From 36d22d82aa202bb199967e9512281e9a53db42c9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 21:33:14 +0200 Subject: Adding upstream version 115.7.0esr. Signed-off-by: Daniel Baumann --- third_party/aom/av1/encoder/firstpass.c | 3480 +++++++++++++++++++++++++++++++ 1 file changed, 3480 insertions(+) create mode 100644 third_party/aom/av1/encoder/firstpass.c (limited to 'third_party/aom/av1/encoder/firstpass.c') diff --git a/third_party/aom/av1/encoder/firstpass.c b/third_party/aom/av1/encoder/firstpass.c new file mode 100644 index 0000000000..69dd20c526 --- /dev/null +++ b/third_party/aom/av1/encoder/firstpass.c @@ -0,0 +1,3480 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include +#include +#include + +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" +#include "aom_scale/aom_scale.h" +#include "aom_scale/yv12config.h" + +#include "aom_dsp/variance.h" +#include "av1/common/entropymv.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" // av1_setup_dst_planes() +#include "av1/common/txb_common.h" +#include "av1/encoder/aq_variance.h" +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/block.h" +#include "av1/encoder/dwt.h" +#include "av1/encoder/encodeframe.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/extend.h" +#include "av1/encoder/firstpass.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/reconinter_enc.h" + +#define OUTPUT_FPF 0 +#define ARF_STATS_OUTPUT 0 + +#define GROUP_ADAPTIVE_MAXQ 1 + +#define BOOST_BREAKOUT 12.5 +#define BOOST_FACTOR 12.5 +#define FACTOR_PT_LOW 0.70 +#define FACTOR_PT_HIGH 0.90 +#define FIRST_PASS_Q 10.0 +#define GF_MAX_BOOST 90.0 +#define INTRA_MODE_PENALTY 1024 +#define KF_MIN_FRAME_BOOST 80.0 +#define KF_MAX_FRAME_BOOST 128.0 +#define MIN_ARF_GF_BOOST 240 +#define MIN_DECAY_FACTOR 0.01 +#define MIN_KF_BOOST 300 +#define NEW_MV_MODE_PENALTY 32 +#define DARK_THRESH 64 +#define DEFAULT_GRP_WEIGHT 1.0 +#define RC_FACTOR_MIN 0.75 +#define RC_FACTOR_MAX 1.75 +#define MIN_FWD_KF_INTERVAL 8 + +#define NCOUNT_INTRA_THRESH 8192 +#define NCOUNT_INTRA_FACTOR 3 +#define NCOUNT_FRAME_II_THRESH 5.0 + +#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) + +#if ARF_STATS_OUTPUT +unsigned int arf_count = 0; +#endif + +// Resets the first pass file to the given position using a relative seek from +// the current position. +static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { + p->stats_in = position; +} + +// Read frame stats at an offset from the current position. +static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { + if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || + (offset < 0 && p->stats_in + offset < p->stats_in_start)) { + return NULL; + } + + return &p->stats_in[offset]; +} + +static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { + if (p->stats_in >= p->stats_in_end) return EOF; + + *fps = *p->stats_in; + ++p->stats_in; + return 1; +} + +static void output_stats(FIRSTPASS_STATS *stats, + struct aom_codec_pkt_list *pktlist) { + struct aom_codec_cx_pkt pkt; + pkt.kind = AOM_CODEC_STATS_PKT; + pkt.data.twopass_stats.buf = stats; + pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); + aom_codec_pkt_list_add(pktlist, &pkt); + +// TEMP debug code +#if OUTPUT_FPF + { + FILE *fpfile; + fpfile = fopen("firstpass.stt", "a"); + + fprintf(fpfile, + "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf" + "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" + "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n", + stats->frame, stats->weight, stats->intra_error, stats->coded_error, + stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion, + stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct, + stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, + stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, + stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, + stats->count, stats->duration); + fclose(fpfile); + } +#endif +} + +#if CONFIG_FP_MB_STATS +static void output_fpmb_stats(uint8_t *this_frame_mb_stats, int stats_size, + struct aom_codec_pkt_list *pktlist) { + struct aom_codec_cx_pkt pkt; + pkt.kind = AOM_CODEC_FPMB_STATS_PKT; + pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; + pkt.data.firstpass_mb_stats.sz = stats_size * sizeof(*this_frame_mb_stats); + aom_codec_pkt_list_add(pktlist, &pkt); +} +#endif + +static void zero_stats(FIRSTPASS_STATS *section) { + section->frame = 0.0; + section->weight = 0.0; + section->intra_error = 0.0; + section->frame_avg_wavelet_energy = 0.0; + section->coded_error = 0.0; + section->sr_coded_error = 0.0; + section->pcnt_inter = 0.0; + section->pcnt_motion = 0.0; + section->pcnt_second_ref = 0.0; + section->pcnt_neutral = 0.0; + section->intra_skip_pct = 0.0; + section->inactive_zone_rows = 0.0; + section->inactive_zone_cols = 0.0; + section->MVr = 0.0; + section->mvr_abs = 0.0; + section->MVc = 0.0; + section->mvc_abs = 0.0; + section->MVrv = 0.0; + section->MVcv = 0.0; + section->mv_in_out_count = 0.0; + section->new_mv_count = 0.0; + section->count = 0.0; + section->duration = 1.0; +} + +static void accumulate_stats(FIRSTPASS_STATS *section, + const FIRSTPASS_STATS *frame) { + section->frame += frame->frame; + section->weight += frame->weight; + section->intra_error += frame->intra_error; + section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy; + section->coded_error += frame->coded_error; + section->sr_coded_error += frame->sr_coded_error; + section->pcnt_inter += frame->pcnt_inter; + section->pcnt_motion += frame->pcnt_motion; + section->pcnt_second_ref += frame->pcnt_second_ref; + section->pcnt_neutral += frame->pcnt_neutral; + section->intra_skip_pct += frame->intra_skip_pct; + section->inactive_zone_rows += frame->inactive_zone_rows; + section->inactive_zone_cols += frame->inactive_zone_cols; + section->MVr += frame->MVr; + section->mvr_abs += frame->mvr_abs; + section->MVc += frame->MVc; + section->mvc_abs += frame->mvc_abs; + section->MVrv += frame->MVrv; + section->MVcv += frame->MVcv; + section->mv_in_out_count += frame->mv_in_out_count; + section->new_mv_count += frame->new_mv_count; + section->count += frame->count; + section->duration += frame->duration; +} + +static void subtract_stats(FIRSTPASS_STATS *section, + const FIRSTPASS_STATS *frame) { + section->frame -= frame->frame; + section->weight -= frame->weight; + section->intra_error -= frame->intra_error; + section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy; + section->coded_error -= frame->coded_error; + section->sr_coded_error -= frame->sr_coded_error; + section->pcnt_inter -= frame->pcnt_inter; + section->pcnt_motion -= frame->pcnt_motion; + section->pcnt_second_ref -= frame->pcnt_second_ref; + section->pcnt_neutral -= frame->pcnt_neutral; + section->intra_skip_pct -= frame->intra_skip_pct; + section->inactive_zone_rows -= frame->inactive_zone_rows; + section->inactive_zone_cols -= frame->inactive_zone_cols; + section->MVr -= frame->MVr; + section->mvr_abs -= frame->mvr_abs; + section->MVc -= frame->MVc; + section->mvc_abs -= frame->mvc_abs; + section->MVrv -= frame->MVrv; + section->MVcv -= frame->MVcv; + section->mv_in_out_count -= frame->mv_in_out_count; + section->new_mv_count -= frame->new_mv_count; + section->count -= frame->count; + section->duration -= frame->duration; +} + +// Calculate the linear size relative to a baseline of 1080P +#define BASE_SIZE 2073600.0 // 1920x1080 +static double get_linear_size_factor(const AV1_COMP *cpi) { + const double this_area = cpi->initial_width * cpi->initial_height; + return pow(this_area / BASE_SIZE, 0.5); +} + +// Calculate an active area of the image that discounts formatting +// bars and partially discounts other 0 energy areas. +#define MIN_ACTIVE_AREA 0.5 +#define MAX_ACTIVE_AREA 1.0 +static double calculate_active_area(const AV1_COMP *cpi, + const FIRSTPASS_STATS *this_frame) { + double active_pct; + + active_pct = + 1.0 - + ((this_frame->intra_skip_pct / 2) + + ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows)); + return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); +} + +// Calculate a modified Error used in distributing bits between easier and +// harder frames. +#define ACT_AREA_CORRECTION 0.5 +static double calculate_modified_err(const AV1_COMP *cpi, + const TWO_PASS *twopass, + const AV1EncoderConfig *oxcf, + const FIRSTPASS_STATS *this_frame) { + const FIRSTPASS_STATS *const stats = &twopass->total_stats; + const double av_weight = stats->weight / stats->count; + const double av_err = (stats->coded_error * av_weight) / stats->count; + double modified_error = + av_err * pow(this_frame->coded_error * this_frame->weight / + DOUBLE_DIVIDE_CHECK(av_err), + oxcf->two_pass_vbrbias / 100.0); + + // Correction for active area. Frames with a reduced active area + // (eg due to formatting bars) have a higher error per mb for the + // remaining active MBs. The correction here assumes that coding + // 0.5N blocks of complexity 2X is a little easier than coding N + // blocks of complexity X. + modified_error *= + pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); + + return fclamp(modified_error, twopass->modified_error_min, + twopass->modified_error_max); +} + +// This function returns the maximum target rate per frame. +static int frame_max_bits(const RATE_CONTROL *rc, + const AV1EncoderConfig *oxcf) { + int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * + (int64_t)oxcf->two_pass_vbrmax_section) / + 100; + if (max_bits < 0) + max_bits = 0; + else if (max_bits > rc->max_frame_bandwidth) + max_bits = rc->max_frame_bandwidth; + + return (int)max_bits; +} + +void av1_init_first_pass(AV1_COMP *cpi) { + zero_stats(&cpi->twopass.total_stats); +} + +void av1_end_first_pass(AV1_COMP *cpi) { + output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list); +} + +static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { + switch (bsize) { + case BLOCK_8X8: return aom_mse8x8; + case BLOCK_16X8: return aom_mse16x8; + case BLOCK_8X16: return aom_mse8x16; + default: return aom_mse16x16; + } +} + +static unsigned int get_prediction_error(BLOCK_SIZE bsize, + const struct buf_2d *src, + const struct buf_2d *ref) { + unsigned int sse; + const aom_variance_fn_t fn = get_block_variance_fn(bsize); + fn(src->buf, src->stride, ref->buf, ref->stride, &sse); + return sse; +} + +static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, + int bd) { + switch (bd) { + default: + switch (bsize) { + case BLOCK_8X8: return aom_highbd_8_mse8x8; + case BLOCK_16X8: return aom_highbd_8_mse16x8; + case BLOCK_8X16: return aom_highbd_8_mse8x16; + default: return aom_highbd_8_mse16x16; + } + break; + case 10: + switch (bsize) { + case BLOCK_8X8: return aom_highbd_10_mse8x8; + case BLOCK_16X8: return aom_highbd_10_mse16x8; + case BLOCK_8X16: return aom_highbd_10_mse8x16; + default: return aom_highbd_10_mse16x16; + } + break; + case 12: + switch (bsize) { + case BLOCK_8X8: return aom_highbd_12_mse8x8; + case BLOCK_16X8: return aom_highbd_12_mse16x8; + case BLOCK_8X16: return aom_highbd_12_mse8x16; + default: return aom_highbd_12_mse16x16; + } + break; + } +} + +static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, + const struct buf_2d *src, + const struct buf_2d *ref, + int bd) { + unsigned int sse; + const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); + fn(src->buf, src->stride, ref->buf, ref->stride, &sse); + return sse; +} + +// Refine the motion search range according to the frame dimension +// for first pass test. +static int get_search_range(const AV1_COMP *cpi) { + int sr = 0; + const int dim = AOMMIN(cpi->initial_width, cpi->initial_height); + + while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; + return sr; +} + +static void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x, + const MV *ref_mv, MV *best_mv, + int *best_motion_err) { + MACROBLOCKD *const xd = &x->e_mbd; + MV tmp_mv = kZeroMv; + MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; + int num00, tmp_err, n; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; + const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; + + int step_param = 3; + int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; + const int sr = get_search_range(cpi); + step_param += sr; + further_steps -= sr; + + // Override the default variance function to use MSE. + v_fn_ptr.vf = get_block_variance_fn(bsize); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); + } + + // Center the initial step/diamond search on best mv. + tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, + step_param, x->sadperbit16, &num00, + &v_fn_ptr, ref_mv); + if (tmp_err < INT_MAX) + tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); + if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) { + *best_motion_err = tmp_err; + *best_mv = tmp_mv; + } + + // Carry out further step/diamond searches as necessary. + n = num00; + num00 = 0; + + while (n < further_steps) { + ++n; + + if (num00) { + --num00; + } else { + tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, + step_param + n, x->sadperbit16, &num00, + &v_fn_ptr, ref_mv); + if (tmp_err < INT_MAX) + tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); + if (tmp_err < INT_MAX - new_mv_mode_penalty) + tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) { + *best_motion_err = tmp_err; + *best_mv = tmp_mv; + } + } + } +} + +static BLOCK_SIZE get_bsize(const AV1_COMMON *cm, int mb_row, int mb_col) { + if (mi_size_wide[BLOCK_16X16] * mb_col + mi_size_wide[BLOCK_8X8] < + cm->mi_cols) { + return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] < + cm->mi_rows + ? BLOCK_16X16 + : BLOCK_16X8; + } else { + return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] < + cm->mi_rows + ? BLOCK_8X16 + : BLOCK_8X8; + } +} + +static int find_fp_qindex(aom_bit_depth_t bit_depth) { + int i; + + for (i = 0; i < QINDEX_RANGE; ++i) + if (av1_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; + + if (i == QINDEX_RANGE) i--; + + return i; +} + +static void set_first_pass_params(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + if (!cpi->refresh_alt_ref_frame && + (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { + cm->frame_type = KEY_FRAME; + } else { + cm->frame_type = INTER_FRAME; + } + // Do not use periodic key frames. + cpi->rc.frames_to_key = INT_MAX; +} + +static double raw_motion_error_stdev(int *raw_motion_err_list, + int raw_motion_err_counts) { + int64_t sum_raw_err = 0; + double raw_err_avg = 0; + double raw_err_stdev = 0; + if (raw_motion_err_counts == 0) return 0; + + int i; + for (i = 0; i < raw_motion_err_counts; i++) { + sum_raw_err += raw_motion_err_list[i]; + } + raw_err_avg = (double)sum_raw_err / raw_motion_err_counts; + for (i = 0; i < raw_motion_err_counts; i++) { + raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) * + (raw_motion_err_list[i] - raw_err_avg); + } + // Calculate the standard deviation for the motion error of all the inter + // blocks of the 0,0 motion using the last source + // frame as the reference. + raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts); + return raw_err_stdev; +} + +#define UL_INTRA_THRESH 50 +#define INVALID_ROW -1 +void av1_first_pass(AV1_COMP *cpi, const struct lookahead_entry *source) { + int mb_row, mb_col; + MACROBLOCK *const x = &cpi->td.mb; + AV1_COMMON *const cm = &cpi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + TileInfo tile; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + const PICK_MODE_CONTEXT *ctx = + &cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none; + int i; + + int recon_yoffset, recon_uvoffset; + int64_t intra_error = 0; + int64_t frame_avg_wavelet_energy = 0; + int64_t coded_error = 0; + int64_t sr_coded_error = 0; + + int sum_mvr = 0, sum_mvc = 0; + int sum_mvr_abs = 0, sum_mvc_abs = 0; + int64_t sum_mvrs = 0, sum_mvcs = 0; + int mvcount = 0; + int intercount = 0; + int second_ref_count = 0; + const int intrapenalty = INTRA_MODE_PENALTY; + double neutral_count; + int intra_skip_count = 0; + int image_data_start_row = INVALID_ROW; + int new_mv_count = 0; + int sum_in_vectors = 0; + MV lastmv = kZeroMv; + TWO_PASS *twopass = &cpi->twopass; + int recon_y_stride, recon_uv_stride, uv_mb_height; + + YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); + YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); + const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; + double intra_factor; + double brightness_factor; + BufferPool *const pool = cm->buffer_pool; + const int qindex = find_fp_qindex(seq_params->bit_depth); + const int mb_scale = mi_size_wide[BLOCK_16X16]; + + int *raw_motion_err_list; + int raw_motion_err_counts = 0; + CHECK_MEM_ERROR( + cm, raw_motion_err_list, + aom_calloc(cm->mb_rows * cm->mb_cols, sizeof(*raw_motion_err_list))); + // First pass code requires valid last and new frame buffers. + assert(new_yv12 != NULL); + assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + av1_zero_array(cpi->twopass.frame_mb_stats_buf, cpi->initial_mbs); + } +#endif + + aom_clear_system_state(); + + xd->mi = cm->mi_grid_visible; + xd->mi[0] = cm->mi; + x->e_mbd.mi[0]->sb_type = BLOCK_16X16; + + intra_factor = 0.0; + brightness_factor = 0.0; + neutral_count = 0.0; + + set_first_pass_params(cpi); + av1_set_quantizer(cm, qindex); + + av1_setup_block_planes(&x->e_mbd, seq_params->subsampling_x, + seq_params->subsampling_y, num_planes); + + av1_setup_src_planes(x, cpi->source, 0, 0, num_planes); + av1_setup_dst_planes(xd->plane, seq_params->sb_size, new_yv12, 0, 0, 0, + num_planes); + + if (!frame_is_intra_only(cm)) { + av1_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL, num_planes); + } + + xd->mi = cm->mi_grid_visible; + xd->mi[0] = cm->mi; + + // Don't store luma on the fist pass since chroma is not computed + xd->cfl.store_y = 0; + av1_frame_init_quantizer(cpi); + + for (i = 0; i < num_planes; ++i) { + p[i].coeff = ctx->coeff[i]; + p[i].qcoeff = ctx->qcoeff[i]; + pd[i].dqcoeff = ctx->dqcoeff[i]; + p[i].eobs = ctx->eobs[i]; + p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; + } + + av1_init_mv_probs(cm); + av1_init_lv_map(cm); + av1_initialize_rd_consts(cpi); + + // Tiling is ignored in the first pass. + av1_tile_init(&tile, cm, 0, 0); + + recon_y_stride = new_yv12->y_stride; + recon_uv_stride = new_yv12->uv_stride; + uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); + + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + MV best_ref_mv = kZeroMv; + + // Reset above block coeffs. + xd->up_available = (mb_row != 0); + recon_yoffset = (mb_row * recon_y_stride * 16); + recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height); + + // Set up limit values for motion vectors to prevent them extending + // outside the UMV borders. + x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); + x->mv_limits.row_max = + ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; + + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + int this_error; + const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); + const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); + double log_intra; + int level_sample; + +#if CONFIG_FP_MB_STATS + const int mb_index = mb_row * cm->mb_cols + mb_col; +#endif + + aom_clear_system_state(); + + const int idx_str = xd->mi_stride * mb_row * mb_scale + mb_col * mb_scale; + xd->mi = cm->mi_grid_visible + idx_str; + xd->mi[0] = cm->mi + idx_str; + xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; + xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; + xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; + xd->left_available = (mb_col != 0); + xd->mi[0]->sb_type = bsize; + xd->mi[0]->ref_frame[0] = INTRA_FRAME; + set_mi_row_col(xd, &tile, mb_row * mb_scale, mi_size_high[bsize], + mb_col * mb_scale, mi_size_wide[bsize], cm->mi_rows, + cm->mi_cols); + + set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes); + + // Do intra 16x16 prediction. + xd->mi[0]->segment_id = 0; + xd->lossless[xd->mi[0]->segment_id] = (qindex == 0); + xd->mi[0]->mode = DC_PRED; + xd->mi[0]->tx_size = + use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; + av1_encode_intra_block_plane(cpi, x, bsize, 0, 0, mb_row * 2, mb_col * 2); + this_error = aom_get_mb_ss(x->plane[0].src_diff); + + // Keep a record of blocks that have almost no intra error residual + // (i.e. are in effect completely flat and untextured in the intra + // domain). In natural videos this is uncommon, but it is much more + // common in animations, graphics and screen content, so may be used + // as a signal to detect these types of content. + if (this_error < UL_INTRA_THRESH) { + ++intra_skip_count; + } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) { + image_data_start_row = mb_row; + } + + if (seq_params->use_highbitdepth) { + switch (seq_params->bit_depth) { + case AOM_BITS_8: break; + case AOM_BITS_10: this_error >>= 4; break; + case AOM_BITS_12: this_error >>= 8; break; + default: + assert(0 && + "seq_params->bit_depth should be AOM_BITS_8, " + "AOM_BITS_10 or AOM_BITS_12"); + return; + } + } + + aom_clear_system_state(); + log_intra = log(this_error + 1.0); + if (log_intra < 10.0) + intra_factor += 1.0 + ((10.0 - log_intra) * 0.05); + else + intra_factor += 1.0; + + if (seq_params->use_highbitdepth) + level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; + else + level_sample = x->plane[0].src.buf[0]; + if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) + brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample)); + else + brightness_factor += 1.0; + + // Intrapenalty below deals with situations where the intra and inter + // error scores are very low (e.g. a plain black frame). + // We do not have special cases in first pass for 0,0 and nearest etc so + // all inter modes carry an overhead cost estimate for the mv. + // When the error score is very low this causes us to pick all or lots of + // INTRA modes and throw lots of key frames. + // This penalty adds a cost matching that of a 0,0 mv to the intra case. + this_error += intrapenalty; + + // Accumulate the intra error. + intra_error += (int64_t)this_error; + + int stride = x->plane[0].src.stride; + uint8_t *buf = x->plane[0].src.buf; + for (int r8 = 0; r8 < 2; ++r8) + for (int c8 = 0; c8 < 2; ++c8) { + int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + frame_avg_wavelet_energy += av1_haar_ac_sad_8x8_uint8_input( + buf + c8 * 8 + r8 * 8 * stride, stride, hbd); + } + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // initialization + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + } +#endif + + // Set up limit values for motion vectors to prevent them extending + // outside the UMV borders. + x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); + x->mv_limits.col_max = + ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; + + if (!frame_is_intra_only(cm)) { // Do a motion search + int tmp_err, motion_error, raw_motion_error; + // Assume 0,0 motion with no mv overhead. + MV mv = kZeroMv, tmp_mv = kZeroMv; + struct buf_2d unscaled_last_source_buf_2d; + + xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); + } else { + motion_error = get_prediction_error(bsize, &x->plane[0].src, + &xd->plane[0].pre[0]); + } + + // Compute the motion error of the 0,0 motion using the last source + // frame as the reference. Skip the further motion search on + // reconstructed frame if this error is small. + unscaled_last_source_buf_2d.buf = + cpi->unscaled_last_source->y_buffer + recon_yoffset; + unscaled_last_source_buf_2d.stride = + cpi->unscaled_last_source->y_stride; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + raw_motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); + } else { + raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, + &unscaled_last_source_buf_2d); + } + + // TODO(pengchong): Replace the hard-coded threshold + if (raw_motion_error > 25) { + // Test last reference frame using the previous best mv as the + // starting point (best reference) for the search. + first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error); + + // If the current best reference mv is not centered on 0,0 then do a + // 0,0 based search as well. + if (!is_zero_mv(&best_ref_mv)) { + tmp_err = INT_MAX; + first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err); + + if (tmp_err < motion_error) { + motion_error = tmp_err; + mv = tmp_mv; + } + } + + // Search in an older reference frame. + if ((cm->current_video_frame > 1) && gld_yv12 != NULL) { + // Assume 0,0 motion with no mv overhead. + int gf_motion_error; + + xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + gf_motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); + } else { + gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, + &xd->plane[0].pre[0]); + } + + first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, + &gf_motion_error); + + if (gf_motion_error < motion_error && gf_motion_error < this_error) + ++second_ref_count; + + // Reset to last frame as reference buffer. + xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; + xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; + xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; + + // In accumulating a score for the older reference frame take the + // best of the motion predicted score and the intra coded error + // (just as will be done for) accumulation of "coded_error" for + // the last frame. + if (gf_motion_error < this_error) + sr_coded_error += gf_motion_error; + else + sr_coded_error += this_error; + } else { + sr_coded_error += motion_error; + } + } else { + sr_coded_error += motion_error; + } + + // Start by assuming that intra mode is best. + best_ref_mv.row = 0; + best_ref_mv.col = 0; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // intra predication statistics + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; + if (this_error > FPMB_ERROR_LARGE_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; + } else if (this_error < FPMB_ERROR_SMALL_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; + } + } +#endif + + if (motion_error <= this_error) { + aom_clear_system_state(); + + // Keep a count of cases where the inter and intra were very close + // and very low. This helps with scene cut detection for example in + // cropped clips with black bars at the sides or top and bottom. + if (((this_error - intrapenalty) * 9 <= motion_error * 10) && + (this_error < (2 * intrapenalty))) { + neutral_count += 1.0; + // Also track cases where the intra is not much worse than the inter + // and use this in limiting the GF/arf group length. + } else if ((this_error > NCOUNT_INTRA_THRESH) && + (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { + neutral_count += + (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); + } + + mv.row *= 8; + mv.col *= 8; + this_error = motion_error; + xd->mi[0]->mode = NEWMV; + xd->mi[0]->mv[0].as_mv = mv; + xd->mi[0]->tx_size = TX_4X4; + xd->mi[0]->ref_frame[0] = LAST_FRAME; + xd->mi[0]->ref_frame[1] = NONE_FRAME; + av1_build_inter_predictors_sby(cm, xd, mb_row * mb_scale, + mb_col * mb_scale, NULL, bsize); + av1_encode_sby_pass1(cm, x, bsize); + sum_mvr += mv.row; + sum_mvr_abs += abs(mv.row); + sum_mvc += mv.col; + sum_mvc_abs += abs(mv.col); + sum_mvrs += mv.row * mv.row; + sum_mvcs += mv.col * mv.col; + ++intercount; + + best_ref_mv = mv; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // inter predication statistics + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; + if (this_error > FPMB_ERROR_LARGE_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_ERROR_LARGE_MASK; + } else if (this_error < FPMB_ERROR_SMALL_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_ERROR_SMALL_MASK; + } + } +#endif + + if (!is_zero_mv(&mv)) { + ++mvcount; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + cpi->twopass.frame_mb_stats_buf[mb_index] &= + ~FPMB_MOTION_ZERO_MASK; + // check estimated motion direction + if (mv.col > 0 && mv.col >= abs(mv.row)) { + // right direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_RIGHT_MASK; + } else if (mv.row < 0 && abs(mv.row) >= abs(mv.col)) { + // up direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_UP_MASK; + } else if (mv.col < 0 && abs(mv.col) >= abs(mv.row)) { + // left direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_LEFT_MASK; + } else { + // down direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_DOWN_MASK; + } + } +#endif + + // Non-zero vector, was it different from the last non zero vector? + if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count; + lastmv = mv; + + // Does the row vector point inwards or outwards? + if (mb_row < cm->mb_rows / 2) { + if (mv.row > 0) + --sum_in_vectors; + else if (mv.row < 0) + ++sum_in_vectors; + } else if (mb_row > cm->mb_rows / 2) { + if (mv.row > 0) + ++sum_in_vectors; + else if (mv.row < 0) + --sum_in_vectors; + } + + // Does the col vector point inwards or outwards? + if (mb_col < cm->mb_cols / 2) { + if (mv.col > 0) + --sum_in_vectors; + else if (mv.col < 0) + ++sum_in_vectors; + } else if (mb_col > cm->mb_cols / 2) { + if (mv.col > 0) + ++sum_in_vectors; + else if (mv.col < 0) + --sum_in_vectors; + } + } + } + raw_motion_err_list[raw_motion_err_counts++] = raw_motion_error; + } else { + sr_coded_error += (int64_t)this_error; + } + coded_error += (int64_t)this_error; + + // Adjust to the next column of MBs. + x->plane[0].src.buf += 16; + x->plane[1].src.buf += uv_mb_height; + x->plane[2].src.buf += uv_mb_height; + + recon_yoffset += 16; + recon_uvoffset += uv_mb_height; + } + // Adjust to the next row of MBs. + x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; + x->plane[1].src.buf += + uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; + x->plane[2].src.buf += + uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; + + aom_clear_system_state(); + } + const double raw_err_stdev = + raw_motion_error_stdev(raw_motion_err_list, raw_motion_err_counts); + aom_free(raw_motion_err_list); + + // Clamp the image start to rows/2. This number of rows is discarded top + // and bottom as dead data so rows / 2 means the frame is blank. + if ((image_data_start_row > cm->mb_rows / 2) || + (image_data_start_row == INVALID_ROW)) { + image_data_start_row = cm->mb_rows / 2; + } + // Exclude any image dead zone + if (image_data_start_row > 0) { + intra_skip_count = + AOMMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2)); + } + + { + FIRSTPASS_STATS fps; + // The minimum error here insures some bit allocation to frames even + // in static regions. The allocation per MB declines for larger formats + // where the typical "real" energy per MB also falls. + // Initial estimate here uses sqrt(mbs) to define the min_err, where the + // number of mbs is proportional to the image area. + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) + ? cpi->initial_mbs + : cpi->common.MBs; + const double min_err = 200 * sqrt(num_mbs); + + intra_factor = intra_factor / (double)num_mbs; + brightness_factor = brightness_factor / (double)num_mbs; + fps.weight = intra_factor * brightness_factor; + + fps.frame = cm->current_video_frame; + fps.coded_error = (double)(coded_error >> 8) + min_err; + fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err; + fps.intra_error = (double)(intra_error >> 8) + min_err; + fps.frame_avg_wavelet_energy = (double)frame_avg_wavelet_energy; + fps.count = 1.0; + fps.pcnt_inter = (double)intercount / num_mbs; + fps.pcnt_second_ref = (double)second_ref_count / num_mbs; + fps.pcnt_neutral = (double)neutral_count / num_mbs; + fps.intra_skip_pct = (double)intra_skip_count / num_mbs; + fps.inactive_zone_rows = (double)image_data_start_row; + fps.inactive_zone_cols = (double)0; // TODO(paulwilkins): fix + fps.raw_error_stdev = raw_err_stdev; + + if (mvcount > 0) { + fps.MVr = (double)sum_mvr / mvcount; + fps.mvr_abs = (double)sum_mvr_abs / mvcount; + fps.MVc = (double)sum_mvc / mvcount; + fps.mvc_abs = (double)sum_mvc_abs / mvcount; + fps.MVrv = + ((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount; + fps.MVcv = + ((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount; + fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2); + fps.new_mv_count = new_mv_count; + fps.pcnt_motion = (double)mvcount / num_mbs; + } else { + fps.MVr = 0.0; + fps.mvr_abs = 0.0; + fps.MVc = 0.0; + fps.mvc_abs = 0.0; + fps.MVrv = 0.0; + fps.MVcv = 0.0; + fps.mv_in_out_count = 0.0; + fps.new_mv_count = 0.0; + fps.pcnt_motion = 0.0; + } + + // TODO(paulwilkins): Handle the case when duration is set to 0, or + // something less than the full time between subsequent values of + // cpi->source_time_stamp. + fps.duration = (double)(source->ts_end - source->ts_start); + + // Don't want to do output stats with a stack variable! + twopass->this_frame_stats = fps; + output_stats(&twopass->this_frame_stats, cpi->output_pkt_list); + accumulate_stats(&twopass->total_stats, &fps); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + output_fpmb_stats(twopass->frame_mb_stats_buf, cpi->initial_mbs, + cpi->output_pkt_list); + } +#endif + } + + // Copy the previous Last Frame back into gf and and arf buffers if + // the prediction is good enough... but also don't allow it to lag too far. + if ((twopass->sr_update_lag > 3) || + ((cm->current_video_frame > 0) && + (twopass->this_frame_stats.pcnt_inter > 0.20) && + ((twopass->this_frame_stats.intra_error / + DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { + if (gld_yv12 != NULL) { + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]], + cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]]); + } + twopass->sr_update_lag = 1; + } else { + ++twopass->sr_update_lag; + } + + aom_extend_frame_borders(new_yv12, num_planes); + + // The frame we just compressed now becomes the last frame. + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]], + cm->new_fb_idx); + + // Special case for the first frame. Copy into the GF buffer as a second + // reference. + if (cm->current_video_frame == 0 && + cpi->ref_fb_idx[GOLDEN_FRAME - 1] != INVALID_IDX) { + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]], + cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]]); + } + + // Use this to see what the first pass reconstruction looks like. + if (0) { + char filename[512]; + FILE *recon_file; + snprintf(filename, sizeof(filename), "enc%04d.yuv", + (int)cm->current_video_frame); + + if (cm->current_video_frame == 0) + recon_file = fopen(filename, "wb"); + else + recon_file = fopen(filename, "ab"); + + (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); + fclose(recon_file); + } + + ++cm->current_video_frame; +} + +static double calc_correction_factor(double err_per_mb, double err_divisor, + double pt_low, double pt_high, int q, + aom_bit_depth_t bit_depth) { + const double error_term = err_per_mb / err_divisor; + + // Adjustment based on actual quantizer to power term. + const double power_term = + AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high); + + // Calculate correction factor. + if (power_term < 1.0) assert(error_term >= 0.0); + + return fclamp(pow(error_term, power_term), 0.05, 5.0); +} + +#define ERR_DIVISOR 100.0 +static int get_twopass_worst_quality(const AV1_COMP *cpi, + const double section_err, + double inactive_zone, + int section_target_bandwidth, + double group_weight_factor) { + const RATE_CONTROL *const rc = &cpi->rc; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + + inactive_zone = fclamp(inactive_zone, 0.0, 1.0); + + if (section_target_bandwidth <= 0) { + return rc->worst_quality; // Highest value allowed + } else { + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) + ? cpi->initial_mbs + : cpi->common.MBs; + const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); + const double av_err_per_mb = section_err / active_mbs; + const double speed_term = 1.0; + double ediv_size_correction; + const int target_norm_bits_per_mb = + (int)((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) / + active_mbs; + int q; + + // Larger image formats are expected to be a little harder to code + // relatively given the same prediction error score. This in part at + // least relates to the increased size and hence coding overheads of + // motion vectors. Some account of this is made through adjustment of + // the error divisor. + ediv_size_correction = + AOMMAX(0.2, AOMMIN(5.0, get_linear_size_factor(cpi))); + if (ediv_size_correction < 1.0) + ediv_size_correction = -(1.0 / ediv_size_correction); + ediv_size_correction *= 4.0; + + // Try and pick a max Q that will be high enough to encode the + // content at the given rate. + for (q = rc->best_quality; q < rc->worst_quality; ++q) { + const double factor = calc_correction_factor( + av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW, + FACTOR_PT_HIGH, q, cpi->common.seq_params.bit_depth); + const int bits_per_mb = av1_rc_bits_per_mb( + INTER_FRAME, q, factor * speed_term * group_weight_factor, + cpi->common.seq_params.bit_depth); + if (bits_per_mb <= target_norm_bits_per_mb) break; + } + + // Restriction on active max q for constrained quality mode. + if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level); + return q; + } +} + +static void setup_rf_level_maxq(AV1_COMP *cpi) { + int i; + RATE_CONTROL *const rc = &cpi->rc; + for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { + int qdelta = av1_frame_type_qdelta(cpi, i, rc->worst_quality); + rc->rf_level_maxq[i] = AOMMAX(rc->worst_quality + qdelta, rc->best_quality); + } +} + +void av1_init_second_pass(AV1_COMP *cpi) { + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + double frame_rate; + FIRSTPASS_STATS *stats; + + zero_stats(&twopass->total_stats); + zero_stats(&twopass->total_left_stats); + + if (!twopass->stats_in_end) return; + + stats = &twopass->total_stats; + + *stats = *twopass->stats_in_end; + twopass->total_left_stats = *stats; + + frame_rate = 10000000.0 * stats->count / stats->duration; + // Each frame can have a different duration, as the frame rate in the source + // isn't guaranteed to be constant. The frame rate prior to the first frame + // encoded in the second pass is a guess. However, the sum duration is not. + // It is calculated based on the actual durations of all frames from the + // first pass. + av1_new_framerate(cpi, frame_rate); + twopass->bits_left = + (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); + + // This variable monitors how far behind the second ref update is lagging. + twopass->sr_update_lag = 1; + + // Scan the first pass file and calculate a modified total error based upon + // the bias/power function used to allocate bits. + { + const double avg_error = + stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count); + const FIRSTPASS_STATS *s = twopass->stats_in; + double modified_error_total = 0.0; + twopass->modified_error_min = + (avg_error * oxcf->two_pass_vbrmin_section) / 100; + twopass->modified_error_max = + (avg_error * oxcf->two_pass_vbrmax_section) / 100; + while (s < twopass->stats_in_end) { + modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s); + ++s; + } + twopass->modified_error_left = modified_error_total; + } + + // Reset the vbr bits off target counters + cpi->rc.vbr_bits_off_target = 0; + cpi->rc.vbr_bits_off_target_fast = 0; + + cpi->rc.rate_error_estimate = 0; + + // Static sequence monitor variables. + twopass->kf_zeromotion_pct = 100; + twopass->last_kfgroup_zeromotion_pct = 100; + + if (oxcf->resize_mode != RESIZE_NONE) { + setup_rf_level_maxq(cpi); + } +} + +#define SR_DIFF_PART 0.0015 +#define MOTION_AMP_PART 0.003 +#define INTRA_PART 0.005 +#define DEFAULT_DECAY_LIMIT 0.75 +#define LOW_SR_DIFF_TRHESH 0.1 +#define SR_DIFF_MAX 128.0 + +static double get_sr_decay_rate(const AV1_COMP *cpi, + const FIRSTPASS_STATS *frame) { + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs + : cpi->common.MBs; + double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs; + double sr_decay = 1.0; + double modified_pct_inter; + double modified_pcnt_intra; + const double motion_amplitude_factor = + frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2); + + modified_pct_inter = frame->pcnt_inter; + if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < + (double)NCOUNT_FRAME_II_THRESH) { + modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; + } + modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); + + if ((sr_diff > LOW_SR_DIFF_TRHESH)) { + sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX); + sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - + (MOTION_AMP_PART * motion_amplitude_factor) - + (INTRA_PART * modified_pcnt_intra); + } + return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter)); +} + +// This function gives an estimate of how badly we believe the prediction +// quality is decaying from frame to frame. +static double get_zero_motion_factor(const AV1_COMP *cpi, + const FIRSTPASS_STATS *frame) { + const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; + double sr_decay = get_sr_decay_rate(cpi, frame); + return AOMMIN(sr_decay, zero_motion_pct); +} + +#define ZM_POWER_FACTOR 0.75 + +static double get_prediction_decay_rate(const AV1_COMP *cpi, + const FIRSTPASS_STATS *next_frame) { + const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame); + const double zero_motion_factor = + (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), + ZM_POWER_FACTOR)); + + return AOMMAX(zero_motion_factor, + (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); +} + +// Function to test for a condition where a complex transition is followed +// by a static section. For example in slide shows where there is a fade +// between slides. This is to help with more optimal kf and gf positioning. +static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval, + int still_interval, + double loop_decay_rate, + double last_decay_rate) { + TWO_PASS *const twopass = &cpi->twopass; + RATE_CONTROL *const rc = &cpi->rc; + + // Break clause to detect very still sections after motion + // For example a static image after a fade or other transition + // instead of a clean scene cut. + if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 && + last_decay_rate < 0.9) { + int j; + + // Look ahead a few frames to see if static condition persists... + for (j = 0; j < still_interval; ++j) { + const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; + if (stats >= twopass->stats_in_end) break; + + if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; + } + + // Only if it does do we signal a transition to still. + return j == still_interval; + } + + return 0; +} + +// This function detects a flash through the high relative pcnt_second_ref +// score in the frame following a flash frame. The offset passed in should +// reflect this. +static int detect_flash(const TWO_PASS *twopass, int offset) { + const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); + + // What we are looking for here is a situation where there is a + // brief break in prediction (such as a flash) but subsequent frames + // are reasonably well predicted by an earlier (pre flash) frame. + // The recovery after a flash is indicated by a high pcnt_second_ref + // compared to pcnt_inter. + return next_frame != NULL && + next_frame->pcnt_second_ref > next_frame->pcnt_inter && + next_frame->pcnt_second_ref >= 0.5; +} + +// Update the motion related elements to the GF arf boost calculation. +static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, + double *mv_in_out, + double *mv_in_out_accumulator, + double *abs_mv_in_out_accumulator, + double *mv_ratio_accumulator) { + const double pct = stats->pcnt_motion; + + // Accumulate Motion In/Out of frame stats. + *mv_in_out = stats->mv_in_out_count * pct; + *mv_in_out_accumulator += *mv_in_out; + *abs_mv_in_out_accumulator += fabs(*mv_in_out); + + // Accumulate a measure of how uniform (or conversely how random) the motion + // field is (a ratio of abs(mv) / mv). + if (pct > 0.05) { + const double mvr_ratio = + fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); + const double mvc_ratio = + fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); + + *mv_ratio_accumulator += + pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); + *mv_ratio_accumulator += + pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); + } +} + +#define BASELINE_ERR_PER_MB 1000.0 +static double calc_frame_boost(AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame, + double this_frame_mv_in_out, double max_boost) { + double frame_boost; + const double lq = av1_convert_qindex_to_q( + cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.seq_params.bit_depth); + const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5); + int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs + : cpi->common.MBs; + + // Correct for any inactive region in the image + num_mbs = (int)AOMMAX(1, num_mbs * calculate_active_area(cpi, this_frame)); + + // Underlying boost factor is based on inter error ratio. + frame_boost = (BASELINE_ERR_PER_MB * num_mbs) / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error); + frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; + + // Increase boost for frames where new data coming into frame (e.g. zoom out). + // Slightly reduce boost if there is a net balance of motion out of the frame + // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. + if (this_frame_mv_in_out > 0.0) + frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); + // In the extreme case the boost is halved. + else + frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); + + return AOMMIN(frame_boost, max_boost * boost_q_correction); +} + +static int calc_arf_boost(AV1_COMP *cpi, int offset, int f_frames, int b_frames, + int *f_boost, int *b_boost) { + TWO_PASS *const twopass = &cpi->twopass; + int i; + double boost_score = 0.0; + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + int arf_boost; + int flash_detected = 0; + + // Search forward from the proposed arf/next gf position. + for (i = 0; i < f_frames; ++i) { + const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); + if (this_frame == NULL) break; + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + // We want to discount the flash frame itself and the recovery + // frame that follows as both will have poor scores. + flash_detected = detect_flash(twopass, i + offset) || + detect_flash(twopass, i + offset + 1); + + // Accumulate the effect of prediction quality decay. + if (!flash_detected) { + decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); + decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR + ? MIN_DECAY_FACTOR + : decay_accumulator; + } + + boost_score += + decay_accumulator * + calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); + } + + *f_boost = (int)boost_score; + + // Reset for backward looking loop. + boost_score = 0.0; + mv_ratio_accumulator = 0.0; + decay_accumulator = 1.0; + this_frame_mv_in_out = 0.0; + mv_in_out_accumulator = 0.0; + abs_mv_in_out_accumulator = 0.0; + + // Search backward towards last gf position. + for (i = -1; i >= -b_frames; --i) { + const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); + if (this_frame == NULL) break; + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + // We want to discount the the flash frame itself and the recovery + // frame that follows as both will have poor scores. + flash_detected = detect_flash(twopass, i + offset) || + detect_flash(twopass, i + offset + 1); + + // Cumulative effect of prediction quality decay. + if (!flash_detected) { + decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); + decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR + ? MIN_DECAY_FACTOR + : decay_accumulator; + } + + boost_score += + decay_accumulator * + calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); + } + *b_boost = (int)boost_score; + + arf_boost = (*f_boost + *b_boost); + if (arf_boost < ((b_frames + f_frames) * 20)) + arf_boost = ((b_frames + f_frames) * 20); + arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST); + + return arf_boost; +} + +// Calculate a section intra ratio used in setting max loop filter. +static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, + const FIRSTPASS_STATS *end, + int section_length) { + const FIRSTPASS_STATS *s = begin; + double intra_error = 0.0; + double coded_error = 0.0; + int i = 0; + + while (s < end && i < section_length) { + intra_error += s->intra_error; + coded_error += s->coded_error; + ++s; + ++i; + } + + return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); +} + +// Calculate the total bits to allocate in this GF/ARF group. +static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi, + double gf_group_err) { + const RATE_CONTROL *const rc = &cpi->rc; + const TWO_PASS *const twopass = &cpi->twopass; + const int max_bits = frame_max_bits(rc, &cpi->oxcf); + int64_t total_group_bits; + + // Calculate the bits to be allocated to the group as a whole. + if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { + total_group_bits = (int64_t)(twopass->kf_group_bits * + (gf_group_err / twopass->kf_group_error_left)); + } else { + total_group_bits = 0; + } + + // Clamp odd edge cases. + total_group_bits = (total_group_bits < 0) + ? 0 + : (total_group_bits > twopass->kf_group_bits) + ? twopass->kf_group_bits + : total_group_bits; + + // Clip based on user supplied data rate variability limit. + if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) + total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; + + return total_group_bits; +} + +// Calculate the number bits extra to assign to boosted frames in a group. +static int calculate_boost_bits(int frame_count, int boost, + int64_t total_group_bits) { + int allocation_chunks; + + // return 0 for invalid inputs (could arise e.g. through rounding errors) + if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0; + + allocation_chunks = (frame_count * 100) + boost; + + // Prevent overflow. + if (boost > 1023) { + int divisor = boost >> 10; + boost /= divisor; + allocation_chunks /= divisor; + } + + // Calculate the number of extra bits for use in the boosted frame or frames. + return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), + 0); +} + +#if USE_SYMM_MULTI_LAYER +// #define CHCEK_GF_PARAMETER +#ifdef CHCEK_GF_PARAMETER +void check_frame_params(GF_GROUP *const gf_group, int gf_interval, + int frame_nums) { + static const char *update_type_strings[] = { + "KF_UPDATE", "LF_UPDATE", "GF_UPDATE", + "ARF_UPDATE", "OVERLAY_UPDATE", "BRF_UPDATE", + "LAST_BIPRED_UPDATE", "BIPRED_UPDATE", "INTNL_OVERLAY_UPDATE", + "INTNL_ARF_UPDATE" + }; + FILE *fid = fopen("GF_PARAMS.txt", "a"); + + fprintf(fid, "\n{%d}\n", gf_interval); + for (int i = 0; i <= frame_nums; ++i) { + fprintf(fid, "%s %d %d %d %d\n", + update_type_strings[gf_group->update_type[i]], + gf_group->arf_src_offset[i], gf_group->arf_pos_in_gf[i], + gf_group->arf_update_idx[i], gf_group->pyramid_level[i]); + } + + fprintf(fid, "number of nodes in each level: \n"); + for (int i = 0; i < MAX_PYRAMID_LVL; ++i) { + fprintf(fid, "lvl %d: %d ", i, gf_group->pyramid_lvl_nodes[i]); + } + fprintf(fid, "\n"); + fclose(fid); +} +#endif // CHCEK_GF_PARAMETER +static int update_type_2_rf_level(FRAME_UPDATE_TYPE update_type) { + // Derive rf_level from update_type + switch (update_type) { + case LF_UPDATE: return INTER_NORMAL; + case ARF_UPDATE: return GF_ARF_STD; + case OVERLAY_UPDATE: return INTER_NORMAL; + case BRF_UPDATE: return GF_ARF_LOW; + case LAST_BIPRED_UPDATE: return INTER_NORMAL; + case BIPRED_UPDATE: return INTER_NORMAL; + case INTNL_ARF_UPDATE: return GF_ARF_LOW; + case INTNL_OVERLAY_UPDATE: return INTER_NORMAL; + default: return INTER_NORMAL; + } +} + +static void set_multi_layer_params(GF_GROUP *const gf_group, int l, int r, + int *frame_ind, int arf_ind, int level) { + if (r - l < 4) { + while (++l < r) { + // leaf nodes, not a look-ahead frame + gf_group->update_type[*frame_ind] = LF_UPDATE; + gf_group->arf_src_offset[*frame_ind] = 0; + gf_group->arf_pos_in_gf[*frame_ind] = 0; + gf_group->arf_update_idx[*frame_ind] = arf_ind; + gf_group->pyramid_level[*frame_ind] = 0; + ++gf_group->pyramid_lvl_nodes[0]; + ++(*frame_ind); + } + } else { + int m = (l + r) / 2; + int arf_pos_in_gf = *frame_ind; + + gf_group->update_type[*frame_ind] = INTNL_ARF_UPDATE; + gf_group->arf_src_offset[*frame_ind] = m - l - 1; + gf_group->arf_pos_in_gf[*frame_ind] = 0; + gf_group->arf_update_idx[*frame_ind] = 1; // mark all internal ARF 1 + gf_group->pyramid_level[*frame_ind] = level; + ++gf_group->pyramid_lvl_nodes[level]; + ++(*frame_ind); + + // set parameters for frames displayed before this frame + set_multi_layer_params(gf_group, l, m, frame_ind, 1, level - 1); + + // for overlay frames, we need to record the position of its corresponding + // arf frames for bit allocation + gf_group->update_type[*frame_ind] = INTNL_OVERLAY_UPDATE; + gf_group->arf_src_offset[*frame_ind] = 0; + gf_group->arf_pos_in_gf[*frame_ind] = arf_pos_in_gf; + gf_group->arf_update_idx[*frame_ind] = 1; + gf_group->pyramid_level[*frame_ind] = 0; + ++(*frame_ind); + + // set parameters for frames displayed after this frame + set_multi_layer_params(gf_group, m, r, frame_ind, arf_ind, level - 1); + } +} + +static INLINE unsigned char get_pyramid_height(int pyramid_width) { + assert(pyramid_width <= 16 && pyramid_width >= 4 && + "invalid gf interval for pyramid structure"); + + return pyramid_width > 12 ? 4 : (pyramid_width > 6 ? 3 : 2); +} + +static int construct_multi_layer_gf_structure(GF_GROUP *const gf_group, + const int gf_interval) { + int frame_index = 0; + gf_group->pyramid_height = get_pyramid_height(gf_interval); + + assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL); + + av1_zero_array(gf_group->pyramid_lvl_nodes, MAX_PYRAMID_LVL); + + // At the beginning of each GF group it will be a key or overlay frame, + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->arf_src_offset[frame_index] = 0; + gf_group->arf_pos_in_gf[frame_index] = 0; + gf_group->arf_update_idx[frame_index] = 0; + gf_group->pyramid_level[frame_index] = 0; + ++frame_index; + + // ALT0 + gf_group->update_type[frame_index] = ARF_UPDATE; + gf_group->arf_src_offset[frame_index] = gf_interval - 1; + gf_group->arf_pos_in_gf[frame_index] = 0; + gf_group->arf_update_idx[frame_index] = 0; + gf_group->pyramid_level[frame_index] = gf_group->pyramid_height; + ++frame_index; + + // set parameters for the rest of the frames + set_multi_layer_params(gf_group, 0, gf_interval, &frame_index, 0, + gf_group->pyramid_height - 1); + return frame_index; +} + +void define_customized_gf_group_structure(AV1_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + const int key_frame = cpi->common.frame_type == KEY_FRAME; + + assert(rc->baseline_gf_interval >= 4 && + rc->baseline_gf_interval <= MAX_PYRAMID_SIZE); + + const int gf_update_frames = + construct_multi_layer_gf_structure(gf_group, rc->baseline_gf_interval); + int frame_index; + + cpi->num_extra_arfs = 0; + + for (frame_index = 0; frame_index < gf_update_frames; ++frame_index) { + // Set unused variables to default values + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + + // Special handle for the first frame for assigning update_type + if (frame_index == 0) { + // For key frames the frame target rate is already set and it + // is also the golden frame. + if (key_frame) { + gf_group->update_type[frame_index] = KF_UPDATE; + continue; + } + + if (rc->source_alt_ref_active) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + } + } else { + if (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) + ++cpi->num_extra_arfs; + } + + // Assign rf level based on update type + gf_group->rf_level[frame_index] = + update_type_2_rf_level(gf_group->update_type[frame_index]); + } + + // NOTE: We need to configure the frame at the end of the sequence + 1 that + // will be the start frame for the next group. Otherwise prior to the + // call to av1_rc_get_second_pass_params() the data will be undefined. + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + gf_group->arf_update_idx[frame_index] = 0; + // This value is only used for INTNL_OVERLAY_UPDATE + gf_group->arf_pos_in_gf[frame_index] = 0; + + // This parameter is useless? + gf_group->arf_ref_idx[frame_index] = 0; +#ifdef CHCEK_GF_PARAMETER + check_frame_params(gf_group, rc->baseline_gf_interval, gf_update_frames); +#endif +} + +// It is an example of how to define a GF stucture manually. The function will +// result in exactly the same GF group structure as +// define_customized_gf_group_structure() when rc->baseline_gf_interval == 4 +#if USE_MANUAL_GF4_STRUCT +#define GF_INTERVAL_4 4 +static const unsigned char gf4_multi_layer_params[][GF_FRAME_PARAMS] = { + { + // gf_group->index == 0 (Frame 0) + // It can also be KEY frame. Will assign the proper value + // in define_gf_group_structure + OVERLAY_UPDATE, // update_type (default value) + 0, // arf_src_offset + 0, // arf_pos_in_gf + 0 // arf_update_idx + }, + { + // gf_group->index == 1 (Frame 4) + ARF_UPDATE, // update_type + GF_INTERVAL_4 - 1, // arf_src_offset + 0, // arf_pos_in_gf + 0 // arf_update_idx + }, + { + // gf_group->index == 2 (Frame 2) + INTNL_ARF_UPDATE, // update_type + (GF_INTERVAL_4 >> 1) - 1, // arf_src_offset + 0, // arf_pos_in_gf + 0 // arf_update_idx + }, + { + // gf_group->index == 3 (Frame 1) + LAST_BIPRED_UPDATE, // update_type + 0, // arf_src_offset + 0, // arf_pos_in_gf + 0 // arf_update_idx + }, + + { + // gf_group->index == 4 (Frame 2 - OVERLAY) + INTNL_OVERLAY_UPDATE, // update_type + 0, // arf_src_offset + 2, // arf_pos_in_gf + 0 // arf_update_idx + }, + { + // gf_group->index == 5 (Frame 3) + LF_UPDATE, // update_type + 0, // arf_src_offset + 0, // arf_pos_in_gf + 1 // arf_update_idx + } +}; + +static int define_gf_group_structure_4(AV1_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + const int key_frame = cpi->common.frame_type == KEY_FRAME; + + assert(rc->baseline_gf_interval == GF_INTERVAL_4); + + const int gf_update_frames = rc->baseline_gf_interval + 2; + int frame_index; + + for (frame_index = 0; frame_index < gf_update_frames; ++frame_index) { + int param_idx = 0; + + gf_group->bidir_pred_enabled[frame_index] = 0; + + if (frame_index == 0) { + // gf_group->arf_src_offset[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + gf_group->bidir_pred_enabled[frame_index] = 0; + + // For key frames the frame target rate is already set and it + // is also the golden frame. + if (key_frame) continue; + + gf_group->update_type[frame_index] = + gf4_multi_layer_params[frame_index][param_idx++]; + + if (rc->source_alt_ref_active) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + } + param_idx++; + } else { + gf_group->update_type[frame_index] = + gf4_multi_layer_params[frame_index][param_idx++]; + } + + // setup other parameters + gf_group->rf_level[frame_index] = + update_type_2_rf_level(gf_group->update_type[frame_index]); + + // == arf_src_offset == + gf_group->arf_src_offset[frame_index] = + gf4_multi_layer_params[frame_index][param_idx++]; + + // == arf_pos_in_gf == + gf_group->arf_pos_in_gf[frame_index] = + gf4_multi_layer_params[frame_index][param_idx++]; + + // == arf_update_idx == + gf_group->brf_src_offset[frame_index] = + gf4_multi_layer_params[frame_index][param_idx]; + } + + // NOTE: We need to configure the frame at the end of the sequence + 1 that + // will be the start frame for the next group. Otherwise prior to the + // call to av1_rc_get_second_pass_params() the data will be undefined. + gf_group->arf_update_idx[frame_index] = 0; + gf_group->arf_ref_idx[frame_index] = 0; + + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + + // This value is only used for INTNL_OVERLAY_UPDATE + gf_group->arf_pos_in_gf[frame_index] = 0; + + return gf_update_frames; +} +#endif // USE_MANUAL_GF4_STRUCT +#endif // USE_SYMM_MULTI_LAYER + +static void define_gf_group_structure(AV1_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + +#if USE_SYMM_MULTI_LAYER + const int valid_customized_gf_length = + rc->baseline_gf_interval >= 4 && + rc->baseline_gf_interval <= MAX_PYRAMID_SIZE; + // used the new structure only if extra_arf is allowed + if (valid_customized_gf_length && rc->source_alt_ref_pending && + cpi->extra_arf_allowed > 0) { +#if USE_MANUAL_GF4_STRUCT + if (rc->baseline_gf_interval == 4) + define_gf_group_structure_4(cpi); + else +#endif + define_customized_gf_group_structure(cpi); + cpi->new_bwdref_update_rule = 1; + return; + } else { + cpi->new_bwdref_update_rule = 0; + } +#endif + + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + int i; + int frame_index = 0; + const int key_frame = cpi->common.frame_type == KEY_FRAME; + + // The use of bi-predictive frames are only enabled when following 3 + // conditions are met: + // (1) ALTREF is enabled; + // (2) The bi-predictive group interval is at least 2; and + // (3) The bi-predictive group interval is strictly smaller than the + // golden group interval. + const int is_bipred_enabled = + cpi->extra_arf_allowed && rc->source_alt_ref_pending && + rc->bipred_group_interval && + rc->bipred_group_interval <= + (rc->baseline_gf_interval - rc->source_alt_ref_pending); + int bipred_group_end = 0; + int bipred_frame_index = 0; + + const unsigned char ext_arf_interval = + (unsigned char)(rc->baseline_gf_interval / (cpi->num_extra_arfs + 1) - 1); + int which_arf = cpi->num_extra_arfs; + int subgroup_interval[MAX_EXT_ARFS + 1]; + int is_sg_bipred_enabled = is_bipred_enabled; + int accumulative_subgroup_interval = 0; + + // For key frames the frame target rate is already set and it + // is also the golden frame. + // === [frame_index == 0] === + if (!key_frame) { + if (rc->source_alt_ref_active) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + gf_group->arf_update_idx[frame_index] = 0; + gf_group->arf_ref_idx[frame_index] = 0; + } + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + + frame_index++; + + bipred_frame_index++; + + // === [frame_index == 1] === + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = ARF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + gf_group->arf_src_offset[frame_index] = + (unsigned char)(rc->baseline_gf_interval - 1); + + gf_group->arf_update_idx[frame_index] = 0; + gf_group->arf_ref_idx[frame_index] = 0; + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + // NOTE: "bidir_pred_frame_index" stays unchanged for ARF_UPDATE frames. + + // Work out the ARFs' positions in this gf group + // NOTE(weitinglin): ALT_REFs' are indexed inversely, but coded in display + // order (except for the original ARF). In the example of three ALT_REF's, + // We index ALTREF's as: KEY ----- ALT2 ----- ALT1 ----- ALT0 + // but code them in the following order: + // KEY-ALT0-ALT2 ----- OVERLAY2-ALT1 ----- OVERLAY1 ----- OVERLAY0 + // + // arf_pos_for_ovrly[]: Position for OVERLAY + // arf_pos_in_gf[]: Position for ALTREF + cpi->arf_pos_for_ovrly[0] = frame_index + cpi->num_extra_arfs + + gf_group->arf_src_offset[frame_index] + 1; + for (i = 0; i < cpi->num_extra_arfs; ++i) { + cpi->arf_pos_for_ovrly[i + 1] = + frame_index + (cpi->num_extra_arfs - i) * (ext_arf_interval + 2); + subgroup_interval[i] = cpi->arf_pos_for_ovrly[i] - + cpi->arf_pos_for_ovrly[i + 1] - (i == 0 ? 1 : 2); + } + subgroup_interval[cpi->num_extra_arfs] = + cpi->arf_pos_for_ovrly[cpi->num_extra_arfs] - frame_index - + (cpi->num_extra_arfs == 0 ? 1 : 2); + + ++frame_index; + + // Insert an extra ARF + // === [frame_index == 2] === + if (cpi->num_extra_arfs) { + gf_group->update_type[frame_index] = INTNL_ARF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_LOW; + gf_group->arf_src_offset[frame_index] = ext_arf_interval; + + gf_group->arf_update_idx[frame_index] = which_arf; + gf_group->arf_ref_idx[frame_index] = 0; + ++frame_index; + } + accumulative_subgroup_interval += subgroup_interval[cpi->num_extra_arfs]; + } + + for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) { + gf_group->arf_update_idx[frame_index] = which_arf; + gf_group->arf_ref_idx[frame_index] = which_arf; + + // If we are going to have ARFs, check whether we can have BWDREF in this + // subgroup, and further, whether we can have ARF subgroup which contains + // the BWDREF subgroup but contained within the GF group: + // + // GF group --> ARF subgroup --> BWDREF subgroup + if (rc->source_alt_ref_pending) { + is_sg_bipred_enabled = + is_bipred_enabled && + (subgroup_interval[which_arf] > rc->bipred_group_interval); + } + + // NOTE: BIDIR_PRED is only enabled when the length of the bi-predictive + // frame group interval is strictly smaller than that of the GOLDEN + // FRAME group interval. + // TODO(zoeliu): Currently BIDIR_PRED is only enabled when alt-ref is on. + if (is_sg_bipred_enabled && !bipred_group_end) { + const int cur_brf_src_offset = rc->bipred_group_interval - 1; + + if (bipred_frame_index == 1) { + // --- BRF_UPDATE --- + gf_group->update_type[frame_index] = BRF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_LOW; + gf_group->brf_src_offset[frame_index] = cur_brf_src_offset; + } else if (bipred_frame_index == rc->bipred_group_interval) { + // --- LAST_BIPRED_UPDATE --- + gf_group->update_type[frame_index] = LAST_BIPRED_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + gf_group->brf_src_offset[frame_index] = 0; + + // Reset the bi-predictive frame index. + bipred_frame_index = 0; + } else { + // --- BIPRED_UPDATE --- + gf_group->update_type[frame_index] = BIPRED_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + gf_group->brf_src_offset[frame_index] = 0; + } + gf_group->bidir_pred_enabled[frame_index] = 1; + + bipred_frame_index++; + // Check whether the next bi-predictive frame group would entirely be + // included within the current golden frame group. + // In addition, we need to avoid coding a BRF right before an ARF. + if (bipred_frame_index == 1 && + (i + 2 + cur_brf_src_offset) >= accumulative_subgroup_interval) { + bipred_group_end = 1; + } + } else { + gf_group->update_type[frame_index] = LF_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + } + + ++frame_index; + + // Check if we need to update the ARF. + if (is_sg_bipred_enabled && cpi->num_extra_arfs && which_arf > 0 && + frame_index > cpi->arf_pos_for_ovrly[which_arf]) { + --which_arf; + accumulative_subgroup_interval += subgroup_interval[which_arf] + 1; + + // Meet the new subgroup; Reset the bipred_group_end flag. + bipred_group_end = 0; + // Insert another extra ARF after the overlay frame + if (which_arf) { + gf_group->update_type[frame_index] = INTNL_ARF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_LOW; + gf_group->arf_src_offset[frame_index] = ext_arf_interval; + + gf_group->arf_update_idx[frame_index] = which_arf; + gf_group->arf_ref_idx[frame_index] = 0; + ++frame_index; + } + } + } + + // NOTE: We need to configure the frame at the end of the sequence + 1 that + // will be the start frame for the next group. Otherwise prior to the + // call to av1_rc_get_second_pass_params() the data will be undefined. + gf_group->arf_update_idx[frame_index] = 0; + gf_group->arf_ref_idx[frame_index] = 0; + + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + + cpi->arf_pos_in_gf[0] = 1; + if (cpi->num_extra_arfs) { + // Overwrite the update_type for extra-ARF's corresponding internal + // OVERLAY's: Change from LF_UPDATE to INTNL_OVERLAY_UPDATE. + for (i = cpi->num_extra_arfs; i > 0; --i) { + cpi->arf_pos_in_gf[i] = + (i == cpi->num_extra_arfs ? 2 : cpi->arf_pos_for_ovrly[i + 1] + 1); + + gf_group->update_type[cpi->arf_pos_for_ovrly[i]] = INTNL_OVERLAY_UPDATE; + gf_group->rf_level[cpi->arf_pos_for_ovrly[i]] = INTER_NORMAL; + } + } + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; +} + +#if USE_SYMM_MULTI_LAYER +#define LEAF_REDUCTION_FACTOR 0.75f +#define LVL_3_BOOST_FACTOR 0.8f +#define LVL_2_BOOST_FACTOR 0.3f + +static float_t lvl_budget_factor[MAX_PYRAMID_LVL - 1][MAX_PYRAMID_LVL - 1] = { + { 1, 0, 0 }, + { LVL_3_BOOST_FACTOR, 0, 0 }, // Leaking budget works better + { LVL_3_BOOST_FACTOR, (1 - LVL_3_BOOST_FACTOR) * LVL_2_BOOST_FACTOR, + (1 - LVL_3_BOOST_FACTOR) * (1 - LVL_2_BOOST_FACTOR) } +}; +#endif // USE_SYMM_MULTI_LAYER +static void allocate_gf_group_bits(AV1_COMP *cpi, int64_t gf_group_bits, + double group_error, int gf_arf_bits) { + RATE_CONTROL *const rc = &cpi->rc; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + FIRSTPASS_STATS frame_stats; + int i; + int frame_index = 0; + int target_frame_size; + int key_frame; + const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf); + int64_t total_group_bits = gf_group_bits; + double modified_err = 0.0; + double err_fraction; + int ext_arf_boost[MAX_EXT_ARFS]; + + define_gf_group_structure(cpi); + + av1_zero_array(ext_arf_boost, MAX_EXT_ARFS); + + key_frame = cpi->common.frame_type == KEY_FRAME; + + // For key frames the frame target rate is already set and it + // is also the golden frame. + // === [frame_index == 0] === + if (!key_frame) { + if (rc->source_alt_ref_active) + gf_group->bit_allocation[frame_index] = 0; + else + gf_group->bit_allocation[frame_index] = gf_arf_bits; + + // Step over the golden frame / overlay frame + if (EOF == input_stats(twopass, &frame_stats)) return; + } + + // Deduct the boost bits for arf (or gf if it is not a key frame) + // from the group total. + if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; + + frame_index++; + + // Store the bits to spend on the ARF if there is one. + // === [frame_index == 1] === + if (rc->source_alt_ref_pending) { + gf_group->bit_allocation[frame_index] = gf_arf_bits; + + ++frame_index; + + // Skip all the extra-ARF's right after ARF at the starting segment of + // the current GF group. + if (cpi->num_extra_arfs) { + while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) + ++frame_index; + } + } + + // Allocate bits to the other frames in the group. + for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) { + if (EOF == input_stats(twopass, &frame_stats)) break; + + modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats); + + if (group_error > 0) + err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error); + else + err_fraction = 0.0; + + target_frame_size = (int)((double)total_group_bits * err_fraction); + + target_frame_size = + clamp(target_frame_size, 0, AOMMIN(max_bits, (int)total_group_bits)); + + if (gf_group->update_type[frame_index] == BRF_UPDATE) { + // Boost up the allocated bits on BWDREF_FRAME + gf_group->bit_allocation[frame_index] = + target_frame_size + (target_frame_size >> 2); + } else if (gf_group->update_type[frame_index] == LAST_BIPRED_UPDATE) { + // Press down the allocated bits on LAST_BIPRED_UPDATE frames + gf_group->bit_allocation[frame_index] = + target_frame_size - (target_frame_size >> 1); + } else if (gf_group->update_type[frame_index] == BIPRED_UPDATE) { + // TODO(zoeliu): To investigate whether the allocated bits on + // BIPRED_UPDATE frames need to be further adjusted. + gf_group->bit_allocation[frame_index] = target_frame_size; +#if USE_SYMM_MULTI_LAYER + } else if (cpi->new_bwdref_update_rule && + gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE) { + assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL && + gf_group->pyramid_height >= 0 && + "non-valid height for a pyramid structure"); + + int arf_pos = gf_group->arf_pos_in_gf[frame_index]; + gf_group->bit_allocation[frame_index] = 0; + + gf_group->bit_allocation[arf_pos] = target_frame_size; +#if MULTI_LVL_BOOST_VBR_CQ + const int pyr_h = gf_group->pyramid_height - 2; + const int this_lvl = gf_group->pyramid_level[arf_pos]; + const int dist2top = gf_group->pyramid_height - 1 - this_lvl; + + const float_t budget = + LEAF_REDUCTION_FACTOR * gf_group->pyramid_lvl_nodes[0]; + const float_t lvl_boost = budget * lvl_budget_factor[pyr_h][dist2top] / + gf_group->pyramid_lvl_nodes[this_lvl]; + + gf_group->bit_allocation[arf_pos] += (int)(target_frame_size * lvl_boost); +#endif // MULTI_LVL_BOOST_VBR_CQ +#endif // USE_SYMM_MULTI_LAYER + } else { + assert(gf_group->update_type[frame_index] == LF_UPDATE || + gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE); + gf_group->bit_allocation[frame_index] = target_frame_size; +#if MULTI_LVL_BOOST_VBR_CQ + if (cpi->new_bwdref_update_rule) { + gf_group->bit_allocation[frame_index] -= + (int)(target_frame_size * LEAF_REDUCTION_FACTOR); + } +#endif // MULTI_LVL_BOOST_VBR_CQ + } + + ++frame_index; + + // Skip all the extra-ARF's. + if (cpi->num_extra_arfs) { + while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) + ++frame_index; + } + } + +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule == 0 && rc->source_alt_ref_pending) { +#else + if (rc->source_alt_ref_pending) { +#endif + if (cpi->num_extra_arfs) { + // NOTE: For bit allocation, move the allocated bits associated with + // INTNL_OVERLAY_UPDATE to the corresponding INTNL_ARF_UPDATE. + // i > 0 for extra-ARF's and i == 0 for ARF: + // arf_pos_for_ovrly[i]: Position for INTNL_OVERLAY_UPDATE + // arf_pos_in_gf[i]: Position for INTNL_ARF_UPDATE + for (i = cpi->num_extra_arfs; i > 0; --i) { + assert(gf_group->update_type[cpi->arf_pos_for_ovrly[i]] == + INTNL_OVERLAY_UPDATE); + + // Encoder's choice: + // Set show_existing_frame == 1 for all extra-ARF's, and hence + // allocate zero bit for both all internal OVERLAY frames. + gf_group->bit_allocation[cpi->arf_pos_in_gf[i]] = + gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]]; + gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]] = 0; + } + } + } +} + +// Analyse and define a gf/arf group. +static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { + AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + AV1EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + FIRSTPASS_STATS next_frame; + const FIRSTPASS_STATS *const start_pos = twopass->stats_in; + int i; + + double boost_score = 0.0; +#if !CONFIG_FIX_GF_LENGTH + double old_boost_score = 0.0; + double mv_ratio_accumulator_thresh; + int active_max_gf_interval; + int active_min_gf_interval; +#endif + double gf_group_err = 0.0; +#if GROUP_ADAPTIVE_MAXQ + double gf_group_raw_error = 0.0; +#endif + double gf_group_skip_pct = 0.0; + double gf_group_inactive_zone_rows = 0.0; + double gf_first_frame_err = 0.0; + double mod_frame_err = 0.0; + + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + double zero_motion_accumulator = 1.0; + + double loop_decay_rate = 1.00; + double last_loop_decay_rate = 1.00; + + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + + unsigned int allow_alt_ref = is_altref_enabled(cpi); + + int f_boost = 0; + int b_boost = 0; + int flash_detected; + int64_t gf_group_bits; + double gf_group_error_left; + int gf_arf_bits; + const int is_key_frame = frame_is_intra_only(cm); + const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; + + cpi->extra_arf_allowed = 1; + + // Reset the GF group data structures unless this is a key + // frame in which case it will already have been done. + if (is_key_frame == 0) { + av1_zero(twopass->gf_group); + } + + aom_clear_system_state(); + av1_zero(next_frame); + + // Load stats for the current frame. + mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); + + // Note the error of the frame at the start of the group. This will be + // the GF frame error if we code a normal gf. + gf_first_frame_err = mod_frame_err; + + // If this is a key frame or the overlay from a previous arf then + // the error score / cost of this frame has already been accounted for. + if (arf_active_or_kf) { + gf_group_err -= gf_first_frame_err; +#if GROUP_ADAPTIVE_MAXQ + gf_group_raw_error -= this_frame->coded_error; +#endif + gf_group_skip_pct -= this_frame->intra_skip_pct; + gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows; + } +#if !CONFIG_FIX_GF_LENGTH + // Motion breakout threshold for loop below depends on image size. + mv_ratio_accumulator_thresh = + (cpi->initial_height + cpi->initial_width) / 4.0; + // Set a maximum and minimum interval for the GF group. + // If the image appears almost completely static we can extend beyond this. + { + int int_max_q = (int)(av1_convert_qindex_to_q( + twopass->active_worst_quality, cpi->common.seq_params.bit_depth)); + int int_lbq = (int)(av1_convert_qindex_to_q( + rc->last_boosted_qindex, cpi->common.seq_params.bit_depth)); + + active_min_gf_interval = rc->min_gf_interval + AOMMIN(2, int_max_q / 200); + if (active_min_gf_interval > rc->max_gf_interval) + active_min_gf_interval = rc->max_gf_interval; + + // The value chosen depends on the active Q range. At low Q we have + // bits to spare and are better with a smaller interval and smaller boost. + // At high Q when there are few bits to spare we are better with a longer + // interval to spread the cost of the GF. + active_max_gf_interval = 12 + AOMMIN(4, (int_lbq / 6)); + + // We have: active_min_gf_interval <= rc->max_gf_interval + if (active_max_gf_interval < active_min_gf_interval) + active_max_gf_interval = active_min_gf_interval; + else if (active_max_gf_interval > rc->max_gf_interval) + active_max_gf_interval = rc->max_gf_interval; + } +#endif // !CONFIG_FIX_GF_LENGTH + double avg_sr_coded_error = 0; + double avg_raw_err_stdev = 0; + int non_zero_stdev_count = 0; + + i = 0; + while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { + ++i; + + // Accumulate error score of frames in this gf group. + mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); + gf_group_err += mod_frame_err; +#if GROUP_ADAPTIVE_MAXQ + gf_group_raw_error += this_frame->coded_error; +#endif + gf_group_skip_pct += this_frame->intra_skip_pct; + gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; + + if (EOF == input_stats(twopass, &next_frame)) break; + + // Test for the case where there is a brief flash but the prediction + // quality back to an earlier frame is then restored. + flash_detected = detect_flash(twopass, 0); + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + // sum up the metric values of current gf group + avg_sr_coded_error += next_frame.sr_coded_error; + if (fabs(next_frame.raw_error_stdev) > 0.000001) { + non_zero_stdev_count++; + avg_raw_err_stdev += next_frame.raw_error_stdev; + } + + // Accumulate the effect of prediction quality decay. + if (!flash_detected) { + last_loop_decay_rate = loop_decay_rate; + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + + decay_accumulator = decay_accumulator * loop_decay_rate; + + // Monitor for static sections. + zero_motion_accumulator = AOMMIN( + zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); + + // Break clause to detect very still sections after motion. For example, + // a static image after a fade or other transition. + if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, + last_loop_decay_rate)) { + allow_alt_ref = 0; + break; + } + } + + // Calculate a boost number for this frame. + boost_score += + decay_accumulator * + calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST); +#if CONFIG_FIX_GF_LENGTH + if (i == (FIXED_GF_LENGTH + 1)) break; +#else + // Skip breaking condition for CONFIG_FIX_GF_LENGTH + // Break out conditions. + if ( + // Break at active_max_gf_interval unless almost totally static. + (i >= (active_max_gf_interval + arf_active_or_kf) && + zero_motion_accumulator < 0.995) || + ( + // Don't break out with a very short interval. + (i >= active_min_gf_interval + arf_active_or_kf) && + (!flash_detected) && + ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || + (abs_mv_in_out_accumulator > 3.0) || + (mv_in_out_accumulator < -2.0) || + ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) { + // If GF group interval is < 12, we force it to be 8. Otherwise, + // if it is >= 12, we keep it as is. + // NOTE: 'i' is 1 more than the GF group interval candidate that is being + // checked. + if (i == (8 + 1) || i >= (12 + 1)) { + boost_score = old_boost_score; + break; + } + } + old_boost_score = boost_score; +#endif // CONFIG_FIX_GF_LENGTH + *this_frame = next_frame; + } + twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0); + + // Was the group length constrained by the requirement for a new KF? + rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; + + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs + : cpi->common.MBs; + assert(num_mbs > 0); + if (i) avg_sr_coded_error /= i; + + if (non_zero_stdev_count) avg_raw_err_stdev /= non_zero_stdev_count; + + // Disable extra altrefs and backward refs for "still" gf group: + // zero_motion_accumulator: minimum percentage of (0,0) motion; + // avg_sr_coded_error: average of the SSE per pixel of each frame; + // avg_raw_err_stdev: average of the standard deviation of (0,0) + // motion error per block of each frame. + const int disable_bwd_extarf = + (zero_motion_accumulator > MIN_ZERO_MOTION && + avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR && + avg_raw_err_stdev < MAX_RAW_ERR_VAR); + + if (disable_bwd_extarf) cpi->extra_arf_allowed = 0; + +#define REDUCE_GF_LENGTH_THRESH 4 +#define REDUCE_GF_LENGTH_TO_KEY_THRESH 9 +#define REDUCE_GF_LENGTH_BY 1 + int alt_offset = 0; +#if REDUCE_LAST_GF_LENGTH + // TODO(weitinglin): The length reduction stretagy is tweaking using AOM_Q + // mode, and hurting the performance of VBR mode. We need to investigate how + // to adjust GF length for other modes. + + int allow_gf_length_reduction = + cpi->oxcf.rc_mode == AOM_Q || cpi->extra_arf_allowed == 0; + + // We are going to have an alt ref, but we don't have do adjustment for + // lossless mode + if (allow_alt_ref && allow_gf_length_reduction && + (i < cpi->oxcf.lag_in_frames) && (i >= rc->min_gf_interval) && + !is_lossless_requested(&cpi->oxcf)) { + // adjust length of this gf group if one of the following condition met + // 1: only one overlay frame left and this gf is too long + // 2: next gf group is too short to have arf compared to the current gf + + // maximum length of next gf group + const int next_gf_len = rc->frames_to_key - i; + const int single_overlay_left = + next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH; + // the next gf is probably going to have a ARF but it will be shorter than + // this gf + const int unbalanced_gf = + i > REDUCE_GF_LENGTH_TO_KEY_THRESH && + next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH && + next_gf_len + 1 >= rc->min_gf_interval; + + if (single_overlay_left || unbalanced_gf) { + // Note: Tried roll_back = DIVIDE_AND_ROUND(i, 8), but is does not work + // better in the current setting + const int roll_back = REDUCE_GF_LENGTH_BY; + alt_offset = -roll_back; + i -= roll_back; + } + } +#endif + + // Should we use the alternate reference frame. + if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && + (i >= rc->min_gf_interval)) { + // Calculate the boost for alt ref. + rc->gfu_boost = + calc_arf_boost(cpi, alt_offset, (i - 1), (i - 1), &f_boost, &b_boost); + rc->source_alt_ref_pending = 1; + + // do not replace ARFs with overlay frames, and keep it as GOLDEN_REF + cpi->preserve_arf_as_gld = 1; + } else { + rc->gfu_boost = AOMMAX((int)boost_score, MIN_ARF_GF_BOOST); + rc->source_alt_ref_pending = 0; + cpi->preserve_arf_as_gld = 0; + } + + // Set the interval until the next gf. + // If forward keyframes are enabled, ensure the final gf group obeys the + // MIN_FWD_KF_INTERVAL. + if (cpi->oxcf.fwd_kf_enabled && + ((twopass->stats_in - i + rc->frames_to_key) < twopass->stats_in_end)) { + if (i == rc->frames_to_key) { + rc->baseline_gf_interval = i; + // if the last gf group will be smaller than MIN_FWD_KF_INTERVAL + } else if ((rc->frames_to_key - i < + AOMMAX(MIN_FWD_KF_INTERVAL, rc->min_gf_interval)) && + (rc->frames_to_key != i)) { + // if possible, merge the last two gf groups + if (rc->frames_to_key <= MAX_PYRAMID_SIZE) { + rc->baseline_gf_interval = rc->frames_to_key; + // if merging the last two gf groups creates a group that is too long, + // split them and force the last gf group to be the MIN_FWD_KF_INTERVAL + } else { + rc->baseline_gf_interval = rc->frames_to_key - MIN_FWD_KF_INTERVAL; + } + } else { + rc->baseline_gf_interval = + i - (is_key_frame || rc->source_alt_ref_pending); + } + } else { + rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending); + } + +#if REDUCE_LAST_ALT_BOOST +#define LAST_ALR_BOOST_FACTOR 0.2f + rc->arf_boost_factor = 1.0; + if (rc->source_alt_ref_pending && !is_lossless_requested(&cpi->oxcf)) { + // Reduce the boost of altref in the last gf group + if (rc->frames_to_key - i == REDUCE_GF_LENGTH_BY || + rc->frames_to_key - i == 0) { + rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR; + } + } +#endif + + if (!cpi->extra_arf_allowed) { + cpi->num_extra_arfs = 0; + } else { +#if USE_SYMM_MULTI_LAYER + if (rc->baseline_gf_interval == 4 && rc->source_alt_ref_pending) + cpi->num_extra_arfs = 1; + else + cpi->num_extra_arfs = get_number_of_extra_arfs( + rc->baseline_gf_interval, rc->source_alt_ref_pending); +#else + // Compute how many extra alt_refs we can have + cpi->num_extra_arfs = get_number_of_extra_arfs(rc->baseline_gf_interval, + rc->source_alt_ref_pending); +#endif // USE_SYMM_MULTI_LAYER + } + +#if !USE_SYMM_MULTI_LAYER + // Currently at maximum two extra ARFs' are allowed + assert(cpi->num_extra_arfs <= MAX_EXT_ARFS); +#endif + + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + + rc->bipred_group_interval = BFG_INTERVAL; + // The minimum bi-predictive frame group interval is 2. + if (rc->bipred_group_interval < 2) rc->bipred_group_interval = 0; + + // Reset the file position. + reset_fpf_position(twopass, start_pos); + + // Calculate the bits to be allocated to the gf/arf group as a whole + gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); + +#if GROUP_ADAPTIVE_MAXQ + // Calculate an estimate of the maxq needed for the group. + // We are more agressive about correcting for sections + // where there could be significant overshoot than for easier + // sections where we do not wish to risk creating an overshoot + // of the allocated bit budget. + if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) { + const int vbr_group_bits_per_frame = + (int)(gf_group_bits / rc->baseline_gf_interval); + const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval; + const double group_av_skip_pct = + gf_group_skip_pct / rc->baseline_gf_interval; + const double group_av_inactive_zone = + ((gf_group_inactive_zone_rows * 2) / + (rc->baseline_gf_interval * (double)cm->mb_rows)); + + int tmp_q; + // rc factor is a weight factor that corrects for local rate control drift. + double rc_factor = 1.0; + if (rc->rate_error_estimate > 0) { + rc_factor = AOMMAX(RC_FACTOR_MIN, + (double)(100 - rc->rate_error_estimate) / 100.0); + } else { + rc_factor = AOMMIN(RC_FACTOR_MAX, + (double)(100 - rc->rate_error_estimate) / 100.0); + } + tmp_q = get_twopass_worst_quality( + cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), + vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor); + twopass->active_worst_quality = + AOMMAX(tmp_q, twopass->active_worst_quality >> 1); + } +#endif + + // Calculate the extra bits to be used for boosted frame(s) + gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost, + gf_group_bits); + + // Adjust KF group bits and error remaining. + twopass->kf_group_error_left -= (int64_t)gf_group_err; + + // If this is an arf update we want to remove the score for the overlay + // frame at the end which will usually be very cheap to code. + // The overlay frame has already, in effect, been coded so we want to spread + // the remaining bits among the other frames. + // For normal GFs remove the score for the GF itself unless this is + // also a key frame in which case it has already been accounted for. + if (rc->source_alt_ref_pending) { + gf_group_error_left = gf_group_err - mod_frame_err; + } else if (is_key_frame == 0) { + gf_group_error_left = gf_group_err - gf_first_frame_err; + } else { + gf_group_error_left = gf_group_err; + } + + // Allocate bits to each of the frames in the GF group. + allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits); + + // Reset the file position. + reset_fpf_position(twopass, start_pos); + + // Calculate a section intra ratio used in setting max loop filter. + if (cpi->common.frame_type != KEY_FRAME) { + twopass->section_intra_rating = calculate_section_intra_ratio( + start_pos, twopass->stats_in_end, rc->baseline_gf_interval); + } +} + +// Threshold for use of the lagging second reference frame. High second ref +// usage may point to a transient event like a flash or occlusion rather than +// a real scene cut. +#define SECOND_REF_USEAGE_THRESH 0.1 +// Minimum % intra coding observed in first pass (1.0 = 100%) +#define MIN_INTRA_LEVEL 0.25 +// Minimum ratio between the % of intra coding and inter coding in the first +// pass after discounting neutral blocks (discounting neutral blocks in this +// way helps catch scene cuts in clips with very flat areas or letter box +// format clips with image padding. +#define INTRA_VS_INTER_THRESH 2.0 +// Hard threshold where the first pass chooses intra for almost all blocks. +// In such a case even if the frame is not a scene cut coding a key frame +// may be a good option. +#define VERY_LOW_INTER_THRESH 0.05 +// Maximum threshold for the relative ratio of intra error score vs best +// inter error score. +#define KF_II_ERR_THRESHOLD 2.5 +// In real scene cuts there is almost always a sharp change in the intra +// or inter error score. +#define ERR_CHANGE_THRESHOLD 0.4 +// For real scene cuts we expect an improvment in the intra inter error +// ratio in the next frame. +#define II_IMPROVEMENT_THRESHOLD 3.5 +#define KF_II_MAX 128.0 + +static int test_candidate_kf(TWO_PASS *twopass, + const FIRSTPASS_STATS *last_frame, + const FIRSTPASS_STATS *this_frame, + const FIRSTPASS_STATS *next_frame) { + int is_viable_kf = 0; + double pcnt_intra = 1.0 - this_frame->pcnt_inter; + double modified_pcnt_inter = + this_frame->pcnt_inter - this_frame->pcnt_neutral; + + // Does the frame satisfy the primary criteria of a key frame? + // See above for an explanation of the test criteria. + // If so, then examine how well it predicts subsequent frames. + if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && + (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && + ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || + ((pcnt_intra > MIN_INTRA_LEVEL) && + (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && + ((this_frame->intra_error / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < + KF_II_ERR_THRESHOLD) && + ((fabs(last_frame->coded_error - this_frame->coded_error) / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > + ERR_CHANGE_THRESHOLD) || + (fabs(last_frame->intra_error - this_frame->intra_error) / + DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > + ERR_CHANGE_THRESHOLD) || + ((next_frame->intra_error / + DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > + II_IMPROVEMENT_THRESHOLD))))) { + int i; + const FIRSTPASS_STATS *start_pos = twopass->stats_in; + FIRSTPASS_STATS local_next_frame = *next_frame; + double boost_score = 0.0; + double old_boost_score = 0.0; + double decay_accumulator = 1.0; + + // Examine how well the key frame predicts subsequent frames. + for (i = 0; i < 16; ++i) { + double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error / + DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); + + if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; + + // Cumulative effect of decay in prediction quality. + if (local_next_frame.pcnt_inter > 0.85) + decay_accumulator *= local_next_frame.pcnt_inter; + else + decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; + + // Keep a running total. + boost_score += (decay_accumulator * next_iiratio); + + // Test various breakout clauses. + if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || + (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < + 0.20) && + (next_iiratio < 3.0)) || + ((boost_score - old_boost_score) < 3.0) || + (local_next_frame.intra_error < 200)) { + break; + } + + old_boost_score = boost_score; + + // Get the next frame details + if (EOF == input_stats(twopass, &local_next_frame)) break; + } + + // If there is tolerable prediction for at least the next 3 frames then + // break out else discard this potential key frame and move on + if (boost_score > 30.0 && (i > 3)) { + is_viable_kf = 1; + } else { + // Reset the file position + reset_fpf_position(twopass, start_pos); + + is_viable_kf = 0; + } + } + + return is_viable_kf; +} + +#define FRAMES_TO_CHECK_DECAY 8 + +static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { + int i, j; + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + const FIRSTPASS_STATS first_frame = *this_frame; + const FIRSTPASS_STATS *const start_position = twopass->stats_in; + FIRSTPASS_STATS next_frame; + FIRSTPASS_STATS last_frame; + int kf_bits = 0; + int loop_decay_counter = 0; + double decay_accumulator = 1.0; + double av_decay_accumulator = 0.0; + double zero_motion_accumulator = 1.0; + double boost_score = 0.0; + double kf_mod_err = 0.0; + double kf_group_err = 0.0; + double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; + + av1_zero(next_frame); + + cpi->common.frame_type = KEY_FRAME; + + // Reset the GF group data structures. + av1_zero(*gf_group); + + // Is this a forced key frame by interval. + rc->this_key_frame_forced = rc->next_key_frame_forced; + + // Clear the alt ref active flag and last group multi arf flags as they + // can never be set for a key frame. + rc->source_alt_ref_active = 0; + + // KF is always a GF so clear frames till next gf counter. + rc->frames_till_gf_update_due = 0; + + rc->frames_to_key = 1; + + twopass->kf_group_bits = 0; // Total bits available to kf group + twopass->kf_group_error_left = 0; // Group modified error score. + + kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); + + // Initialize the decay rates for the recent frames to check + for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; + + // Find the next keyframe. + i = 0; + while (twopass->stats_in < twopass->stats_in_end && + rc->frames_to_key < cpi->oxcf.key_freq) { + // Accumulate kf group error. + kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); + + // Load the next frame's stats. + last_frame = *this_frame; + input_stats(twopass, this_frame); + + // Provided that we are not at the end of the file... + if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) { + double loop_decay_rate; + + // Check for a scene cut. + if (test_candidate_kf(twopass, &last_frame, this_frame, + twopass->stats_in)) + break; + + // How fast is the prediction quality decaying? + loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in); + + // We want to know something about the recent past... rather than + // as used elsewhere where we are concerned with decay in prediction + // quality since the last GF or KF. + recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; + decay_accumulator = 1.0; + for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) + decay_accumulator *= recent_loop_decay[j]; + + // Special check for transition or high motion followed by a + // static scene. + if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i, + loop_decay_rate, decay_accumulator)) + break; + + // Step on to the next frame. + ++rc->frames_to_key; + + // If we don't have a real key frame within the next two + // key_freq intervals then break out of the loop. + if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break; + } else { + ++rc->frames_to_key; + } + ++i; + } + + // If there is a max kf interval set by the user we must obey it. + // We already breakout of the loop above at 2x max. + // This code centers the extra kf if the actual natural interval + // is between 1x and 2x. + if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) { + FIRSTPASS_STATS tmp_frame = first_frame; + + rc->frames_to_key /= 2; + + // Reset to the start of the group. + reset_fpf_position(twopass, start_position); + + kf_group_err = 0.0; + + // Rescan to get the correct error data for the forced kf group. + for (i = 0; i < rc->frames_to_key; ++i) { + kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame); + input_stats(twopass, &tmp_frame); + } + rc->next_key_frame_forced = 1; + } else if (twopass->stats_in == twopass->stats_in_end || + rc->frames_to_key >= cpi->oxcf.key_freq) { + rc->next_key_frame_forced = 1; + } else { + rc->next_key_frame_forced = 0; + } + + // Special case for the last key frame of the file. + if (twopass->stats_in >= twopass->stats_in_end) { + // Accumulate kf group error. + kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); + } + + // Calculate the number of bits that should be assigned to the kf group. + if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) { + // Maximum number of bits for a single normal frame (not key frame). + const int max_bits = frame_max_bits(rc, &cpi->oxcf); + + // Maximum number of bits allocated to the key frame group. + int64_t max_grp_bits; + + // Default allocation based on bits left and relative + // complexity of the section. + twopass->kf_group_bits = (int64_t)( + twopass->bits_left * (kf_group_err / twopass->modified_error_left)); + + // Clip based on maximum per frame rate defined by the user. + max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; + if (twopass->kf_group_bits > max_grp_bits) + twopass->kf_group_bits = max_grp_bits; + } else { + twopass->kf_group_bits = 0; + } + twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits); + + // Reset the first pass file position. + reset_fpf_position(twopass, start_position); + + // Scan through the kf group collating various stats used to determine + // how many bits to spend on it. + decay_accumulator = 1.0; + boost_score = 0.0; + const double kf_max_boost = + cpi->oxcf.rc_mode == AOM_Q + ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST), + KF_MAX_FRAME_BOOST) + : KF_MAX_FRAME_BOOST; + for (i = 0; i < (rc->frames_to_key - 1); ++i) { + if (EOF == input_stats(twopass, &next_frame)) break; + + // Monitor for static sections. + zero_motion_accumulator = AOMMIN(zero_motion_accumulator, + get_zero_motion_factor(cpi, &next_frame)); + + // Not all frames in the group are necessarily used in calculating boost. + if ((i <= rc->max_gf_interval) || + ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) { + const double frame_boost = + calc_frame_boost(cpi, this_frame, 0, kf_max_boost); + + // How fast is prediction quality decaying. + if (!detect_flash(twopass, 0)) { + const double loop_decay_rate = + get_prediction_decay_rate(cpi, &next_frame); + decay_accumulator *= loop_decay_rate; + decay_accumulator = AOMMAX(decay_accumulator, MIN_DECAY_FACTOR); + av_decay_accumulator += decay_accumulator; + ++loop_decay_counter; + } + boost_score += (decay_accumulator * frame_boost); + } + } + if (loop_decay_counter > 0) + av_decay_accumulator /= (double)loop_decay_counter; + + reset_fpf_position(twopass, start_position); + + // Store the zero motion percentage + twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); + + // Calculate a section intra ratio used in setting max loop filter. + twopass->section_intra_rating = calculate_section_intra_ratio( + start_position, twopass->stats_in_end, rc->frames_to_key); + + // Apply various clamps for min and max boost + rc->kf_boost = (int)(av_decay_accumulator * boost_score); + rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3)); + rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST); + + // Work out how many bits to allocate for the key frame itself. + kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, + twopass->kf_group_bits); + // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", rc->kf_boost, + // kf_bits, twopass->kf_zeromotion_pct); + + // Work out the fraction of the kf group bits reserved for the inter frames + // within the group after discounting the bits for the kf itself. + if (twopass->kf_group_bits) { + twopass->kfgroup_inter_fraction = + (double)(twopass->kf_group_bits - kf_bits) / + (double)twopass->kf_group_bits; + } else { + twopass->kfgroup_inter_fraction = 1.0; + } + + twopass->kf_group_bits -= kf_bits; + + // Save the bits to spend on the key frame. + gf_group->bit_allocation[0] = kf_bits; + gf_group->update_type[0] = KF_UPDATE; + gf_group->rf_level[0] = KF_STD; + + // Note the total error score of the kf group minus the key frame itself. + twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); + + // Adjust the count of total modified error left. + // The count of bits left is adjusted elsewhere based on real coded frame + // sizes. + twopass->modified_error_left -= kf_group_err; +} + +// Define the reference buffers that will be updated post encode. +static void configure_buffer_updates(AV1_COMP *cpi) { + TWO_PASS *const twopass = &cpi->twopass; + + // NOTE(weitinglin): Should we define another function to take care of + // cpi->rc.is_$Source_Type to make this function as it is in the comment? + + cpi->rc.is_src_frame_alt_ref = 0; + cpi->rc.is_bwd_ref_frame = 0; + cpi->rc.is_last_bipred_frame = 0; + cpi->rc.is_bipred_frame = 0; + cpi->rc.is_src_frame_ext_arf = 0; + + switch (twopass->gf_group.update_type[twopass->gf_group.index]) { + case KF_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 1; + cpi->refresh_bwd_ref_frame = 1; + cpi->refresh_alt2_ref_frame = 1; + cpi->refresh_alt_ref_frame = 1; + break; + + case LF_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + break; + + case GF_UPDATE: + // TODO(zoeliu): To further investigate whether 'refresh_last_frame' is + // needed. + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 1; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + break; + + case OVERLAY_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 1; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_src_frame_alt_ref = 1; + break; + + case ARF_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + // NOTE: BWDREF does not get updated along with ALTREF_FRAME. + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 1; + break; + + case BRF_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 1; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_bwd_ref_frame = 1; + break; + + case LAST_BIPRED_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_last_bipred_frame = 1; + break; + + case BIPRED_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_bipred_frame = 1; + break; + + case INTNL_OVERLAY_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_src_frame_alt_ref = 1; + cpi->rc.is_src_frame_ext_arf = 1; + break; + + case INTNL_ARF_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule == 1) { + cpi->refresh_bwd_ref_frame = 1; + cpi->refresh_alt2_ref_frame = 0; + } else { +#endif + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 1; +#if USE_SYMM_MULTI_LAYER + } +#endif + cpi->refresh_alt_ref_frame = 0; + break; + + default: assert(0); break; + } +} + +void av1_configure_buffer_updates_firstpass(AV1_COMP *cpi, + FRAME_UPDATE_TYPE update_type) { + RATE_CONTROL *rc = &cpi->rc; + + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + rc->is_bwd_ref_frame = 0; + + switch (update_type) { + case ARF_UPDATE: + cpi->refresh_alt_ref_frame = 1; + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + + rc->is_src_frame_alt_ref = 0; + break; + case INTNL_ARF_UPDATE: + cpi->refresh_alt2_ref_frame = 1; + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + rc->is_src_frame_alt_ref = 0; + rc->is_src_frame_ext_arf = 0; + + break; + case BIPRED_UPDATE: + cpi->refresh_bwd_ref_frame = 1; + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + rc->is_bwd_ref_frame = 1; + break; + default: break; + } +} + +static int is_skippable_frame(const AV1_COMP *cpi) { + // If the current frame does not have non-zero motion vector detected in the + // first pass, and so do its previous and forward frames, then this frame + // can be skipped for partition check, and the partition size is assigned + // according to the variance + const TWO_PASS *const twopass = &cpi->twopass; + + return (!frame_is_intra_only(&cpi->common) && + twopass->stats_in - 2 > twopass->stats_in_start && + twopass->stats_in < twopass->stats_in_end && + (twopass->stats_in - 1)->pcnt_inter - + (twopass->stats_in - 1)->pcnt_motion == + 1 && + (twopass->stats_in - 2)->pcnt_inter - + (twopass->stats_in - 2)->pcnt_motion == + 1 && + twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); +} + +void av1_rc_get_second_pass_params(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + int frames_left; + FIRSTPASS_STATS this_frame; + + int target_rate; + + frames_left = (int)(twopass->total_stats.count - cm->current_video_frame); + + if (!twopass->stats_in) return; + + // If this is an arf frame then we dont want to read the stats file or + // advance the input pointer as we already have what we need. + if (gf_group->update_type[gf_group->index] == ARF_UPDATE || + gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) { + configure_buffer_updates(cpi); + target_rate = gf_group->bit_allocation[gf_group->index]; + target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate); + rc->base_frame_target = target_rate; + + if (cpi->no_show_kf) { + assert(gf_group->update_type[gf_group->index] == ARF_UPDATE); + cm->frame_type = KEY_FRAME; + } else { + cm->frame_type = INTER_FRAME; + } + + // Do the firstpass stats indicate that this frame is skippable for the + // partition search? + if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { + cpi->partition_search_skippable_frame = is_skippable_frame(cpi); + } + + return; + } + + aom_clear_system_state(); + + if (cpi->oxcf.rc_mode == AOM_Q) { + twopass->active_worst_quality = cpi->oxcf.cq_level; + } else if (cm->current_video_frame == 0) { + // Special case code for first frame. + const int section_target_bandwidth = + (int)(twopass->bits_left / frames_left); + const double section_length = twopass->total_left_stats.count; + const double section_error = + twopass->total_left_stats.coded_error / section_length; + const double section_intra_skip = + twopass->total_left_stats.intra_skip_pct / section_length; + const double section_inactive_zone = + (twopass->total_left_stats.inactive_zone_rows * 2) / + ((double)cm->mb_rows * section_length); + const int tmp_q = get_twopass_worst_quality( + cpi, section_error, section_intra_skip + section_inactive_zone, + section_target_bandwidth, DEFAULT_GRP_WEIGHT); + + twopass->active_worst_quality = tmp_q; + twopass->baseline_active_worst_quality = tmp_q; + rc->ni_av_qi = tmp_q; + rc->last_q[INTER_FRAME] = tmp_q; + rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params.bit_depth); + rc->avg_frame_qindex[INTER_FRAME] = tmp_q; + rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; + rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; + } + + av1_zero(this_frame); + if (EOF == input_stats(twopass, &this_frame)) return; + + // Set the frame content type flag. + if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) + twopass->fr_content_type = FC_GRAPHICS_ANIMATION; + else + twopass->fr_content_type = FC_NORMAL; + + // Keyframe and section processing. + if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { + FIRSTPASS_STATS this_frame_copy; + this_frame_copy = this_frame; + // Define next KF group and assign bits to it. + find_next_key_frame(cpi, &this_frame); + this_frame = this_frame_copy; + } else { + cm->frame_type = INTER_FRAME; + } + + // Define a new GF/ARF group. (Should always enter here for key frames). + if (rc->frames_till_gf_update_due == 0) { + define_gf_group(cpi, &this_frame); + + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + +#if ARF_STATS_OUTPUT + { + FILE *fpfile; + fpfile = fopen("arf.stt", "a"); + ++arf_count; + fprintf(fpfile, "%10d %10d %10d %10d %10d\n", cm->current_video_frame, + rc->frames_till_gf_update_due, rc->kf_boost, arf_count, + rc->gfu_boost); + + fclose(fpfile); + } +#endif + } + + configure_buffer_updates(cpi); + + // Do the firstpass stats indicate that this frame is skippable for the + // partition search? + if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { + cpi->partition_search_skippable_frame = is_skippable_frame(cpi); + } + + target_rate = gf_group->bit_allocation[gf_group->index]; + + if (cpi->common.frame_type == KEY_FRAME) + target_rate = av1_rc_clamp_iframe_target_size(cpi, target_rate); + else + target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate); + + rc->base_frame_target = target_rate; + + { + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) + ? cpi->initial_mbs + : cpi->common.MBs; + // The multiplication by 256 reverses a scaling factor of (>> 8) + // applied when combining MB error values for the frame. + twopass->mb_av_energy = log((this_frame.intra_error / num_mbs) + 1.0); + twopass->frame_avg_haar_energy = + log((this_frame.frame_avg_wavelet_energy / num_mbs) + 1.0); + } + + // Update the total stats remaining structure. + subtract_stats(&twopass->total_left_stats, &this_frame); +} + +#define MINQ_ADJ_LIMIT 48 +#define MINQ_ADJ_LIMIT_CQ 20 +#define HIGH_UNDERSHOOT_RATIO 2 +void av1_twopass_postencode_update(AV1_COMP *cpi) { + TWO_PASS *const twopass = &cpi->twopass; + RATE_CONTROL *const rc = &cpi->rc; + const int bits_used = rc->base_frame_target; + + // VBR correction is done through rc->vbr_bits_off_target. Based on the + // sign of this value, a limited % adjustment is made to the target rate + // of subsequent frames, to try and push it back towards 0. This method + // is designed to prevent extreme behaviour at the end of a clip + // or group of frames. + rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; + twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0); + + // Calculate the pct rc error. + if (rc->total_actual_bits) { + rc->rate_error_estimate = + (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); + rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); + } else { + rc->rate_error_estimate = 0; + } + + if (cpi->common.frame_type != KEY_FRAME) { + twopass->kf_group_bits -= bits_used; + twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; + } + twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0); + + // If the rate control is drifting consider adjustment to min or maxq. + if ((cpi->oxcf.rc_mode != AOM_Q) && + (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) && + !cpi->rc.is_src_frame_alt_ref) { + const int maxq_adj_limit = + rc->worst_quality - twopass->active_worst_quality; + const int minq_adj_limit = + (cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); + + // Undershoot. + if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { + --twopass->extend_maxq; + if (rc->rolling_target_bits >= rc->rolling_actual_bits) + ++twopass->extend_minq; + // Overshoot. + } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { + --twopass->extend_minq; + if (rc->rolling_target_bits < rc->rolling_actual_bits) + ++twopass->extend_maxq; + } else { + // Adjustment for extreme local overshoot. + if (rc->projected_frame_size > (2 * rc->base_frame_target) && + rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) + ++twopass->extend_maxq; + + // Unwind undershoot or overshoot adjustment. + if (rc->rolling_target_bits < rc->rolling_actual_bits) + --twopass->extend_minq; + else if (rc->rolling_target_bits > rc->rolling_actual_bits) + --twopass->extend_maxq; + } + + twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit); + twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit); + + // If there is a big and undexpected undershoot then feed the extra + // bits back in quickly. One situation where this may happen is if a + // frame is unexpectedly almost perfectly predicted by the ARF or GF + // but not very well predcited by the previous frame. + if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { + int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; + if (rc->projected_frame_size < fast_extra_thresh) { + rc->vbr_bits_off_target_fast += + fast_extra_thresh - rc->projected_frame_size; + rc->vbr_bits_off_target_fast = + AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); + + // Fast adaptation of minQ if necessary to use up the extra bits. + if (rc->avg_frame_bandwidth) { + twopass->extend_minq_fast = + (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); + } + twopass->extend_minq_fast = AOMMIN( + twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); + } else if (rc->vbr_bits_off_target_fast) { + twopass->extend_minq_fast = AOMMIN( + twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); + } else { + twopass->extend_minq_fast = 0; + } + } + } +} -- cgit v1.2.3