From 36d22d82aa202bb199967e9512281e9a53db42c9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 21:33:14 +0200 Subject: Adding upstream version 115.7.0esr. Signed-off-by: Daniel Baumann --- third_party/rust/euclid/src/vector.rs | 2596 +++++++++++++++++++++++++++++++++ 1 file changed, 2596 insertions(+) create mode 100644 third_party/rust/euclid/src/vector.rs (limited to 'third_party/rust/euclid/src/vector.rs') diff --git a/third_party/rust/euclid/src/vector.rs b/third_party/rust/euclid/src/vector.rs new file mode 100644 index 0000000000..1a23bbed31 --- /dev/null +++ b/third_party/rust/euclid/src/vector.rs @@ -0,0 +1,2596 @@ +// Copyright 2013 The Servo Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use super::UnknownUnit; +use crate::approxeq::ApproxEq; +use crate::approxord::{max, min}; +use crate::length::Length; +use crate::num::*; +use crate::point::{point2, point3, Point2D, Point3D}; +use crate::scale::Scale; +use crate::size::{size2, size3, Size2D, Size3D}; +use crate::transform2d::Transform2D; +use crate::transform3d::Transform3D; +use crate::trig::Trig; +use crate::Angle; +use core::cmp::{Eq, PartialEq}; +use core::fmt; +use core::hash::Hash; +use core::iter::Sum; +use core::marker::PhantomData; +use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; +#[cfg(feature = "mint")] +use mint; +use num_traits::real::Real; +use num_traits::{Float, NumCast, Signed}; +#[cfg(feature = "serde")] +use serde; + +#[cfg(feature = "bytemuck")] +use bytemuck::{Zeroable, Pod}; + +/// A 2d Vector tagged with a unit. +#[repr(C)] +pub struct Vector2D { + /// The `x` (traditionally, horizontal) coordinate. + pub x: T, + /// The `y` (traditionally, vertical) coordinate. + pub y: T, + #[doc(hidden)] + pub _unit: PhantomData, +} + +mint_vec!(Vector2D[x, y] = Vector2); + +impl Copy for Vector2D {} + +impl Clone for Vector2D { + fn clone(&self) -> Self { + Vector2D { + x: self.x.clone(), + y: self.y.clone(), + _unit: PhantomData, + } + } +} + +#[cfg(feature = "serde")] +impl<'de, T, U> serde::Deserialize<'de> for Vector2D +where + T: serde::Deserialize<'de>, +{ + fn deserialize(deserializer: D) -> Result + where + D: serde::Deserializer<'de>, + { + let (x, y) = serde::Deserialize::deserialize(deserializer)?; + Ok(Vector2D { + x, + y, + _unit: PhantomData, + }) + } +} + +#[cfg(feature = "serde")] +impl serde::Serialize for Vector2D +where + T: serde::Serialize, +{ + fn serialize(&self, serializer: S) -> Result + where + S: serde::Serializer, + { + (&self.x, &self.y).serialize(serializer) + } +} + +#[cfg(feature = "arbitrary")] +impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector2D +where + T: arbitrary::Arbitrary<'a>, +{ + fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result + { + let (x, y) = arbitrary::Arbitrary::arbitrary(u)?; + Ok(Vector2D { + x, + y, + _unit: PhantomData, + }) + } +} + +#[cfg(feature = "bytemuck")] +unsafe impl Zeroable for Vector2D {} + +#[cfg(feature = "bytemuck")] +unsafe impl Pod for Vector2D {} + +impl Eq for Vector2D {} + +impl PartialEq for Vector2D { + fn eq(&self, other: &Self) -> bool { + self.x == other.x && self.y == other.y + } +} + +impl Hash for Vector2D { + fn hash(&self, h: &mut H) { + self.x.hash(h); + self.y.hash(h); + } +} + +impl Zero for Vector2D { + /// Constructor, setting all components to zero. + #[inline] + fn zero() -> Self { + Vector2D::new(Zero::zero(), Zero::zero()) + } +} + +impl fmt::Debug for Vector2D { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("").field(&self.x).field(&self.y).finish() + } +} + +impl Default for Vector2D { + fn default() -> Self { + Vector2D::new(Default::default(), Default::default()) + } +} + +impl Vector2D { + /// Constructor, setting all components to zero. + #[inline] + pub fn zero() -> Self + where + T: Zero, + { + Vector2D::new(Zero::zero(), Zero::zero()) + } + + /// Constructor, setting all components to one. + #[inline] + pub fn one() -> Self + where + T: One, + { + Vector2D::new(One::one(), One::one()) + } + + /// Constructor taking scalar values directly. + #[inline] + pub const fn new(x: T, y: T) -> Self { + Vector2D { + x, + y, + _unit: PhantomData, + } + } + + /// Constructor setting all components to the same value. + #[inline] + pub fn splat(v: T) -> Self + where + T: Clone, + { + Vector2D { + x: v.clone(), + y: v, + _unit: PhantomData, + } + } + + /// Constructor taking angle and length + pub fn from_angle_and_length(angle: Angle, length: T) -> Self + where + T: Trig + Mul + Copy, + { + vec2(length * angle.radians.cos(), length * angle.radians.sin()) + } + + /// Constructor taking properly Lengths instead of scalar values. + #[inline] + pub fn from_lengths(x: Length, y: Length) -> Self { + vec2(x.0, y.0) + } + + /// Tag a unit-less value with units. + #[inline] + pub fn from_untyped(p: Vector2D) -> Self { + vec2(p.x, p.y) + } + + /// Computes the vector with absolute values of each component. + /// + /// # Example + /// + /// ```rust + /// # use std::{i32, f32}; + /// # use euclid::vec2; + /// enum U {} + /// + /// assert_eq!(vec2::<_, U>(-1, 2).abs(), vec2(1, 2)); + /// + /// let vec = vec2::<_, U>(f32::NAN, -f32::MAX).abs(); + /// assert!(vec.x.is_nan()); + /// assert_eq!(vec.y, f32::MAX); + /// ``` + /// + /// # Panics + /// + /// The behavior for each component follows the scalar type's implementation of + /// `num_traits::Signed::abs`. + pub fn abs(self) -> Self + where + T: Signed, + { + vec2(self.x.abs(), self.y.abs()) + } + + /// Dot product. + #[inline] + pub fn dot(self, other: Self) -> T + where + T: Add + Mul, + { + self.x * other.x + self.y * other.y + } + + /// Returns the norm of the cross product [self.x, self.y, 0] x [other.x, other.y, 0]. + #[inline] + pub fn cross(self, other: Self) -> T + where + T: Sub + Mul, + { + self.x * other.y - self.y * other.x + } + + /// Returns the component-wise multiplication of the two vectors. + #[inline] + pub fn component_mul(self, other: Self) -> Self + where + T: Mul, + { + vec2(self.x * other.x, self.y * other.y) + } + + /// Returns the component-wise division of the two vectors. + #[inline] + pub fn component_div(self, other: Self) -> Self + where + T: Div, + { + vec2(self.x / other.x, self.y / other.y) + } +} + +impl Vector2D { + /// Create a 3d vector from this one, using the specified z value. + #[inline] + pub fn extend(self, z: T) -> Vector3D { + vec3(self.x, self.y, z) + } + + /// Cast this vector into a point. + /// + /// Equivalent to adding this vector to the origin. + #[inline] + pub fn to_point(self) -> Point2D { + Point2D { + x: self.x, + y: self.y, + _unit: PhantomData, + } + } + + /// Swap x and y. + #[inline] + pub fn yx(self) -> Self { + vec2(self.y, self.x) + } + + /// Cast this vector into a size. + #[inline] + pub fn to_size(self) -> Size2D { + size2(self.x, self.y) + } + + /// Drop the units, preserving only the numeric value. + #[inline] + pub fn to_untyped(self) -> Vector2D { + vec2(self.x, self.y) + } + + /// Cast the unit. + #[inline] + pub fn cast_unit(self) -> Vector2D { + vec2(self.x, self.y) + } + + /// Cast into an array with x and y. + #[inline] + pub fn to_array(self) -> [T; 2] { + [self.x, self.y] + } + + /// Cast into a tuple with x and y. + #[inline] + pub fn to_tuple(self) -> (T, T) { + (self.x, self.y) + } + + /// Convert into a 3d vector with `z` coordinate equals to `T::zero()`. + #[inline] + pub fn to_3d(self) -> Vector3D + where + T: Zero, + { + vec3(self.x, self.y, Zero::zero()) + } + + /// Rounds each component to the nearest integer value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::vec2; + /// enum Mm {} + /// + /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).round(), vec2::<_, Mm>(0.0, -1.0)) + /// ``` + #[inline] + #[must_use] + pub fn round(self) -> Self + where + T: Round, + { + vec2(self.x.round(), self.y.round()) + } + + /// Rounds each component to the smallest integer equal or greater than the original value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::vec2; + /// enum Mm {} + /// + /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).ceil(), vec2::<_, Mm>(0.0, 0.0)) + /// ``` + #[inline] + #[must_use] + pub fn ceil(self) -> Self + where + T: Ceil, + { + vec2(self.x.ceil(), self.y.ceil()) + } + + /// Rounds each component to the biggest integer equal or lower than the original value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::vec2; + /// enum Mm {} + /// + /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).floor(), vec2::<_, Mm>(-1.0, -1.0)) + /// ``` + #[inline] + #[must_use] + pub fn floor(self) -> Self + where + T: Floor, + { + vec2(self.x.floor(), self.y.floor()) + } + + /// Returns the signed angle between this vector and the x axis. + /// Positive values counted counterclockwise, where 0 is `+x` axis, `PI/2` + /// is `+y` axis. + /// + /// The returned angle is between -PI and PI. + pub fn angle_from_x_axis(self) -> Angle + where + T: Trig, + { + Angle::radians(Trig::fast_atan2(self.y, self.x)) + } + + /// Creates translation by this vector in vector units. + #[inline] + pub fn to_transform(self) -> Transform2D + where + T: Zero + One, + { + Transform2D::translation(self.x, self.y) + } +} + +impl Vector2D +where + T: Copy + Mul + Add, +{ + /// Returns the vector's length squared. + #[inline] + pub fn square_length(self) -> T { + self.x * self.x + self.y * self.y + } + + /// Returns this vector projected onto another one. + /// + /// Projecting onto a nil vector will cause a division by zero. + #[inline] + pub fn project_onto_vector(self, onto: Self) -> Self + where + T: Sub + Div, + { + onto * (self.dot(onto) / onto.square_length()) + } + + /// Returns the signed angle between this vector and another vector. + /// + /// The returned angle is between -PI and PI. + pub fn angle_to(self, other: Self) -> Angle + where + T: Sub + Trig, + { + Angle::radians(Trig::fast_atan2(self.cross(other), self.dot(other))) + } +} + +impl Vector2D { + /// Return the normalized vector even if the length is larger than the max value of Float. + #[inline] + #[must_use] + pub fn robust_normalize(self) -> Self { + let length = self.length(); + if length.is_infinite() { + let scaled = self / T::max_value(); + scaled / scaled.length() + } else { + self / length + } + } + + /// Returns true if all members are finite. + #[inline] + pub fn is_finite(self) -> bool { + self.x.is_finite() && self.y.is_finite() + } +} + +impl Vector2D { + /// Returns the vector length. + #[inline] + pub fn length(self) -> T { + self.square_length().sqrt() + } + + /// Returns the vector with length of one unit. + #[inline] + #[must_use] + pub fn normalize(self) -> Self { + self / self.length() + } + + /// Returns the vector with length of one unit. + /// + /// Unlike [`Vector2D::normalize`](#method.normalize), this returns None in the case that the + /// length of the vector is zero. + #[inline] + #[must_use] + pub fn try_normalize(self) -> Option { + let len = self.length(); + if len == T::zero() { + None + } else { + Some(self / len) + } + } + + /// Return this vector scaled to fit the provided length. + #[inline] + pub fn with_length(self, length: T) -> Self { + self.normalize() * length + } + + /// Return this vector capped to a maximum length. + #[inline] + pub fn with_max_length(self, max_length: T) -> Self { + let square_length = self.square_length(); + if square_length > max_length * max_length { + return self * (max_length / square_length.sqrt()); + } + + self + } + + /// Return this vector with a minimum length applied. + #[inline] + pub fn with_min_length(self, min_length: T) -> Self { + let square_length = self.square_length(); + if square_length < min_length * min_length { + return self * (min_length / square_length.sqrt()); + } + + self + } + + /// Return this vector with minimum and maximum lengths applied. + #[inline] + pub fn clamp_length(self, min: T, max: T) -> Self { + debug_assert!(min <= max); + self.with_min_length(min).with_max_length(max) + } +} + +impl Vector2D +where + T: Copy + One + Add + Sub + Mul, +{ + /// Linearly interpolate each component between this vector and another vector. + /// + /// # Example + /// + /// ```rust + /// use euclid::vec2; + /// use euclid::default::Vector2D; + /// + /// let from: Vector2D<_> = vec2(0.0, 10.0); + /// let to: Vector2D<_> = vec2(8.0, -4.0); + /// + /// assert_eq!(from.lerp(to, -1.0), vec2(-8.0, 24.0)); + /// assert_eq!(from.lerp(to, 0.0), vec2( 0.0, 10.0)); + /// assert_eq!(from.lerp(to, 0.5), vec2( 4.0, 3.0)); + /// assert_eq!(from.lerp(to, 1.0), vec2( 8.0, -4.0)); + /// assert_eq!(from.lerp(to, 2.0), vec2(16.0, -18.0)); + /// ``` + #[inline] + pub fn lerp(self, other: Self, t: T) -> Self { + let one_t = T::one() - t; + self * one_t + other * t + } + + /// Returns a reflection vector using an incident ray and a surface normal. + #[inline] + pub fn reflect(self, normal: Self) -> Self { + let two = T::one() + T::one(); + self - normal * two * self.dot(normal) + } +} + +impl Vector2D { + /// Returns the vector each component of which are minimum of this vector and another. + #[inline] + pub fn min(self, other: Self) -> Self { + vec2(min(self.x, other.x), min(self.y, other.y)) + } + + /// Returns the vector each component of which are maximum of this vector and another. + #[inline] + pub fn max(self, other: Self) -> Self { + vec2(max(self.x, other.x), max(self.y, other.y)) + } + + /// Returns the vector each component of which is clamped by corresponding + /// components of `start` and `end`. + /// + /// Shortcut for `self.max(start).min(end)`. + #[inline] + pub fn clamp(self, start: Self, end: Self) -> Self + where + T: Copy, + { + self.max(start).min(end) + } + + /// Returns vector with results of "greater than" operation on each component. + #[inline] + pub fn greater_than(self, other: Self) -> BoolVector2D { + BoolVector2D { + x: self.x > other.x, + y: self.y > other.y, + } + } + + /// Returns vector with results of "lower than" operation on each component. + #[inline] + pub fn lower_than(self, other: Self) -> BoolVector2D { + BoolVector2D { + x: self.x < other.x, + y: self.y < other.y, + } + } +} + +impl Vector2D { + /// Returns vector with results of "equal" operation on each component. + #[inline] + pub fn equal(self, other: Self) -> BoolVector2D { + BoolVector2D { + x: self.x == other.x, + y: self.y == other.y, + } + } + + /// Returns vector with results of "not equal" operation on each component. + #[inline] + pub fn not_equal(self, other: Self) -> BoolVector2D { + BoolVector2D { + x: self.x != other.x, + y: self.y != other.y, + } + } +} + +impl Vector2D { + /// Cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating vector to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. + #[inline] + pub fn cast(self) -> Vector2D { + self.try_cast().unwrap() + } + + /// Fallible cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating vector to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. + pub fn try_cast(self) -> Option> { + match (NumCast::from(self.x), NumCast::from(self.y)) { + (Some(x), Some(y)) => Some(Vector2D::new(x, y)), + _ => None, + } + } + + // Convenience functions for common casts. + + /// Cast into an `f32` vector. + #[inline] + pub fn to_f32(self) -> Vector2D { + self.cast() + } + + /// Cast into an `f64` vector. + #[inline] + pub fn to_f64(self) -> Vector2D { + self.cast() + } + + /// Cast into an `usize` vector, truncating decimals if any. + /// + /// When casting from floating vector vectors, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_usize(self) -> Vector2D { + self.cast() + } + + /// Cast into an `u32` vector, truncating decimals if any. + /// + /// When casting from floating vector vectors, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_u32(self) -> Vector2D { + self.cast() + } + + /// Cast into an i32 vector, truncating decimals if any. + /// + /// When casting from floating vector vectors, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_i32(self) -> Vector2D { + self.cast() + } + + /// Cast into an i64 vector, truncating decimals if any. + /// + /// When casting from floating vector vectors, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_i64(self) -> Vector2D { + self.cast() + } +} + +impl Neg for Vector2D { + type Output = Vector2D; + + #[inline] + fn neg(self) -> Self::Output { + vec2(-self.x, -self.y) + } +} + +impl Add for Vector2D { + type Output = Vector2D; + + #[inline] + fn add(self, other: Self) -> Self::Output { + Vector2D::new(self.x + other.x, self.y + other.y) + } +} + +impl Add<&Self> for Vector2D { + type Output = Vector2D; + + #[inline] + fn add(self, other: &Self) -> Self::Output { + Vector2D::new(self.x + other.x, self.y + other.y) + } +} + +impl + Zero, U> Sum for Vector2D { + fn sum>(iter: I) -> Self { + iter.fold(Self::zero(), Add::add) + } +} + +impl<'a, T: 'a + Add + Copy + Zero, U: 'a> Sum<&'a Self> for Vector2D { + fn sum>(iter: I) -> Self { + iter.fold(Self::zero(), Add::add) + } +} + +impl, U> AddAssign for Vector2D { + #[inline] + fn add_assign(&mut self, other: Self) { + *self = *self + other + } +} + +impl Sub for Vector2D { + type Output = Vector2D; + + #[inline] + fn sub(self, other: Self) -> Self::Output { + vec2(self.x - other.x, self.y - other.y) + } +} + +impl, U> SubAssign> for Vector2D { + #[inline] + fn sub_assign(&mut self, other: Self) { + *self = *self - other + } +} + +impl Mul for Vector2D { + type Output = Vector2D; + + #[inline] + fn mul(self, scale: T) -> Self::Output { + vec2(self.x * scale, self.y * scale) + } +} + +impl, U> MulAssign for Vector2D { + #[inline] + fn mul_assign(&mut self, scale: T) { + *self = *self * scale + } +} + +impl Mul> for Vector2D { + type Output = Vector2D; + + #[inline] + fn mul(self, scale: Scale) -> Self::Output { + vec2(self.x * scale.0, self.y * scale.0) + } +} + +impl MulAssign> for Vector2D { + #[inline] + fn mul_assign(&mut self, scale: Scale) { + self.x *= scale.0; + self.y *= scale.0; + } +} + +impl Div for Vector2D { + type Output = Vector2D; + + #[inline] + fn div(self, scale: T) -> Self::Output { + vec2(self.x / scale, self.y / scale) + } +} + +impl, U> DivAssign for Vector2D { + #[inline] + fn div_assign(&mut self, scale: T) { + *self = *self / scale + } +} + +impl Div> for Vector2D { + type Output = Vector2D; + + #[inline] + fn div(self, scale: Scale) -> Self::Output { + vec2(self.x / scale.0, self.y / scale.0) + } +} + +impl DivAssign> for Vector2D { + #[inline] + fn div_assign(&mut self, scale: Scale) { + self.x /= scale.0; + self.y /= scale.0; + } +} + +impl Round for Vector2D { + /// See [`Vector2D::round()`](#method.round) + #[inline] + fn round(self) -> Self { + self.round() + } +} + +impl Ceil for Vector2D { + /// See [`Vector2D::ceil()`](#method.ceil) + #[inline] + fn ceil(self) -> Self { + self.ceil() + } +} + +impl Floor for Vector2D { + /// See [`Vector2D::floor()`](#method.floor) + #[inline] + fn floor(self) -> Self { + self.floor() + } +} + +impl, U> ApproxEq> for Vector2D { + #[inline] + fn approx_epsilon() -> Self { + vec2(T::approx_epsilon(), T::approx_epsilon()) + } + + #[inline] + fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { + self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) + } +} + +impl Into<[T; 2]> for Vector2D { + fn into(self) -> [T; 2] { + [self.x, self.y] + } +} + +impl From<[T; 2]> for Vector2D { + fn from([x, y]: [T; 2]) -> Self { + vec2(x, y) + } +} + +impl Into<(T, T)> for Vector2D { + fn into(self) -> (T, T) { + (self.x, self.y) + } +} + +impl From<(T, T)> for Vector2D { + fn from(tuple: (T, T)) -> Self { + vec2(tuple.0, tuple.1) + } +} + +impl From> for Vector2D { + fn from(size: Size2D) -> Self { + vec2(size.width, size.height) + } +} + +/// A 3d Vector tagged with a unit. +#[repr(C)] +pub struct Vector3D { + /// The `x` (traditionally, horizontal) coordinate. + pub x: T, + /// The `y` (traditionally, vertical) coordinate. + pub y: T, + /// The `z` (traditionally, depth) coordinate. + pub z: T, + #[doc(hidden)] + pub _unit: PhantomData, +} + +mint_vec!(Vector3D[x, y, z] = Vector3); + +impl Copy for Vector3D {} + +impl Clone for Vector3D { + fn clone(&self) -> Self { + Vector3D { + x: self.x.clone(), + y: self.y.clone(), + z: self.z.clone(), + _unit: PhantomData, + } + } +} + +#[cfg(feature = "serde")] +impl<'de, T, U> serde::Deserialize<'de> for Vector3D +where + T: serde::Deserialize<'de>, +{ + fn deserialize(deserializer: D) -> Result + where + D: serde::Deserializer<'de>, + { + let (x, y, z) = serde::Deserialize::deserialize(deserializer)?; + Ok(Vector3D { + x, + y, + z, + _unit: PhantomData, + }) + } +} + +#[cfg(feature = "serde")] +impl serde::Serialize for Vector3D +where + T: serde::Serialize, +{ + fn serialize(&self, serializer: S) -> Result + where + S: serde::Serializer, + { + (&self.x, &self.y, &self.z).serialize(serializer) + } +} + +#[cfg(feature = "bytemuck")] +unsafe impl Zeroable for Vector3D {} + +#[cfg(feature = "bytemuck")] +unsafe impl Pod for Vector3D {} + +impl Eq for Vector3D {} + +impl PartialEq for Vector3D { + fn eq(&self, other: &Self) -> bool { + self.x == other.x && self.y == other.y && self.z == other.z + } +} + +impl Hash for Vector3D { + fn hash(&self, h: &mut H) { + self.x.hash(h); + self.y.hash(h); + self.z.hash(h); + } +} + +impl Zero for Vector3D { + /// Constructor, setting all components to zero. + #[inline] + fn zero() -> Self { + vec3(Zero::zero(), Zero::zero(), Zero::zero()) + } +} + +impl fmt::Debug for Vector3D { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("") + .field(&self.x) + .field(&self.y) + .field(&self.z) + .finish() + } +} + +impl Default for Vector3D { + fn default() -> Self { + Vector3D::new(Default::default(), Default::default(), Default::default()) + } +} + +impl Vector3D { + /// Constructor, setting all components to zero. + #[inline] + pub fn zero() -> Self + where + T: Zero, + { + vec3(Zero::zero(), Zero::zero(), Zero::zero()) + } + + /// Constructor, setting all components to one. + #[inline] + pub fn one() -> Self + where + T: One, + { + vec3(One::one(), One::one(), One::one()) + } + + /// Constructor taking scalar values directly. + #[inline] + pub const fn new(x: T, y: T, z: T) -> Self { + Vector3D { + x, + y, + z, + _unit: PhantomData, + } + } + /// Constructor setting all components to the same value. + #[inline] + pub fn splat(v: T) -> Self + where + T: Clone, + { + Vector3D { + x: v.clone(), + y: v.clone(), + z: v, + _unit: PhantomData, + } + } + + /// Constructor taking properly Lengths instead of scalar values. + #[inline] + pub fn from_lengths(x: Length, y: Length, z: Length) -> Vector3D { + vec3(x.0, y.0, z.0) + } + + /// Tag a unitless value with units. + #[inline] + pub fn from_untyped(p: Vector3D) -> Self { + vec3(p.x, p.y, p.z) + } + + /// Computes the vector with absolute values of each component. + /// + /// # Example + /// + /// ```rust + /// # use std::{i32, f32}; + /// # use euclid::vec3; + /// enum U {} + /// + /// assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2)); + /// + /// let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs(); + /// assert!(vec.x.is_nan()); + /// assert_eq!(vec.y, 0.0); + /// assert_eq!(vec.z, f32::MAX); + /// ``` + /// + /// # Panics + /// + /// The behavior for each component follows the scalar type's implementation of + /// `num_traits::Signed::abs`. + pub fn abs(self) -> Self + where + T: Signed, + { + vec3(self.x.abs(), self.y.abs(), self.z.abs()) + } + + /// Dot product. + #[inline] + pub fn dot(self, other: Self) -> T + where + T: Add + Mul, + { + self.x * other.x + self.y * other.y + self.z * other.z + } +} + +impl Vector3D { + /// Cross product. + #[inline] + pub fn cross(self, other: Self) -> Self + where + T: Sub + Mul, + { + vec3( + self.y * other.z - self.z * other.y, + self.z * other.x - self.x * other.z, + self.x * other.y - self.y * other.x, + ) + } + + /// Returns the component-wise multiplication of the two vectors. + #[inline] + pub fn component_mul(self, other: Self) -> Self + where + T: Mul, + { + vec3(self.x * other.x, self.y * other.y, self.z * other.z) + } + + /// Returns the component-wise division of the two vectors. + #[inline] + pub fn component_div(self, other: Self) -> Self + where + T: Div, + { + vec3(self.x / other.x, self.y / other.y, self.z / other.z) + } + + /// Cast this vector into a point. + /// + /// Equivalent to adding this vector to the origin. + #[inline] + pub fn to_point(self) -> Point3D { + point3(self.x, self.y, self.z) + } + + /// Returns a 2d vector using this vector's x and y coordinates + #[inline] + pub fn xy(self) -> Vector2D { + vec2(self.x, self.y) + } + + /// Returns a 2d vector using this vector's x and z coordinates + #[inline] + pub fn xz(self) -> Vector2D { + vec2(self.x, self.z) + } + + /// Returns a 2d vector using this vector's x and z coordinates + #[inline] + pub fn yz(self) -> Vector2D { + vec2(self.y, self.z) + } + + /// Cast into an array with x, y and z. + #[inline] + pub fn to_array(self) -> [T; 3] { + [self.x, self.y, self.z] + } + + /// Cast into an array with x, y, z and 0. + #[inline] + pub fn to_array_4d(self) -> [T; 4] + where + T: Zero, + { + [self.x, self.y, self.z, Zero::zero()] + } + + /// Cast into a tuple with x, y and z. + #[inline] + pub fn to_tuple(self) -> (T, T, T) { + (self.x, self.y, self.z) + } + + /// Cast into a tuple with x, y, z and 0. + #[inline] + pub fn to_tuple_4d(self) -> (T, T, T, T) + where + T: Zero, + { + (self.x, self.y, self.z, Zero::zero()) + } + + /// Drop the units, preserving only the numeric value. + #[inline] + pub fn to_untyped(self) -> Vector3D { + vec3(self.x, self.y, self.z) + } + + /// Cast the unit. + #[inline] + pub fn cast_unit(self) -> Vector3D { + vec3(self.x, self.y, self.z) + } + + /// Convert into a 2d vector. + #[inline] + pub fn to_2d(self) -> Vector2D { + self.xy() + } + + /// Rounds each component to the nearest integer value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::vec3; + /// enum Mm {} + /// + /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0)) + /// ``` + #[inline] + #[must_use] + pub fn round(self) -> Self + where + T: Round, + { + vec3(self.x.round(), self.y.round(), self.z.round()) + } + + /// Rounds each component to the smallest integer equal or greater than the original value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::vec3; + /// enum Mm {} + /// + /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0)) + /// ``` + #[inline] + #[must_use] + pub fn ceil(self) -> Self + where + T: Ceil, + { + vec3(self.x.ceil(), self.y.ceil(), self.z.ceil()) + } + + /// Rounds each component to the biggest integer equal or lower than the original value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::vec3; + /// enum Mm {} + /// + /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0)) + /// ``` + #[inline] + #[must_use] + pub fn floor(self) -> Self + where + T: Floor, + { + vec3(self.x.floor(), self.y.floor(), self.z.floor()) + } + + /// Creates translation by this vector in vector units + #[inline] + pub fn to_transform(self) -> Transform3D + where + T: Zero + One, + { + Transform3D::translation(self.x, self.y, self.z) + } +} + +impl Vector3D +where + T: Copy + Mul + Add, +{ + /// Returns the vector's length squared. + #[inline] + pub fn square_length(self) -> T { + self.x * self.x + self.y * self.y + self.z * self.z + } + + /// Returns this vector projected onto another one. + /// + /// Projecting onto a nil vector will cause a division by zero. + #[inline] + pub fn project_onto_vector(self, onto: Self) -> Self + where + T: Sub + Div, + { + onto * (self.dot(onto) / onto.square_length()) + } +} + +impl Vector3D { + /// Return the normalized vector even if the length is larger than the max value of Float. + #[inline] + #[must_use] + pub fn robust_normalize(self) -> Self { + let length = self.length(); + if length.is_infinite() { + let scaled = self / T::max_value(); + scaled / scaled.length() + } else { + self / length + } + } + + /// Returns true if all members are finite. + #[inline] + pub fn is_finite(self) -> bool { + self.x.is_finite() && self.y.is_finite() && self.z.is_finite() + } +} + +impl Vector3D { + /// Returns the positive angle between this vector and another vector. + /// + /// The returned angle is between 0 and PI. + pub fn angle_to(self, other: Self) -> Angle + where + T: Trig, + { + Angle::radians(Trig::fast_atan2( + self.cross(other).length(), + self.dot(other), + )) + } + + /// Returns the vector length. + #[inline] + pub fn length(self) -> T { + self.square_length().sqrt() + } + + /// Returns the vector with length of one unit + #[inline] + #[must_use] + pub fn normalize(self) -> Self { + self / self.length() + } + + /// Returns the vector with length of one unit. + /// + /// Unlike [`Vector2D::normalize`](#method.normalize), this returns None in the case that the + /// length of the vector is zero. + #[inline] + #[must_use] + pub fn try_normalize(self) -> Option { + let len = self.length(); + if len == T::zero() { + None + } else { + Some(self / len) + } + } + + /// Return this vector capped to a maximum length. + #[inline] + pub fn with_max_length(self, max_length: T) -> Self { + let square_length = self.square_length(); + if square_length > max_length * max_length { + return self * (max_length / square_length.sqrt()); + } + + self + } + + /// Return this vector with a minimum length applied. + #[inline] + pub fn with_min_length(self, min_length: T) -> Self { + let square_length = self.square_length(); + if square_length < min_length * min_length { + return self * (min_length / square_length.sqrt()); + } + + self + } + + /// Return this vector with minimum and maximum lengths applied. + #[inline] + pub fn clamp_length(self, min: T, max: T) -> Self { + debug_assert!(min <= max); + self.with_min_length(min).with_max_length(max) + } +} + +impl Vector3D +where + T: Copy + One + Add + Sub + Mul, +{ + /// Linearly interpolate each component between this vector and another vector. + /// + /// # Example + /// + /// ```rust + /// use euclid::vec3; + /// use euclid::default::Vector3D; + /// + /// let from: Vector3D<_> = vec3(0.0, 10.0, -1.0); + /// let to: Vector3D<_> = vec3(8.0, -4.0, 0.0); + /// + /// assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0)); + /// assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0)); + /// assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5)); + /// assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0)); + /// assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0)); + /// ``` + #[inline] + pub fn lerp(self, other: Self, t: T) -> Self { + let one_t = T::one() - t; + self * one_t + other * t + } + + /// Returns a reflection vector using an incident ray and a surface normal. + #[inline] + pub fn reflect(self, normal: Self) -> Self { + let two = T::one() + T::one(); + self - normal * two * self.dot(normal) + } +} + +impl Vector3D { + /// Returns the vector each component of which are minimum of this vector and another. + #[inline] + pub fn min(self, other: Self) -> Self { + vec3( + min(self.x, other.x), + min(self.y, other.y), + min(self.z, other.z), + ) + } + + /// Returns the vector each component of which are maximum of this vector and another. + #[inline] + pub fn max(self, other: Self) -> Self { + vec3( + max(self.x, other.x), + max(self.y, other.y), + max(self.z, other.z), + ) + } + + /// Returns the vector each component of which is clamped by corresponding + /// components of `start` and `end`. + /// + /// Shortcut for `self.max(start).min(end)`. + #[inline] + pub fn clamp(self, start: Self, end: Self) -> Self + where + T: Copy, + { + self.max(start).min(end) + } + + /// Returns vector with results of "greater than" operation on each component. + #[inline] + pub fn greater_than(self, other: Self) -> BoolVector3D { + BoolVector3D { + x: self.x > other.x, + y: self.y > other.y, + z: self.z > other.z, + } + } + + /// Returns vector with results of "lower than" operation on each component. + #[inline] + pub fn lower_than(self, other: Self) -> BoolVector3D { + BoolVector3D { + x: self.x < other.x, + y: self.y < other.y, + z: self.z < other.z, + } + } +} + +impl Vector3D { + /// Returns vector with results of "equal" operation on each component. + #[inline] + pub fn equal(self, other: Self) -> BoolVector3D { + BoolVector3D { + x: self.x == other.x, + y: self.y == other.y, + z: self.z == other.z, + } + } + + /// Returns vector with results of "not equal" operation on each component. + #[inline] + pub fn not_equal(self, other: Self) -> BoolVector3D { + BoolVector3D { + x: self.x != other.x, + y: self.y != other.y, + z: self.z != other.z, + } + } +} + +impl Vector3D { + /// Cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating vector to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. + #[inline] + pub fn cast(self) -> Vector3D { + self.try_cast().unwrap() + } + + /// Fallible cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating vector to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. + pub fn try_cast(self) -> Option> { + match ( + NumCast::from(self.x), + NumCast::from(self.y), + NumCast::from(self.z), + ) { + (Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)), + _ => None, + } + } + + // Convenience functions for common casts. + + /// Cast into an `f32` vector. + #[inline] + pub fn to_f32(self) -> Vector3D { + self.cast() + } + + /// Cast into an `f64` vector. + #[inline] + pub fn to_f64(self) -> Vector3D { + self.cast() + } + + /// Cast into an `usize` vector, truncating decimals if any. + /// + /// When casting from floating vector vectors, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_usize(self) -> Vector3D { + self.cast() + } + + /// Cast into an `u32` vector, truncating decimals if any. + /// + /// When casting from floating vector vectors, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_u32(self) -> Vector3D { + self.cast() + } + + /// Cast into an `i32` vector, truncating decimals if any. + /// + /// When casting from floating vector vectors, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_i32(self) -> Vector3D { + self.cast() + } + + /// Cast into an `i64` vector, truncating decimals if any. + /// + /// When casting from floating vector vectors, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_i64(self) -> Vector3D { + self.cast() + } +} + +impl Neg for Vector3D { + type Output = Vector3D; + + #[inline] + fn neg(self) -> Self::Output { + vec3(-self.x, -self.y, -self.z) + } +} + +impl Add for Vector3D { + type Output = Vector3D; + + #[inline] + fn add(self, other: Self) -> Self::Output { + vec3(self.x + other.x, self.y + other.y, self.z + other.z) + } +} + +impl<'a, T: 'a + Add + Copy, U: 'a> Add<&Self> for Vector3D { + type Output = Vector3D; + + #[inline] + fn add(self, other: &Self) -> Self::Output { + vec3(self.x + other.x, self.y + other.y, self.z + other.z) + } +} + +impl + Zero, U> Sum for Vector3D { + fn sum>(iter: I) -> Self { + iter.fold(Self::zero(), Add::add) + } +} + +impl<'a, T: 'a + Add + Copy + Zero, U: 'a> Sum<&'a Self> for Vector3D { + fn sum>(iter: I) -> Self { + iter.fold(Self::zero(), Add::add) + } +} + +impl, U> AddAssign for Vector3D { + #[inline] + fn add_assign(&mut self, other: Self) { + *self = *self + other + } +} + +impl Sub for Vector3D { + type Output = Vector3D; + + #[inline] + fn sub(self, other: Self) -> Self::Output { + vec3(self.x - other.x, self.y - other.y, self.z - other.z) + } +} + +impl, U> SubAssign> for Vector3D { + #[inline] + fn sub_assign(&mut self, other: Self) { + *self = *self - other + } +} + +impl Mul for Vector3D { + type Output = Vector3D; + + #[inline] + fn mul(self, scale: T) -> Self::Output { + vec3( + self.x * scale, + self.y * scale, + self.z * scale, + ) + } +} + +impl, U> MulAssign for Vector3D { + #[inline] + fn mul_assign(&mut self, scale: T) { + *self = *self * scale + } +} + +impl Mul> for Vector3D { + type Output = Vector3D; + + #[inline] + fn mul(self, scale: Scale) -> Self::Output { + vec3( + self.x * scale.0, + self.y * scale.0, + self.z * scale.0, + ) + } +} + +impl MulAssign> for Vector3D { + #[inline] + fn mul_assign(&mut self, scale: Scale) { + self.x *= scale.0; + self.y *= scale.0; + self.z *= scale.0; + } +} + +impl Div for Vector3D { + type Output = Vector3D; + + #[inline] + fn div(self, scale: T) -> Self::Output { + vec3( + self.x / scale, + self.y / scale, + self.z / scale, + ) + } +} + +impl, U> DivAssign for Vector3D { + #[inline] + fn div_assign(&mut self, scale: T) { + *self = *self / scale + } +} + +impl Div> for Vector3D { + type Output = Vector3D; + + #[inline] + fn div(self, scale: Scale) -> Self::Output { + vec3( + self.x / scale.0, + self.y / scale.0, + self.z / scale.0, + ) + } +} + +impl DivAssign> for Vector3D { + #[inline] + fn div_assign(&mut self, scale: Scale) { + self.x /= scale.0; + self.y /= scale.0; + self.z /= scale.0; + } +} + +impl Round for Vector3D { + /// See [`Vector3D::round()`](#method.round) + #[inline] + fn round(self) -> Self { + self.round() + } +} + +impl Ceil for Vector3D { + /// See [`Vector3D::ceil()`](#method.ceil) + #[inline] + fn ceil(self) -> Self { + self.ceil() + } +} + +impl Floor for Vector3D { + /// See [`Vector3D::floor()`](#method.floor) + #[inline] + fn floor(self) -> Self { + self.floor() + } +} + +impl, U> ApproxEq> for Vector3D { + #[inline] + fn approx_epsilon() -> Self { + vec3( + T::approx_epsilon(), + T::approx_epsilon(), + T::approx_epsilon(), + ) + } + + #[inline] + fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { + self.x.approx_eq_eps(&other.x, &eps.x) + && self.y.approx_eq_eps(&other.y, &eps.y) + && self.z.approx_eq_eps(&other.z, &eps.z) + } +} + +impl Into<[T; 3]> for Vector3D { + fn into(self) -> [T; 3] { + [self.x, self.y, self.z] + } +} + +impl From<[T; 3]> for Vector3D { + fn from([x, y, z]: [T; 3]) -> Self { + vec3(x, y, z) + } +} + +impl Into<(T, T, T)> for Vector3D { + fn into(self) -> (T, T, T) { + (self.x, self.y, self.z) + } +} + +impl From<(T, T, T)> for Vector3D { + fn from(tuple: (T, T, T)) -> Self { + vec3(tuple.0, tuple.1, tuple.2) + } +} + +/// A 2d vector of booleans, useful for component-wise logic operations. +#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] +pub struct BoolVector2D { + pub x: bool, + pub y: bool, +} + +/// A 3d vector of booleans, useful for component-wise logic operations. +#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] +pub struct BoolVector3D { + pub x: bool, + pub y: bool, + pub z: bool, +} + +impl BoolVector2D { + /// Returns `true` if all components are `true` and `false` otherwise. + #[inline] + pub fn all(self) -> bool { + self.x && self.y + } + + /// Returns `true` if any component are `true` and `false` otherwise. + #[inline] + pub fn any(self) -> bool { + self.x || self.y + } + + /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. + #[inline] + pub fn none(self) -> bool { + !self.any() + } + + /// Returns new vector with by-component AND operation applied. + #[inline] + pub fn and(self, other: Self) -> Self { + BoolVector2D { + x: self.x && other.x, + y: self.y && other.y, + } + } + + /// Returns new vector with by-component OR operation applied. + #[inline] + pub fn or(self, other: Self) -> Self { + BoolVector2D { + x: self.x || other.x, + y: self.y || other.y, + } + } + + /// Returns new vector with results of negation operation on each component. + #[inline] + pub fn not(self) -> Self { + BoolVector2D { + x: !self.x, + y: !self.y, + } + } + + /// Returns point, each component of which or from `a`, or from `b` depending on truly value + /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. + #[inline] + pub fn select_point(self, a: Point2D, b: Point2D) -> Point2D { + point2( + if self.x { a.x } else { b.x }, + if self.y { a.y } else { b.y }, + ) + } + + /// Returns vector, each component of which or from `a`, or from `b` depending on truly value + /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. + #[inline] + pub fn select_vector(self, a: Vector2D, b: Vector2D) -> Vector2D { + vec2( + if self.x { a.x } else { b.x }, + if self.y { a.y } else { b.y }, + ) + } + + /// Returns size, each component of which or from `a`, or from `b` depending on truly value + /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. + #[inline] + pub fn select_size(self, a: Size2D, b: Size2D) -> Size2D { + size2( + if self.x { a.width } else { b.width }, + if self.y { a.height } else { b.height }, + ) + } +} + +impl BoolVector3D { + /// Returns `true` if all components are `true` and `false` otherwise. + #[inline] + pub fn all(self) -> bool { + self.x && self.y && self.z + } + + /// Returns `true` if any component are `true` and `false` otherwise. + #[inline] + pub fn any(self) -> bool { + self.x || self.y || self.z + } + + /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. + #[inline] + pub fn none(self) -> bool { + !self.any() + } + + /// Returns new vector with by-component AND operation applied. + #[inline] + pub fn and(self, other: Self) -> Self { + BoolVector3D { + x: self.x && other.x, + y: self.y && other.y, + z: self.z && other.z, + } + } + + /// Returns new vector with by-component OR operation applied. + #[inline] + pub fn or(self, other: Self) -> Self { + BoolVector3D { + x: self.x || other.x, + y: self.y || other.y, + z: self.z || other.z, + } + } + + /// Returns new vector with results of negation operation on each component. + #[inline] + pub fn not(self) -> Self { + BoolVector3D { + x: !self.x, + y: !self.y, + z: !self.z, + } + } + + /// Returns point, each component of which or from `a`, or from `b` depending on truly value + /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. + #[inline] + pub fn select_point(self, a: Point3D, b: Point3D) -> Point3D { + point3( + if self.x { a.x } else { b.x }, + if self.y { a.y } else { b.y }, + if self.z { a.z } else { b.z }, + ) + } + + /// Returns vector, each component of which or from `a`, or from `b` depending on truly value + /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. + #[inline] + pub fn select_vector(self, a: Vector3D, b: Vector3D) -> Vector3D { + vec3( + if self.x { a.x } else { b.x }, + if self.y { a.y } else { b.y }, + if self.z { a.z } else { b.z }, + ) + } + + /// Returns size, each component of which or from `a`, or from `b` depending on truly value + /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. + #[inline] + #[must_use] + pub fn select_size(self, a: Size3D, b: Size3D) -> Size3D { + size3( + if self.x { a.width } else { b.width }, + if self.y { a.height } else { b.height }, + if self.z { a.depth } else { b.depth }, + ) + } + + /// Returns a 2d vector using this vector's x and y coordinates. + #[inline] + pub fn xy(self) -> BoolVector2D { + BoolVector2D { + x: self.x, + y: self.y, + } + } + + /// Returns a 2d vector using this vector's x and z coordinates. + #[inline] + pub fn xz(self) -> BoolVector2D { + BoolVector2D { + x: self.x, + y: self.z, + } + } + + /// Returns a 2d vector using this vector's y and z coordinates. + #[inline] + pub fn yz(self) -> BoolVector2D { + BoolVector2D { + x: self.y, + y: self.z, + } + } +} + +/// Convenience constructor. +#[inline] +pub const fn vec2(x: T, y: T) -> Vector2D { + Vector2D { + x, + y, + _unit: PhantomData, + } +} + +/// Convenience constructor. +#[inline] +pub const fn vec3(x: T, y: T, z: T) -> Vector3D { + Vector3D { + x, + y, + z, + _unit: PhantomData, + } +} + +/// Shorthand for `BoolVector2D { x, y }`. +#[inline] +pub const fn bvec2(x: bool, y: bool) -> BoolVector2D { + BoolVector2D { x, y } +} + +/// Shorthand for `BoolVector3D { x, y, z }`. +#[inline] +pub const fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D { + BoolVector3D { x, y, z } +} + +#[cfg(test)] +mod vector2d { + use crate::scale::Scale; + use crate::{default, vec2}; + + #[cfg(feature = "mint")] + use mint; + type Vec2 = default::Vector2D; + + #[test] + pub fn test_scalar_mul() { + let p1: Vec2 = vec2(3.0, 5.0); + + let result = p1 * 5.0; + + assert_eq!(result, Vec2::new(15.0, 25.0)); + } + + #[test] + pub fn test_dot() { + let p1: Vec2 = vec2(2.0, 7.0); + let p2: Vec2 = vec2(13.0, 11.0); + assert_eq!(p1.dot(p2), 103.0); + } + + #[test] + pub fn test_cross() { + let p1: Vec2 = vec2(4.0, 7.0); + let p2: Vec2 = vec2(13.0, 8.0); + let r = p1.cross(p2); + assert_eq!(r, -59.0); + } + + #[test] + pub fn test_normalize() { + use std::f32; + + let p0: Vec2 = Vec2::zero(); + let p1: Vec2 = vec2(4.0, 0.0); + let p2: Vec2 = vec2(3.0, -4.0); + assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan()); + assert_eq!(p1.normalize(), vec2(1.0, 0.0)); + assert_eq!(p2.normalize(), vec2(0.6, -0.8)); + + let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX); + assert_ne!( + p3.normalize(), + vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) + ); + assert_eq!( + p3.robust_normalize(), + vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) + ); + + let p4: Vec2 = Vec2::zero(); + assert!(p4.try_normalize().is_none()); + let p5: Vec2 = Vec2::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE); + assert!(p5.try_normalize().is_none()); + + let p6: Vec2 = vec2(4.0, 0.0); + let p7: Vec2 = vec2(3.0, -4.0); + assert_eq!(p6.try_normalize().unwrap(), vec2(1.0, 0.0)); + assert_eq!(p7.try_normalize().unwrap(), vec2(0.6, -0.8)); + } + + #[test] + pub fn test_min() { + let p1: Vec2 = vec2(1.0, 3.0); + let p2: Vec2 = vec2(2.0, 2.0); + + let result = p1.min(p2); + + assert_eq!(result, vec2(1.0, 2.0)); + } + + #[test] + pub fn test_max() { + let p1: Vec2 = vec2(1.0, 3.0); + let p2: Vec2 = vec2(2.0, 2.0); + + let result = p1.max(p2); + + assert_eq!(result, vec2(2.0, 3.0)); + } + + #[test] + pub fn test_angle_from_x_axis() { + use crate::approxeq::ApproxEq; + use core::f32::consts::FRAC_PI_2; + + let right: Vec2 = vec2(10.0, 0.0); + let down: Vec2 = vec2(0.0, 4.0); + let up: Vec2 = vec2(0.0, -1.0); + + assert!(right.angle_from_x_axis().get().approx_eq(&0.0)); + assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2)); + assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2)); + } + + #[test] + pub fn test_angle_to() { + use crate::approxeq::ApproxEq; + use core::f32::consts::FRAC_PI_2; + + let right: Vec2 = vec2(10.0, 0.0); + let right2: Vec2 = vec2(1.0, 0.0); + let up: Vec2 = vec2(0.0, -1.0); + let up_left: Vec2 = vec2(-1.0, -1.0); + + assert!(right.angle_to(right2).get().approx_eq(&0.0)); + assert!(right.angle_to(up).get().approx_eq(&-FRAC_PI_2)); + assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); + assert!(up_left + .angle_to(up) + .get() + .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); + } + + #[test] + pub fn test_with_max_length() { + use crate::approxeq::ApproxEq; + + let v1: Vec2 = vec2(0.5, 0.5); + let v2: Vec2 = vec2(1.0, 0.0); + let v3: Vec2 = vec2(0.1, 0.2); + let v4: Vec2 = vec2(2.0, -2.0); + let v5: Vec2 = vec2(1.0, 2.0); + let v6: Vec2 = vec2(-1.0, 3.0); + + assert_eq!(v1.with_max_length(1.0), v1); + assert_eq!(v2.with_max_length(1.0), v2); + assert_eq!(v3.with_max_length(1.0), v3); + assert_eq!(v4.with_max_length(10.0), v4); + assert_eq!(v5.with_max_length(10.0), v5); + assert_eq!(v6.with_max_length(10.0), v6); + + let v4_clamped = v4.with_max_length(1.0); + assert!(v4_clamped.length().approx_eq(&1.0)); + assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); + + let v5_clamped = v5.with_max_length(1.5); + assert!(v5_clamped.length().approx_eq(&1.5)); + assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); + + let v6_clamped = v6.with_max_length(2.5); + assert!(v6_clamped.length().approx_eq(&2.5)); + assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); + } + + #[test] + pub fn test_project_onto_vector() { + use crate::approxeq::ApproxEq; + + let v1: Vec2 = vec2(1.0, 2.0); + let x: Vec2 = vec2(1.0, 0.0); + let y: Vec2 = vec2(0.0, 1.0); + + assert!(v1.project_onto_vector(x).approx_eq(&vec2(1.0, 0.0))); + assert!(v1.project_onto_vector(y).approx_eq(&vec2(0.0, 2.0))); + assert!(v1.project_onto_vector(-x).approx_eq(&vec2(1.0, 0.0))); + assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec2(1.0, 0.0))); + assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); + assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); + } + + #[cfg(feature = "mint")] + #[test] + pub fn test_mint() { + let v1 = Vec2::new(1.0, 3.0); + let vm: mint::Vector2<_> = v1.into(); + let v2 = Vec2::from(vm); + + assert_eq!(v1, v2); + } + + pub enum Mm {} + pub enum Cm {} + + pub type Vector2DMm = super::Vector2D; + pub type Vector2DCm = super::Vector2D; + + #[test] + pub fn test_add() { + let p1 = Vector2DMm::new(1.0, 2.0); + let p2 = Vector2DMm::new(3.0, 4.0); + + assert_eq!(p1 + p2, vec2(4.0, 6.0)); + assert_eq!(p1 + &p2, vec2(4.0, 6.0)); + } + + #[test] + pub fn test_sum() { + let vecs = [ + Vector2DMm::new(1.0, 2.0), + Vector2DMm::new(3.0, 4.0), + Vector2DMm::new(5.0, 6.0) + ]; + let sum = Vector2DMm::new(9.0, 12.0); + assert_eq!(vecs.iter().sum::>(), sum); + } + + #[test] + pub fn test_add_assign() { + let mut p1 = Vector2DMm::new(1.0, 2.0); + p1 += vec2(3.0, 4.0); + + assert_eq!(p1, vec2(4.0, 6.0)); + } + + #[test] + pub fn test_tpyed_scalar_mul() { + let p1 = Vector2DMm::new(1.0, 2.0); + let cm_per_mm = Scale::::new(0.1); + + let result: Vector2DCm = p1 * cm_per_mm; + + assert_eq!(result, vec2(0.1, 0.2)); + } + + #[test] + pub fn test_swizzling() { + let p: default::Vector2D = vec2(1, 2); + assert_eq!(p.yx(), vec2(2, 1)); + } + + #[test] + pub fn test_reflect() { + use crate::approxeq::ApproxEq; + let a: Vec2 = vec2(1.0, 3.0); + let n1: Vec2 = vec2(0.0, -1.0); + let n2: Vec2 = vec2(1.0, -1.0).normalize(); + + assert!(a.reflect(n1).approx_eq(&vec2(1.0, -3.0))); + assert!(a.reflect(n2).approx_eq(&vec2(3.0, 1.0))); + } +} + +#[cfg(test)] +mod vector3d { + use crate::scale::Scale; + use crate::{default, vec2, vec3}; + #[cfg(feature = "mint")] + use mint; + + type Vec3 = default::Vector3D; + + #[test] + pub fn test_add() { + let p1 = Vec3::new(1.0, 2.0, 3.0); + let p2 = Vec3::new(4.0, 5.0, 6.0); + + assert_eq!(p1 + p2, vec3(5.0, 7.0, 9.0)); + assert_eq!(p1 + &p2, vec3(5.0, 7.0, 9.0)); + } + + #[test] + pub fn test_sum() { + let vecs = [ + Vec3::new(1.0, 2.0, 3.0), + Vec3::new(4.0, 5.0, 6.0), + Vec3::new(7.0, 8.0, 9.0) + ]; + let sum = Vec3::new(12.0, 15.0, 18.0); + assert_eq!(vecs.iter().sum::(), sum); + } + + #[test] + pub fn test_dot() { + let p1: Vec3 = vec3(7.0, 21.0, 32.0); + let p2: Vec3 = vec3(43.0, 5.0, 16.0); + assert_eq!(p1.dot(p2), 918.0); + } + + #[test] + pub fn test_cross() { + let p1: Vec3 = vec3(4.0, 7.0, 9.0); + let p2: Vec3 = vec3(13.0, 8.0, 3.0); + let p3 = p1.cross(p2); + assert_eq!(p3, vec3(-51.0, 105.0, -59.0)); + } + + #[test] + pub fn test_normalize() { + use std::f32; + + let p0: Vec3 = Vec3::zero(); + let p1: Vec3 = vec3(0.0, -6.0, 0.0); + let p2: Vec3 = vec3(1.0, 2.0, -2.0); + assert!( + p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan() + ); + assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0)); + assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0)); + + let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0); + assert_ne!( + p3.normalize(), + vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) + ); + assert_eq!( + p3.robust_normalize(), + vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) + ); + + let p4: Vec3 = Vec3::zero(); + assert!(p4.try_normalize().is_none()); + let p5: Vec3 = Vec3::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE, f32::MIN_POSITIVE); + assert!(p5.try_normalize().is_none()); + + let p6: Vec3 = vec3(4.0, 0.0, 3.0); + let p7: Vec3 = vec3(3.0, -4.0, 0.0); + assert_eq!(p6.try_normalize().unwrap(), vec3(0.8, 0.0, 0.6)); + assert_eq!(p7.try_normalize().unwrap(), vec3(0.6, -0.8, 0.0)); + } + + #[test] + pub fn test_min() { + let p1: Vec3 = vec3(1.0, 3.0, 5.0); + let p2: Vec3 = vec3(2.0, 2.0, -1.0); + + let result = p1.min(p2); + + assert_eq!(result, vec3(1.0, 2.0, -1.0)); + } + + #[test] + pub fn test_max() { + let p1: Vec3 = vec3(1.0, 3.0, 5.0); + let p2: Vec3 = vec3(2.0, 2.0, -1.0); + + let result = p1.max(p2); + + assert_eq!(result, vec3(2.0, 3.0, 5.0)); + } + + #[test] + pub fn test_clamp() { + let p1: Vec3 = vec3(1.0, -1.0, 5.0); + let p2: Vec3 = vec3(2.0, 5.0, 10.0); + let p3: Vec3 = vec3(-1.0, 2.0, 20.0); + + let result = p3.clamp(p1, p2); + + assert_eq!(result, vec3(1.0, 2.0, 10.0)); + } + + #[test] + pub fn test_typed_scalar_mul() { + enum Mm {} + enum Cm {} + + let p1 = super::Vector3D::::new(1.0, 2.0, 3.0); + let cm_per_mm = Scale::::new(0.1); + + let result: super::Vector3D = p1 * cm_per_mm; + + assert_eq!(result, vec3(0.1, 0.2, 0.3)); + } + + #[test] + pub fn test_swizzling() { + let p: Vec3 = vec3(1.0, 2.0, 3.0); + assert_eq!(p.xy(), vec2(1.0, 2.0)); + assert_eq!(p.xz(), vec2(1.0, 3.0)); + assert_eq!(p.yz(), vec2(2.0, 3.0)); + } + + #[cfg(feature = "mint")] + #[test] + pub fn test_mint() { + let v1 = Vec3::new(1.0, 3.0, 5.0); + let vm: mint::Vector3<_> = v1.into(); + let v2 = Vec3::from(vm); + + assert_eq!(v1, v2); + } + + #[test] + pub fn test_reflect() { + use crate::approxeq::ApproxEq; + let a: Vec3 = vec3(1.0, 3.0, 2.0); + let n1: Vec3 = vec3(0.0, -1.0, 0.0); + let n2: Vec3 = vec3(0.0, 1.0, 1.0).normalize(); + + assert!(a.reflect(n1).approx_eq(&vec3(1.0, -3.0, 2.0))); + assert!(a.reflect(n2).approx_eq(&vec3(1.0, -2.0, -3.0))); + } + + #[test] + pub fn test_angle_to() { + use crate::approxeq::ApproxEq; + use core::f32::consts::FRAC_PI_2; + + let right: Vec3 = vec3(10.0, 0.0, 0.0); + let right2: Vec3 = vec3(1.0, 0.0, 0.0); + let up: Vec3 = vec3(0.0, -1.0, 0.0); + let up_left: Vec3 = vec3(-1.0, -1.0, 0.0); + + assert!(right.angle_to(right2).get().approx_eq(&0.0)); + assert!(right.angle_to(up).get().approx_eq(&FRAC_PI_2)); + assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); + assert!(up_left + .angle_to(up) + .get() + .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); + } + + #[test] + pub fn test_with_max_length() { + use crate::approxeq::ApproxEq; + + let v1: Vec3 = vec3(0.5, 0.5, 0.0); + let v2: Vec3 = vec3(1.0, 0.0, 0.0); + let v3: Vec3 = vec3(0.1, 0.2, 0.3); + let v4: Vec3 = vec3(2.0, -2.0, 2.0); + let v5: Vec3 = vec3(1.0, 2.0, -3.0); + let v6: Vec3 = vec3(-1.0, 3.0, 2.0); + + assert_eq!(v1.with_max_length(1.0), v1); + assert_eq!(v2.with_max_length(1.0), v2); + assert_eq!(v3.with_max_length(1.0), v3); + assert_eq!(v4.with_max_length(10.0), v4); + assert_eq!(v5.with_max_length(10.0), v5); + assert_eq!(v6.with_max_length(10.0), v6); + + let v4_clamped = v4.with_max_length(1.0); + assert!(v4_clamped.length().approx_eq(&1.0)); + assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); + + let v5_clamped = v5.with_max_length(1.5); + assert!(v5_clamped.length().approx_eq(&1.5)); + assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); + + let v6_clamped = v6.with_max_length(2.5); + assert!(v6_clamped.length().approx_eq(&2.5)); + assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); + } + + #[test] + pub fn test_project_onto_vector() { + use crate::approxeq::ApproxEq; + + let v1: Vec3 = vec3(1.0, 2.0, 3.0); + let x: Vec3 = vec3(1.0, 0.0, 0.0); + let y: Vec3 = vec3(0.0, 1.0, 0.0); + let z: Vec3 = vec3(0.0, 0.0, 1.0); + + assert!(v1.project_onto_vector(x).approx_eq(&vec3(1.0, 0.0, 0.0))); + assert!(v1.project_onto_vector(y).approx_eq(&vec3(0.0, 2.0, 0.0))); + assert!(v1.project_onto_vector(z).approx_eq(&vec3(0.0, 0.0, 3.0))); + assert!(v1.project_onto_vector(-x).approx_eq(&vec3(1.0, 0.0, 0.0))); + assert!(v1 + .project_onto_vector(x * 10.0) + .approx_eq(&vec3(1.0, 0.0, 0.0))); + assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); + assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); + } +} + +#[cfg(test)] +mod bool_vector { + use super::*; + use crate::default; + type Vec2 = default::Vector2D; + type Vec3 = default::Vector3D; + + #[test] + fn test_bvec2() { + assert_eq!( + Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)), + bvec2(false, true), + ); + + assert_eq!( + Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)), + bvec2(true, false), + ); + + assert_eq!( + Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)), + bvec2(true, false), + ); + + assert_eq!( + Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)), + bvec2(false, true), + ); + + assert!(bvec2(true, true).any()); + assert!(bvec2(false, true).any()); + assert!(bvec2(true, false).any()); + assert!(!bvec2(false, false).any()); + assert!(bvec2(false, false).none()); + assert!(bvec2(true, true).all()); + assert!(!bvec2(false, true).all()); + assert!(!bvec2(true, false).all()); + assert!(!bvec2(false, false).all()); + + assert_eq!(bvec2(true, false).not(), bvec2(false, true)); + assert_eq!( + bvec2(true, false).and(bvec2(true, true)), + bvec2(true, false) + ); + assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true)); + + assert_eq!( + bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)), + Vec2::new(1.0, 4.0), + ); + } + + #[test] + fn test_bvec3() { + assert_eq!( + Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)), + bvec3(false, false, true), + ); + + assert_eq!( + Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)), + bvec3(true, false, false), + ); + + assert_eq!( + Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)), + bvec3(false, true, false), + ); + + assert_eq!( + Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)), + bvec3(true, false, true), + ); + + assert!(bvec3(true, true, false).any()); + assert!(bvec3(false, true, false).any()); + assert!(bvec3(true, false, false).any()); + assert!(!bvec3(false, false, false).any()); + assert!(bvec3(false, false, false).none()); + assert!(bvec3(true, true, true).all()); + assert!(!bvec3(false, true, false).all()); + assert!(!bvec3(true, false, false).all()); + assert!(!bvec3(false, false, false).all()); + + assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false)); + assert_eq!( + bvec3(true, false, true).and(bvec3(true, true, false)), + bvec3(true, false, false) + ); + assert_eq!( + bvec3(true, false, false).or(bvec3(true, true, false)), + bvec3(true, true, false) + ); + + assert_eq!( + bvec3(true, false, true) + .select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)), + Vec3::new(1.0, 5.0, 3.0), + ); + } +} -- cgit v1.2.3