i| are sorted. If + * necessary each inner iteration moves some number of unsorted elements + * (including |i|) directly to sorted position. Thus on completion |*vec| + * is sorted, and out-of-position elements have moved once. Complexity is + * Θ(len) + O(len) == O(2*len), with each element visited at most twice. + */ + for (size_t i = 0; i < len; i++) { + size_t j = keys[i].elementIndex; + if (i == j) { + continue; // fixed point + } + + MOZ_ASSERT(j > i, "Everything less than |i| should be in the right place!"); + Value tv = vec[j]; + do { + size_t k = keys[j].elementIndex; + keys[j].elementIndex = j; + vec[j].set(vec[k]); + j = k; + } while (j != i); + + // We could assert the loop invariant that |i == keys[i].elementIndex| + // here if we synced |keys[i].elementIndex|. But doing so would render + // the assertion vacuous, so don't bother, even in debug builds. + vec[i].set(tv); + } + + return true; +} + +/* + * Sort Values as strings. + * + * To minimize #conversions, SortLexicographically() first converts all Values + * to strings at once, then sorts the elements by these cached strings. + */ +static bool SortLexicographically(JSContext* cx, + MutableHandle> vec, + size_t len) { + MOZ_ASSERT(vec.length() >= len); + + StringBuffer sb(cx); + Vector strElements(cx); + + /* MergeSort uses the upper half as scratch space. */ + if (!strElements.resize(2 * len)) { + return false; + } + + /* Convert Values to strings. */ + size_t cursor = 0; + for (size_t i = 0; i < len; i++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + if (!ValueToStringBuffer(cx, vec[i], sb)) { + return false; + } + + strElements[i] = {cursor, sb.length(), i}; + cursor = sb.length(); + } + + /* Sort Values in vec alphabetically. */ + return MergeSortByKey(strElements.begin(), len, strElements.begin() + len, + SortComparatorStringifiedElements(cx, sb), vec); +} + +/* + * Sort Values as numbers. + * + * To minimize #conversions, SortNumerically first converts all Values to + * numerics at once, then sorts the elements by these cached numerics. + */ +static bool SortNumerically(JSContext* cx, MutableHandle> vec, + size_t len, ComparatorMatchResult comp) { + MOZ_ASSERT(vec.length() >= len); + + Vector numElements(cx); + + /* MergeSort uses the upper half as scratch space. */ + if (!numElements.resize(2 * len)) { + return false; + } + + /* Convert Values to numerics. */ + for (size_t i = 0; i < len; i++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + double dv; + if (!ToNumber(cx, vec[i], &dv)) { + return false; + } + + numElements[i] = {dv, i}; + } + + /* Sort Values in vec numerically. */ + return MergeSortByKey(numElements.begin(), len, numElements.begin() + len, + SortComparatorNumerics[comp], vec); +} + +static bool FillWithUndefined(JSContext* cx, HandleObject obj, uint32_t start, + uint32_t count) { + MOZ_ASSERT(start < start + count, + "count > 0 and start + count doesn't overflow"); + + do { + if (ObjectMayHaveExtraIndexedProperties(obj)) { + break; + } + + NativeObject* nobj = &obj->as(); + if (!nobj->isExtensible()) { + break; + } + + if (obj->is() && !obj->as().lengthIsWritable() && + start + count >= obj->as().length()) { + break; + } + + DenseElementResult result = nobj->ensureDenseElements(cx, start, count); + if (result != DenseElementResult::Success) { + if (result == DenseElementResult::Failure) { + return false; + } + MOZ_ASSERT(result == DenseElementResult::Incomplete); + break; + } + + if (obj->is() && + start + count >= obj->as().length()) { + obj->as().setLength(start + count); + } + + for (uint32_t i = 0; i < count; i++) { + nobj->setDenseElement(start + i, UndefinedHandleValue); + } + + return true; + } while (false); + + for (uint32_t i = 0; i < count; i++) { + if (!CheckForInterrupt(cx) || + !SetArrayElement(cx, obj, start + i, UndefinedHandleValue)) { + return false; + } + } + + return true; +} + +static bool ArrayNativeSortImpl(JSContext* cx, Handle obj, + Handle fval, ComparatorMatchResult comp); + +bool js::intrinsic_ArrayNativeSort(JSContext* cx, unsigned argc, Value* vp) { + // This function is called from the self-hosted Array.prototype.sort + // implementation. It returns |true| if the array was sorted, otherwise it + // returns |false| to notify the self-hosted code to perform the sorting. + CallArgs args = CallArgsFromVp(argc, vp); + MOZ_ASSERT(args.length() == 1); + + HandleValue fval = args[0]; + MOZ_ASSERT(fval.isUndefined() || IsCallable(fval)); + + ComparatorMatchResult comp; + if (fval.isObject()) { + comp = MatchNumericComparator(cx, &fval.toObject()); + if (comp == Match_Failure) { + return false; + } + + if (comp == Match_None) { + // Non-optimized user supplied comparators perform much better when + // called from within a self-hosted sorting function. + args.rval().setBoolean(false); + return true; + } + } else { + comp = Match_None; + } + + Rooted obj(cx, &args.thisv().toObject()); + + if (!ArrayNativeSortImpl(cx, obj, fval, comp)) { + return false; + } + + args.rval().setBoolean(true); + return true; +} + +static bool ArrayNativeSortImpl(JSContext* cx, Handle obj, + Handle fval, + ComparatorMatchResult comp) { + uint64_t length; + if (!GetLengthPropertyInlined(cx, obj, &length)) { + return false; + } + if (length < 2) { + /* [] and [a] remain unchanged when sorted. */ + return true; + } + + if (length > UINT32_MAX) { + ReportAllocationOverflow(cx); + return false; + } + uint32_t len = uint32_t(length); + + /* + * We need a temporary array of 2 * len Value to hold the array elements + * and the scratch space for merge sort. Check that its size does not + * overflow size_t, which would allow for indexing beyond the end of the + * malloc'd vector. + */ +#if JS_BITS_PER_WORD == 32 + if (size_t(len) > size_t(-1) / (2 * sizeof(Value))) { + ReportAllocationOverflow(cx); + return false; + } +#endif + + size_t n, undefs; + { + Rooted> vec(cx, GCVector(cx)); + if (!vec.reserve(2 * size_t(len))) { + return false; + } + + /* + * By ECMA 262, 15.4.4.11, a property that does not exist (which we + * call a "hole") is always greater than an existing property with + * value undefined and that is always greater than any other property. + * Thus to sort holes and undefs we simply count them, sort the rest + * of elements, append undefs after them and then make holes after + * undefs. + */ + undefs = 0; + bool allStrings = true; + bool allInts = true; + RootedValue v(cx); + if (IsPackedArray(obj)) { + Handle array = obj.as(); + + for (uint32_t i = 0; i < len; i++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + v.set(array->getDenseElement(i)); + MOZ_ASSERT(!v.isMagic(JS_ELEMENTS_HOLE)); + if (v.isUndefined()) { + ++undefs; + continue; + } + vec.infallibleAppend(v); + allStrings = allStrings && v.isString(); + allInts = allInts && v.isInt32(); + } + } else { + for (uint32_t i = 0; i < len; i++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + bool hole; + if (!HasAndGetElement(cx, obj, i, &hole, &v)) { + return false; + } + if (hole) { + continue; + } + if (v.isUndefined()) { + ++undefs; + continue; + } + vec.infallibleAppend(v); + allStrings = allStrings && v.isString(); + allInts = allInts && v.isInt32(); + } + } + + /* + * If the array only contains holes, we're done. But if it contains + * undefs, those must be sorted to the front of the array. + */ + n = vec.length(); + if (n == 0 && undefs == 0) { + return true; + } + + /* Here len == n + undefs + number_of_holes. */ + if (comp == Match_None) { + /* + * Sort using the default comparator converting all elements to + * strings. + */ + if (allStrings) { + MOZ_ALWAYS_TRUE(vec.resize(n * 2)); + if (!MergeSort(vec.begin(), n, vec.begin() + n, + SortComparatorStrings(cx))) { + return false; + } + } else if (allInts) { + MOZ_ALWAYS_TRUE(vec.resize(n * 2)); + if (!MergeSort(vec.begin(), n, vec.begin() + n, + SortComparatorLexicographicInt32())) { + return false; + } + } else { + if (!SortLexicographically(cx, &vec, n)) { + return false; + } + } + } else { + if (allInts) { + MOZ_ALWAYS_TRUE(vec.resize(n * 2)); + if (!MergeSort(vec.begin(), n, vec.begin() + n, + SortComparatorInt32s[comp])) { + return false; + } + } else { + if (!SortNumerically(cx, &vec, n, comp)) { + return false; + } + } + } + + if (!SetArrayElements(cx, obj, 0, uint32_t(n), vec.begin())) { + return false; + } + } + + /* Set undefs that sorted after the rest of elements. */ + if (undefs > 0) { + if (!FillWithUndefined(cx, obj, n, undefs)) { + return false; + } + n += undefs; + } + + /* Re-create any holes that sorted to the end of the array. */ + for (uint32_t i = n; i < len; i++) { + if (!CheckForInterrupt(cx) || !DeletePropertyOrThrow(cx, obj, i)) { + return false; + } + } + return true; +} + +bool js::NewbornArrayPush(JSContext* cx, HandleObject obj, const Value& v) { + Handle arr = obj.as(); + + MOZ_ASSERT(!v.isMagic()); + MOZ_ASSERT(arr->lengthIsWritable()); + + uint32_t length = arr->length(); + MOZ_ASSERT(length <= arr->getDenseCapacity()); + + if (!arr->ensureElements(cx, length + 1)) { + return false; + } + + arr->setDenseInitializedLength(length + 1); + arr->setLength(length + 1); + arr->initDenseElement(length, v); + return true; +} + +// ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce +// 22.1.3.18 Array.prototype.push ( ...items ) +static bool array_push(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "push"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. + uint64_t length; + if (!GetLengthPropertyInlined(cx, obj, &length)) { + return false; + } + + if (!ObjectMayHaveExtraIndexedProperties(obj) && length <= UINT32_MAX) { + DenseElementResult result = + obj->as().setOrExtendDenseElements( + cx, uint32_t(length), args.array(), args.length()); + if (result != DenseElementResult::Incomplete) { + if (result == DenseElementResult::Failure) { + return false; + } + + uint32_t newlength = uint32_t(length) + args.length(); + args.rval().setNumber(newlength); + + // setOrExtendDenseElements takes care of updating the length for + // arrays. Handle updates to the length of non-arrays here. + if (!obj->is()) { + MOZ_ASSERT(obj->is()); + return SetLengthProperty(cx, obj, newlength); + } + + return true; + } + } + + // Step 5. + uint64_t newlength = length + args.length(); + if (newlength >= uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_TOO_LONG_ARRAY); + return false; + } + + // Steps 3-6. + if (!SetArrayElements(cx, obj, length, args.length(), args.array())) { + return false; + } + + // Steps 7-8. + args.rval().setNumber(double(newlength)); + return SetLengthProperty(cx, obj, newlength); +} + +// ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce +// 22.1.3.17 Array.prototype.pop ( ) +bool js::array_pop(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "pop"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. + uint64_t index; + if (!GetLengthPropertyInlined(cx, obj, &index)) { + return false; + } + + // Steps 3-4. + if (index == 0) { + // Step 3.b. + args.rval().setUndefined(); + } else { + // Steps 4.a-b. + index--; + + // Steps 4.c, 4.f. + if (!GetArrayElement(cx, obj, index, args.rval())) { + return false; + } + + // Steps 4.d. + if (!DeletePropertyOrThrow(cx, obj, index)) { + return false; + } + } + + // Steps 3.a, 4.e. + return SetLengthProperty(cx, obj, index); +} + +void js::ArrayShiftMoveElements(ArrayObject* arr) { + AutoUnsafeCallWithABI unsafe; + MOZ_ASSERT(arr->isExtensible()); + MOZ_ASSERT(arr->lengthIsWritable()); + MOZ_ASSERT(IsPackedArray(arr)); + MOZ_ASSERT(!arr->denseElementsHaveMaybeInIterationFlag()); + + size_t initlen = arr->getDenseInitializedLength(); + MOZ_ASSERT(initlen > 0); + + if (!arr->tryShiftDenseElements(1)) { + arr->moveDenseElements(0, 1, initlen - 1); + arr->setDenseInitializedLength(initlen - 1); + } + + MOZ_ASSERT(arr->getDenseInitializedLength() == initlen - 1); + arr->setLength(initlen - 1); +} + +static inline void SetInitializedLength(JSContext* cx, NativeObject* obj, + size_t initlen) { + MOZ_ASSERT(obj->isExtensible()); + + size_t oldInitlen = obj->getDenseInitializedLength(); + obj->setDenseInitializedLength(initlen); + if (initlen < oldInitlen) { + obj->shrinkElements(cx, initlen); + } +} + +static DenseElementResult ArrayShiftDenseKernel(JSContext* cx, HandleObject obj, + MutableHandleValue rval) { + if (!IsPackedArray(obj) && ObjectMayHaveExtraIndexedProperties(obj)) { + return DenseElementResult::Incomplete; + } + + Handle nobj = obj.as(); + if (nobj->denseElementsMaybeInIteration()) { + return DenseElementResult::Incomplete; + } + + if (!nobj->isExtensible()) { + return DenseElementResult::Incomplete; + } + + size_t initlen = nobj->getDenseInitializedLength(); + if (initlen == 0) { + return DenseElementResult::Incomplete; + } + + rval.set(nobj->getDenseElement(0)); + if (rval.isMagic(JS_ELEMENTS_HOLE)) { + rval.setUndefined(); + } + + if (nobj->tryShiftDenseElements(1)) { + return DenseElementResult::Success; + } + + nobj->moveDenseElements(0, 1, initlen - 1); + + SetInitializedLength(cx, nobj, initlen - 1); + return DenseElementResult::Success; +} + +// ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce +// 22.1.3.22 Array.prototype.shift ( ) +static bool array_shift(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "shift"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + // Step 3. + if (len == 0) { + // Step 3.a. + if (!SetLengthProperty(cx, obj, uint32_t(0))) { + return false; + } + + // Step 3.b. + args.rval().setUndefined(); + return true; + } + + uint64_t newlen = len - 1; + + /* Fast paths. */ + uint64_t startIndex; + DenseElementResult result = ArrayShiftDenseKernel(cx, obj, args.rval()); + if (result != DenseElementResult::Incomplete) { + if (result == DenseElementResult::Failure) { + return false; + } + + if (len <= UINT32_MAX) { + return SetLengthProperty(cx, obj, newlen); + } + + startIndex = UINT32_MAX - 1; + } else { + // Steps 4, 9. + if (!GetElement(cx, obj, 0, args.rval())) { + return false; + } + + startIndex = 0; + } + + // Steps 5-6. + RootedValue value(cx); + for (uint64_t i = startIndex; i < newlen; i++) { + if (!CheckForInterrupt(cx)) { + return false; + } + bool hole; + if (!HasAndGetElement(cx, obj, i + 1, &hole, &value)) { + return false; + } + if (hole) { + if (!DeletePropertyOrThrow(cx, obj, i)) { + return false; + } + } else { + if (!SetArrayElement(cx, obj, i, value)) { + return false; + } + } + } + + // Step 7. + if (!DeletePropertyOrThrow(cx, obj, newlen)) { + return false; + } + + // Step 8. + return SetLengthProperty(cx, obj, newlen); +} + +// ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce +// 22.1.3.29 Array.prototype.unshift ( ...items ) +static bool array_unshift(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "unshift"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. + uint64_t length; + if (!GetLengthPropertyInlined(cx, obj, &length)) { + return false; + } + + // Steps 3-4. + if (args.length() > 0) { + bool optimized = false; + do { + if (length > UINT32_MAX) { + break; + } + if (ObjectMayHaveExtraIndexedProperties(obj)) { + break; + } + NativeObject* nobj = &obj->as(); + if (nobj->denseElementsMaybeInIteration()) { + break; + } + if (!nobj->isExtensible()) { + break; + } + if (nobj->is() && + !nobj->as().lengthIsWritable()) { + break; + } + if (!nobj->tryUnshiftDenseElements(args.length())) { + DenseElementResult result = + nobj->ensureDenseElements(cx, uint32_t(length), args.length()); + if (result != DenseElementResult::Success) { + if (result == DenseElementResult::Failure) { + return false; + } + MOZ_ASSERT(result == DenseElementResult::Incomplete); + break; + } + if (length > 0) { + nobj->moveDenseElements(args.length(), 0, uint32_t(length)); + } + } + for (uint32_t i = 0; i < args.length(); i++) { + nobj->setDenseElement(i, args[i]); + } + optimized = true; + } while (false); + + if (!optimized) { + if (length > 0) { + uint64_t last = length; + uint64_t upperIndex = last + args.length(); + + // Step 4.a. + if (upperIndex >= uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_TOO_LONG_ARRAY); + return false; + } + + // Steps 4.b-c. + RootedValue value(cx); + do { + --last; + --upperIndex; + if (!CheckForInterrupt(cx)) { + return false; + } + bool hole; + if (!HasAndGetElement(cx, obj, last, &hole, &value)) { + return false; + } + if (hole) { + if (!DeletePropertyOrThrow(cx, obj, upperIndex)) { + return false; + } + } else { + if (!SetArrayElement(cx, obj, upperIndex, value)) { + return false; + } + } + } while (last != 0); + } + + // Steps 4.d-f. + /* Copy from args to the bottom of the array. */ + if (!SetArrayElements(cx, obj, 0, args.length(), args.array())) { + return false; + } + } + } + + // Step 5. + uint64_t newlength = length + args.length(); + if (!SetLengthProperty(cx, obj, newlength)) { + return false; + } + + // Step 6. + /* Follow Perl by returning the new array length. */ + args.rval().setNumber(double(newlength)); + return true; +} + +enum class ArrayAccess { Read, Write }; + +/* + * Returns true if this is a dense array whose properties ending at |endIndex| + * (exclusive) may be accessed (get, set, delete) directly through its + * contiguous vector of elements without fear of getters, setters, etc. along + * the prototype chain, or of enumerators requiring notification of + * modifications. + */ +template +static bool CanOptimizeForDenseStorage(HandleObject arr, uint64_t endIndex) { + /* If the desired properties overflow dense storage, we can't optimize. */ + if (endIndex > UINT32_MAX) { + return false; + } + + if (Access == ArrayAccess::Read) { + /* + * Dense storage read access is possible for any packed array as long + * as we only access properties within the initialized length. In all + * other cases we need to ensure there are no other indexed properties + * on this object or on the prototype chain. Callers are required to + * clamp the read length, so it doesn't exceed the initialized length. + */ + if (IsPackedArray(arr) && + endIndex <= arr->as().getDenseInitializedLength()) { + return true; + } + return !ObjectMayHaveExtraIndexedProperties(arr); + } + + /* There's no optimizing possible if it's not an array. */ + if (!arr->is()) { + return false; + } + + /* If the length is non-writable, always pick the slow path */ + if (!arr->as().lengthIsWritable()) { + return false; + } + + /* Also pick the slow path if the object is non-extensible. */ + if (!arr->as().isExtensible()) { + return false; + } + + /* Also pick the slow path if the object is being iterated over. */ + if (arr->as().denseElementsMaybeInIteration()) { + return false; + } + + /* Or we attempt to write to indices outside the initialized length. */ + if (endIndex > arr->as().getDenseInitializedLength()) { + return false; + } + + /* + * Now watch out for getters and setters along the prototype chain or in + * other indexed properties on the object. Packed arrays don't have any + * other indexed properties by definition. + */ + return IsPackedArray(arr) || !ObjectMayHaveExtraIndexedProperties(arr); +} + +static ArrayObject* CopyDenseArrayElements(JSContext* cx, + Handle obj, + uint32_t begin, uint32_t count) { + size_t initlen = obj->getDenseInitializedLength(); + MOZ_ASSERT(initlen <= UINT32_MAX, + "initialized length shouldn't exceed UINT32_MAX"); + uint32_t newlength = 0; + if (initlen > begin) { + newlength = std::min(initlen - begin, count); + } + + ArrayObject* narr = NewDenseFullyAllocatedArray(cx, newlength); + if (!narr) { + return nullptr; + } + + MOZ_ASSERT(count >= narr->length()); + narr->setLength(count); + + if (newlength > 0) { + narr->initDenseElements(obj, begin, newlength); + } + + return narr; +} + +static bool CopyArrayElements(JSContext* cx, HandleObject obj, uint64_t begin, + uint64_t count, Handle result) { + MOZ_ASSERT(result->length() == count); + + uint64_t startIndex = 0; + RootedValue value(cx); + + // Use dense storage for new indexed properties where possible. + { + uint32_t index = 0; + uint32_t limit = std::min(count, PropertyKey::IntMax); + for (; index < limit; index++) { + bool hole; + if (!CheckForInterrupt(cx) || + !HasAndGetElement(cx, obj, begin + index, &hole, &value)) { + return false; + } + + if (!hole) { + DenseElementResult edResult = result->ensureDenseElements(cx, index, 1); + if (edResult != DenseElementResult::Success) { + if (edResult == DenseElementResult::Failure) { + return false; + } + + MOZ_ASSERT(edResult == DenseElementResult::Incomplete); + if (!DefineDataElement(cx, result, index, value)) { + return false; + } + + break; + } + result->setDenseElement(index, value); + } + } + startIndex = index + 1; + } + + // Copy any remaining elements. + for (uint64_t i = startIndex; i < count; i++) { + bool hole; + if (!CheckForInterrupt(cx) || + !HasAndGetElement(cx, obj, begin + i, &hole, &value)) { + return false; + } + + if (!hole && !DefineArrayElement(cx, result, i, value)) { + return false; + } + } + return true; +} + +// Helpers for array_splice_impl() and array_to_spliced() +// +// Initialize variables common to splice() and toSpliced(): +// - GetActualStart() returns the index at which to start deleting elements. +// - GetItemCount() returns the number of new elements being added. +// - GetActualDeleteCount() returns the number of elements being deleted. +static bool GetActualStart(JSContext* cx, HandleValue start, uint64_t len, + uint64_t* result) { + MOZ_ASSERT(len < DOUBLE_INTEGRAL_PRECISION_LIMIT); + + // Steps from proposal: https://github.com/tc39/proposal-change-array-by-copy + // Array.prototype.toSpliced() + + // Step 3. Let relativeStart be ? ToIntegerOrInfinity(start). + double relativeStart; + if (!ToInteger(cx, start, &relativeStart)) { + return false; + } + + // Steps 4-5. If relativeStart is -∞, let actualStart be 0. + // Else if relativeStart < 0, let actualStart be max(len + relativeStart, 0). + if (relativeStart < 0) { + *result = uint64_t(std::max(double(len) + relativeStart, 0.0)); + } else { + // Step 6. Else, let actualStart be min(relativeStart, len). + *result = uint64_t(std::min(relativeStart, double(len))); + } + return true; +} + +static uint32_t GetItemCount(const CallArgs& args) { + if (args.length() < 2) { + return 0; + } + return (args.length() - 2); +} + +static bool GetActualDeleteCount(JSContext* cx, const CallArgs& args, + HandleObject obj, uint64_t len, + uint64_t actualStart, uint32_t insertCount, + uint64_t* actualDeleteCount) { + MOZ_ASSERT(len < DOUBLE_INTEGRAL_PRECISION_LIMIT); + MOZ_ASSERT(actualStart <= len); + MOZ_ASSERT(insertCount == GetItemCount(args)); + + // Steps from proposal: https://github.com/tc39/proposal-change-array-by-copy + // Array.prototype.toSpliced() + + if (args.length() < 1) { + // Step 8. If start is not present, then let actualDeleteCount be 0. + *actualDeleteCount = 0; + } else if (args.length() < 2) { + // Step 9. Else if deleteCount is not present, then let actualDeleteCount be + // len - actualStart. + *actualDeleteCount = len - actualStart; + } else { + // Step 10.a. Else, let dc be toIntegerOrInfinity(deleteCount). + double deleteCount; + if (!ToInteger(cx, args.get(1), &deleteCount)) { + return false; + } + + // Step 10.b. Let actualDeleteCount be the result of clamping dc between 0 + // and len - actualStart. + *actualDeleteCount = uint64_t( + std::min(std::max(0.0, deleteCount), double(len - actualStart))); + MOZ_ASSERT(*actualDeleteCount <= len); + + // Step 11. Let newLen be len + insertCount - actualDeleteCount. + // Step 12. If newLen > 2^53 - 1, throw a TypeError exception. + if (len + uint64_t(insertCount) - *actualDeleteCount >= + uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_TOO_LONG_ARRAY); + return false; + } + } + MOZ_ASSERT(actualStart + *actualDeleteCount <= len); + + return true; +} + +static bool array_splice_impl(JSContext* cx, unsigned argc, Value* vp, + bool returnValueIsUsed) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "splice"); + CallArgs args = CallArgsFromVp(argc, vp); + + /* Step 1. */ + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + /* Step 2. */ + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + /* Steps 3-6. */ + /* actualStart is the index after which elements will be + deleted and/or new elements will be added */ + uint64_t actualStart; + if (!GetActualStart(cx, args.get(0), len, &actualStart)) { + return false; + } + + /* Steps 7-10.*/ + /* itemCount is the number of elements being added */ + uint32_t itemCount = GetItemCount(args); + + /* actualDeleteCount is the number of elements being deleted */ + uint64_t actualDeleteCount; + if (!GetActualDeleteCount(cx, args, obj, len, actualStart, itemCount, + &actualDeleteCount)) { + return false; + } + + RootedObject arr(cx); + if (IsArraySpecies(cx, obj)) { + if (actualDeleteCount > UINT32_MAX) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return false; + } + uint32_t count = uint32_t(actualDeleteCount); + + if (CanOptimizeForDenseStorage(obj, + actualStart + count)) { + MOZ_ASSERT(actualStart <= UINT32_MAX, + "if actualStart + count <= UINT32_MAX, then actualStart <= " + "UINT32_MAX"); + if (returnValueIsUsed) { + /* Steps 11-13. */ + arr = CopyDenseArrayElements(cx, obj.as(), + uint32_t(actualStart), count); + if (!arr) { + return false; + } + } + } else { + /* Step 11. */ + arr = NewDenseFullyAllocatedArray(cx, count); + if (!arr) { + return false; + } + + /* Steps 12-13. */ + if (!CopyArrayElements(cx, obj, actualStart, count, + arr.as())) { + return false; + } + } + } else { + /* Step 11. */ + if (!ArraySpeciesCreate(cx, obj, actualDeleteCount, &arr)) { + return false; + } + + /* Steps 12-13. */ + RootedValue fromValue(cx); + for (uint64_t k = 0; k < actualDeleteCount; k++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + /* Steps 13.b, 13.c.i. */ + bool hole; + if (!HasAndGetElement(cx, obj, actualStart + k, &hole, &fromValue)) { + return false; + } + + /* Step 13.c. */ + if (!hole) { + /* Step 13.c.ii. */ + if (!DefineArrayElement(cx, arr, k, fromValue)) { + return false; + } + } + } + + /* Step 14. */ + if (!SetLengthProperty(cx, arr, actualDeleteCount)) { + return false; + } + } + + /* Step 15. */ + uint64_t finalLength = len - actualDeleteCount + itemCount; + + if (itemCount < actualDeleteCount) { + /* Step 16: the array is being shrunk. */ + uint64_t sourceIndex = actualStart + actualDeleteCount; + uint64_t targetIndex = actualStart + itemCount; + + if (CanOptimizeForDenseStorage(obj, len)) { + MOZ_ASSERT(sourceIndex <= len && targetIndex <= len && len <= UINT32_MAX, + "sourceIndex and targetIndex are uint32 array indices"); + MOZ_ASSERT(finalLength < len, "finalLength is strictly less than len"); + MOZ_ASSERT(obj->is()); + + /* Step 16.b. */ + Handle arr = obj.as(); + if (targetIndex != 0 || !arr->tryShiftDenseElements(sourceIndex)) { + arr->moveDenseElements(uint32_t(targetIndex), uint32_t(sourceIndex), + uint32_t(len - sourceIndex)); + } + + /* Steps 20. */ + SetInitializedLength(cx, arr, finalLength); + } else { + /* + * This is all very slow if the length is very large. We don't yet + * have the ability to iterate in sorted order, so we just do the + * pessimistic thing and let CheckForInterrupt handle the + * fallout. + */ + + /* Step 16. */ + RootedValue fromValue(cx); + for (uint64_t from = sourceIndex, to = targetIndex; from < len; + from++, to++) { + /* Steps 15.b.i-ii (implicit). */ + + if (!CheckForInterrupt(cx)) { + return false; + } + + /* Steps 16.b.iii-v */ + bool hole; + if (!HasAndGetElement(cx, obj, from, &hole, &fromValue)) { + return false; + } + + if (hole) { + if (!DeletePropertyOrThrow(cx, obj, to)) { + return false; + } + } else { + if (!SetArrayElement(cx, obj, to, fromValue)) { + return false; + } + } + } + + /* Step 16d. */ + if (!DeletePropertiesOrThrow(cx, obj, len, finalLength)) { + return false; + } + } + } else if (itemCount > actualDeleteCount) { + MOZ_ASSERT(actualDeleteCount <= UINT32_MAX); + uint32_t deleteCount = uint32_t(actualDeleteCount); + + /* Step 17. */ + + // Fast path for when we can simply extend and move the dense elements. + auto extendElements = [len, itemCount, deleteCount](JSContext* cx, + HandleObject obj) { + if (!obj->is()) { + return DenseElementResult::Incomplete; + } + if (len > UINT32_MAX) { + return DenseElementResult::Incomplete; + } + + // Ensure there are no getters/setters or other extra indexed properties. + if (ObjectMayHaveExtraIndexedProperties(obj)) { + return DenseElementResult::Incomplete; + } + + // Watch out for arrays with non-writable length or non-extensible arrays. + // In these cases `splice` may have to throw an exception so we let the + // slow path handle it. We also have to ensure we maintain the + // |capacity <= initializedLength| invariant for such objects. See + // NativeObject::shrinkCapacityToInitializedLength. + Handle arr = obj.as(); + if (!arr->lengthIsWritable() || !arr->isExtensible()) { + return DenseElementResult::Incomplete; + } + + // Also use the slow path if there might be an active for-in iterator so + // that we don't have to worry about suppressing deleted properties. + if (arr->denseElementsMaybeInIteration()) { + return DenseElementResult::Incomplete; + } + + return arr->ensureDenseElements(cx, uint32_t(len), + itemCount - deleteCount); + }; + + DenseElementResult res = extendElements(cx, obj); + if (res == DenseElementResult::Failure) { + return false; + } + if (res == DenseElementResult::Success) { + MOZ_ASSERT(finalLength <= UINT32_MAX); + MOZ_ASSERT((actualStart + actualDeleteCount) <= len && len <= UINT32_MAX, + "start and deleteCount are uint32 array indices"); + MOZ_ASSERT(actualStart + itemCount <= UINT32_MAX, + "can't overflow because |len - actualDeleteCount + itemCount " + "<= UINT32_MAX| " + "and |actualStart <= len - actualDeleteCount| are both true"); + uint32_t start = uint32_t(actualStart); + uint32_t length = uint32_t(len); + + Handle arr = obj.as(); + arr->moveDenseElements(start + itemCount, start + deleteCount, + length - (start + deleteCount)); + + /* Step 20. */ + SetInitializedLength(cx, arr, finalLength); + } else { + MOZ_ASSERT(res == DenseElementResult::Incomplete); + + RootedValue fromValue(cx); + for (uint64_t k = len - actualDeleteCount; k > actualStart; k--) { + if (!CheckForInterrupt(cx)) { + return false; + } + + /* Step 17.b.i. */ + uint64_t from = k + actualDeleteCount - 1; + + /* Step 17.b.ii. */ + uint64_t to = k + itemCount - 1; + + /* Steps 17.b.iii, 17.b.iv.1. */ + bool hole; + if (!HasAndGetElement(cx, obj, from, &hole, &fromValue)) { + return false; + } + + /* Steps 17.b.iv. */ + if (hole) { + /* Step 17.b.v.1. */ + if (!DeletePropertyOrThrow(cx, obj, to)) { + return false; + } + } else { + /* Step 17.b.iv.2. */ + if (!SetArrayElement(cx, obj, to, fromValue)) { + return false; + } + } + } + } + } + + Value* items = args.array() + 2; + + /* Steps 18-19. */ + if (!SetArrayElements(cx, obj, actualStart, itemCount, items)) { + return false; + } + + /* Step 20. */ + if (!SetLengthProperty(cx, obj, finalLength)) { + return false; + } + + /* Step 21. */ + if (returnValueIsUsed) { + args.rval().setObject(*arr); + } + + return true; +} + +/* ES 2016 draft Mar 25, 2016 22.1.3.26. */ +static bool array_splice(JSContext* cx, unsigned argc, Value* vp) { + return array_splice_impl(cx, argc, vp, true); +} + +static bool array_splice_noRetVal(JSContext* cx, unsigned argc, Value* vp) { + return array_splice_impl(cx, argc, vp, false); +} + +static void CopyDenseElementsFillHoles(ArrayObject* arr, NativeObject* nobj, + uint32_t length) { + // Ensure |arr| is an empty array with sufficient capacity. + MOZ_ASSERT(arr->getDenseInitializedLength() == 0); + MOZ_ASSERT(arr->getDenseCapacity() >= length); + MOZ_ASSERT(length > 0); + + uint32_t count = std::min(nobj->getDenseInitializedLength(), length); + + if (count > 0) { + if (nobj->denseElementsArePacked()) { + // Copy all dense elements when no holes are present. + arr->initDenseElements(nobj, 0, count); + } else { + arr->setDenseInitializedLength(count); + + // Handle each element separately to filter out holes. + for (uint32_t i = 0; i < count; i++) { + Value val = nobj->getDenseElement(i); + if (val.isMagic(JS_ELEMENTS_HOLE)) { + val = UndefinedValue(); + } + arr->initDenseElement(i, val); + } + } + } + + // Fill trailing holes with undefined. + if (count < length) { + arr->setDenseInitializedLength(length); + + for (uint32_t i = count; i < length; i++) { + arr->initDenseElement(i, UndefinedValue()); + } + } + + // Ensure |length| elements have been copied and no holes are present. + MOZ_ASSERT(arr->getDenseInitializedLength() == length); + MOZ_ASSERT(arr->denseElementsArePacked()); +} + +// https://github.com/tc39/proposal-change-array-by-copy +// Array.prototype.toSpliced() +static bool array_toSpliced(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "toSpliced"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. Let O be ? ToObject(this value). + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. Let len be ? LengthOfArrayLike(O). + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + // Steps 3-6. + // |actualStart| is the index after which elements will be deleted and/or + // new elements will be added + uint64_t actualStart; + if (!GetActualStart(cx, args.get(0), len, &actualStart)) { + return false; + } + MOZ_ASSERT(actualStart <= len); + + // Step 7. Let insertCount be the number of elements in items. + uint32_t insertCount = GetItemCount(args); + + // Steps 8-10. + // actualDeleteCount is the number of elements being deleted + uint64_t actualDeleteCount; + if (!GetActualDeleteCount(cx, args, obj, len, actualStart, insertCount, + &actualDeleteCount)) { + return false; + } + MOZ_ASSERT(actualStart + actualDeleteCount <= len); + + // Step 11. Let newLen be len + insertCount - actualDeleteCount. + uint64_t newLen = len + insertCount - actualDeleteCount; + + // Step 12 handled by GetActualDeleteCount(). + MOZ_ASSERT(newLen < DOUBLE_INTEGRAL_PRECISION_LIMIT); + MOZ_ASSERT(actualStart <= newLen, + "if |actualStart + actualDeleteCount <= len| and " + "|newLen = len + insertCount - actualDeleteCount|, then " + "|actualStart <= newLen|"); + + // ArrayCreate, step 1. + if (newLen > UINT32_MAX) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return false; + } + + // Step 13. Let A be ? ArrayCreate(𝔽(newLen)). + Rooted arr(cx, + NewDensePartlyAllocatedArray(cx, uint32_t(newLen))); + if (!arr) { + return false; + } + + // Steps 14-19 optimized for dense elements. + if (CanOptimizeForDenseStorage(obj, len)) { + MOZ_ASSERT(len <= UINT32_MAX); + MOZ_ASSERT(actualDeleteCount <= UINT32_MAX, + "if |actualStart + actualDeleteCount <= len| and " + "|len <= UINT32_MAX|, then |actualDeleteCount <= UINT32_MAX|"); + + uint32_t length = uint32_t(len); + uint32_t newLength = uint32_t(newLen); + uint32_t start = uint32_t(actualStart); + uint32_t deleteCount = uint32_t(actualDeleteCount); + + auto nobj = obj.as(); + + ArrayObject* arr = NewDenseFullyAllocatedArray(cx, newLength); + if (!arr) { + return false; + } + arr->setLength(newLength); + + // Below code doesn't handle the case when the storage has to grow, + // therefore the capacity must fit for at least |newLength| elements. + MOZ_ASSERT(arr->getDenseCapacity() >= newLength); + + if (deleteCount == 0 && insertCount == 0) { + // Copy the array when we don't have to remove or insert any elements. + if (newLength > 0) { + CopyDenseElementsFillHoles(arr, nobj, newLength); + } + } else { + // Copy nobj[0..start] to arr[0..start]. + if (start > 0) { + CopyDenseElementsFillHoles(arr, nobj, start); + } + + // Insert |items| into arr[start..(start + insertCount)]. + if (insertCount > 0) { + auto items = HandleValueArray::subarray(args, 2, insertCount); + + // Prefer |initDenseElements| because it's faster. + if (arr->getDenseInitializedLength() == 0) { + arr->initDenseElements(items.begin(), items.length()); + } else { + arr->ensureDenseInitializedLength(start, items.length()); + arr->copyDenseElements(start, items.begin(), items.length()); + } + } + + uint32_t fromIndex = start + deleteCount; + uint32_t toIndex = start + insertCount; + MOZ_ASSERT((length - fromIndex) == (newLength - toIndex), + "Copies all remaining elements to the end"); + + // Copy nobj[(start + deleteCount)..length] to + // arr[(start + insertCount)..newLength]. + if (fromIndex < length) { + uint32_t end = std::min(length, nobj->getDenseInitializedLength()); + if (fromIndex < end) { + uint32_t count = end - fromIndex; + if (nobj->denseElementsArePacked()) { + // Copy all dense elements when no holes are present. + const Value* src = nobj->getDenseElements() + fromIndex; + arr->ensureDenseInitializedLength(toIndex, count); + arr->copyDenseElements(toIndex, src, count); + fromIndex += count; + toIndex += count; + } else { + arr->setDenseInitializedLength(toIndex + count); + + // Handle each element separately to filter out holes. + for (uint32_t i = 0; i < count; i++) { + Value val = nobj->getDenseElement(fromIndex++); + if (val.isMagic(JS_ELEMENTS_HOLE)) { + val = UndefinedValue(); + } + arr->initDenseElement(toIndex++, val); + } + } + } + + arr->setDenseInitializedLength(newLength); + + // Fill trailing holes with undefined. + while (fromIndex < length) { + arr->initDenseElement(toIndex++, UndefinedValue()); + fromIndex++; + } + } + + MOZ_ASSERT(fromIndex == length); + MOZ_ASSERT(toIndex == newLength); + } + + // Ensure the result array is packed and has the correct length. + MOZ_ASSERT(IsPackedArray(arr)); + MOZ_ASSERT(arr->length() == newLength); + + args.rval().setObject(*arr); + return true; + } + + // Copy everything before start + + // Step 14. Let i be 0. + uint32_t i = 0; + + // Step 15. Let r be actualStart + actualDeleteCount. + uint64_t r = actualStart + actualDeleteCount; + + // Step 16. Repeat while i < actualStart, + RootedValue iValue(cx); + while (i < uint32_t(actualStart)) { + if (!CheckForInterrupt(cx)) { + return false; + } + + // Skip Step 16.a. Let Pi be ! ToString(𝔽(i)). + + // Step 16.b. Let iValue be ? Get(O, Pi). + if (!GetArrayElement(cx, obj, i, &iValue)) { + return false; + } + + // Step 16.c. Perform ! CreateDataPropertyOrThrow(A, Pi, iValue). + if (!DefineArrayElement(cx, arr, i, iValue)) { + return false; + } + + // Step 16.d. Set i to i + 1. + i++; + } + + // Result array now contains all elements before start. + + // Copy new items + if (insertCount > 0) { + HandleValueArray items = HandleValueArray::subarray(args, 2, insertCount); + + // Fast-path to copy all items in one go. + DenseElementResult result = + arr->setOrExtendDenseElements(cx, i, items.begin(), items.length()); + if (result == DenseElementResult::Failure) { + return false; + } + + if (result == DenseElementResult::Success) { + i += items.length(); + } else { + MOZ_ASSERT(result == DenseElementResult::Incomplete); + + // Step 17. For each element E of items, do + for (size_t j = 0; j < items.length(); j++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + // Skip Step 17.a. Let Pi be ! ToString(𝔽(i)). + + // Step 17.b. Perform ! CreateDataPropertyOrThrow(A, Pi, E). + if (!DefineArrayElement(cx, arr, i, items[j])) { + return false; + } + + // Step 17.c. Set i to i + 1. + i++; + } + } + } + + // Copy items after new items + // Step 18. Repeat, while i < newLen, + RootedValue fromValue(cx); + while (i < uint32_t(newLen)) { + if (!CheckForInterrupt(cx)) { + return false; + } + + // Skip Step 18.a. Let Pi be ! ToString(𝔽(i)). + // Skip Step 18.b. Let from be ! ToString(𝔽(r)). + + // Step 18.c. Let fromValue be ? Get(O, from). */ + if (!GetArrayElement(cx, obj, r, &fromValue)) { + return false; + } + + // Step 18.d. Perform ! CreateDataPropertyOrThrow(A, Pi, fromValue). + if (!DefineArrayElement(cx, arr, i, fromValue)) { + return false; + } + + // Step 18.e. Set i to i + 1. + i++; + + // Step 18.f. Set r to r + 1. + r++; + } + + // Step 19. Return A. + args.rval().setObject(*arr); + return true; +} + +// https://github.com/tc39/proposal-change-array-by-copy +// Array.prototype.with() +static bool array_with(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "with"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. Let O be ? ToObject(this value). + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. Let len be ? LengthOfArrayLike(O). + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + // Step 3. Let relativeIndex be ? ToIntegerOrInfinity(index). + double relativeIndex; + if (!ToInteger(cx, args.get(0), &relativeIndex)) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_INDEX); + return false; + } + + // Step 4. If relativeIndex >= 0, let actualIndex be relativeIndex. + double actualIndex = relativeIndex; + if (actualIndex < 0) { + // Step 5. Else, let actualIndex be len + relativeIndex. + actualIndex = double(len) + actualIndex; + } + + // Step 6. If actualIndex >= len or actualIndex < 0, throw a RangeError + // exception. + if (actualIndex < 0 || actualIndex >= double(len)) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_INDEX); + return false; + } + + // ArrayCreate, step 1. + if (len > UINT32_MAX) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return false; + } + uint32_t length = uint32_t(len); + + MOZ_ASSERT(length > 0); + MOZ_ASSERT(0 <= actualIndex && actualIndex < UINT32_MAX); + + // Steps 7-10 optimized for dense elements. + if (CanOptimizeForDenseStorage(obj, length)) { + auto nobj = obj.as(); + + ArrayObject* arr = NewDenseFullyAllocatedArray(cx, length); + if (!arr) { + return false; + } + arr->setLength(length); + + CopyDenseElementsFillHoles(arr, nobj, length); + + // Replace the value at |actualIndex|. + arr->setDenseElement(uint32_t(actualIndex), args.get(1)); + + // Ensure the result array is packed and has the correct length. + MOZ_ASSERT(IsPackedArray(arr)); + MOZ_ASSERT(arr->length() == length); + + args.rval().setObject(*arr); + return true; + } + + // Step 7. Let A be ? ArrayCreate(𝔽(len)). + RootedObject arr(cx, NewDensePartlyAllocatedArray(cx, length)); + if (!arr) { + return false; + } + + // Steps 8-9. Let k be 0; Repeat, while k < len, + RootedValue fromValue(cx); + for (uint32_t k = 0; k < length; k++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + // Skip Step 9.a. Let Pk be ! ToString(𝔽(k)). + + // Step 9.b. If k is actualIndex, let fromValue be value. + if (k == uint32_t(actualIndex)) { + fromValue = args.get(1); + } else { + // Step 9.c. Else, let fromValue be ? Get(O, 𝔽(k)). + if (!GetArrayElement(cx, obj, k, &fromValue)) { + return false; + } + } + + // Step 9.d. Perform ! CreateDataPropertyOrThrow(A, 𝔽(k), fromValue). + if (!DefineArrayElement(cx, arr, k, fromValue)) { + return false; + } + } + + // Step 10. Return A. + args.rval().setObject(*arr); + return true; +} + +struct SortComparatorIndexes { + bool operator()(uint32_t a, uint32_t b, bool* lessOrEqualp) { + *lessOrEqualp = (a <= b); + return true; + } +}; + +// Returns all indexed properties in the range [begin, end) found on |obj| or +// its proto chain. This function does not handle proxies, objects with +// resolve/lookupProperty hooks or indexed getters, as those can introduce +// new properties. In those cases, *success is set to |false|. +static bool GetIndexedPropertiesInRange(JSContext* cx, HandleObject obj, + uint64_t begin, uint64_t end, + Vector& indexes, + bool* success) { + *success = false; + + // TODO: Add IdIsIndex with support for large indices. + if (end > UINT32_MAX) { + return true; + } + MOZ_ASSERT(begin <= UINT32_MAX); + + // First, look for proxies or class hooks that can introduce extra + // properties. + JSObject* pobj = obj; + do { + if (!pobj->is() || pobj->getClass()->getResolve() || + pobj->getOpsLookupProperty()) { + return true; + } + } while ((pobj = pobj->staticPrototype())); + + // Collect indexed property names. + pobj = obj; + do { + // Append dense elements. + NativeObject* nativeObj = &pobj->as(); + uint32_t initLen = nativeObj->getDenseInitializedLength(); + for (uint32_t i = begin; i < initLen && i < end; i++) { + if (nativeObj->getDenseElement(i).isMagic(JS_ELEMENTS_HOLE)) { + continue; + } + if (!indexes.append(i)) { + return false; + } + } + + // Append typed array elements. + if (nativeObj->is()) { + size_t len = nativeObj->as().length(); + for (uint32_t i = begin; i < len && i < end; i++) { + if (!indexes.append(i)) { + return false; + } + } + } + + // Append sparse elements. + if (nativeObj->isIndexed()) { + ShapePropertyIter iter(nativeObj->shape()); + for (; !iter.done(); iter++) { + jsid id = iter->key(); + uint32_t i; + if (!IdIsIndex(id, &i)) { + continue; + } + + if (!(begin <= i && i < end)) { + continue; + } + + // Watch out for getters, they can add new properties. + if (!iter->isDataProperty()) { + return true; + } + + if (!indexes.append(i)) { + return false; + } + } + } + } while ((pobj = pobj->staticPrototype())); + + // Sort the indexes. + Vector tmp(cx); + size_t n = indexes.length(); + if (!tmp.resize(n)) { + return false; + } + if (!MergeSort(indexes.begin(), n, tmp.begin(), SortComparatorIndexes())) { + return false; + } + + // Remove duplicates. + if (!indexes.empty()) { + uint32_t last = 0; + for (size_t i = 1, len = indexes.length(); i < len; i++) { + uint32_t elem = indexes[i]; + if (indexes[last] != elem) { + last++; + indexes[last] = elem; + } + } + if (!indexes.resize(last + 1)) { + return false; + } + } + + *success = true; + return true; +} + +static bool SliceSparse(JSContext* cx, HandleObject obj, uint64_t begin, + uint64_t end, Handle result) { + MOZ_ASSERT(begin <= end); + + Vector indexes(cx); + bool success; + if (!GetIndexedPropertiesInRange(cx, obj, begin, end, indexes, &success)) { + return false; + } + + if (!success) { + return CopyArrayElements(cx, obj, begin, end - begin, result); + } + + MOZ_ASSERT(end <= UINT32_MAX, + "indices larger than UINT32_MAX should be rejected by " + "GetIndexedPropertiesInRange"); + + RootedValue value(cx); + for (uint32_t index : indexes) { + MOZ_ASSERT(begin <= index && index < end); + + bool hole; + if (!HasAndGetElement(cx, obj, index, &hole, &value)) { + return false; + } + + if (!hole && + !DefineDataElement(cx, result, index - uint32_t(begin), value)) { + return false; + } + } + + return true; +} + +static JSObject* SliceArguments(JSContext* cx, Handle argsobj, + uint32_t begin, uint32_t count) { + MOZ_ASSERT(!argsobj->hasOverriddenLength() && + !argsobj->hasOverriddenElement()); + MOZ_ASSERT(begin + count <= argsobj->initialLength()); + + ArrayObject* result = NewDenseFullyAllocatedArray(cx, count); + if (!result) { + return nullptr; + } + result->setDenseInitializedLength(count); + + for (uint32_t index = 0; index < count; index++) { + const Value& v = argsobj->element(begin + index); + result->initDenseElement(index, v); + } + return result; +} + +template +static inline ArrayLength NormalizeSliceTerm(T value, ArrayLength length) { + if (value < 0) { + value += length; + if (value < 0) { + return 0; + } + } else if (double(value) > double(length)) { + return length; + } + return ArrayLength(value); +} + +static bool ArraySliceOrdinary(JSContext* cx, HandleObject obj, uint64_t begin, + uint64_t end, MutableHandleValue rval) { + if (begin > end) { + begin = end; + } + + if ((end - begin) > UINT32_MAX) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return false; + } + uint32_t count = uint32_t(end - begin); + + if (CanOptimizeForDenseStorage(obj, end)) { + MOZ_ASSERT(begin <= UINT32_MAX, + "if end <= UINT32_MAX, then begin <= UINT32_MAX"); + JSObject* narr = CopyDenseArrayElements(cx, obj.as(), + uint32_t(begin), count); + if (!narr) { + return false; + } + + rval.setObject(*narr); + return true; + } + + if (obj->is()) { + Handle argsobj = obj.as(); + if (!argsobj->hasOverriddenLength() && !argsobj->hasOverriddenElement()) { + MOZ_ASSERT(begin <= UINT32_MAX, "begin is limited by |argsobj|'s length"); + JSObject* narr = SliceArguments(cx, argsobj, uint32_t(begin), count); + if (!narr) { + return false; + } + + rval.setObject(*narr); + return true; + } + } + + Rooted narr(cx, NewDensePartlyAllocatedArray(cx, count)); + if (!narr) { + return false; + } + + if (end <= UINT32_MAX) { + if (js::GetElementsOp op = obj->getOpsGetElements()) { + ElementAdder adder(cx, narr, count, + ElementAdder::CheckHasElemPreserveHoles); + if (!op(cx, obj, uint32_t(begin), uint32_t(end), &adder)) { + return false; + } + + rval.setObject(*narr); + return true; + } + } + + if (obj->is() && obj->as().isIndexed() && + count > 1000) { + if (!SliceSparse(cx, obj, begin, end, narr)) { + return false; + } + } else { + if (!CopyArrayElements(cx, obj, begin, count, narr)) { + return false; + } + } + + rval.setObject(*narr); + return true; +} + +/* ES 2016 draft Mar 25, 2016 22.1.3.23. */ +static bool array_slice(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "slice"); + CallArgs args = CallArgsFromVp(argc, vp); + + /* Step 1. */ + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + /* Step 2. */ + uint64_t length; + if (!GetLengthPropertyInlined(cx, obj, &length)) { + return false; + } + + uint64_t k = 0; + uint64_t final = length; + if (args.length() > 0) { + double d; + /* Step 3. */ + if (!ToInteger(cx, args[0], &d)) { + return false; + } + + /* Step 4. */ + k = NormalizeSliceTerm(d, length); + + if (args.hasDefined(1)) { + /* Step 5. */ + if (!ToInteger(cx, args[1], &d)) { + return false; + } + + /* Step 6. */ + final = NormalizeSliceTerm(d, length); + } + } + + if (IsArraySpecies(cx, obj)) { + /* Steps 7-12: Optimized for ordinary array. */ + return ArraySliceOrdinary(cx, obj, k, final, args.rval()); + } + + /* Step 7. */ + uint64_t count = final > k ? final - k : 0; + + /* Step 8. */ + RootedObject arr(cx); + if (!ArraySpeciesCreate(cx, obj, count, &arr)) { + return false; + } + + /* Step 9. */ + uint64_t n = 0; + + /* Step 10. */ + RootedValue kValue(cx); + while (k < final) { + if (!CheckForInterrupt(cx)) { + return false; + } + + /* Steps 10.a-b, and 10.c.i. */ + bool kNotPresent; + if (!HasAndGetElement(cx, obj, k, &kNotPresent, &kValue)) { + return false; + } + + /* Step 10.c. */ + if (!kNotPresent) { + /* Steps 10.c.ii. */ + if (!DefineArrayElement(cx, arr, n, kValue)) { + return false; + } + } + /* Step 10.d. */ + k++; + + /* Step 10.e. */ + n++; + } + + /* Step 11. */ + if (!SetLengthProperty(cx, arr, n)) { + return false; + } + + /* Step 12. */ + args.rval().setObject(*arr); + return true; +} + +static bool ArraySliceDenseKernel(JSContext* cx, ArrayObject* arr, + int32_t beginArg, int32_t endArg, + ArrayObject* result) { + uint32_t length = arr->length(); + + uint32_t begin = NormalizeSliceTerm(beginArg, length); + uint32_t end = NormalizeSliceTerm(endArg, length); + + if (begin > end) { + begin = end; + } + + uint32_t count = end - begin; + size_t initlen = arr->getDenseInitializedLength(); + if (initlen > begin) { + uint32_t newlength = std::min(initlen - begin, count); + if (newlength > 0) { + if (!result->ensureElements(cx, newlength)) { + return false; + } + result->initDenseElements(arr, begin, newlength); + } + } + + MOZ_ASSERT(count >= result->length()); + result->setLength(count); + + return true; +} + +JSObject* js::ArraySliceDense(JSContext* cx, HandleObject obj, int32_t begin, + int32_t end, HandleObject result) { + MOZ_ASSERT(IsPackedArray(obj)); + + if (result && IsArraySpecies(cx, obj)) { + if (!ArraySliceDenseKernel(cx, &obj->as(), begin, end, + &result->as())) { + return nullptr; + } + return result; + } + + // Slower path if the JIT wasn't able to allocate an object inline. + JS::RootedValueArray<4> argv(cx); + argv[0].setUndefined(); + argv[1].setObject(*obj); + argv[2].setInt32(begin); + argv[3].setInt32(end); + if (!array_slice(cx, 2, argv.begin())) { + return nullptr; + } + return &argv[0].toObject(); +} + +JSObject* js::ArgumentsSliceDense(JSContext* cx, HandleObject obj, + int32_t begin, int32_t end, + HandleObject result) { + MOZ_ASSERT(obj->is()); + MOZ_ASSERT(IsArraySpecies(cx, obj)); + + Handle argsobj = obj.as(); + MOZ_ASSERT(!argsobj->hasOverriddenLength()); + MOZ_ASSERT(!argsobj->hasOverriddenElement()); + + uint32_t length = argsobj->initialLength(); + uint32_t actualBegin = NormalizeSliceTerm(begin, length); + uint32_t actualEnd = NormalizeSliceTerm(end, length); + + if (actualBegin > actualEnd) { + actualBegin = actualEnd; + } + uint32_t count = actualEnd - actualBegin; + + if (result) { + Handle resArray = result.as(); + MOZ_ASSERT(resArray->getDenseInitializedLength() == 0); + MOZ_ASSERT(resArray->length() == 0); + + if (count > 0) { + if (!resArray->ensureElements(cx, count)) { + return nullptr; + } + resArray->setDenseInitializedLength(count); + resArray->setLength(count); + + for (uint32_t index = 0; index < count; index++) { + const Value& v = argsobj->element(actualBegin + index); + resArray->initDenseElement(index, v); + } + } + + return resArray; + } + + // Slower path if the JIT wasn't able to allocate an object inline. + return SliceArguments(cx, argsobj, actualBegin, count); +} + +static bool array_isArray(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array", "isArray"); + CallArgs args = CallArgsFromVp(argc, vp); + + bool isArray = false; + if (args.get(0).isObject()) { + RootedObject obj(cx, &args[0].toObject()); + if (!IsArray(cx, obj, &isArray)) { + return false; + } + } + args.rval().setBoolean(isArray); + return true; +} + +static bool ArrayFromCallArgs(JSContext* cx, CallArgs& args, + HandleObject proto = nullptr) { + ArrayObject* obj = + NewDenseCopiedArrayWithProto(cx, args.length(), args.array(), proto); + if (!obj) { + return false; + } + + args.rval().setObject(*obj); + return true; +} + +static bool array_of(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array", "of"); + CallArgs args = CallArgsFromVp(argc, vp); + + bool isArrayConstructor = + IsArrayConstructor(args.thisv()) && + args.thisv().toObject().nonCCWRealm() == cx->realm(); + + if (isArrayConstructor || !IsConstructor(args.thisv())) { + // isArrayConstructor will usually be true in practice. This is the most + // common path. + return ArrayFromCallArgs(cx, args); + } + + // Step 4. + RootedObject obj(cx); + { + FixedConstructArgs<1> cargs(cx); + + cargs[0].setNumber(args.length()); + + if (!Construct(cx, args.thisv(), cargs, args.thisv(), &obj)) { + return false; + } + } + + // Step 8. + for (unsigned k = 0; k < args.length(); k++) { + if (!DefineDataElement(cx, obj, k, args[k])) { + return false; + } + } + + // Steps 9-10. + if (!SetLengthProperty(cx, obj, args.length())) { + return false; + } + + // Step 11. + args.rval().setObject(*obj); + return true; +} + +static const JSJitInfo array_splice_info = { + {(JSJitGetterOp)array_splice_noRetVal}, + {0}, /* unused */ + {0}, /* unused */ + JSJitInfo::IgnoresReturnValueNative, + JSJitInfo::AliasEverything, + JSVAL_TYPE_UNDEFINED, +}; + +enum class SearchKind { + // Specializes SearchElementDense for Array.prototype.indexOf/lastIndexOf. + // This means hole values are ignored and StrictlyEqual semantics are used. + IndexOf, + // Specializes SearchElementDense for Array.prototype.includes. + // This means hole values are treated as |undefined| and SameValueZero + // semantics are used. + Includes, +}; + +template +static bool SearchElementDense(JSContext* cx, HandleValue val, Iter iterator, + MutableHandleValue rval) { + // We assume here and in the iterator lambdas that nothing can trigger GC or + // move dense elements. + AutoCheckCannotGC nogc; + + // Fast path for string values. + if (val.isString()) { + JSLinearString* str = val.toString()->ensureLinear(cx); + if (!str) { + return false; + } + const uint32_t strLen = str->length(); + auto cmp = [str, strLen](JSContext* cx, const Value& element, bool* equal) { + if (!element.isString() || element.toString()->length() != strLen) { + *equal = false; + return true; + } + JSLinearString* s = element.toString()->ensureLinear(cx); + if (!s) { + return false; + } + *equal = EqualStrings(str, s); + return true; + }; + return iterator(cx, cmp, rval); + } + + // Fast path for numbers. + if (val.isNumber()) { + double dval = val.toNumber(); + // For |includes|, two NaN values are considered equal, so we use a + // different implementation for NaN. + if (Kind == SearchKind::Includes && std::isnan(dval)) { + auto cmp = [](JSContext*, const Value& element, bool* equal) { + *equal = (element.isDouble() && std::isnan(element.toDouble())); + return true; + }; + return iterator(cx, cmp, rval); + } + auto cmp = [dval](JSContext*, const Value& element, bool* equal) { + *equal = (element.isNumber() && element.toNumber() == dval); + return true; + }; + return iterator(cx, cmp, rval); + } + + // Fast path for values where we can use a simple bitwise comparison. + if (CanUseBitwiseCompareForStrictlyEqual(val)) { + // For |includes| we need to treat hole values as |undefined| so we use a + // different path if searching for |undefined|. + if (Kind == SearchKind::Includes && val.isUndefined()) { + auto cmp = [](JSContext*, const Value& element, bool* equal) { + *equal = (element.isUndefined() || element.isMagic(JS_ELEMENTS_HOLE)); + return true; + }; + return iterator(cx, cmp, rval); + } + uint64_t bits = val.asRawBits(); + auto cmp = [bits](JSContext*, const Value& element, bool* equal) { + *equal = (bits == element.asRawBits()); + return true; + }; + return iterator(cx, cmp, rval); + } + + MOZ_ASSERT(val.isBigInt() || + IF_RECORD_TUPLE(val.isExtendedPrimitive(), false)); + + // Generic implementation for the remaining types. + RootedValue elementRoot(cx); + auto cmp = [val, &elementRoot](JSContext* cx, const Value& element, + bool* equal) { + if (MOZ_UNLIKELY(element.isMagic(JS_ELEMENTS_HOLE))) { + // |includes| treats holes as |undefined|, but |undefined| is already + // handled above. For |indexOf| we have to ignore holes. + *equal = false; + return true; + } + // Note: |includes| uses SameValueZero, but that checks for NaN and then + // calls StrictlyEqual. Since we already handled NaN above, we can call + // StrictlyEqual directly. + MOZ_ASSERT(!val.isNumber()); + elementRoot = element; + return StrictlyEqual(cx, val, elementRoot, equal); + }; + return iterator(cx, cmp, rval); +} + +// ES2020 draft rev dc1e21c454bd316810be1c0e7af0131a2d7f38e9 +// 22.1.3.14 Array.prototype.indexOf ( searchElement [ , fromIndex ] ) +bool js::array_indexOf(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "indexOf"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + // Step 3. + if (len == 0) { + args.rval().setInt32(-1); + return true; + } + + // Steps 4-8. + uint64_t k = 0; + if (args.length() > 1) { + double n; + if (!ToInteger(cx, args[1], &n)) { + return false; + } + + // Step 6. + if (n >= double(len)) { + args.rval().setInt32(-1); + return true; + } + + // Steps 7-8. + if (n >= 0) { + k = uint64_t(n); + } else { + double d = double(len) + n; + if (d >= 0) { + k = uint64_t(d); + } + } + } + + MOZ_ASSERT(k < len); + + HandleValue searchElement = args.get(0); + + // Steps 9 and 10 optimized for dense elements. + if (CanOptimizeForDenseStorage(obj, len)) { + MOZ_ASSERT(len <= UINT32_MAX); + + NativeObject* nobj = &obj->as(); + uint32_t start = uint32_t(k); + uint32_t length = + std::min(nobj->getDenseInitializedLength(), uint32_t(len)); + const Value* elements = nobj->getDenseElements(); + + if (CanUseBitwiseCompareForStrictlyEqual(searchElement) && length > start) { + const uint64_t* elementsAsBits = + reinterpret_cast(elements); + const uint64_t* res = SIMD::memchr64( + elementsAsBits + start, searchElement.asRawBits(), length - start); + if (res) { + args.rval().setInt32(static_cast(res - elementsAsBits)); + } else { + args.rval().setInt32(-1); + } + return true; + } + + auto iterator = [elements, start, length](JSContext* cx, auto cmp, + MutableHandleValue rval) { + static_assert(NativeObject::MAX_DENSE_ELEMENTS_COUNT <= INT32_MAX, + "code assumes dense index fits in Int32Value"); + for (uint32_t i = start; i < length; i++) { + bool equal; + if (MOZ_UNLIKELY(!cmp(cx, elements[i], &equal))) { + return false; + } + if (equal) { + rval.setInt32(int32_t(i)); + return true; + } + } + rval.setInt32(-1); + return true; + }; + return SearchElementDense(cx, searchElement, iterator, + args.rval()); + } + + // Step 9. + RootedValue v(cx); + for (; k < len; k++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + bool hole; + if (!HasAndGetElement(cx, obj, k, &hole, &v)) { + return false; + } + if (hole) { + continue; + } + + bool equal; + if (!StrictlyEqual(cx, v, searchElement, &equal)) { + return false; + } + if (equal) { + args.rval().setNumber(k); + return true; + } + } + + // Step 10. + args.rval().setInt32(-1); + return true; +} + +// ES2020 draft rev dc1e21c454bd316810be1c0e7af0131a2d7f38e9 +// 22.1.3.17 Array.prototype.lastIndexOf ( searchElement [ , fromIndex ] ) +bool js::array_lastIndexOf(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "lastIndexOf"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + // Step 3. + if (len == 0) { + args.rval().setInt32(-1); + return true; + } + + // Steps 4-6. + uint64_t k = len - 1; + if (args.length() > 1) { + double n; + if (!ToInteger(cx, args[1], &n)) { + return false; + } + + // Steps 5-6. + if (n < 0) { + double d = double(len) + n; + if (d < 0) { + args.rval().setInt32(-1); + return true; + } + k = uint64_t(d); + } else if (n < double(k)) { + k = uint64_t(n); + } + } + + MOZ_ASSERT(k < len); + + HandleValue searchElement = args.get(0); + + // Steps 7 and 8 optimized for dense elements. + if (CanOptimizeForDenseStorage(obj, k + 1)) { + MOZ_ASSERT(k <= UINT32_MAX); + + NativeObject* nobj = &obj->as(); + uint32_t initLen = nobj->getDenseInitializedLength(); + if (initLen == 0) { + args.rval().setInt32(-1); + return true; + } + + uint32_t end = std::min(uint32_t(k), initLen - 1); + const Value* elements = nobj->getDenseElements(); + + auto iterator = [elements, end](JSContext* cx, auto cmp, + MutableHandleValue rval) { + static_assert(NativeObject::MAX_DENSE_ELEMENTS_COUNT <= INT32_MAX, + "code assumes dense index fits in int32_t"); + for (int32_t i = int32_t(end); i >= 0; i--) { + bool equal; + if (MOZ_UNLIKELY(!cmp(cx, elements[i], &equal))) { + return false; + } + if (equal) { + rval.setInt32(int32_t(i)); + return true; + } + } + rval.setInt32(-1); + return true; + }; + return SearchElementDense(cx, searchElement, iterator, + args.rval()); + } + + // Step 7. + RootedValue v(cx); + for (int64_t i = int64_t(k); i >= 0; i--) { + if (!CheckForInterrupt(cx)) { + return false; + } + + bool hole; + if (!HasAndGetElement(cx, obj, uint64_t(i), &hole, &v)) { + return false; + } + if (hole) { + continue; + } + + bool equal; + if (!StrictlyEqual(cx, v, searchElement, &equal)) { + return false; + } + if (equal) { + args.rval().setNumber(uint64_t(i)); + return true; + } + } + + // Step 8. + args.rval().setInt32(-1); + return true; +} + +// ES2020 draft rev dc1e21c454bd316810be1c0e7af0131a2d7f38e9 +// 22.1.3.13 Array.prototype.includes ( searchElement [ , fromIndex ] ) +bool js::array_includes(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "includes"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + // Step 2. + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + // Step 3. + if (len == 0) { + args.rval().setBoolean(false); + return true; + } + + // Steps 4-7. + uint64_t k = 0; + if (args.length() > 1) { + double n; + if (!ToInteger(cx, args[1], &n)) { + return false; + } + + if (n >= double(len)) { + args.rval().setBoolean(false); + return true; + } + + // Steps 6-7. + if (n >= 0) { + k = uint64_t(n); + } else { + double d = double(len) + n; + if (d >= 0) { + k = uint64_t(d); + } + } + } + + MOZ_ASSERT(k < len); + + HandleValue searchElement = args.get(0); + + // Steps 8 and 9 optimized for dense elements. + if (CanOptimizeForDenseStorage(obj, len)) { + MOZ_ASSERT(len <= UINT32_MAX); + + NativeObject* nobj = &obj->as(); + uint32_t start = uint32_t(k); + uint32_t length = + std::min(nobj->getDenseInitializedLength(), uint32_t(len)); + const Value* elements = nobj->getDenseElements(); + + // Trailing holes are treated as |undefined|. + if (uint32_t(len) > length && searchElement.isUndefined()) { + // |undefined| is strictly equal only to |undefined|. + args.rval().setBoolean(true); + return true; + } + + // For |includes| we need to treat hole values as |undefined| so we use a + // different path if searching for |undefined|. + if (CanUseBitwiseCompareForStrictlyEqual(searchElement) && + !searchElement.isUndefined() && length > start) { + if (SIMD::memchr64(reinterpret_cast(elements) + start, + searchElement.asRawBits(), length - start)) { + args.rval().setBoolean(true); + } else { + args.rval().setBoolean(false); + } + return true; + } + + auto iterator = [elements, start, length](JSContext* cx, auto cmp, + MutableHandleValue rval) { + for (uint32_t i = start; i < length; i++) { + bool equal; + if (MOZ_UNLIKELY(!cmp(cx, elements[i], &equal))) { + return false; + } + if (equal) { + rval.setBoolean(true); + return true; + } + } + rval.setBoolean(false); + return true; + }; + return SearchElementDense(cx, searchElement, iterator, + args.rval()); + } + + // Step 8. + RootedValue v(cx); + for (; k < len; k++) { + if (!CheckForInterrupt(cx)) { + return false; + } + + if (!GetArrayElement(cx, obj, k, &v)) { + return false; + } + + bool equal; + if (!SameValueZero(cx, v, searchElement, &equal)) { + return false; + } + if (equal) { + args.rval().setBoolean(true); + return true; + } + } + + // Step 9. + args.rval().setBoolean(false); + return true; +} + +// ES2024 draft 23.1.3.2.1 IsConcatSpreadable +static bool IsConcatSpreadable(JSContext* cx, HandleValue v, bool* spreadable) { + // Step 1. + if (!v.isObject()) { + *spreadable = false; + return true; + } + + // Step 2. + JS::Symbol* sym = cx->wellKnownSymbols().isConcatSpreadable; + JSObject* holder; + if (MOZ_UNLIKELY( + MaybeHasInterestingSymbolProperty(cx, &v.toObject(), sym, &holder))) { + RootedValue res(cx); + RootedObject obj(cx, holder); + Rooted key(cx, PropertyKey::Symbol(sym)); + if (!GetProperty(cx, obj, v, key, &res)) { + return false; + } + // Step 3. + if (!res.isUndefined()) { + *spreadable = ToBoolean(res); + return true; + } + } + + // Step 4. + if (MOZ_LIKELY(v.toObject().is())) { + *spreadable = true; + return true; + } + RootedObject obj(cx, &v.toObject()); + bool isArray; + if (!JS::IsArray(cx, obj, &isArray)) { + return false; + } + *spreadable = isArray; + return true; +} + +// Returns true if the object may have an @@isConcatSpreadable property. +static bool MaybeHasIsConcatSpreadable(JSContext* cx, JSObject* obj) { + JS::Symbol* sym = cx->wellKnownSymbols().isConcatSpreadable; + JSObject* holder; + return MaybeHasInterestingSymbolProperty(cx, obj, sym, &holder); +} + +static bool TryOptimizePackedArrayConcat(JSContext* cx, CallArgs& args, + Handle obj, + bool* optimized) { + // Fast path for the following cases: + // + // (1) packedArray.concat(): copy the array's elements. + // (2) packedArray.concat(packedArray): concatenate two packed arrays. + // (3) packedArray.concat(value): copy and append a single non-array value. + // + // These cases account for almost all calls to Array.prototype.concat in + // Speedometer 3. + + *optimized = false; + + if (args.length() > 1) { + return true; + } + + // The `this` object must be a packed array without @@isConcatSpreadable. + // @@isConcatSpreadable is uncommon and requires a property lookup and more + // complicated code, so we let the slow path handle it. + if (!IsPackedArray(obj)) { + return true; + } + if (MaybeHasIsConcatSpreadable(cx, obj)) { + return true; + } + + Handle thisArr = obj.as(); + uint32_t thisLen = thisArr->length(); + + if (args.length() == 0) { + // Case (1). Copy the packed array. + ArrayObject* arr = NewDenseFullyAllocatedArray(cx, thisLen); + if (!arr) { + return false; + } + arr->initDenseElements(thisArr->getDenseElements(), thisLen); + args.rval().setObject(*arr); + *optimized = true; + return true; + } + + MOZ_ASSERT(args.length() == 1); + + // If the argument is an object, it must not have an @@isConcatSpreadable + // property. + if (args[0].isObject() && + MaybeHasIsConcatSpreadable(cx, &args[0].toObject())) { + return true; + } + + MOZ_ASSERT_IF(args[0].isObject(), args[0].toObject().is()); + + // Case (3). Copy and append a single value if the argument is not an array. + if (!args[0].isObject() || !args[0].toObject().is()) { + ArrayObject* arr = NewDenseFullyAllocatedArray(cx, thisLen + 1); + if (!arr) { + return false; + } + arr->initDenseElements(thisArr->getDenseElements(), thisLen); + + arr->ensureDenseInitializedLength(thisLen, 1); + arr->initDenseElement(thisLen, args[0]); + + args.rval().setObject(*arr); + *optimized = true; + return true; + } + + // Case (2). Concatenate two packed arrays. + if (!IsPackedArray(&args[0].toObject())) { + return true; + } + + uint32_t argLen = args[0].toObject().as().length(); + + // Compute the array length. This can't overflow because both arrays are + // packed. + static_assert(NativeObject::MAX_DENSE_ELEMENTS_COUNT < INT32_MAX); + MOZ_ASSERT(thisLen <= NativeObject::MAX_DENSE_ELEMENTS_COUNT); + MOZ_ASSERT(argLen <= NativeObject::MAX_DENSE_ELEMENTS_COUNT); + uint32_t totalLen = thisLen + argLen; + + ArrayObject* arr = NewDenseFullyAllocatedArray(cx, totalLen); + if (!arr) { + return false; + } + arr->initDenseElements(thisArr->getDenseElements(), thisLen); + + ArrayObject* argArr = &args[0].toObject().as(); + arr->ensureDenseInitializedLength(thisLen, argLen); + arr->initDenseElementRange(thisLen, argArr, argLen); + + args.rval().setObject(*arr); + *optimized = true; + return true; +} + +static bool array_concat(JSContext* cx, unsigned argc, Value* vp) { + AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "concat"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1. + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) { + return false; + } + + bool isArraySpecies = IsArraySpecies(cx, obj); + + // Fast path for the most common cases. + if (isArraySpecies) { + bool optimized; + if (!TryOptimizePackedArrayConcat(cx, args, obj, &optimized)) { + return false; + } + if (optimized) { + return true; + } + } + + // Step 2. + RootedObject arr(cx); + if (isArraySpecies) { + arr = NewDenseEmptyArray(cx); + if (!arr) { + return false; + } + } else { + if (!ArraySpeciesCreate(cx, obj, 0, &arr)) { + return false; + } + } + + // Step 3. + uint64_t n = 0; + + // Step 4 (handled implicitly with nextArg and CallArgs). + uint32_t nextArg = 0; + + // Step 5. + RootedValue v(cx, ObjectValue(*obj)); + while (true) { + // Step 5.a. + bool spreadable; + if (!IsConcatSpreadable(cx, v, &spreadable)) { + return false; + } + // Step 5.b. + if (spreadable) { + // Step 5.b.i. + obj = &v.toObject(); + uint64_t len; + if (!GetLengthPropertyInlined(cx, obj, &len)) { + return false; + } + + // Step 5.b.ii. + if (n + len > uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT) - 1) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_TOO_LONG_ARRAY); + return false; + } + + // Step 5.b.iii. + uint64_t k = 0; + + // Step 5.b.iv. + + // Try a fast path for copying dense elements directly. + bool optimized = false; + if (len > 0 && isArraySpecies && + CanOptimizeForDenseStorage(obj, len) && + n + len <= NativeObject::MAX_DENSE_ELEMENTS_COUNT) { + NativeObject* nobj = &obj->as(); + ArrayObject* resArr = &arr->as(); + uint32_t count = + std::min(uint32_t(len), nobj->getDenseInitializedLength()); + + DenseElementResult res = resArr->ensureDenseElements(cx, n, count); + if (res == DenseElementResult::Failure) { + return false; + } + if (res == DenseElementResult::Success) { + resArr->initDenseElementRange(n, nobj, count); + n += len; + optimized = true; + } else { + MOZ_ASSERT(res == DenseElementResult::Incomplete); + } + } + + if (!optimized) { + // Step 5.b.iv. + while (k < len) { + if (!CheckForInterrupt(cx)) { + return false; + } + + // Step 5.b.iv.2. + bool hole; + if (!HasAndGetElement(cx, obj, k, &hole, &v)) { + return false; + } + if (!hole) { + // Step 5.b.iv.3. + if (!DefineArrayElement(cx, arr, n, v)) { + return false; + } + } + + // Step 5.b.iv.4. + n++; + + // Step 5.b.iv.5. + k++; + } + } + } else { + // Step 5.c.ii. + if (n >= uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT) - 1) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_TOO_LONG_ARRAY); + return false; + } + + // Step 5.c.iii. + if (!DefineArrayElement(cx, arr, n, v)) { + return false; + } + + // Step 5.c.iv. + n++; + } + + // Move on to the next argument. + if (nextArg == args.length()) { + break; + } + v = args[nextArg]; + nextArg++; + } + + // Step 6. + if (!SetLengthProperty(cx, arr, n)) { + return false; + } + + // Step 7. + args.rval().setObject(*arr); + return true; +} + +static const JSFunctionSpec array_methods[] = { + JS_FN(js_toSource_str, array_toSource, 0, 0), + JS_SELF_HOSTED_FN(js_toString_str, "ArrayToString", 0, 0), + JS_FN(js_toLocaleString_str, array_toLocaleString, 0, 0), + + /* Perl-ish methods. */ + JS_INLINABLE_FN("join", array_join, 1, 0, ArrayJoin), + JS_FN("reverse", array_reverse, 0, 0), + JS_SELF_HOSTED_FN("sort", "ArraySort", 1, 0), + JS_INLINABLE_FN("push", array_push, 1, 0, ArrayPush), + JS_INLINABLE_FN("pop", array_pop, 0, 0, ArrayPop), + JS_INLINABLE_FN("shift", array_shift, 0, 0, ArrayShift), + JS_FN("unshift", array_unshift, 1, 0), + JS_FNINFO("splice", array_splice, &array_splice_info, 2, 0), + + /* Pythonic sequence methods. */ + JS_FN("concat", array_concat, 1, 0), + JS_INLINABLE_FN("slice", array_slice, 2, 0, ArraySlice), + + JS_FN("lastIndexOf", array_lastIndexOf, 1, 0), + JS_FN("indexOf", array_indexOf, 1, 0), + JS_SELF_HOSTED_FN("forEach", "ArrayForEach", 1, 0), + JS_SELF_HOSTED_FN("map", "ArrayMap", 1, 0), + JS_SELF_HOSTED_FN("filter", "ArrayFilter", 1, 0), +#ifdef NIGHTLY_BUILD + JS_SELF_HOSTED_FN("group", "ArrayGroup", 1, 0), + JS_SELF_HOSTED_FN("groupToMap", "ArrayGroupToMap", 1, 0), +#endif + JS_SELF_HOSTED_FN("reduce", "ArrayReduce", 1, 0), + JS_SELF_HOSTED_FN("reduceRight", "ArrayReduceRight", 1, 0), + JS_SELF_HOSTED_FN("some", "ArraySome", 1, 0), + JS_SELF_HOSTED_FN("every", "ArrayEvery", 1, 0), + + /* ES6 additions */ + JS_SELF_HOSTED_FN("find", "ArrayFind", 1, 0), + JS_SELF_HOSTED_FN("findIndex", "ArrayFindIndex", 1, 0), + JS_SELF_HOSTED_FN("copyWithin", "ArrayCopyWithin", 3, 0), + + JS_SELF_HOSTED_FN("fill", "ArrayFill", 3, 0), + + JS_SELF_HOSTED_SYM_FN(iterator, "$ArrayValues", 0, 0), + JS_SELF_HOSTED_FN("entries", "ArrayEntries", 0, 0), + JS_SELF_HOSTED_FN("keys", "ArrayKeys", 0, 0), + JS_SELF_HOSTED_FN("values", "$ArrayValues", 0, 0), + + /* ES7 additions */ + JS_FN("includes", array_includes, 1, 0), + + /* ES2020 */ + JS_SELF_HOSTED_FN("flatMap", "ArrayFlatMap", 1, 0), + JS_SELF_HOSTED_FN("flat", "ArrayFlat", 0, 0), + + /* Proposal */ + JS_SELF_HOSTED_FN("at", "ArrayAt", 1, 0), + JS_SELF_HOSTED_FN("findLast", "ArrayFindLast", 1, 0), + JS_SELF_HOSTED_FN("findLastIndex", "ArrayFindLastIndex", 1, 0), + + JS_SELF_HOSTED_FN("toReversed", "ArrayToReversed", 0, 0), + JS_SELF_HOSTED_FN("toSorted", "ArrayToSorted", 1, 0), + JS_FN("toSpliced", array_toSpliced, 2, 0), JS_FN("with", array_with, 2, 0), + + JS_FS_END}; + +static const JSFunctionSpec array_static_methods[] = { + JS_INLINABLE_FN("isArray", array_isArray, 1, 0, ArrayIsArray), + JS_SELF_HOSTED_FN("from", "ArrayFrom", 3, 0), + JS_SELF_HOSTED_FN("fromAsync", "ArrayFromAsync", 3, 0), + JS_FN("of", array_of, 0, 0), + + JS_FS_END}; + +const JSPropertySpec array_static_props[] = { + JS_SELF_HOSTED_SYM_GET(species, "$ArraySpecies", 0), JS_PS_END}; + +static inline bool ArrayConstructorImpl(JSContext* cx, CallArgs& args, + bool isConstructor) { + RootedObject proto(cx); + if (isConstructor) { + if (!GetPrototypeFromBuiltinConstructor(cx, args, JSProto_Array, &proto)) { + return false; + } + } + + if (args.length() != 1 || !args[0].isNumber()) { + return ArrayFromCallArgs(cx, args, proto); + } + + uint32_t length; + if (args[0].isInt32()) { + int32_t i = args[0].toInt32(); + if (i < 0) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return false; + } + length = uint32_t(i); + } else { + double d = args[0].toDouble(); + length = ToUint32(d); + if (d != double(length)) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return false; + } + } + + ArrayObject* obj = NewDensePartlyAllocatedArrayWithProto(cx, length, proto); + if (!obj) { + return false; + } + + args.rval().setObject(*obj); + return true; +} + +/* ES5 15.4.2 */ +bool js::ArrayConstructor(JSContext* cx, unsigned argc, Value* vp) { + AutoJSConstructorProfilerEntry pseudoFrame(cx, "Array"); + CallArgs args = CallArgsFromVp(argc, vp); + return ArrayConstructorImpl(cx, args, /* isConstructor = */ true); +} + +bool js::array_construct(JSContext* cx, unsigned argc, Value* vp) { + AutoJSConstructorProfilerEntry pseudoFrame(cx, "Array"); + CallArgs args = CallArgsFromVp(argc, vp); + MOZ_ASSERT(!args.isConstructing()); + MOZ_ASSERT(args.length() == 1); + MOZ_ASSERT(args[0].isNumber()); + return ArrayConstructorImpl(cx, args, /* isConstructor = */ false); +} + +ArrayObject* js::ArrayConstructorOneArg(JSContext* cx, + Handle templateObject, + int32_t lengthInt) { + // JIT code can call this with a template object from a different realm when + // calling another realm's Array constructor. + Maybe ar; + if (cx->realm() != templateObject->realm()) { + MOZ_ASSERT(cx->compartment() == templateObject->compartment()); + ar.emplace(cx, templateObject); + } + + if (lengthInt < 0) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return nullptr; + } + + uint32_t length = uint32_t(lengthInt); + ArrayObject* res = NewDensePartlyAllocatedArray(cx, length); + MOZ_ASSERT_IF(res, res->realm() == templateObject->realm()); + return res; +} + +/* + * Array allocation functions. + */ + +static inline bool EnsureNewArrayElements(JSContext* cx, ArrayObject* obj, + uint32_t length) { + /* + * If ensureElements creates dynamically allocated slots, then having + * fixedSlots is a waste. + */ + DebugOnly cap = obj->getDenseCapacity(); + + if (!obj->ensureElements(cx, length)) { + return false; + } + + MOZ_ASSERT_IF(cap, !obj->hasDynamicElements()); + + return true; +} + +template +static MOZ_ALWAYS_INLINE ArrayObject* NewArrayWithShape( + JSContext* cx, Handle shape, uint32_t length, + NewObjectKind newKind, gc::AllocSite* site = nullptr) { + // The shape must already have the |length| property defined on it. + MOZ_ASSERT(shape->propMapLength() == 1); + MOZ_ASSERT(shape->lastProperty().key() == NameToId(cx->names().length)); + + gc::AllocKind allocKind = GuessArrayGCKind(length); + MOZ_ASSERT(CanChangeToBackgroundAllocKind(allocKind, &ArrayObject::class_)); + allocKind = ForegroundToBackgroundAllocKind(allocKind); + + MOZ_ASSERT(shape->slotSpan() == 0); + constexpr uint32_t slotSpan = 0; + + AutoSetNewObjectMetadata metadata(cx); + ArrayObject* arr = ArrayObject::create( + cx, allocKind, GetInitialHeap(newKind, &ArrayObject::class_, site), shape, + length, slotSpan, metadata); + if (!arr) { + return nullptr; + } + + if (maxLength > 0 && + !EnsureNewArrayElements(cx, arr, std::min(maxLength, length))) { + return nullptr; + } + + probes::CreateObject(cx, arr); + return arr; +} + +static SharedShape* GetArrayShapeWithProto(JSContext* cx, HandleObject proto) { + // Get a shape with zero fixed slots, because arrays store the ObjectElements + // header inline. + Rooted shape( + cx, SharedShape::getInitialShape(cx, &ArrayObject::class_, cx->realm(), + TaggedProto(proto), /* nfixed = */ 0)); + if (!shape) { + return nullptr; + } + + // Add the |length| property and use the new shape as initial shape for new + // arrays. + if (shape->propMapLength() == 0) { + shape = AddLengthProperty(cx, shape); + if (!shape) { + return nullptr; + } + SharedShape::insertInitialShape(cx, shape); + } else { + MOZ_ASSERT(shape->propMapLength() == 1); + MOZ_ASSERT(shape->lastProperty().key() == NameToId(cx->names().length)); + } + + return shape; +} + +SharedShape* GlobalObject::createArrayShapeWithDefaultProto(JSContext* cx) { + MOZ_ASSERT(!cx->global()->data().arrayShapeWithDefaultProto); + + RootedObject proto(cx, + GlobalObject::getOrCreateArrayPrototype(cx, cx->global())); + if (!proto) { + return nullptr; + } + + SharedShape* shape = GetArrayShapeWithProto(cx, proto); + if (!shape) { + return nullptr; + } + + cx->global()->data().arrayShapeWithDefaultProto.init(shape); + return shape; +} + +template +static MOZ_ALWAYS_INLINE ArrayObject* NewArray(JSContext* cx, uint32_t length, + NewObjectKind newKind, + gc::AllocSite* site = nullptr) { + Rooted shape(cx, + GlobalObject::getArrayShapeWithDefaultProto(cx)); + if (!shape) { + return nullptr; + } + + return NewArrayWithShape(cx, shape, length, newKind, site); +} + +template +static MOZ_ALWAYS_INLINE ArrayObject* NewArrayWithProto(JSContext* cx, + uint32_t length, + HandleObject proto, + NewObjectKind newKind) { + Rooted shape(cx); + if (!proto || proto == cx->global()->maybeGetArrayPrototype()) { + shape = GlobalObject::getArrayShapeWithDefaultProto(cx); + } else { + shape = GetArrayShapeWithProto(cx, proto); + } + if (!shape) { + return nullptr; + } + + return NewArrayWithShape(cx, shape, length, newKind, nullptr); +} + +static JSObject* CreateArrayPrototype(JSContext* cx, JSProtoKey key) { + MOZ_ASSERT(key == JSProto_Array); + RootedObject proto(cx, &cx->global()->getObjectPrototype()); + return NewArrayWithProto<0>(cx, 0, proto, TenuredObject); +} + +static bool array_proto_finish(JSContext* cx, JS::HandleObject ctor, + JS::HandleObject proto) { + // Add Array.prototype[@@unscopables]. ECMA-262 draft (2016 Mar 19) 22.1.3.32. + RootedObject unscopables(cx, + NewPlainObjectWithProto(cx, nullptr, TenuredObject)); + if (!unscopables) { + return false; + } + + RootedValue value(cx, BooleanValue(true)); + if (!DefineDataProperty(cx, unscopables, cx->names().at, value) || + !DefineDataProperty(cx, unscopables, cx->names().copyWithin, value) || + !DefineDataProperty(cx, unscopables, cx->names().entries, value) || + !DefineDataProperty(cx, unscopables, cx->names().fill, value) || + !DefineDataProperty(cx, unscopables, cx->names().find, value) || + !DefineDataProperty(cx, unscopables, cx->names().findIndex, value) || + !DefineDataProperty(cx, unscopables, cx->names().findLast, value) || + !DefineDataProperty(cx, unscopables, cx->names().findLastIndex, value) || + !DefineDataProperty(cx, unscopables, cx->names().flat, value) || + !DefineDataProperty(cx, unscopables, cx->names().flatMap, value) || + !DefineDataProperty(cx, unscopables, cx->names().includes, value) || + !DefineDataProperty(cx, unscopables, cx->names().keys, value) || + !DefineDataProperty(cx, unscopables, cx->names().values, value)) { + return false; + } + +#ifdef NIGHTLY_BUILD + if (cx->realm()->creationOptions().getArrayGroupingEnabled()) { + if (!DefineDataProperty(cx, unscopables, cx->names().group, value) || + !DefineDataProperty(cx, unscopables, cx->names().groupToMap, value)) { + return false; + } + } +#endif + + // FIXME: Once bug 1826643 is fixed, the names should be moved into the first + // "or" clause in this method so that they will be alphabetized. + if (cx->realm()->creationOptions().getChangeArrayByCopyEnabled()) { + /* The reason that "with" is not included in the unscopableList is + * because it is already a reserved word. + */ + if (!DefineDataProperty(cx, unscopables, cx->names().toReversed, value) || + !DefineDataProperty(cx, unscopables, cx->names().toSorted, value) || + !DefineDataProperty(cx, unscopables, cx->names().toSpliced, value)) { + return false; + } + } + + RootedId id(cx, PropertyKey::Symbol(cx->wellKnownSymbols().unscopables)); + value.setObject(*unscopables); + return DefineDataProperty(cx, proto, id, value, JSPROP_READONLY); +} + +static const JSClassOps ArrayObjectClassOps = { + array_addProperty, // addProperty + nullptr, // delProperty + nullptr, // enumerate + nullptr, // newEnumerate + nullptr, // resolve + nullptr, // mayResolve + nullptr, // finalize + nullptr, // call + nullptr, // construct + nullptr, // trace +}; + +static const ClassSpec ArrayObjectClassSpec = { + GenericCreateConstructor, + CreateArrayPrototype, + array_static_methods, + array_static_props, + array_methods, + nullptr, + array_proto_finish}; + +const JSClass ArrayObject::class_ = { + "Array", + JSCLASS_HAS_CACHED_PROTO(JSProto_Array) | JSCLASS_DELAY_METADATA_BUILDER, + &ArrayObjectClassOps, &ArrayObjectClassSpec}; + +ArrayObject* js::NewDenseEmptyArray(JSContext* cx) { + return NewArray<0>(cx, 0, GenericObject); +} + +ArrayObject* js::NewTenuredDenseEmptyArray(JSContext* cx) { + return NewArray<0>(cx, 0, TenuredObject); +} + +ArrayObject* js::NewDenseFullyAllocatedArray( + JSContext* cx, uint32_t length, NewObjectKind newKind /* = GenericObject */, + gc::AllocSite* site /* = nullptr */) { + return NewArray(cx, length, newKind, site); +} + +ArrayObject* js::NewDensePartlyAllocatedArray( + JSContext* cx, uint32_t length, + NewObjectKind newKind /* = GenericObject */) { + return NewArray(cx, length, newKind); +} + +ArrayObject* js::NewDensePartlyAllocatedArrayWithProto(JSContext* cx, + uint32_t length, + HandleObject proto) { + return NewArrayWithProto( + cx, length, proto, GenericObject); +} + +ArrayObject* js::NewDenseUnallocatedArray( + JSContext* cx, uint32_t length, + NewObjectKind newKind /* = GenericObject */) { + return NewArray<0>(cx, length, newKind); +} + +// values must point at already-rooted Value objects +ArrayObject* js::NewDenseCopiedArray( + JSContext* cx, uint32_t length, const Value* values, + NewObjectKind newKind /* = GenericObject */) { + ArrayObject* arr = NewArray(cx, length, newKind); + if (!arr) { + return nullptr; + } + + arr->initDenseElements(values, length); + return arr; +} + +ArrayObject* js::NewDenseCopiedArrayWithProto(JSContext* cx, uint32_t length, + const Value* values, + HandleObject proto) { + ArrayObject* arr = + NewArrayWithProto(cx, length, proto, GenericObject); + if (!arr) { + return nullptr; + } + + arr->initDenseElements(values, length); + return arr; +} + +ArrayObject* js::NewDenseFullyAllocatedArrayWithTemplate( + JSContext* cx, uint32_t length, ArrayObject* templateObject) { + AutoSetNewObjectMetadata metadata(cx); + gc::AllocKind allocKind = GuessArrayGCKind(length); + MOZ_ASSERT(CanChangeToBackgroundAllocKind(allocKind, &ArrayObject::class_)); + allocKind = ForegroundToBackgroundAllocKind(allocKind); + + Rooted shape(cx, templateObject->sharedShape()); + + gc::Heap heap = GetInitialHeap(GenericObject, &ArrayObject::class_); + ArrayObject* arr = ArrayObject::create(cx, allocKind, heap, shape, length, + shape->slotSpan(), metadata); + if (!arr) { + return nullptr; + } + + if (!EnsureNewArrayElements(cx, arr, length)) { + return nullptr; + } + + probes::CreateObject(cx, arr); + + return arr; +} + +// TODO(no-TI): clean up. +ArrayObject* js::NewArrayWithShape(JSContext* cx, uint32_t length, + Handle shape) { + // Ion can call this with a shape from a different realm when calling + // another realm's Array constructor. + Maybe ar; + if (cx->realm() != shape->realm()) { + MOZ_ASSERT(cx->compartment() == shape->compartment()); + ar.emplace(cx, shape); + } + + return NewDenseFullyAllocatedArray(cx, length); +} + +#ifdef DEBUG +bool js::ArrayInfo(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + RootedObject obj(cx); + + for (unsigned i = 0; i < args.length(); i++) { + HandleValue arg = args[i]; + + UniqueChars bytes = + DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, arg, nullptr); + if (!bytes) { + return false; + } + if (arg.isPrimitive() || !(obj = arg.toObjectOrNull())->is()) { + fprintf(stderr, "%s: not array\n", bytes.get()); + continue; + } + fprintf(stderr, "%s: (len %u", bytes.get(), + obj->as().length()); + fprintf(stderr, ", capacity %u", obj->as().getDenseCapacity()); + fputs(")\n", stderr); + } + + args.rval().setUndefined(); + return true; +} +#endif + +void js::ArraySpeciesLookup::initialize(JSContext* cx) { + MOZ_ASSERT(state_ == State::Uninitialized); + + // Get the canonical Array.prototype. + NativeObject* arrayProto = cx->global()->maybeGetArrayPrototype(); + + // Leave the cache uninitialized if the Array class itself is not yet + // initialized. + if (!arrayProto) { + return; + } + + // Get the canonical Array constructor. The Array constructor must be + // initialized if Array.prototype is initialized. + JSObject& arrayCtorObject = cx->global()->getConstructor(JSProto_Array); + JSFunction* arrayCtor = &arrayCtorObject.as(); + + // Shortcut returns below means Array[@@species] will never be + // optimizable, set to disabled now, and clear it later when we succeed. + state_ = State::Disabled; + + // Look up Array.prototype[@@iterator] and ensure it's a data property. + Maybe ctorProp = + arrayProto->lookup(cx, NameToId(cx->names().constructor)); + if (ctorProp.isNothing() || !ctorProp->isDataProperty()) { + return; + } + + // Get the referred value, and ensure it holds the canonical Array + // constructor. + JSFunction* ctorFun; + if (!IsFunctionObject(arrayProto->getSlot(ctorProp->slot()), &ctorFun)) { + return; + } + if (ctorFun != arrayCtor) { + return; + } + + // Look up the '@@species' value on Array + Maybe speciesProp = arrayCtor->lookup( + cx, PropertyKey::Symbol(cx->wellKnownSymbols().species)); + if (speciesProp.isNothing() || !arrayCtor->hasGetter(*speciesProp)) { + return; + } + + // Get the referred value, ensure it holds the canonical Array[@@species] + // function. + uint32_t speciesGetterSlot = speciesProp->slot(); + JSObject* speciesGetter = arrayCtor->getGetter(speciesGetterSlot); + if (!speciesGetter || !speciesGetter->is()) { + return; + } + JSFunction* speciesFun = &speciesGetter->as(); + if (!IsSelfHostedFunctionWithName(speciesFun, cx->names().ArraySpecies)) { + return; + } + + // Store raw pointers below. This is okay to do here, because all objects + // are in the tenured heap. + MOZ_ASSERT(!IsInsideNursery(arrayProto)); + MOZ_ASSERT(!IsInsideNursery(arrayCtor)); + MOZ_ASSERT(!IsInsideNursery(arrayCtor->shape())); + MOZ_ASSERT(!IsInsideNursery(speciesFun)); + MOZ_ASSERT(!IsInsideNursery(arrayProto->shape())); + + state_ = State::Initialized; + arrayProto_ = arrayProto; + arrayConstructor_ = arrayCtor; + arrayConstructorShape_ = arrayCtor->shape(); + arraySpeciesGetterSlot_ = speciesGetterSlot; + canonicalSpeciesFunc_ = speciesFun; + arrayProtoShape_ = arrayProto->shape(); + arrayProtoConstructorSlot_ = ctorProp->slot(); +} + +void js::ArraySpeciesLookup::reset() { + AlwaysPoison(this, JS_RESET_VALUE_PATTERN, sizeof(*this), + MemCheckKind::MakeUndefined); + state_ = State::Uninitialized; +} + +bool js::ArraySpeciesLookup::isArrayStateStillSane() { + MOZ_ASSERT(state_ == State::Initialized); + + // Ensure that Array.prototype still has the expected shape. + if (arrayProto_->shape() != arrayProtoShape_) { + return false; + } + + // Ensure that Array.prototype.constructor contains the canonical Array + // constructor function. + if (arrayProto_->getSlot(arrayProtoConstructorSlot_) != + ObjectValue(*arrayConstructor_)) { + return false; + } + + // Ensure that Array still has the expected shape. + if (arrayConstructor_->shape() != arrayConstructorShape_) { + return false; + } + + // Ensure the species getter contains the canonical @@species function. + JSObject* getter = arrayConstructor_->getGetter(arraySpeciesGetterSlot_); + return getter == canonicalSpeciesFunc_; +} + +bool js::ArraySpeciesLookup::tryOptimizeArray(JSContext* cx, + ArrayObject* array) { + if (state_ == State::Uninitialized) { + // If the cache is not initialized, initialize it. + initialize(cx); + } else if (state_ == State::Initialized && !isArrayStateStillSane()) { + // Otherwise, if the array state is no longer sane, reinitialize. + reset(); + initialize(cx); + } + + // If the cache is disabled or still uninitialized, don't bother trying to + // optimize. + if (state_ != State::Initialized) { + return false; + } + + // By the time we get here, we should have a sane array state. + MOZ_ASSERT(isArrayStateStillSane()); + + // Ensure |array|'s prototype is the actual Array.prototype. + if (array->staticPrototype() != arrayProto_) { + return false; + } + + // Ensure the array does not define an own "constructor" property which may + // shadow `Array.prototype.constructor`. + + // Most arrays don't define any additional own properties beside their + // "length" property. If "length" is the last property, it must be the only + // property, because it's non-configurable. + MOZ_ASSERT(array->shape()->propMapLength() > 0); + PropertyKey lengthKey = NameToId(cx->names().length); + if (MOZ_LIKELY(array->getLastProperty().key() == lengthKey)) { + MOZ_ASSERT(array->shape()->propMapLength() == 1, "Expected one property"); + return true; + } + + // Fail if the array has an own "constructor" property. + uint32_t index; + if (array->shape()->lookup(cx, NameToId(cx->names().constructor), &index)) { + return false; + } + + return true; +} + +JS_PUBLIC_API JSObject* JS::NewArrayObject(JSContext* cx, + const HandleValueArray& contents) { + MOZ_ASSERT(!cx->zone()->isAtomsZone()); + AssertHeapIsIdle(); + CHECK_THREAD(cx); + cx->check(contents); + + return NewDenseCopiedArray(cx, contents.length(), contents.begin()); +} + +JS_PUBLIC_API JSObject* JS::NewArrayObject(JSContext* cx, size_t length) { + MOZ_ASSERT(!cx->zone()->isAtomsZone()); + AssertHeapIsIdle(); + CHECK_THREAD(cx); + + return NewDenseFullyAllocatedArray(cx, length); +} + +JS_PUBLIC_API bool JS::IsArrayObject(JSContext* cx, Handle obj, + bool* isArray) { + return IsGivenTypeObject(cx, obj, ESClass::Array, isArray); +} + +JS_PUBLIC_API bool JS::IsArrayObject(JSContext* cx, Handle value, + bool* isArray) { + if (!value.isObject()) { + *isArray = false; + return true; + } + + Rooted obj(cx, &value.toObject()); + return IsArrayObject(cx, obj, isArray); +} + +JS_PUBLIC_API bool JS::GetArrayLength(JSContext* cx, Handle obj, + uint32_t* lengthp) { + AssertHeapIsIdle(); + CHECK_THREAD(cx); + cx->check(obj); + + uint64_t len = 0; + if (!GetLengthProperty(cx, obj, &len)) { + return false; + } + + if (len > UINT32_MAX) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, + JSMSG_BAD_ARRAY_LENGTH); + return false; + } + + *lengthp = uint32_t(len); + return true; +} + +JS_PUBLIC_API bool JS::SetArrayLength(JSContext* cx, Handle obj, + uint32_t length) { + AssertHeapIsIdle(); + CHECK_THREAD(cx); + cx->check(obj); + + return SetLengthProperty(cx, obj, length); +} + +ArrayObject* js::NewArrayWithNullProto(JSContext* cx) { + Rooted shape(cx, GetArrayShapeWithProto(cx, nullptr)); + if (!shape) { + return nullptr; + } + + uint32_t length = 0; + return ::NewArrayWithShape<0>(cx, shape, length, GenericObject); +} -- cgit v1.2.3