From 36d22d82aa202bb199967e9512281e9a53db42c9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 21:33:14 +0200 Subject: Adding upstream version 115.7.0esr. Signed-off-by: Daniel Baumann --- nsprpub/pr/src/misc/dtoa.c | 4610 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 4610 insertions(+) create mode 100644 nsprpub/pr/src/misc/dtoa.c (limited to 'nsprpub/pr/src/misc/dtoa.c') diff --git a/nsprpub/pr/src/misc/dtoa.c b/nsprpub/pr/src/misc/dtoa.c new file mode 100644 index 0000000000..43883aba26 --- /dev/null +++ b/nsprpub/pr/src/misc/dtoa.c @@ -0,0 +1,4610 @@ +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to David M. Gay (dmg at acm dot org, + * with " at " changed at "@" and " dot " changed to "."). */ + +/* On a machine with IEEE extended-precision registers, it is + * necessary to specify double-precision (53-bit) rounding precision + * before invoking strtod or dtoa. If the machine uses (the equivalent + * of) Intel 80x87 arithmetic, the call + * _control87(PC_53, MCW_PC); + * does this with many compilers. Whether this or another call is + * appropriate depends on the compiler; for this to work, it may be + * necessary to #include "float.h" or another system-dependent header + * file. + */ + +/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. + * + * This strtod returns a nearest machine number to the input decimal + * string (or sets errno to ERANGE). With IEEE arithmetic, ties are + * broken by the IEEE round-even rule. Otherwise ties are broken by + * biased rounding (add half and chop). + * + * Inspired loosely by William D. Clinger's paper "How to Read Floating + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * + * 1. We only require IEEE, IBM, or VAX double-precision + * arithmetic (not IEEE double-extended). + * 2. We get by with floating-point arithmetic in a case that + * Clinger missed -- when we're computing d * 10^n + * for a small integer d and the integer n is not too + * much larger than 22 (the maximum integer k for which + * we can represent 10^k exactly), we may be able to + * compute (d*10^k) * 10^(e-k) with just one roundoff. + * 3. Rather than a bit-at-a-time adjustment of the binary + * result in the hard case, we use floating-point + * arithmetic to determine the adjustment to within + * one bit; only in really hard cases do we need to + * compute a second residual. + * 4. Because of 3., we don't need a large table of powers of 10 + * for ten-to-e (just some small tables, e.g. of 10^k + * for 0 <= k <= 22). + */ + +/* + * #define IEEE_8087 for IEEE-arithmetic machines where the least + * significant byte has the lowest address. + * #define IEEE_MC68k for IEEE-arithmetic machines where the most + * significant byte has the lowest address. + * #define Long int on machines with 32-bit ints and 64-bit longs. + * #define IBM for IBM mainframe-style floating-point arithmetic. + * #define VAX for VAX-style floating-point arithmetic (D_floating). + * #define No_leftright to omit left-right logic in fast floating-point + * computation of dtoa. This will cause dtoa modes 4 and 5 to be + * treated the same as modes 2 and 3 for some inputs. + * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 + * and strtod and dtoa should round accordingly. Unless Trust_FLT_ROUNDS + * is also #defined, fegetround() will be queried for the rounding mode. + * Note that both FLT_ROUNDS and fegetround() are specified by the C99 + * standard (and are specified to be consistent, with fesetround() + * affecting the value of FLT_ROUNDS), but that some (Linux) systems + * do not work correctly in this regard, so using fegetround() is more + * portable than using FLT_ROUNDS directly. + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 + * and Honor_FLT_ROUNDS is not #defined. + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines + * that use extended-precision instructions to compute rounded + * products and quotients) with IBM. + * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic + * that rounds toward +Infinity. + * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased + * rounding when the underlying floating-point arithmetic uses + * unbiased rounding. This prevent using ordinary floating-point + * arithmetic when the result could be computed with one rounding error. + * #define Inaccurate_Divide for IEEE-format with correctly rounded + * products but inaccurate quotients, e.g., for Intel i860. + * #define NO_LONG_LONG on machines that do not have a "long long" + * integer type (of >= 64 bits). On such machines, you can + * #define Just_16 to store 16 bits per 32-bit Long when doing + * high-precision integer arithmetic. Whether this speeds things + * up or slows things down depends on the machine and the number + * being converted. If long long is available and the name is + * something other than "long long", #define Llong to be the name, + * and if "unsigned Llong" does not work as an unsigned version of + * Llong, #define #ULLong to be the corresponding unsigned type. + * #define KR_headers for old-style C function headers. + * #define Bad_float_h if your system lacks a float.h or if it does not + * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, + * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. + * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) + * if memory is available and otherwise does something you deem + * appropriate. If MALLOC is undefined, malloc will be invoked + * directly -- and assumed always to succeed. Similarly, if you + * want something other than the system's free() to be called to + * recycle memory acquired from MALLOC, #define FREE to be the + * name of the alternate routine. (FREE or free is only called in + * pathological cases, e.g., in a dtoa call after a dtoa return in + * mode 3 with thousands of digits requested.) + * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making + * memory allocations from a private pool of memory when possible. + * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, + * unless #defined to be a different length. This default length + * suffices to get rid of MALLOC calls except for unusual cases, + * such as decimal-to-binary conversion of a very long string of + * digits. The longest string dtoa can return is about 751 bytes + * long. For conversions by strtod of strings of 800 digits and + * all dtoa conversions in single-threaded executions with 8-byte + * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte + * pointers, PRIVATE_MEM >= 7112 appears adequate. + * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK + * #defined automatically on IEEE systems. On such systems, + * when INFNAN_CHECK is #defined, strtod checks + * for Infinity and NaN (case insensitively). On some systems + * (e.g., some HP systems), it may be necessary to #define NAN_WORD0 + * appropriately -- to the most significant word of a quiet NaN. + * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) + * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, + * strtod also accepts (case insensitively) strings of the form + * NaN(x), where x is a string of hexadecimal digits and spaces; + * if there is only one string of hexadecimal digits, it is taken + * for the 52 fraction bits of the resulting NaN; if there are two + * or more strings of hex digits, the first is for the high 20 bits, + * the second and subsequent for the low 32 bits, with intervening + * white space ignored; but if this results in none of the 52 + * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 + * and NAN_WORD1 are used instead. + * #define MULTIPLE_THREADS if the system offers preemptively scheduled + * multiple threads. In this case, you must provide (or suitably + * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed + * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed + * in pow5mult, ensures lazy evaluation of only one copy of high + * powers of 5; omitting this lock would introduce a small + * probability of wasting memory, but would otherwise be harmless.) + * You must also invoke freedtoa(s) to free the value s returned by + * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. + * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that + * avoids underflows on inputs whose result does not underflow. + * If you #define NO_IEEE_Scale on a machine that uses IEEE-format + * floating-point numbers and flushes underflows to zero rather + * than implementing gradual underflow, then you must also #define + * Sudden_Underflow. + * #define USE_LOCALE to use the current locale's decimal_point value. + * #define SET_INEXACT if IEEE arithmetic is being used and extra + * computation should be done to set the inexact flag when the + * result is inexact and avoid setting inexact when the result + * is exact. In this case, dtoa.c must be compiled in + * an environment, perhaps provided by #include "dtoa.c" in a + * suitable wrapper, that defines two functions, + * int get_inexact(void); + * void clear_inexact(void); + * such that get_inexact() returns a nonzero value if the + * inexact bit is already set, and clear_inexact() sets the + * inexact bit to 0. When SET_INEXACT is #defined, strtod + * also does extra computations to set the underflow and overflow + * flags when appropriate (i.e., when the result is tiny and + * inexact or when it is a numeric value rounded to +-infinity). + * #define NO_ERRNO if strtod should not assign errno = ERANGE when + * the result overflows to +-Infinity or underflows to 0. + * #define NO_HEX_FP to omit recognition of hexadecimal floating-point + * values by strtod. + * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now) + * to disable logic for "fast" testing of very long input strings + * to strtod. This testing proceeds by initially truncating the + * input string, then if necessary comparing the whole string with + * a decimal expansion to decide close cases. This logic is only + * used for input more than STRTOD_DIGLIM digits long (default 40). + */ + +#ifndef Long +#define Long long +#endif +#ifndef ULong +typedef unsigned Long ULong; +#endif + +#ifdef DEBUG +#include "stdio.h" +#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} +#endif + +#include "stdlib.h" +#include "string.h" + +#ifdef USE_LOCALE +#include "locale.h" +#endif + +#ifdef Honor_FLT_ROUNDS +#ifndef Trust_FLT_ROUNDS +#include +#endif +#endif + +#ifdef MALLOC +#ifdef KR_headers +extern char *MALLOC(); +#else +extern void *MALLOC(size_t); +#endif +#else +#define MALLOC malloc +#endif + +#ifndef Omit_Private_Memory +#ifndef PRIVATE_MEM +#define PRIVATE_MEM 2304 +#endif +#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) +static double private_mem[PRIVATE_mem], *pmem_next = private_mem; +#endif + +#undef IEEE_Arith +#undef Avoid_Underflow +#ifdef IEEE_MC68k +#define IEEE_Arith +#endif +#ifdef IEEE_8087 +#define IEEE_Arith +#endif + +#ifdef IEEE_Arith +#ifndef NO_INFNAN_CHECK +#undef INFNAN_CHECK +#define INFNAN_CHECK +#endif +#else +#undef INFNAN_CHECK +#define NO_STRTOD_BIGCOMP +#endif + +#include "errno.h" + +#ifdef Bad_float_h + +#ifdef IEEE_Arith +#define DBL_DIG 15 +#define DBL_MAX_10_EXP 308 +#define DBL_MAX_EXP 1024 +#define FLT_RADIX 2 +#endif /*IEEE_Arith*/ + +#ifdef IBM +#define DBL_DIG 16 +#define DBL_MAX_10_EXP 75 +#define DBL_MAX_EXP 63 +#define FLT_RADIX 16 +#define DBL_MAX 7.2370055773322621e+75 +#endif + +#ifdef VAX +#define DBL_DIG 16 +#define DBL_MAX_10_EXP 38 +#define DBL_MAX_EXP 127 +#define FLT_RADIX 2 +#define DBL_MAX 1.7014118346046923e+38 +#endif + +#ifndef LONG_MAX +#define LONG_MAX 2147483647 +#endif + +#else /* ifndef Bad_float_h */ +#include "float.h" +#endif /* Bad_float_h */ + +#ifndef __MATH_H__ +#include "math.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef CONST +#ifdef KR_headers +#define CONST /* blank */ +#else +#define CONST const +#endif +#endif + +#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 +Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. +#endif + +typedef union { + double d; + ULong L[2]; +} U; + +#ifdef IEEE_8087 +#define word0(x) (x)->L[1] +#define word1(x) (x)->L[0] +#else +#define word0(x) (x)->L[0] +#define word1(x) (x)->L[1] +#endif +#define dval(x) (x)->d + +#ifndef STRTOD_DIGLIM +#define STRTOD_DIGLIM 40 +#endif + +#ifdef DIGLIM_DEBUG +extern int strtod_diglim; +#else +#define strtod_diglim STRTOD_DIGLIM +#endif + +/* The following definition of Storeinc is appropriate for MIPS processors. + * An alternative that might be better on some machines is + * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) + */ +#if defined(IEEE_8087) + defined(VAX) +#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ +((unsigned short *)a)[0] = (unsigned short)c, a++) +#else +#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ +((unsigned short *)a)[1] = (unsigned short)c, a++) +#endif + +/* #define P DBL_MANT_DIG */ +/* Ten_pmax = floor(P*log(2)/log(5)) */ +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ + +#ifdef IEEE_Arith +#define Exp_shift 20 +#define Exp_shift1 20 +#define Exp_msk1 0x100000 +#define Exp_msk11 0x100000 +#define Exp_mask 0x7ff00000 +#define P 53 +#define Nbits 53 +#define Bias 1023 +#define Emax 1023 +#define Emin (-1022) +#define Exp_1 0x3ff00000 +#define Exp_11 0x3ff00000 +#define Ebits 11 +#define Frac_mask 0xfffff +#define Frac_mask1 0xfffff +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask 0xfffff +#define Bndry_mask1 0xfffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 +#ifndef NO_IEEE_Scale +#define Avoid_Underflow +#ifdef Flush_Denorm /* debugging option */ +#undef Sudden_Underflow +#endif +#endif + +#ifndef Flt_Rounds +#ifdef FLT_ROUNDS +#define Flt_Rounds FLT_ROUNDS +#else +#define Flt_Rounds 1 +#endif +#endif /*Flt_Rounds*/ + +#ifdef Honor_FLT_ROUNDS +#undef Check_FLT_ROUNDS +#define Check_FLT_ROUNDS +#else +#define Rounding Flt_Rounds +#endif + +#else /* ifndef IEEE_Arith */ +#undef Check_FLT_ROUNDS +#undef Honor_FLT_ROUNDS +#undef SET_INEXACT +#undef Sudden_Underflow +#define Sudden_Underflow +#ifdef IBM +#undef Flt_Rounds +#define Flt_Rounds 0 +#define Exp_shift 24 +#define Exp_shift1 24 +#define Exp_msk1 0x1000000 +#define Exp_msk11 0x1000000 +#define Exp_mask 0x7f000000 +#define P 14 +#define Nbits 56 +#define Bias 65 +#define Emax 248 +#define Emin (-260) +#define Exp_1 0x41000000 +#define Exp_11 0x41000000 +#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ +#define Frac_mask 0xffffff +#define Frac_mask1 0xffffff +#define Bletch 4 +#define Ten_pmax 22 +#define Bndry_mask 0xefffff +#define Bndry_mask1 0xffffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 4 +#define Tiny0 0x100000 +#define Tiny1 0 +#define Quick_max 14 +#define Int_max 15 +#else /* VAX */ +#undef Flt_Rounds +#define Flt_Rounds 1 +#define Exp_shift 23 +#define Exp_shift1 7 +#define Exp_msk1 0x80 +#define Exp_msk11 0x800000 +#define Exp_mask 0x7f80 +#define P 56 +#define Nbits 56 +#define Bias 129 +#define Emax 126 +#define Emin (-129) +#define Exp_1 0x40800000 +#define Exp_11 0x4080 +#define Ebits 8 +#define Frac_mask 0x7fffff +#define Frac_mask1 0xffff007f +#define Ten_pmax 24 +#define Bletch 2 +#define Bndry_mask 0xffff007f +#define Bndry_mask1 0xffff007f +#define LSB 0x10000 +#define Sign_bit 0x8000 +#define Log2P 1 +#define Tiny0 0x80 +#define Tiny1 0 +#define Quick_max 15 +#define Int_max 15 +#endif /* IBM, VAX */ +#endif /* IEEE_Arith */ + +#ifndef IEEE_Arith +#define ROUND_BIASED +#else +#ifdef ROUND_BIASED_without_Round_Up +#undef ROUND_BIASED +#define ROUND_BIASED +#endif +#endif + +#ifdef RND_PRODQUOT +#define rounded_product(a,b) a = rnd_prod(a, b) +#define rounded_quotient(a,b) a = rnd_quot(a, b) +#ifdef KR_headers +extern double rnd_prod(), rnd_quot(); +#else +extern double rnd_prod(double, double), rnd_quot(double, double); +#endif +#else +#define rounded_product(a,b) a *= b +#define rounded_quotient(a,b) a /= b +#endif + +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) +#define Big1 0xffffffff + +#ifndef Pack_32 +#define Pack_32 +#endif + +typedef struct BCinfo BCinfo; +struct + BCinfo { + int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; +}; + +#ifdef KR_headers +#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) +#else +#define FFFFFFFF 0xffffffffUL +#endif + +#ifdef NO_LONG_LONG +#undef ULLong +#ifdef Just_16 +#undef Pack_32 +/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. + * This makes some inner loops simpler and sometimes saves work + * during multiplications, but it often seems to make things slightly + * slower. Hence the default is now to store 32 bits per Long. + */ +#endif +#else /* long long available */ +#ifndef Llong +#define Llong long long +#endif +#ifndef ULLong +#define ULLong unsigned Llong +#endif +#endif /* NO_LONG_LONG */ + +#ifndef MULTIPLE_THREADS +#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ +#define FREE_DTOA_LOCK(n) /*nothing*/ +#endif + +#define Kmax 7 + +#ifdef __cplusplus +extern "C" double strtod(const char *s00, char **se); +extern "C" char *dtoa(double d, int mode, int ndigits, + int *decpt, int *sign, char **rve); +#endif + +struct + Bigint { + struct Bigint *next; + int k, maxwds, sign, wds; + ULong x[1]; +}; + +typedef struct Bigint Bigint; + +static Bigint *freelist[Kmax+1]; + +static Bigint * +Balloc +#ifdef KR_headers +(k) int k; +#else +(int k) +#endif +{ + int x; + Bigint *rv; +#ifndef Omit_Private_Memory + unsigned int len; +#endif + + ACQUIRE_DTOA_LOCK(0); + /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ + /* but this case seems very unlikely. */ + if (k <= Kmax && (rv = freelist[k])) { + freelist[k] = rv->next; + } + else { + x = 1 << k; +#ifdef Omit_Private_Memory + rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); +#else + len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) + /sizeof(double); + if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { + rv = (Bigint*)pmem_next; + pmem_next += len; + } + else { + rv = (Bigint*)MALLOC(len*sizeof(double)); + } +#endif + rv->k = k; + rv->maxwds = x; + } + FREE_DTOA_LOCK(0); + rv->sign = rv->wds = 0; + return rv; +} + +static void +Bfree +#ifdef KR_headers +(v) Bigint *v; +#else +(Bigint *v) +#endif +{ + if (v) { + if (v->k > Kmax) +#ifdef FREE + FREE((void*)v); +#else + free((void*)v); +#endif + else { + ACQUIRE_DTOA_LOCK(0); + v->next = freelist[v->k]; + freelist[v->k] = v; + FREE_DTOA_LOCK(0); + } + } +} + +#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ +y->wds*sizeof(Long) + 2*sizeof(int)) + +static Bigint * +multadd +#ifdef KR_headers +(b, m, a) Bigint *b; int m, a; +#else +(Bigint *b, int m, int a) /* multiply by m and add a */ +#endif +{ + int i, wds; +#ifdef ULLong + ULong *x; + ULLong carry, y; +#else + ULong carry, *x, y; +#ifdef Pack_32 + ULong xi, z; +#endif +#endif + Bigint *b1; + + wds = b->wds; + x = b->x; + i = 0; + carry = a; + do { +#ifdef ULLong + y = *x * (ULLong)m + carry; + carry = y >> 32; + *x++ = y & FFFFFFFF; +#else +#ifdef Pack_32 + xi = *x; + y = (xi & 0xffff) * m + carry; + z = (xi >> 16) * m + (y >> 16); + carry = z >> 16; + *x++ = (z << 16) + (y & 0xffff); +#else + y = *x * m + carry; + carry = y >> 16; + *x++ = y & 0xffff; +#endif +#endif + } + while(++i < wds); + if (carry) { + if (wds >= b->maxwds) { + b1 = Balloc(b->k+1); + Bcopy(b1, b); + Bfree(b); + b = b1; + } + b->x[wds++] = carry; + b->wds = wds; + } + return b; +} + +static Bigint * +s2b +#ifdef KR_headers +(s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9; +#else +(const char *s, int nd0, int nd, ULong y9, int dplen) +#endif +{ + Bigint *b; + int i, k; + Long x, y; + + x = (nd + 8) / 9; + for(k = 0, y = 1; x > y; y <<= 1, k++) ; +#ifdef Pack_32 + b = Balloc(k); + b->x[0] = y9; + b->wds = 1; +#else + b = Balloc(k+1); + b->x[0] = y9 & 0xffff; + b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; +#endif + + i = 9; + if (9 < nd0) { + s += 9; + do { + b = multadd(b, 10, *s++ - '0'); + } + while(++i < nd0); + s += dplen; + } + else { + s += dplen + 9; + } + for(; i < nd; i++) { + b = multadd(b, 10, *s++ - '0'); + } + return b; +} + +static int +hi0bits +#ifdef KR_headers +(x) ULong x; +#else +(ULong x) +#endif +{ + int k = 0; + + if (!(x & 0xffff0000)) { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) { + k++; + if (!(x & 0x40000000)) { + return 32; + } + } + return k; +} + +static int +lo0bits +#ifdef KR_headers +(y) ULong *y; +#else +(ULong *y) +#endif +{ + int k; + ULong x = *y; + + if (x & 7) { + if (x & 1) { + return 0; + } + if (x & 2) { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) { + k += 2; + x >>= 2; + } + if (!(x & 1)) { + k++; + x >>= 1; + if (!x) { + return 32; + } + } + *y = x; + return k; +} + +static Bigint * +i2b +#ifdef KR_headers +(i) int i; +#else +(int i) +#endif +{ + Bigint *b; + + b = Balloc(1); + b->x[0] = i; + b->wds = 1; + return b; +} + +static Bigint * +mult +#ifdef KR_headers +(a, b) Bigint *a, *b; +#else +(Bigint *a, Bigint *b) +#endif +{ + Bigint *c; + int k, wa, wb, wc; + ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; + ULong y; +#ifdef ULLong + ULLong carry, z; +#else + ULong carry, z; +#ifdef Pack_32 + ULong z2; +#endif +#endif + + if (a->wds < b->wds) { + c = a; + a = b; + b = c; + } + k = a->k; + wa = a->wds; + wb = b->wds; + wc = wa + wb; + if (wc > a->maxwds) { + k++; + } + c = Balloc(k); + for(x = c->x, xa = x + wc; x < xa; x++) { + *x = 0; + } + xa = a->x; + xae = xa + wa; + xb = b->x; + xbe = xb + wb; + xc0 = c->x; +#ifdef ULLong + for(; xb < xbe; xc0++) { + if ((y = *xb++)) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * (ULLong)y + *xc + carry; + carry = z >> 32; + *xc++ = z & FFFFFFFF; + } + while(x < xae); + *xc = carry; + } + } +#else +#ifdef Pack_32 + for(; xb < xbe; xb++, xc0++) { + if (y = *xb & 0xffff) { + x = xa; + xc = xc0; + carry = 0; + do { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + Storeinc(xc, z2, z); + } + while(x < xae); + *xc = carry; + } + if (y = *xb >> 16) { + x = xa; + xc = xc0; + carry = 0; + z2 = *xc; + do { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + Storeinc(xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } + while(x < xae); + *xc = z2; + } + } +#else + for(; xb < xbe; xc0++) { + if (y = *xb++) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * y + *xc + carry; + carry = z >> 16; + *xc++ = z & 0xffff; + } + while(x < xae); + *xc = carry; + } + } +#endif +#endif + for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; + c->wds = wc; + return c; +} + +static Bigint *p5s; + +static Bigint * +pow5mult +#ifdef KR_headers +(b, k) Bigint *b; int k; +#else +(Bigint *b, int k) +#endif +{ + Bigint *b1, *p5, *p51; + int i; + static int p05[3] = { 5, 25, 125 }; + + if ((i = k & 3)) { + b = multadd(b, p05[i-1], 0); + } + + if (!(k >>= 2)) { + return b; + } + if (!(p5 = p5s)) { + /* first time */ +#ifdef MULTIPLE_THREADS + ACQUIRE_DTOA_LOCK(1); + if (!(p5 = p5s)) { + p5 = p5s = i2b(625); + p5->next = 0; + } + FREE_DTOA_LOCK(1); +#else + p5 = p5s = i2b(625); + p5->next = 0; +#endif + } + for(;;) { + if (k & 1) { + b1 = mult(b, p5); + Bfree(b); + b = b1; + } + if (!(k >>= 1)) { + break; + } + if (!(p51 = p5->next)) { +#ifdef MULTIPLE_THREADS + ACQUIRE_DTOA_LOCK(1); + if (!(p51 = p5->next)) { + p51 = p5->next = mult(p5,p5); + p51->next = 0; + } + FREE_DTOA_LOCK(1); +#else + p51 = p5->next = mult(p5,p5); + p51->next = 0; +#endif + } + p5 = p51; + } + return b; +} + +static Bigint * +lshift +#ifdef KR_headers +(b, k) Bigint *b; int k; +#else +(Bigint *b, int k) +#endif +{ + int i, k1, n, n1; + Bigint *b1; + ULong *x, *x1, *xe, z; + +#ifdef Pack_32 + n = k >> 5; +#else + n = k >> 4; +#endif + k1 = b->k; + n1 = n + b->wds + 1; + for(i = b->maxwds; n1 > i; i <<= 1) { + k1++; + } + b1 = Balloc(k1); + x1 = b1->x; + for(i = 0; i < n; i++) { + *x1++ = 0; + } + x = b->x; + xe = x + b->wds; +#ifdef Pack_32 + if (k &= 0x1f) { + k1 = 32 - k; + z = 0; + do { + *x1++ = *x << k | z; + z = *x++ >> k1; + } + while(x < xe); + if ((*x1 = z)) { + ++n1; + } + } +#else + if (k &= 0xf) { + k1 = 16 - k; + z = 0; + do { + *x1++ = *x << k & 0xffff | z; + z = *x++ >> k1; + } + while(x < xe); + if (*x1 = z) { + ++n1; + } + } +#endif + else do { + *x1++ = *x++; + } + while(x < xe); + b1->wds = n1 - 1; + Bfree(b); + return b1; +} + +static int +cmp +#ifdef KR_headers +(a, b) Bigint *a, *b; +#else +(Bigint *a, Bigint *b) +#endif +{ + ULong *xa, *xa0, *xb, *xb0; + int i, j; + + i = a->wds; + j = b->wds; +#ifdef DEBUG + if (i > 1 && !a->x[i-1]) { + Bug("cmp called with a->x[a->wds-1] == 0"); + } + if (j > 1 && !b->x[j-1]) { + Bug("cmp called with b->x[b->wds-1] == 0"); + } +#endif + if (i -= j) { + return i; + } + xa0 = a->x; + xa = xa0 + j; + xb0 = b->x; + xb = xb0 + j; + for(;;) { + if (*--xa != *--xb) { + return *xa < *xb ? -1 : 1; + } + if (xa <= xa0) { + break; + } + } + return 0; +} + +static Bigint * +diff +#ifdef KR_headers +(a, b) Bigint *a, *b; +#else +(Bigint *a, Bigint *b) +#endif +{ + Bigint *c; + int i, wa, wb; + ULong *xa, *xae, *xb, *xbe, *xc; +#ifdef ULLong + ULLong borrow, y; +#else + ULong borrow, y; +#ifdef Pack_32 + ULong z; +#endif +#endif + + i = cmp(a,b); + if (!i) { + c = Balloc(0); + c->wds = 1; + c->x[0] = 0; + return c; + } + if (i < 0) { + c = a; + a = b; + b = c; + i = 1; + } + else { + i = 0; + } + c = Balloc(a->k); + c->sign = i; + wa = a->wds; + xa = a->x; + xae = xa + wa; + wb = b->wds; + xb = b->x; + xbe = xb + wb; + xc = c->x; + borrow = 0; +#ifdef ULLong + do { + y = (ULLong)*xa++ - *xb++ - borrow; + borrow = y >> 32 & (ULong)1; + *xc++ = y & FFFFFFFF; + } + while(xb < xbe); + while(xa < xae) { + y = *xa++ - borrow; + borrow = y >> 32 & (ULong)1; + *xc++ = y & FFFFFFFF; + } +#else +#ifdef Pack_32 + do { + y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } + while(xb < xbe); + while(xa < xae) { + y = (*xa & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } +#else + do { + y = *xa++ - *xb++ - borrow; + borrow = (y & 0x10000) >> 16; + *xc++ = y & 0xffff; + } + while(xb < xbe); + while(xa < xae) { + y = *xa++ - borrow; + borrow = (y & 0x10000) >> 16; + *xc++ = y & 0xffff; + } +#endif +#endif + while(!*--xc) { + wa--; + } + c->wds = wa; + return c; +} + +static double +ulp +#ifdef KR_headers +(x) U *x; +#else +(U *x) +#endif +{ + Long L; + U u; + + L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; +#ifndef Avoid_Underflow +#ifndef Sudden_Underflow + if (L > 0) { +#endif +#endif +#ifdef IBM + L |= Exp_msk1 >> 4; +#endif + word0(&u) = L; + word1(&u) = 0; +#ifndef Avoid_Underflow +#ifndef Sudden_Underflow + } + else { + L = -L >> Exp_shift; + if (L < Exp_shift) { + word0(&u) = 0x80000 >> L; + word1(&u) = 0; + } + else { + word0(&u) = 0; + L -= Exp_shift; + word1(&u) = L >= 31 ? 1 : 1 << 31 - L; + } + } +#endif +#endif + return dval(&u); +} + +static double +b2d +#ifdef KR_headers +(a, e) Bigint *a; int *e; +#else +(Bigint *a, int *e) +#endif +{ + ULong *xa, *xa0, w, y, z; + int k; + U d; +#ifdef VAX + ULong d0, d1; +#else +#define d0 word0(&d) +#define d1 word1(&d) +#endif + + xa0 = a->x; + xa = xa0 + a->wds; + y = *--xa; +#ifdef DEBUG + if (!y) { + Bug("zero y in b2d"); + } +#endif + k = hi0bits(y); + *e = 32 - k; +#ifdef Pack_32 + if (k < Ebits) { + d0 = Exp_1 | y >> (Ebits - k); + w = xa > xa0 ? *--xa : 0; + d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) { + d0 = Exp_1 | y << k | z >> (32 - k); + y = xa > xa0 ? *--xa : 0; + d1 = z << k | y >> (32 - k); + } + else { + d0 = Exp_1 | y; + d1 = z; + } +#else + if (k < Ebits + 16) { + z = xa > xa0 ? *--xa : 0; + d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; + w = xa > xa0 ? *--xa : 0; + y = xa > xa0 ? *--xa : 0; + d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + w = xa > xa0 ? *--xa : 0; + k -= Ebits + 16; + d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; + y = xa > xa0 ? *--xa : 0; + d1 = w << k + 16 | y << k; +#endif +ret_d: +#ifdef VAX + word0(&d) = d0 >> 16 | d0 << 16; + word1(&d) = d1 >> 16 | d1 << 16; +#else +#undef d0 +#undef d1 +#endif + return dval(&d); +} + +static Bigint * +d2b +#ifdef KR_headers +(d, e, bits) U *d; int *e, *bits; +#else +(U *d, int *e, int *bits) +#endif +{ + Bigint *b; + int de, k; + ULong *x, y, z; +#ifndef Sudden_Underflow + int i; +#endif +#ifdef VAX + ULong d0, d1; + d0 = word0(d) >> 16 | word0(d) << 16; + d1 = word1(d) >> 16 | word1(d) << 16; +#else +#define d0 word0(d) +#define d1 word1(d) +#endif + +#ifdef Pack_32 + b = Balloc(1); +#else + b = Balloc(2); +#endif + x = b->x; + + z = d0 & Frac_mask; + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ +#ifdef Sudden_Underflow + de = (int)(d0 >> Exp_shift); +#ifndef IBM + z |= Exp_msk11; +#endif +#else + if ((de = (int)(d0 >> Exp_shift))) { + z |= Exp_msk1; + } +#endif +#ifdef Pack_32 + if ((y = d1)) { + if ((k = lo0bits(&y))) { + x[0] = y | z << (32 - k); + z >>= k; + } + else { + x[0] = y; + } +#ifndef Sudden_Underflow + i = +#endif + b->wds = (x[1] = z) ? 2 : 1; + } + else { + k = lo0bits(&z); + x[0] = z; +#ifndef Sudden_Underflow + i = +#endif + b->wds = 1; + k += 32; + } +#else + if (y = d1) { + if (k = lo0bits(&y)) + if (k >= 16) { + x[0] = y | z << 32 - k & 0xffff; + x[1] = z >> k - 16 & 0xffff; + x[2] = z >> k; + i = 2; + } + else { + x[0] = y & 0xffff; + x[1] = y >> 16 | z << 16 - k & 0xffff; + x[2] = z >> k & 0xffff; + x[3] = z >> k+16; + i = 3; + } + else { + x[0] = y & 0xffff; + x[1] = y >> 16; + x[2] = z & 0xffff; + x[3] = z >> 16; + i = 3; + } + } + else { +#ifdef DEBUG + if (!z) { + Bug("Zero passed to d2b"); + } +#endif + k = lo0bits(&z); + if (k >= 16) { + x[0] = z; + i = 0; + } + else { + x[0] = z & 0xffff; + x[1] = z >> 16; + i = 1; + } + k += 32; + } + while(!x[i]) { + --i; + } + b->wds = i + 1; +#endif +#ifndef Sudden_Underflow + if (de) { +#endif +#ifdef IBM + *e = (de - Bias - (P-1) << 2) + k; + *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); +#else + *e = de - Bias - (P-1) + k; + *bits = P - k; +#endif +#ifndef Sudden_Underflow + } + else { + *e = de - Bias - (P-1) + 1 + k; +#ifdef Pack_32 + *bits = 32*i - hi0bits(x[i-1]); +#else + *bits = (i+2)*16 - hi0bits(x[i]); +#endif + } +#endif + return b; +} +#undef d0 +#undef d1 + +static double +ratio +#ifdef KR_headers +(a, b) Bigint *a, *b; +#else +(Bigint *a, Bigint *b) +#endif +{ + U da, db; + int k, ka, kb; + + dval(&da) = b2d(a, &ka); + dval(&db) = b2d(b, &kb); +#ifdef Pack_32 + k = ka - kb + 32*(a->wds - b->wds); +#else + k = ka - kb + 16*(a->wds - b->wds); +#endif +#ifdef IBM + if (k > 0) { + word0(&da) += (k >> 2)*Exp_msk1; + if (k &= 3) { + dval(&da) *= 1 << k; + } + } + else { + k = -k; + word0(&db) += (k >> 2)*Exp_msk1; + if (k &= 3) { + dval(&db) *= 1 << k; + } + } +#else + if (k > 0) { + word0(&da) += k*Exp_msk1; + } + else { + k = -k; + word0(&db) += k*Exp_msk1; + } +#endif + return dval(&da) / dval(&db); +} + +static CONST double +tens[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +#ifdef VAX + , 1e23, 1e24 +#endif +}; + +static CONST double +#ifdef IEEE_Arith +bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, +#ifdef Avoid_Underflow + 9007199254740992.*9007199254740992.e-256 + /* = 2^106 * 1e-256 */ +#else + 1e-256 +#endif + }; +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ +#define Scale_Bit 0x10 +#define n_bigtens 5 +#else +#ifdef IBM +bigtens[] = { 1e16, 1e32, 1e64 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; +#define n_bigtens 3 +#else +bigtens[] = { 1e16, 1e32 }; +static CONST double tinytens[] = { 1e-16, 1e-32 }; +#define n_bigtens 2 +#endif +#endif + +#undef Need_Hexdig +#ifdef INFNAN_CHECK +#ifndef No_Hex_NaN +#define Need_Hexdig +#endif +#endif + +#ifndef Need_Hexdig +#ifndef NO_HEX_FP +#define Need_Hexdig +#endif +#endif + +#ifdef Need_Hexdig /*{*/ +static unsigned char hexdig[256]; + +static void +#ifdef KR_headers +htinit(h, s, inc) unsigned char *h; unsigned char *s; int inc; +#else +htinit(unsigned char *h, unsigned char *s, int inc) +#endif +{ + int i, j; + for(i = 0; (j = s[i]) !=0; i++) { + h[j] = i + inc; + } +} + +static void +#ifdef KR_headers +hexdig_init() +#else +hexdig_init(void) +#endif +{ +#define USC (unsigned char *) + htinit(hexdig, USC "0123456789", 0x10); + htinit(hexdig, USC "abcdef", 0x10 + 10); + htinit(hexdig, USC "ABCDEF", 0x10 + 10); +} +#endif /* } Need_Hexdig */ + +#ifdef INFNAN_CHECK + +#ifndef NAN_WORD0 +#define NAN_WORD0 0x7ff80000 +#endif + +#ifndef NAN_WORD1 +#define NAN_WORD1 0 +#endif + +static int +match +#ifdef KR_headers +(sp, t) char **sp, *t; +#else +(const char **sp, const char *t) +#endif +{ + int c, d; + CONST char *s = *sp; + + while((d = *t++)) { + if ((c = *++s) >= 'A' && c <= 'Z') { + c += 'a' - 'A'; + } + if (c != d) { + return 0; + } + } + *sp = s + 1; + return 1; +} + +#ifndef No_Hex_NaN +static void +hexnan +#ifdef KR_headers +(rvp, sp) U *rvp; CONST char **sp; +#else +(U *rvp, const char **sp) +#endif +{ + ULong c, x[2]; + CONST char *s; + int c1, havedig, udx0, xshift; + + if (!hexdig['0']) { + hexdig_init(); + } + x[0] = x[1] = 0; + havedig = xshift = 0; + udx0 = 1; + s = *sp; + /* allow optional initial 0x or 0X */ + while((c = *(CONST unsigned char*)(s+1)) && c <= ' ') { + ++s; + } + if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X')) { + s += 2; + } + while((c = *(CONST unsigned char*)++s)) { + if ((c1 = hexdig[c])) { + c = c1 & 0xf; + } + else if (c <= ' ') { + if (udx0 && havedig) { + udx0 = 0; + xshift = 1; + } + continue; + } +#ifdef GDTOA_NON_PEDANTIC_NANCHECK + else if (/*(*/ c == ')' && havedig) { + *sp = s + 1; + break; + } + else { + return; /* invalid form: don't change *sp */ + } +#else + else { + do { + if (/*(*/ c == ')') { + *sp = s + 1; + break; + } + } while((c = *++s)); + break; + } +#endif + havedig = 1; + if (xshift) { + xshift = 0; + x[0] = x[1]; + x[1] = 0; + } + if (udx0) { + x[0] = (x[0] << 4) | (x[1] >> 28); + } + x[1] = (x[1] << 4) | c; + } + if ((x[0] &= 0xfffff) || x[1]) { + word0(rvp) = Exp_mask | x[0]; + word1(rvp) = x[1]; + } +} +#endif /*No_Hex_NaN*/ +#endif /* INFNAN_CHECK */ + +#ifdef Pack_32 +#define ULbits 32 +#define kshift 5 +#define kmask 31 +#else +#define ULbits 16 +#define kshift 4 +#define kmask 15 +#endif + +#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/ +static Bigint * +#ifdef KR_headers +increment(b) Bigint *b; +#else +increment(Bigint *b) +#endif +{ + ULong *x, *xe; + Bigint *b1; + + x = b->x; + xe = x + b->wds; + do { + if (*x < (ULong)0xffffffffL) { + ++*x; + return b; + } + *x++ = 0; + } while(x < xe); + { + if (b->wds >= b->maxwds) { + b1 = Balloc(b->k+1); + Bcopy(b1,b); + Bfree(b); + b = b1; + } + b->x[b->wds++] = 1; + } + return b; +} + +#endif /*}*/ + +#ifndef NO_HEX_FP /*{*/ + +static void +#ifdef KR_headers +rshift(b, k) Bigint *b; int k; +#else +rshift(Bigint *b, int k) +#endif +{ + ULong *x, *x1, *xe, y; + int n; + + x = x1 = b->x; + n = k >> kshift; + if (n < b->wds) { + xe = x + b->wds; + x += n; + if (k &= kmask) { + n = 32 - k; + y = *x++ >> k; + while(x < xe) { + *x1++ = (y | (*x << n)) & 0xffffffff; + y = *x++ >> k; + } + if ((*x1 = y) !=0) { + x1++; + } + } + else + while(x < xe) { + *x1++ = *x++; + } + } + if ((b->wds = x1 - b->x) == 0) { + b->x[0] = 0; + } +} + +static ULong +#ifdef KR_headers +any_on(b, k) Bigint *b; int k; +#else +any_on(Bigint *b, int k) +#endif +{ + int n, nwds; + ULong *x, *x0, x1, x2; + + x = b->x; + nwds = b->wds; + n = k >> kshift; + if (n > nwds) { + n = nwds; + } + else if (n < nwds && (k &= kmask)) { + x1 = x2 = x[n]; + x1 >>= k; + x1 <<= k; + if (x1 != x2) { + return 1; + } + } + x0 = x; + x += n; + while(x > x0) + if (*--x) { + return 1; + } + return 0; +} + +enum { /* rounding values: same as FLT_ROUNDS */ + Round_zero = 0, + Round_near = 1, + Round_up = 2, + Round_down = 3 +}; + +void +#ifdef KR_headers +gethex(sp, rvp, rounding, sign) +CONST char **sp; U *rvp; int rounding, sign; +#else +gethex( CONST char **sp, U *rvp, int rounding, int sign) +#endif +{ + Bigint *b; + CONST unsigned char *decpt, *s0, *s, *s1; + Long e, e1; + ULong L, lostbits, *x; + int big, denorm, esign, havedig, k, n, nbits, up, zret; +#ifdef IBM + int j; +#endif + enum { +#ifdef IEEE_Arith /*{{*/ + emax = 0x7fe - Bias - P + 1, + emin = Emin - P + 1 +#else /*}{*/ + emin = Emin - P, +#ifdef VAX + emax = 0x7ff - Bias - P + 1 +#endif +#ifdef IBM + emax = 0x7f - Bias - P +#endif +#endif /*}}*/ + }; +#ifdef USE_LOCALE + int i; +#ifdef NO_LOCALE_CACHE + const unsigned char *decimalpoint = (unsigned char*) + localeconv()->decimal_point; +#else + const unsigned char *decimalpoint; + static unsigned char *decimalpoint_cache; + if (!(s0 = decimalpoint_cache)) { + s0 = (unsigned char*)localeconv()->decimal_point; + if ((decimalpoint_cache = (unsigned char*) + MALLOC(strlen((CONST char*)s0) + 1))) { + strcpy((char*)decimalpoint_cache, (CONST char*)s0); + s0 = decimalpoint_cache; + } + } + decimalpoint = s0; +#endif +#endif + + if (!hexdig['0']) { + hexdig_init(); + } + havedig = 0; + s0 = *(CONST unsigned char **)sp + 2; + while(s0[havedig] == '0') { + havedig++; + } + s0 += havedig; + s = s0; + decpt = 0; + zret = 0; + e = 0; + if (hexdig[*s]) { + havedig++; + } + else { + zret = 1; +#ifdef USE_LOCALE + for(i = 0; decimalpoint[i]; ++i) { + if (s[i] != decimalpoint[i]) { + goto pcheck; + } + } + decpt = s += i; +#else + if (*s != '.') { + goto pcheck; + } + decpt = ++s; +#endif + if (!hexdig[*s]) { + goto pcheck; + } + while(*s == '0') { + s++; + } + if (hexdig[*s]) { + zret = 0; + } + havedig = 1; + s0 = s; + } + while(hexdig[*s]) { + s++; + } +#ifdef USE_LOCALE + if (*s == *decimalpoint && !decpt) { + for(i = 1; decimalpoint[i]; ++i) { + if (s[i] != decimalpoint[i]) { + goto pcheck; + } + } + decpt = s += i; +#else + if (*s == '.' && !decpt) { + decpt = ++s; +#endif + while(hexdig[*s]) { + s++; + } + }/*}*/ + if (decpt) { + e = -(((Long)(s-decpt)) << 2); + } +pcheck: + s1 = s; + big = esign = 0; + switch(*s) { + case 'p': + case 'P': + switch(*++s) { + case '-': + esign = 1; + /* no break */ + case '+': + s++; + } + if ((n = hexdig[*s]) == 0 || n > 0x19) { + s = s1; + break; + } + e1 = n - 0x10; + while((n = hexdig[*++s]) !=0 && n <= 0x19) { + if (e1 & 0xf8000000) { + big = 1; + } + e1 = 10*e1 + n - 0x10; + } + if (esign) { + e1 = -e1; + } + e += e1; + } + *sp = (char*)s; + if (!havedig) { + *sp = (char*)s0 - 1; + } + if (zret) { + goto retz1; + } + if (big) { + if (esign) { +#ifdef IEEE_Arith + switch(rounding) { + case Round_up: + if (sign) { + break; + } + goto ret_tiny; + case Round_down: + if (!sign) { + break; + } + goto ret_tiny; + } +#endif + goto retz; +#ifdef IEEE_Arith +ret_tiny: +#ifndef NO_ERRNO + errno = ERANGE; +#endif + word0(rvp) = 0; + word1(rvp) = 1; + return; +#endif /* IEEE_Arith */ + } + switch(rounding) { + case Round_near: + goto ovfl1; + case Round_up: + if (!sign) { + goto ovfl1; + } + goto ret_big; + case Round_down: + if (sign) { + goto ovfl1; + } + goto ret_big; + } +ret_big: + word0(rvp) = Big0; + word1(rvp) = Big1; + return; + } + n = s1 - s0 - 1; + for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1) { + k++; + } + b = Balloc(k); + x = b->x; + n = 0; + L = 0; +#ifdef USE_LOCALE + for(i = 0; decimalpoint[i+1]; ++i); +#endif + while(s1 > s0) { +#ifdef USE_LOCALE + if (*--s1 == decimalpoint[i]) { + s1 -= i; + continue; + } +#else + if (*--s1 == '.') { + continue; + } +#endif + if (n == ULbits) { + *x++ = L; + L = 0; + n = 0; + } + L |= (hexdig[*s1] & 0x0f) << n; + n += 4; + } + *x++ = L; + b->wds = n = x - b->x; + n = ULbits*n - hi0bits(L); + nbits = Nbits; + lostbits = 0; + x = b->x; + if (n > nbits) { + n -= nbits; + if (any_on(b,n)) { + lostbits = 1; + k = n - 1; + if (x[k>>kshift] & 1 << (k & kmask)) { + lostbits = 2; + if (k > 0 && any_on(b,k)) { + lostbits = 3; + } + } + } + rshift(b, n); + e += n; + } + else if (n < nbits) { + n = nbits - n; + b = lshift(b, n); + e -= n; + x = b->x; + } + if (e > Emax) { +ovfl: + Bfree(b); +ovfl1: +#ifndef NO_ERRNO + errno = ERANGE; +#endif + word0(rvp) = Exp_mask; + word1(rvp) = 0; + return; + } + denorm = 0; + if (e < emin) { + denorm = 1; + n = emin - e; + if (n >= nbits) { +#ifdef IEEE_Arith /*{*/ + switch (rounding) { + case Round_near: + if (n == nbits && (n < 2 || any_on(b,n-1))) { + goto ret_tiny; + } + break; + case Round_up: + if (!sign) { + goto ret_tiny; + } + break; + case Round_down: + if (sign) { + goto ret_tiny; + } + } +#endif /* } IEEE_Arith */ + Bfree(b); +retz: +#ifndef NO_ERRNO + errno = ERANGE; +#endif +retz1: + rvp->d = 0.; + return; + } + k = n - 1; + if (lostbits) { + lostbits = 1; + } + else if (k > 0) { + lostbits = any_on(b,k); + } + if (x[k>>kshift] & 1 << (k & kmask)) { + lostbits |= 2; + } + nbits -= n; + rshift(b,n); + e = emin; + } + if (lostbits) { + up = 0; + switch(rounding) { + case Round_zero: + break; + case Round_near: + if (lostbits & 2 + && (lostbits & 1) | (x[0] & 1)) { + up = 1; + } + break; + case Round_up: + up = 1 - sign; + break; + case Round_down: + up = sign; + } + if (up) { + k = b->wds; + b = increment(b); + x = b->x; + if (denorm) { +#if 0 + if (nbits == Nbits - 1 + && x[nbits >> kshift] & 1 << (nbits & kmask)) { + denorm = 0; /* not currently used */ + } +#endif + } + else if (b->wds > k + || ((n = nbits & kmask) !=0 + && hi0bits(x[k-1]) < 32-n)) { + rshift(b,1); + if (++e > Emax) { + goto ovfl; + } + } + } + } +#ifdef IEEE_Arith + if (denorm) { + word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0; + } + else { + word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20); + } + word1(rvp) = b->x[0]; +#endif +#ifdef IBM + if ((j = e & 3)) { + k = b->x[0] & ((1 << j) - 1); + rshift(b,j); + if (k) { + switch(rounding) { + case Round_up: + if (!sign) { + increment(b); + } + break; + case Round_down: + if (sign) { + increment(b); + } + break; + case Round_near: + j = 1 << (j-1); + if (k & j && ((k & (j-1)) | lostbits)) { + increment(b); + } + } + } + } + e >>= 2; + word0(rvp) = b->x[1] | ((e + 65 + 13) << 24); + word1(rvp) = b->x[0]; +#endif +#ifdef VAX + /* The next two lines ignore swap of low- and high-order 2 bytes. */ + /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */ + /* word1(rvp) = b->x[0]; */ + word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16); + word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16); +#endif + Bfree(b); +} +#endif /*!NO_HEX_FP}*/ + +static int +#ifdef KR_headers +dshift(b, p2) Bigint *b; int p2; +#else +dshift(Bigint *b, int p2) +#endif +{ + int rv = hi0bits(b->x[b->wds-1]) - 4; + if (p2 > 0) { + rv -= p2; + } + return rv & kmask; +} + +static int +quorem +#ifdef KR_headers +(b, S) Bigint *b, *S; +#else +(Bigint *b, Bigint *S) +#endif +{ + int n; + ULong *bx, *bxe, q, *sx, *sxe; +#ifdef ULLong + ULLong borrow, carry, y, ys; +#else + ULong borrow, carry, y, ys; +#ifdef Pack_32 + ULong si, z, zs; +#endif +#endif + + n = S->wds; +#ifdef DEBUG + /*debug*/ if (b->wds > n) + /*debug*/{ + Bug("oversize b in quorem"); + } +#endif + if (b->wds < n) { + return 0; + } + sx = S->x; + sxe = sx + --n; + bx = b->x; + bxe = bx + n; + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ +#ifdef DEBUG +#ifdef NO_STRTOD_BIGCOMP + /*debug*/ if (q > 9) +#else + /* An oversized q is possible when quorem is called from bigcomp and */ + /* the input is near, e.g., twice the smallest denormalized number. */ + /*debug*/ if (q > 15) +#endif + /*debug*/ Bug("oversized quotient in quorem"); +#endif + if (q) { + borrow = 0; + carry = 0; + do { +#ifdef ULLong + ys = *sx++ * (ULLong)q + carry; + carry = ys >> 32; + y = *bx - (ys & FFFFFFFF) - borrow; + borrow = y >> 32 & (ULong)1; + *bx++ = y & FFFFFFFF; +#else +#ifdef Pack_32 + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); +#else + ys = *sx++ * q + carry; + carry = ys >> 16; + y = *bx - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + *bx++ = y & 0xffff; +#endif +#endif + } + while(sx <= sxe); + if (!*bxe) { + bx = b->x; + while(--bxe > bx && !*bxe) { + --n; + } + b->wds = n; + } + } + if (cmp(b, S) >= 0) { + q++; + borrow = 0; + carry = 0; + bx = b->x; + sx = S->x; + do { +#ifdef ULLong + ys = *sx++ + carry; + carry = ys >> 32; + y = *bx - (ys & FFFFFFFF) - borrow; + borrow = y >> 32 & (ULong)1; + *bx++ = y & FFFFFFFF; +#else +#ifdef Pack_32 + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); +#else + ys = *sx++ + carry; + carry = ys >> 16; + y = *bx - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + *bx++ = y & 0xffff; +#endif +#endif + } + while(sx <= sxe); + bx = b->x; + bxe = bx + n; + if (!*bxe) { + while(--bxe > bx && !*bxe) { + --n; + } + b->wds = n; + } + } + return q; +} + +#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/ +static double +sulp +#ifdef KR_headers +(x, bc) U *x; BCinfo *bc; +#else +(U *x, BCinfo *bc) +#endif +{ + U u; + double rv; + int i; + + rv = ulp(x); + if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0) { + return rv; /* Is there an example where i <= 0 ? */ + } + word0(&u) = Exp_1 + (i << Exp_shift); + word1(&u) = 0; + return rv * u.d; +} +#endif /*}*/ + +#ifndef NO_STRTOD_BIGCOMP +static void +bigcomp +#ifdef KR_headers +(rv, s0, bc) +U *rv; CONST char *s0; BCinfo *bc; +#else +(U *rv, const char *s0, BCinfo *bc) +#endif +{ + Bigint *b, *d; + int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase; + + dsign = bc->dsign; + nd = bc->nd; + nd0 = bc->nd0; + p5 = nd + bc->e0 - 1; + speccase = 0; +#ifndef Sudden_Underflow + if (rv->d == 0.) { /* special case: value near underflow-to-zero */ + /* threshold was rounded to zero */ + b = i2b(1); + p2 = Emin - P + 1; + bbits = 1; +#ifdef Avoid_Underflow + word0(rv) = (P+2) << Exp_shift; +#else + word1(rv) = 1; +#endif + i = 0; +#ifdef Honor_FLT_ROUNDS + if (bc->rounding == 1) +#endif + { + speccase = 1; + --p2; + dsign = 0; + goto have_i; + } + } + else +#endif + b = d2b(rv, &p2, &bbits); +#ifdef Avoid_Underflow + p2 -= bc->scale; +#endif + /* floor(log2(rv)) == bbits - 1 + p2 */ + /* Check for denormal case. */ + i = P - bbits; + if (i > (j = P - Emin - 1 + p2)) { +#ifdef Sudden_Underflow + Bfree(b); + b = i2b(1); + p2 = Emin; + i = P - 1; +#ifdef Avoid_Underflow + word0(rv) = (1 + bc->scale) << Exp_shift; +#else + word0(rv) = Exp_msk1; +#endif + word1(rv) = 0; +#else + i = j; +#endif + } +#ifdef Honor_FLT_ROUNDS + if (bc->rounding != 1) { + if (i > 0) { + b = lshift(b, i); + } + if (dsign) { + b = increment(b); + } + } + else +#endif + { + b = lshift(b, ++i); + b->x[0] |= 1; + } +#ifndef Sudden_Underflow +have_i: +#endif + p2 -= p5 + i; + d = i2b(1); + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + */ + if (p5 > 0) { + d = pow5mult(d, p5); + } + else if (p5 < 0) { + b = pow5mult(b, -p5); + } + if (p2 > 0) { + b2 = p2; + d2 = 0; + } + else { + b2 = 0; + d2 = -p2; + } + i = dshift(d, d2); + if ((b2 += i) > 0) { + b = lshift(b, b2); + } + if ((d2 += i) > 0) { + d = lshift(d, d2); + } + + /* Now b/d = exactly half-way between the two floating-point values */ + /* on either side of the input string. Compute first digit of b/d. */ + + if (!(dig = quorem(b,d))) { + b = multadd(b, 10, 0); /* very unlikely */ + dig = quorem(b,d); + } + + /* Compare b/d with s0 */ + + for(i = 0; i < nd0; ) { + if ((dd = s0[i++] - '0' - dig)) { + goto ret; + } + if (!b->x[0] && b->wds == 1) { + if (i < nd) { + dd = 1; + } + goto ret; + } + b = multadd(b, 10, 0); + dig = quorem(b,d); + } + for(j = bc->dp1; i++ < nd;) { + if ((dd = s0[j++] - '0' - dig)) { + goto ret; + } + if (!b->x[0] && b->wds == 1) { + if (i < nd) { + dd = 1; + } + goto ret; + } + b = multadd(b, 10, 0); + dig = quorem(b,d); + } + if (b->x[0] || b->wds > 1 || dig > 0) { + dd = -1; + } +ret: + Bfree(b); + Bfree(d); +#ifdef Honor_FLT_ROUNDS + if (bc->rounding != 1) { + if (dd < 0) { + if (bc->rounding == 0) { + if (!dsign) { + goto retlow1; + } + } + else if (dsign) { + goto rethi1; + } + } + else if (dd > 0) { + if (bc->rounding == 0) { + if (dsign) { + goto rethi1; + } + goto ret1; + } + if (!dsign) { + goto rethi1; + } + dval(rv) += 2.*sulp(rv,bc); + } + else { + bc->inexact = 0; + if (dsign) { + goto rethi1; + } + } + } + else +#endif + if (speccase) { + if (dd <= 0) { + rv->d = 0.; + } + } + else if (dd < 0) { + if (!dsign) /* does not happen for round-near */ +retlow1: + dval(rv) -= sulp(rv,bc); + } + else if (dd > 0) { + if (dsign) { +rethi1: + dval(rv) += sulp(rv,bc); + } + } + else { + /* Exact half-way case: apply round-even rule. */ + if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) { + i = 1 - j; + if (i <= 31) { + if (word1(rv) & (0x1 << i)) { + goto odd; + } + } + else if (word0(rv) & (0x1 << (i-32))) { + goto odd; + } + } + else if (word1(rv) & 1) { +odd: + if (dsign) { + goto rethi1; + } + goto retlow1; + } + } + +#ifdef Honor_FLT_ROUNDS +ret1: +#endif + return; +} +#endif /* NO_STRTOD_BIGCOMP */ + +double +strtod +#ifdef KR_headers +(s00, se) CONST char *s00; char **se; +#else +(const char *s00, char **se) +#endif +{ + int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1; + int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign; + CONST char *s, *s0, *s1; + double aadj, aadj1; + Long L; + U aadj2, adj, rv, rv0; + ULong y, z; + BCinfo bc; + Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; +#ifdef Avoid_Underflow + ULong Lsb, Lsb1; +#endif +#ifdef SET_INEXACT + int oldinexact; +#endif +#ifndef NO_STRTOD_BIGCOMP + int req_bigcomp = 0; +#endif +#ifdef Honor_FLT_ROUNDS /*{*/ +#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ + bc.rounding = Flt_Rounds; +#else /*}{*/ + bc.rounding = 1; + switch(fegetround()) { + case FE_TOWARDZERO: bc.rounding = 0; break; + case FE_UPWARD: bc.rounding = 2; break; + case FE_DOWNWARD: bc.rounding = 3; + } +#endif /*}}*/ +#endif /*}*/ +#ifdef USE_LOCALE + CONST char *s2; +#endif + + sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0; + dval(&rv) = 0.; + for(s = s00;; s++) switch(*s) { + case '-': + sign = 1; + /* no break */ + case '+': + if (*++s) { + goto break2; + } + /* no break */ + case 0: + goto ret0; + case '\t': + case '\n': + case '\v': + case '\f': + case '\r': + case ' ': + continue; + default: + goto break2; + } +break2: + if (*s == '0') { +#ifndef NO_HEX_FP /*{*/ + switch(s[1]) { + case 'x': + case 'X': +#ifdef Honor_FLT_ROUNDS + gethex(&s, &rv, bc.rounding, sign); +#else + gethex(&s, &rv, 1, sign); +#endif + goto ret; + } +#endif /*}*/ + nz0 = 1; + while(*++s == '0') ; + if (!*s) { + goto ret; + } + } + s0 = s; + y = z = 0; + for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) + if (nd < 9) { + y = 10*y + c - '0'; + } + else if (nd < 16) { + z = 10*z + c - '0'; + } + nd0 = nd; + bc.dp0 = bc.dp1 = s - s0; + for(s1 = s; s1 > s0 && *--s1 == '0'; ) { + ++nz1; + } +#ifdef USE_LOCALE + s1 = localeconv()->decimal_point; + if (c == *s1) { + c = '.'; + if (*++s1) { + s2 = s; + for(;;) { + if (*++s2 != *s1) { + c = 0; + break; + } + if (!*++s1) { + s = s2; + break; + } + } + } + } +#endif + if (c == '.') { + c = *++s; + bc.dp1 = s - s0; + bc.dplen = bc.dp1 - bc.dp0; + if (!nd) { + for(; c == '0'; c = *++s) { + nz++; + } + if (c > '0' && c <= '9') { + bc.dp0 = s0 - s; + bc.dp1 = bc.dp0 + bc.dplen; + s0 = s; + nf += nz; + nz = 0; + goto have_dig; + } + goto dig_done; + } + for(; c >= '0' && c <= '9'; c = *++s) { +have_dig: + nz++; + if (c -= '0') { + nf += nz; + for(i = 1; i < nz; i++) + if (nd++ < 9) { + y *= 10; + } + else if (nd <= DBL_DIG + 1) { + z *= 10; + } + if (nd++ < 9) { + y = 10*y + c; + } + else if (nd <= DBL_DIG + 1) { + z = 10*z + c; + } + nz = nz1 = 0; + } + } + } +dig_done: + e = 0; + if (c == 'e' || c == 'E') { + if (!nd && !nz && !nz0) { + goto ret0; + } + s00 = s; + esign = 0; + switch(c = *++s) { + case '-': + esign = 1; + case '+': + c = *++s; + } + if (c >= '0' && c <= '9') { + while(c == '0') { + c = *++s; + } + if (c > '0' && c <= '9') { + L = c - '0'; + s1 = s; + while((c = *++s) >= '0' && c <= '9') { + L = 10*L + c - '0'; + } + if (s - s1 > 8 || L > 19999) + /* Avoid confusion from exponents + * so large that e might overflow. + */ + { + e = 19999; /* safe for 16 bit ints */ + } + else { + e = (int)L; + } + if (esign) { + e = -e; + } + } + else { + e = 0; + } + } + else { + s = s00; + } + } + if (!nd) { + if (!nz && !nz0) { +#ifdef INFNAN_CHECK + /* Check for Nan and Infinity */ + if (!bc.dplen) + switch(c) { + case 'i': + case 'I': + if (match(&s,"nf")) { + --s; + if (!match(&s,"inity")) { + ++s; + } + word0(&rv) = 0x7ff00000; + word1(&rv) = 0; + goto ret; + } + break; + case 'n': + case 'N': + if (match(&s, "an")) { + word0(&rv) = NAN_WORD0; + word1(&rv) = NAN_WORD1; +#ifndef No_Hex_NaN + if (*s == '(') { /*)*/ + hexnan(&rv, &s); + } +#endif + goto ret; + } + } +#endif /* INFNAN_CHECK */ +ret0: + s = s00; + sign = 0; + } + goto ret; + } + bc.e0 = e1 = e -= nf; + + /* Now we have nd0 digits, starting at s0, followed by a + * decimal point, followed by nd-nd0 digits. The number we're + * after is the integer represented by those digits times + * 10**e */ + + if (!nd0) { + nd0 = nd; + } + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; + dval(&rv) = y; + if (k > 9) { +#ifdef SET_INEXACT + if (k > DBL_DIG) { + oldinexact = get_inexact(); + } +#endif + dval(&rv) = tens[k - 9] * dval(&rv) + z; + } + bd0 = 0; + if (nd <= DBL_DIG +#ifndef RND_PRODQUOT +#ifndef Honor_FLT_ROUNDS + && Flt_Rounds == 1 +#endif +#endif + ) { + if (!e) { + goto ret; + } +#ifndef ROUND_BIASED_without_Round_Up + if (e > 0) { + if (e <= Ten_pmax) { +#ifdef VAX + goto vax_ovfl_check; +#else +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv.d = -rv.d; + sign = 0; + } +#endif + /* rv = */ rounded_product(dval(&rv), tens[e]); + goto ret; +#endif + } + i = DBL_DIG - nd; + if (e <= Ten_pmax + i) { + /* A fancier test would sometimes let us do + * this for larger i values. + */ +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv.d = -rv.d; + sign = 0; + } +#endif + e -= i; + dval(&rv) *= tens[i]; +#ifdef VAX + /* VAX exponent range is so narrow we must + * worry about overflow here... + */ +vax_ovfl_check: + word0(&rv) -= P*Exp_msk1; + /* rv = */ rounded_product(dval(&rv), tens[e]); + if ((word0(&rv) & Exp_mask) + > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { + goto ovfl; + } + word0(&rv) += P*Exp_msk1; +#else + /* rv = */ rounded_product(dval(&rv), tens[e]); +#endif + goto ret; + } + } +#ifndef Inaccurate_Divide + else if (e >= -Ten_pmax) { +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv.d = -rv.d; + sign = 0; + } +#endif + /* rv = */ rounded_quotient(dval(&rv), tens[-e]); + goto ret; + } +#endif +#endif /* ROUND_BIASED_without_Round_Up */ + } + e1 += nd - k; + +#ifdef IEEE_Arith +#ifdef SET_INEXACT + bc.inexact = 1; + if (k <= DBL_DIG) { + oldinexact = get_inexact(); + } +#endif +#ifdef Avoid_Underflow + bc.scale = 0; +#endif +#ifdef Honor_FLT_ROUNDS + if (bc.rounding >= 2) { + if (sign) { + bc.rounding = bc.rounding == 2 ? 0 : 2; + } + else if (bc.rounding != 2) { + bc.rounding = 0; + } + } +#endif +#endif /*IEEE_Arith*/ + + /* Get starting approximation = rv * 10**e1 */ + + if (e1 > 0) { + if ((i = e1 & 15)) { + dval(&rv) *= tens[i]; + } + if (e1 &= ~15) { + if (e1 > DBL_MAX_10_EXP) { +ovfl: + /* Can't trust HUGE_VAL */ +#ifdef IEEE_Arith +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 0: /* toward 0 */ + case 3: /* toward -infinity */ + word0(&rv) = Big0; + word1(&rv) = Big1; + break; + default: + word0(&rv) = Exp_mask; + word1(&rv) = 0; + } +#else /*Honor_FLT_ROUNDS*/ + word0(&rv) = Exp_mask; + word1(&rv) = 0; +#endif /*Honor_FLT_ROUNDS*/ +#ifdef SET_INEXACT + /* set overflow bit */ + dval(&rv0) = 1e300; + dval(&rv0) *= dval(&rv0); +#endif +#else /*IEEE_Arith*/ + word0(&rv) = Big0; + word1(&rv) = Big1; +#endif /*IEEE_Arith*/ +range_err: + if (bd0) { + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(bd0); + Bfree(delta); + } +#ifndef NO_ERRNO + errno = ERANGE; +#endif + goto ret; + } + e1 >>= 4; + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) { + dval(&rv) *= bigtens[j]; + } + /* The last multiplication could overflow. */ + word0(&rv) -= P*Exp_msk1; + dval(&rv) *= bigtens[j]; + if ((z = word0(&rv) & Exp_mask) + > Exp_msk1*(DBL_MAX_EXP+Bias-P)) { + goto ovfl; + } + if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { + /* set to largest number */ + /* (Can't trust DBL_MAX) */ + word0(&rv) = Big0; + word1(&rv) = Big1; + } + else { + word0(&rv) += P*Exp_msk1; + } + } + } + else if (e1 < 0) { + e1 = -e1; + if ((i = e1 & 15)) { + dval(&rv) /= tens[i]; + } + if (e1 >>= 4) { + if (e1 >= 1 << n_bigtens) { + goto undfl; + } +#ifdef Avoid_Underflow + if (e1 & Scale_Bit) { + bc.scale = 2*P; + } + for(j = 0; e1 > 0; j++, e1 >>= 1) + if (e1 & 1) { + dval(&rv) *= tinytens[j]; + } + if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) + >> Exp_shift)) > 0) { + /* scaled rv is denormal; clear j low bits */ + if (j >= 32) { + if (j > 54) { + goto undfl; + } + word1(&rv) = 0; + if (j >= 53) { + word0(&rv) = (P+2)*Exp_msk1; + } + else { + word0(&rv) &= 0xffffffff << (j-32); + } + } + else { + word1(&rv) &= 0xffffffff << j; + } + } +#else + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) { + dval(&rv) *= tinytens[j]; + } + /* The last multiplication could underflow. */ + dval(&rv0) = dval(&rv); + dval(&rv) *= tinytens[j]; + if (!dval(&rv)) { + dval(&rv) = 2.*dval(&rv0); + dval(&rv) *= tinytens[j]; +#endif + if (!dval(&rv)) { +undfl: + dval(&rv) = 0.; + goto range_err; + } +#ifndef Avoid_Underflow + word0(&rv) = Tiny0; + word1(&rv) = Tiny1; + /* The refinement below will clean + * this approximation up. + */ + } +#endif + } +} + +/* Now the hard part -- adjusting rv to the correct value.*/ + +/* Put digits into bd: true value = bd * 10^e */ + +bc.nd = nd - nz1; +#ifndef NO_STRTOD_BIGCOMP +bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */ +/* to silence an erroneous warning about bc.nd0 */ +/* possibly not being initialized. */ +if (nd > strtod_diglim) { + /* ASSERT(strtod_diglim >= 18); 18 == one more than the */ + /* minimum number of decimal digits to distinguish double values */ + /* in IEEE arithmetic. */ + i = j = 18; + if (i > nd0) { + j += bc.dplen; + } + for(;;) { + if (--j < bc.dp1 && j >= bc.dp0) { + j = bc.dp0 - 1; + } + if (s0[j] != '0') { + break; + } + --i; + } + e += nd - i; + nd = i; + if (nd0 > nd) { + nd0 = nd; + } + if (nd < 9) { /* must recompute y */ + y = 0; + for(i = 0; i < nd0; ++i) { + y = 10*y + s0[i] - '0'; + } + for(j = bc.dp1; i < nd; ++i) { + y = 10*y + s0[j++] - '0'; + } + } +} +#endif +bd0 = s2b(s0, nd0, nd, y, bc.dplen); + +for(;;) { + bd = Balloc(bd0->k); + Bcopy(bd, bd0); + bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ + bs = i2b(1); + + if (e >= 0) { + bb2 = bb5 = 0; + bd2 = bd5 = e; + } + else { + bb2 = bb5 = -e; + bd2 = bd5 = 0; + } + if (bbe >= 0) { + bb2 += bbe; + } + else { + bd2 -= bbe; + } + bs2 = bb2; +#ifdef Honor_FLT_ROUNDS + if (bc.rounding != 1) { + bs2++; + } +#endif +#ifdef Avoid_Underflow + Lsb = LSB; + Lsb1 = 0; + j = bbe - bc.scale; + i = j + bbbits - 1; /* logb(rv) */ + j = P + 1 - bbbits; + if (i < Emin) { /* denormal */ + i = Emin - i; + j -= i; + if (i < 32) { + Lsb <<= i; + } + else if (i < 52) { + Lsb1 = Lsb << (i-32); + } + else { + Lsb1 = Exp_mask; + } + } +#else /*Avoid_Underflow*/ +#ifdef Sudden_Underflow +#ifdef IBM + j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); +#else + j = P + 1 - bbbits; +#endif +#else /*Sudden_Underflow*/ + j = bbe; + i = j + bbbits - 1; /* logb(rv) */ + if (i < Emin) { /* denormal */ + j += P - Emin; + } + else { + j = P + 1 - bbbits; + } +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow*/ + bb2 += j; + bd2 += j; +#ifdef Avoid_Underflow + bd2 += bc.scale; +#endif + i = bb2 < bd2 ? bb2 : bd2; + if (i > bs2) { + i = bs2; + } + if (i > 0) { + bb2 -= i; + bd2 -= i; + bs2 -= i; + } + if (bb5 > 0) { + bs = pow5mult(bs, bb5); + bb1 = mult(bs, bb); + Bfree(bb); + bb = bb1; + } + if (bb2 > 0) { + bb = lshift(bb, bb2); + } + if (bd5 > 0) { + bd = pow5mult(bd, bd5); + } + if (bd2 > 0) { + bd = lshift(bd, bd2); + } + if (bs2 > 0) { + bs = lshift(bs, bs2); + } + delta = diff(bb, bd); + bc.dsign = delta->sign; + delta->sign = 0; + i = cmp(delta, bs); +#ifndef NO_STRTOD_BIGCOMP /*{*/ + if (bc.nd > nd && i <= 0) { + if (bc.dsign) { + /* Must use bigcomp(). */ + req_bigcomp = 1; + break; + } +#ifdef Honor_FLT_ROUNDS + if (bc.rounding != 1) { + if (i < 0) { + req_bigcomp = 1; + break; + } + } + else +#endif + i = -1; /* Discarded digits make delta smaller. */ + } +#endif /*}*/ +#ifdef Honor_FLT_ROUNDS /*{*/ + if (bc.rounding != 1) { + if (i < 0) { + /* Error is less than an ulp */ + if (!delta->x[0] && delta->wds <= 1) { + /* exact */ +#ifdef SET_INEXACT + bc.inexact = 0; +#endif + break; + } + if (bc.rounding) { + if (bc.dsign) { + adj.d = 1.; + goto apply_adj; + } + } + else if (!bc.dsign) { + adj.d = -1.; + if (!word1(&rv) + && !(word0(&rv) & Frac_mask)) { + y = word0(&rv) & Exp_mask; +#ifdef Avoid_Underflow + if (!bc.scale || y > 2*P*Exp_msk1) +#else + if (y) +#endif + { + delta = lshift(delta,Log2P); + if (cmp(delta, bs) <= 0) { + adj.d = -0.5; + } + } + } +apply_adj: +#ifdef Avoid_Underflow /*{*/ + if (bc.scale && (y = word0(&rv) & Exp_mask) + <= 2*P*Exp_msk1) { + word0(&adj) += (2*P+1)*Exp_msk1 - y; + } +#else +#ifdef Sudden_Underflow + if ((word0(&rv) & Exp_mask) <= + P*Exp_msk1) { + word0(&rv) += P*Exp_msk1; + dval(&rv) += adj.d*ulp(dval(&rv)); + word0(&rv) -= P*Exp_msk1; + } + else +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow}*/ + dval(&rv) += adj.d*ulp(&rv); + } + break; + } + adj.d = ratio(delta, bs); + if (adj.d < 1.) { + adj.d = 1.; + } + if (adj.d <= 0x7ffffffe) { + /* adj = rounding ? ceil(adj) : floor(adj); */ + y = adj.d; + if (y != adj.d) { + if (!((bc.rounding>>1) ^ bc.dsign)) { + y++; + } + adj.d = y; + } + } +#ifdef Avoid_Underflow /*{*/ + if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) { + word0(&adj) += (2*P+1)*Exp_msk1 - y; + } +#else +#ifdef Sudden_Underflow + if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) { + word0(&rv) += P*Exp_msk1; + adj.d *= ulp(dval(&rv)); + if (bc.dsign) { + dval(&rv) += adj.d; + } + else { + dval(&rv) -= adj.d; + } + word0(&rv) -= P*Exp_msk1; + goto cont; + } +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow}*/ + adj.d *= ulp(&rv); + if (bc.dsign) { + if (word0(&rv) == Big0 && word1(&rv) == Big1) { + goto ovfl; + } + dval(&rv) += adj.d; + } + else { + dval(&rv) -= adj.d; + } + goto cont; + } +#endif /*}Honor_FLT_ROUNDS*/ + + if (i < 0) { + /* Error is less than half an ulp -- check for + * special case of mantissa a power of two. + */ + if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask +#ifdef IEEE_Arith /*{*/ +#ifdef Avoid_Underflow + || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 +#else + || (word0(&rv) & Exp_mask) <= Exp_msk1 +#endif +#endif /*}*/ + ) { +#ifdef SET_INEXACT + if (!delta->x[0] && delta->wds <= 1) { + bc.inexact = 0; + } +#endif + break; + } + if (!delta->x[0] && delta->wds <= 1) { + /* exact result */ +#ifdef SET_INEXACT + bc.inexact = 0; +#endif + break; + } + delta = lshift(delta,Log2P); + if (cmp(delta, bs) > 0) { + goto drop_down; + } + break; + } + if (i == 0) { + /* exactly half-way between */ + if (bc.dsign) { + if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 + && word1(&rv) == ( +#ifdef Avoid_Underflow + (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) + ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : +#endif + 0xffffffff)) { + /*boundary case -- increment exponent*/ + if (word0(&rv) == Big0 && word1(&rv) == Big1) { + goto ovfl; + } + word0(&rv) = (word0(&rv) & Exp_mask) + + Exp_msk1 +#ifdef IBM + | Exp_msk1 >> 4 +#endif + ; + word1(&rv) = 0; +#ifdef Avoid_Underflow + bc.dsign = 0; +#endif + break; + } + } + else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { +drop_down: + /* boundary case -- decrement exponent */ +#ifdef Sudden_Underflow /*{{*/ + L = word0(&rv) & Exp_mask; +#ifdef IBM + if (L < Exp_msk1) +#else +#ifdef Avoid_Underflow + if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) +#else + if (L <= Exp_msk1) +#endif /*Avoid_Underflow*/ +#endif /*IBM*/ + { + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } + L -= Exp_msk1; +#else /*Sudden_Underflow}{*/ +#ifdef Avoid_Underflow + if (bc.scale) { + L = word0(&rv) & Exp_mask; + if (L <= (2*P+1)*Exp_msk1) { + if (L > (P+2)*Exp_msk1) + /* round even ==> */ + /* accept rv */ + { + break; + } + /* rv = smallest denormal */ + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } + } +#endif /*Avoid_Underflow*/ + L = (word0(&rv) & Exp_mask) - Exp_msk1; +#endif /*Sudden_Underflow}}*/ + word0(&rv) = L | Bndry_mask1; + word1(&rv) = 0xffffffff; +#ifdef IBM + goto cont; +#else +#ifndef NO_STRTOD_BIGCOMP + if (bc.nd > nd) { + goto cont; + } +#endif + break; +#endif + } +#ifndef ROUND_BIASED +#ifdef Avoid_Underflow + if (Lsb1) { + if (!(word0(&rv) & Lsb1)) { + break; + } + } + else if (!(word1(&rv) & Lsb)) { + break; + } +#else + if (!(word1(&rv) & LSB)) { + break; + } +#endif +#endif + if (bc.dsign) +#ifdef Avoid_Underflow + dval(&rv) += sulp(&rv, &bc); +#else + dval(&rv) += ulp(&rv); +#endif +#ifndef ROUND_BIASED + else { +#ifdef Avoid_Underflow + dval(&rv) -= sulp(&rv, &bc); +#else + dval(&rv) -= ulp(&rv); +#endif +#ifndef Sudden_Underflow + if (!dval(&rv)) { + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } +#endif + } +#ifdef Avoid_Underflow + bc.dsign = 1 - bc.dsign; +#endif +#endif + break; + } + if ((aadj = ratio(delta, bs)) <= 2.) { + if (bc.dsign) { + aadj = aadj1 = 1.; + } + else if (word1(&rv) || word0(&rv) & Bndry_mask) { +#ifndef Sudden_Underflow + if (word1(&rv) == Tiny1 && !word0(&rv)) { + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } +#endif + aadj = 1.; + aadj1 = -1.; + } + else { + /* special case -- power of FLT_RADIX to be */ + /* rounded down... */ + + if (aadj < 2./FLT_RADIX) { + aadj = 1./FLT_RADIX; + } + else { + aadj *= 0.5; + } + aadj1 = -aadj; + } + } + else { + aadj *= 0.5; + aadj1 = bc.dsign ? aadj : -aadj; +#ifdef Check_FLT_ROUNDS + switch(bc.rounding) { + case 2: /* towards +infinity */ + aadj1 -= 0.5; + break; + case 0: /* towards 0 */ + case 3: /* towards -infinity */ + aadj1 += 0.5; + } +#else + if (Flt_Rounds == 0) { + aadj1 += 0.5; + } +#endif /*Check_FLT_ROUNDS*/ + } + y = word0(&rv) & Exp_mask; + + /* Check for overflow */ + + if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { + dval(&rv0) = dval(&rv); + word0(&rv) -= P*Exp_msk1; + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + if ((word0(&rv) & Exp_mask) >= + Exp_msk1*(DBL_MAX_EXP+Bias-P)) { + if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { + goto ovfl; + } + word0(&rv) = Big0; + word1(&rv) = Big1; + goto cont; + } + else { + word0(&rv) += P*Exp_msk1; + } + } + else { +#ifdef Avoid_Underflow + if (bc.scale && y <= 2*P*Exp_msk1) { + if (aadj <= 0x7fffffff) { + if ((z = aadj) <= 0) { + z = 1; + } + aadj = z; + aadj1 = bc.dsign ? aadj : -aadj; + } + dval(&aadj2) = aadj1; + word0(&aadj2) += (2*P+1)*Exp_msk1 - y; + aadj1 = dval(&aadj2); + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + if (rv.d == 0.) +#ifdef NO_STRTOD_BIGCOMP + goto undfl; +#else + { + if (bc.nd > nd) { + bc.dsign = 1; + } + break; + } +#endif + } + else { + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + } +#else +#ifdef Sudden_Underflow + if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) { + dval(&rv0) = dval(&rv); + word0(&rv) += P*Exp_msk1; + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; +#ifdef IBM + if ((word0(&rv) & Exp_mask) < P*Exp_msk1) +#else + if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) +#endif + { + if (word0(&rv0) == Tiny0 + && word1(&rv0) == Tiny1) { + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } + word0(&rv) = Tiny0; + word1(&rv) = Tiny1; + goto cont; + } + else { + word0(&rv) -= P*Exp_msk1; + } + } + else { + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + } +#else /*Sudden_Underflow*/ + /* Compute adj so that the IEEE rounding rules will + * correctly round rv + adj in some half-way cases. + * If rv * ulp(rv) is denormalized (i.e., + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid + * trouble from bits lost to denormalization; + * example: 1.2e-307 . + */ + if (y <= (P-1)*Exp_msk1 && aadj > 1.) { + aadj1 = (double)(int)(aadj + 0.5); + if (!bc.dsign) { + aadj1 = -aadj1; + } + } + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow*/ + } + z = word0(&rv) & Exp_mask; +#ifndef SET_INEXACT + if (bc.nd == nd) { +#ifdef Avoid_Underflow + if (!bc.scale) +#endif + if (y == z) { + /* Can we stop now? */ + L = (Long)aadj; + aadj -= L; + /* The tolerances below are conservative. */ + if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) { + if (aadj < .4999999 || aadj > .5000001) { + break; + } + } + else if (aadj < .4999999/FLT_RADIX) { + break; + } + } + } +#endif +cont: + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(delta); +} +Bfree(bb); +Bfree(bd); +Bfree(bs); +Bfree(bd0); +Bfree(delta); +#ifndef NO_STRTOD_BIGCOMP +if (req_bigcomp) { + bd0 = 0; + bc.e0 += nz1; + bigcomp(&rv, s0, &bc); + y = word0(&rv) & Exp_mask; + if (y == Exp_mask) { + goto ovfl; + } + if (y == 0 && rv.d == 0.) { + goto undfl; + } +} +#endif +#ifdef SET_INEXACT +if (bc.inexact) { + if (!oldinexact) { + word0(&rv0) = Exp_1 + (70 << Exp_shift); + word1(&rv0) = 0; + dval(&rv0) += 1.; + } +} +else if (!oldinexact) { + clear_inexact(); +} +#endif +#ifdef Avoid_Underflow +if (bc.scale) { + word0(&rv0) = Exp_1 - 2*P*Exp_msk1; + word1(&rv0) = 0; + dval(&rv) *= dval(&rv0); +#ifndef NO_ERRNO + /* try to avoid the bug of testing an 8087 register value */ +#ifdef IEEE_Arith + if (!(word0(&rv) & Exp_mask)) +#else + if (word0(&rv) == 0 && word1(&rv) == 0) +#endif + errno = ERANGE; +#endif +} +#endif /* Avoid_Underflow */ +#ifdef SET_INEXACT +if (bc.inexact && !(word0(&rv) & Exp_mask)) { + /* set underflow bit */ + dval(&rv0) = 1e-300; + dval(&rv0) *= dval(&rv0); +} +#endif +ret: +if (se) { + *se = (char *)s; +} +return sign ? -dval(&rv) : dval(&rv); +} + +#ifndef MULTIPLE_THREADS +static char *dtoa_result; +#endif + +static char * +#ifdef KR_headers +rv_alloc(i) int i; +#else +rv_alloc(int i) +#endif +{ + int j, k, *r; + + j = sizeof(ULong); + for(k = 0; + sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i; + j <<= 1) { + k++; + } + r = (int*)Balloc(k); + *r = k; + return +#ifndef MULTIPLE_THREADS + dtoa_result = +#endif + (char *)(r+1); +} + +static char * +#ifdef KR_headers +nrv_alloc(s, rve, n) char *s, **rve; int n; +#else +nrv_alloc(const char *s, char **rve, int n) +#endif +{ + char *rv, *t; + + t = rv = rv_alloc(n); + while((*t = *s++)) { + t++; + } + if (rve) { + *rve = t; + } + return rv; +} + +/* freedtoa(s) must be used to free values s returned by dtoa + * when MULTIPLE_THREADS is #defined. It should be used in all cases, + * but for consistency with earlier versions of dtoa, it is optional + * when MULTIPLE_THREADS is not defined. + */ + +void +#ifdef KR_headers +freedtoa(s) char *s; +#else +freedtoa(char *s) +#endif +{ + Bigint *b = (Bigint *)((int *)s - 1); + b->maxwds = 1 << (b->k = *(int*)b); + Bfree(b); +#ifndef MULTIPLE_THREADS + if (s == dtoa_result) { + dtoa_result = 0; + } +#endif +} + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the Long + * calculation. + */ + +char * +dtoa +#ifdef KR_headers +(dd, mode, ndigits, decpt, sign, rve) +double dd; int mode, ndigits, *decpt, *sign; char **rve; +#else +(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve) +#endif +{ + /* Arguments ndigits, decpt, sign are similar to those + of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. + + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4,5 ==> similar to 2 and 3, respectively, but (in + round-nearest mode) with the tests of mode 0 to + possibly return a shorter string that rounds to d. + With IEEE arithmetic and compilation with + -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same + as modes 2 and 3 when FLT_ROUNDS != 1. + 6-9 ==> Debugging modes similar to mode - 4: don't try + fast floating-point estimate (if applicable). + + Values of mode other than 0-9 are treated as mode 0. + + Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + */ + + int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, + j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, + spec_case, try_quick; + Long L; +#ifndef Sudden_Underflow + int denorm; + ULong x; +#endif + Bigint *b, *b1, *delta, *mlo, *mhi, *S; + U d2, eps, u; + double ds; + char *s, *s0; +#ifndef No_leftright +#ifdef IEEE_Arith + U eps1; +#endif +#endif +#ifdef SET_INEXACT + int inexact, oldinexact; +#endif +#ifdef Honor_FLT_ROUNDS /*{*/ + int Rounding; +#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ + Rounding = Flt_Rounds; +#else /*}{*/ + Rounding = 1; + switch(fegetround()) { + case FE_TOWARDZERO: Rounding = 0; break; + case FE_UPWARD: Rounding = 2; break; + case FE_DOWNWARD: Rounding = 3; + } +#endif /*}}*/ +#endif /*}*/ + +#ifndef MULTIPLE_THREADS + if (dtoa_result) { + freedtoa(dtoa_result); + dtoa_result = 0; + } +#endif + + u.d = dd; + if (word0(&u) & Sign_bit) { + /* set sign for everything, including 0's and NaNs */ + *sign = 1; + word0(&u) &= ~Sign_bit; /* clear sign bit */ + } + else { + *sign = 0; + } + +#if defined(IEEE_Arith) + defined(VAX) +#ifdef IEEE_Arith + if ((word0(&u) & Exp_mask) == Exp_mask) +#else + if (word0(&u) == 0x8000) +#endif + { + /* Infinity or NaN */ + *decpt = 9999; +#ifdef IEEE_Arith + if (!word1(&u) && !(word0(&u) & 0xfffff)) { + return nrv_alloc("Infinity", rve, 8); + } +#endif + return nrv_alloc("NaN", rve, 3); + } +#endif +#ifdef IBM + dval(&u) += 0; /* normalize */ +#endif + if (!dval(&u)) { + *decpt = 1; + return nrv_alloc("0", rve, 1); + } + +#ifdef SET_INEXACT + try_quick = oldinexact = get_inexact(); + inexact = 1; +#endif +#ifdef Honor_FLT_ROUNDS + if (Rounding >= 2) { + if (*sign) { + Rounding = Rounding == 2 ? 0 : 2; + } + else if (Rounding != 2) { + Rounding = 0; + } + } +#endif + + b = d2b(&u, &be, &bbits); +#ifdef Sudden_Underflow + i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); +#else + if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { +#endif + dval(&d2) = dval(&u); + word0(&d2) &= Frac_mask1; + word0(&d2) |= Exp_11; +#ifdef IBM + if (j = 11 - hi0bits(word0(&d2) & Frac_mask)) { + dval(&d2) /= 1 << j; + } +#endif + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ + + i -= Bias; +#ifdef IBM + i <<= 2; + i += j; +#endif +#ifndef Sudden_Underflow + denorm = 0; +} +else { + /* d is denormalized */ + + i = bbits + be + (Bias + (P-1) - 1); + x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) + : word1(&u) << (32 - i); + dval(&d2) = x; + word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ + i -= (Bias + (P-1) - 1) + 1; + denorm = 1; +} +#endif +ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; +k = (int)ds; +if (ds < 0. && ds != k) { + k--; /* want k = floor(ds) */ +} +k_check = 1; +if (k >= 0 && k <= Ten_pmax) { + if (dval(&u) < tens[k]) { + k--; + } + k_check = 0; +} +j = bbits - i - 1; +if (j >= 0) { + b2 = 0; + s2 = j; +} +else { + b2 = -j; + s2 = 0; +} +if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; +} +else { + b2 -= k; + b5 = -k; + s5 = 0; +} +if (mode < 0 || mode > 9) { + mode = 0; +} + +#ifndef SET_INEXACT +#ifdef Check_FLT_ROUNDS +try_quick = Rounding == 1; +#else +try_quick = 1; +#endif +#endif /*SET_INEXACT*/ + +if (mode > 5) { + mode -= 4; + try_quick = 0; +} +leftright = 1; +ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ +/* silence erroneous "gcc -Wall" warning. */ +switch(mode) { +case 0: +case 1: + i = 18; + ndigits = 0; + break; +case 2: + leftright = 0; +/* no break */ +case 4: + if (ndigits <= 0) { + ndigits = 1; + } + ilim = ilim1 = i = ndigits; + break; +case 3: + leftright = 0; +/* no break */ +case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) { + i = 1; + } +} +s = s0 = rv_alloc(i); + +#ifdef Honor_FLT_ROUNDS +if (mode > 1 && Rounding != 1) { + leftright = 0; +} +#endif + +if (ilim >= 0 && ilim <= Quick_max && try_quick) { + + /* Try to get by with floating-point arithmetic. */ + + i = 0; + dval(&d2) = dval(&u); + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + if (k > 0) { + ds = tens[k&0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + dval(&u) /= bigtens[n_bigtens-1]; + ieps++; + } + for(; j; j >>= 1, i++) + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + dval(&u) /= ds; + } + else if ((j1 = -k)) { + dval(&u) *= tens[j1 & 0xf]; + for(j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) { + ieps++; + dval(&u) *= bigtens[i]; + } + } + if (k_check && dval(&u) < 1. && ilim > 0) { + if (ilim1 <= 0) { + goto fast_failed; + } + ilim = ilim1; + k--; + dval(&u) *= 10.; + ieps++; + } + dval(&eps) = ieps*dval(&u) + 7.; + word0(&eps) -= (P-1)*Exp_msk1; + if (ilim == 0) { + S = mhi = 0; + dval(&u) -= 5.; + if (dval(&u) > dval(&eps)) { + goto one_digit; + } + if (dval(&u) < -dval(&eps)) { + goto no_digits; + } + goto fast_failed; + } +#ifndef No_leftright + if (leftright) { + /* Use Steele & White method of only + * generating digits needed. + */ + dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); +#ifdef IEEE_Arith + if (k0 < 0 && j1 >= 307) { + eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */ + word0(&eps1) -= Exp_msk1 * (Bias+P-1); + dval(&eps1) *= tens[j1 & 0xf]; + for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++) + if (j & 1) { + dval(&eps1) *= bigtens[i]; + } + if (eps.d < eps1.d) { + eps.d = eps1.d; + } + } +#endif + for(i = 0;;) { + L = dval(&u); + dval(&u) -= L; + *s++ = '0' + (int)L; + if (1. - dval(&u) < dval(&eps)) { + goto bump_up; + } + if (dval(&u) < dval(&eps)) { + goto ret1; + } + if (++i >= ilim) { + break; + } + dval(&eps) *= 10.; + dval(&u) *= 10.; + } + } + else { +#endif + /* Generate ilim digits, then fix them up. */ + dval(&eps) *= tens[ilim-1]; + for(i = 1;; i++, dval(&u) *= 10.) { + L = (Long)(dval(&u)); + if (!(dval(&u) -= L)) { + ilim = i; + } + *s++ = '0' + (int)L; + if (i == ilim) { + if (dval(&u) > 0.5 + dval(&eps)) { + goto bump_up; + } + else if (dval(&u) < 0.5 - dval(&eps)) { + while(*--s == '0'); + s++; + goto ret1; + } + break; + } + } +#ifndef No_leftright + } +#endif +fast_failed: + s = s0; + dval(&u) = dval(&d2); + k = k0; + ilim = ilim0; +} + +/* Do we have a "small" integer? */ + +if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + S = mhi = 0; + if (ilim < 0 || dval(&u) <= 5*ds) { + goto no_digits; + } + goto one_digit; + } + for(i = 1;; i++, dval(&u) *= 10.) { + L = (Long)(dval(&u) / ds); + dval(&u) -= L*ds; +#ifdef Check_FLT_ROUNDS + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ + if (dval(&u) < 0) { + L--; + dval(&u) += ds; + } +#endif + *s++ = '0' + (int)L; + if (!dval(&u)) { +#ifdef SET_INEXACT + inexact = 0; +#endif + break; + } + if (i == ilim) { +#ifdef Honor_FLT_ROUNDS + if (mode > 1) + switch(Rounding) { + case 0: goto ret1; + case 2: goto bump_up; + } +#endif + dval(&u) += dval(&u); +#ifdef ROUND_BIASED + if (dval(&u) >= ds) +#else + if (dval(&u) > ds || (dval(&u) == ds && L & 1)) +#endif + { +bump_up: + while(*--s == '9') + if (s == s0) { + k++; + *s = '0'; + break; + } + ++*s++; + } + break; + } + } + goto ret1; +} + +m2 = b2; +m5 = b5; +mhi = mlo = 0; +if (leftright) { + i = +#ifndef Sudden_Underflow + denorm ? be + (Bias + (P-1) - 1 + 1) : +#endif +#ifdef IBM + 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); +#else + 1 + P - bbits; +#endif + b2 += i; + s2 += i; + mhi = i2b(1); +} +if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; +} +if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + mhi = pow5mult(mhi, m5); + b1 = mult(mhi, b); + Bfree(b); + b = b1; + } + if ((j = b5 - m5)) { + b = pow5mult(b, j); + } + } + else { + b = pow5mult(b, b5); + } +} +S = i2b(1); +if (s5 > 0) { + S = pow5mult(S, s5); +} + +/* Check for special case that d is a normalized power of 2. */ + +spec_case = 0; +if ((mode < 2 || leftright) +#ifdef Honor_FLT_ROUNDS + && Rounding == 1 +#endif + ) { + if (!word1(&u) && !(word0(&u) & Bndry_mask) +#ifndef Sudden_Underflow + && word0(&u) & (Exp_mask & ~Exp_msk1) +#endif + ) { + /* The special case */ + b2 += Log2P; + s2 += Log2P; + spec_case = 1; + } +} + +/* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ +i = dshift(S, s2); +b2 += i; +m2 += i; +s2 += i; +if (b2 > 0) { + b = lshift(b, b2); +} +if (s2 > 0) { + S = lshift(S, s2); +} +if (k_check) { + if (cmp(b,S) < 0) { + k--; + b = multadd(b, 10, 0); /* we botched the k estimate */ + if (leftright) { + mhi = multadd(mhi, 10, 0); + } + ilim = ilim1; + } +} +if (ilim <= 0 && (mode == 3 || mode == 5)) { + if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { + /* no digits, fcvt style */ +no_digits: + k = -1 - ndigits; + goto ret; + } +one_digit: + *s++ = '1'; + k++; + goto ret; +} +if (leftright) { + if (m2 > 0) { + mhi = lshift(mhi, m2); + } + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + mlo = mhi; + if (spec_case) { + mhi = Balloc(mhi->k); + Bcopy(mhi, mlo); + mhi = lshift(mhi, Log2P); + } + + for(i = 1;; i++) { + dig = quorem(b,S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + delta = diff(S, mhi); + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta); +#ifndef ROUND_BIASED + if (j1 == 0 && mode != 1 && !(word1(&u) & 1) +#ifdef Honor_FLT_ROUNDS + && Rounding >= 1 +#endif + ) { + if (dig == '9') { + goto round_9_up; + } + if (j > 0) { + dig++; + } +#ifdef SET_INEXACT + else if (!b->x[0] && b->wds <= 1) { + inexact = 0; + } +#endif + *s++ = dig; + goto ret; + } +#endif + if (j < 0 || (j == 0 && mode != 1 +#ifndef ROUND_BIASED + && !(word1(&u) & 1) +#endif + )) { + if (!b->x[0] && b->wds <= 1) { +#ifdef SET_INEXACT + inexact = 0; +#endif + goto accept_dig; + } +#ifdef Honor_FLT_ROUNDS + if (mode > 1) + switch(Rounding) { + case 0: goto accept_dig; + case 2: goto keep_dig; + } +#endif /*Honor_FLT_ROUNDS*/ + if (j1 > 0) { + b = lshift(b, 1); + j1 = cmp(b, S); +#ifdef ROUND_BIASED + if (j1 >= 0 /*)*/ +#else + if ((j1 > 0 || (j1 == 0 && dig & 1)) +#endif + && dig++ == '9') + goto round_9_up; + } +accept_dig: + *s++ = dig; + goto ret; + } + if (j1 > 0) { +#ifdef Honor_FLT_ROUNDS + if (!Rounding) { + goto accept_dig; + } +#endif + if (dig == '9') { /* possible if i == 1 */ +round_9_up: + *s++ = '9'; + goto roundoff; + } + *s++ = dig + 1; + goto ret; + } +#ifdef Honor_FLT_ROUNDS +keep_dig: +#endif + *s++ = dig; + if (i == ilim) { + break; + } + b = multadd(b, 10, 0); + if (mlo == mhi) { + mlo = mhi = multadd(mhi, 10, 0); + } + else { + mlo = multadd(mlo, 10, 0); + mhi = multadd(mhi, 10, 0); + } + } +} +else + for(i = 1;; i++) { + *s++ = dig = quorem(b,S) + '0'; + if (!b->x[0] && b->wds <= 1) { +#ifdef SET_INEXACT + inexact = 0; +#endif + goto ret; + } + if (i >= ilim) { + break; + } + b = multadd(b, 10, 0); + } + +/* Round off last digit */ + +#ifdef Honor_FLT_ROUNDS +switch(Rounding) { +case 0: goto trimzeros; +case 2: goto roundoff; +} +#endif +b = lshift(b, 1); +j = cmp(b, S); +#ifdef ROUND_BIASED +if (j >= 0) +#else +if (j > 0 || (j == 0 && dig & 1)) +#endif +{ +roundoff: + while(*--s == '9') + if (s == s0) { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; +} +else { +#ifdef Honor_FLT_ROUNDS +trimzeros: +#endif + while(*--s == '0'); + s++; +} +ret: +Bfree(S); +if (mhi) { + if (mlo && mlo != mhi) { + Bfree(mlo); + } + Bfree(mhi); +} +ret1: +#ifdef SET_INEXACT +if (inexact) { + if (!oldinexact) { + word0(&u) = Exp_1 + (70 << Exp_shift); + word1(&u) = 0; + dval(&u) += 1.; + } +} +else if (!oldinexact) { + clear_inexact(); +} +#endif +Bfree(b); +*s = 0; +*decpt = k + 1; +if (rve) { + *rve = s; +} +return s0; +} +#ifdef __cplusplus +} +#endif -- cgit v1.2.3