From 36d22d82aa202bb199967e9512281e9a53db42c9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 21:33:14 +0200 Subject: Adding upstream version 115.7.0esr. Signed-off-by: Daniel Baumann --- third_party/rust/ordered-float/src/lib.rs | 2215 +++++++++++++++++++++++++++++ 1 file changed, 2215 insertions(+) create mode 100644 third_party/rust/ordered-float/src/lib.rs (limited to 'third_party/rust/ordered-float/src') diff --git a/third_party/rust/ordered-float/src/lib.rs b/third_party/rust/ordered-float/src/lib.rs new file mode 100644 index 0000000000..1f521a5ab0 --- /dev/null +++ b/third_party/rust/ordered-float/src/lib.rs @@ -0,0 +1,2215 @@ +#![no_std] +#![cfg_attr(test, deny(warnings))] +#![deny(missing_docs)] +#![allow(clippy::derive_partial_eq_without_eq)] + +//! Wrappers for total order on Floats. See the [`OrderedFloat`] and [`NotNan`] docs for details. + +#[cfg(feature = "std")] +extern crate std; +#[cfg(feature = "std")] +use std::error::Error; + +use core::borrow::Borrow; +use core::cmp::Ordering; +use core::convert::TryFrom; +use core::fmt; +use core::hash::{Hash, Hasher}; +use core::hint::unreachable_unchecked; +use core::iter::{Product, Sum}; +use core::num::FpCategory; +use core::ops::{ + Add, AddAssign, Deref, DerefMut, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, + SubAssign, +}; +use core::str::FromStr; + +#[cfg(not(feature = "std"))] +use num_traits::float::FloatCore as Float; +#[cfg(feature = "std")] +pub use num_traits::Float; +use num_traits::{ + AsPrimitive, Bounded, FromPrimitive, Num, NumCast, One, Signed, ToPrimitive, Zero, +}; + +// masks for the parts of the IEEE 754 float +const SIGN_MASK: u64 = 0x8000000000000000u64; +const EXP_MASK: u64 = 0x7ff0000000000000u64; +const MAN_MASK: u64 = 0x000fffffffffffffu64; + +// canonical raw bit patterns (for hashing) +const CANONICAL_NAN_BITS: u64 = 0x7ff8000000000000u64; +const CANONICAL_ZERO_BITS: u64 = 0x0u64; + +/// A wrapper around floats providing implementations of `Eq`, `Ord`, and `Hash`. +/// +/// NaN is sorted as *greater* than all other values and *equal* +/// to itself, in contradiction with the IEEE standard. +/// +/// ``` +/// use ordered_float::OrderedFloat; +/// use std::f32::NAN; +/// +/// let mut v = [OrderedFloat(NAN), OrderedFloat(2.0), OrderedFloat(1.0)]; +/// v.sort(); +/// assert_eq!(v, [OrderedFloat(1.0), OrderedFloat(2.0), OrderedFloat(NAN)]); +/// ``` +/// +/// Because `OrderedFloat` implements `Ord` and `Eq`, it can be used as a key in a `HashSet`, +/// `HashMap`, `BTreeMap`, or `BTreeSet` (unlike the primitive `f32` or `f64` types): +/// +/// ``` +/// # use ordered_float::OrderedFloat; +/// # use std::collections::HashSet; +/// # use std::f32::NAN; +/// +/// let mut s: HashSet> = HashSet::new(); +/// s.insert(OrderedFloat(NAN)); +/// assert!(s.contains(&OrderedFloat(NAN))); +/// ``` +#[derive(Debug, Default, Clone, Copy)] +#[repr(transparent)] +pub struct OrderedFloat(pub T); + +impl OrderedFloat { + /// Get the value out. + #[inline] + pub fn into_inner(self) -> T { + self.0 + } +} + +impl AsRef for OrderedFloat { + #[inline] + fn as_ref(&self) -> &T { + &self.0 + } +} + +impl AsMut for OrderedFloat { + #[inline] + fn as_mut(&mut self) -> &mut T { + &mut self.0 + } +} + +impl<'a, T: Float> From<&'a T> for &'a OrderedFloat { + #[inline] + fn from(t: &'a T) -> &'a OrderedFloat { + // Safety: OrderedFloat is #[repr(transparent)] and has no invalid values. + unsafe { &*(t as *const T as *const OrderedFloat) } + } +} + +impl<'a, T: Float> From<&'a mut T> for &'a mut OrderedFloat { + #[inline] + fn from(t: &'a mut T) -> &'a mut OrderedFloat { + // Safety: OrderedFloat is #[repr(transparent)] and has no invalid values. + unsafe { &mut *(t as *mut T as *mut OrderedFloat) } + } +} + +impl PartialOrd for OrderedFloat { + #[inline] + fn partial_cmp(&self, other: &Self) -> Option { + Some(self.cmp(other)) + } +} + +impl Ord for OrderedFloat { + fn cmp(&self, other: &Self) -> Ordering { + let lhs = &self.0; + let rhs = &other.0; + match lhs.partial_cmp(rhs) { + Some(ordering) => ordering, + None => { + if lhs.is_nan() { + if rhs.is_nan() { + Ordering::Equal + } else { + Ordering::Greater + } + } else { + Ordering::Less + } + } + } + } +} + +impl PartialEq for OrderedFloat { + #[inline] + fn eq(&self, other: &OrderedFloat) -> bool { + if self.0.is_nan() { + other.0.is_nan() + } else { + self.0 == other.0 + } + } +} + +impl PartialEq for OrderedFloat { + #[inline] + fn eq(&self, other: &T) -> bool { + self.0 == *other + } +} + +impl Hash for OrderedFloat { + fn hash(&self, state: &mut H) { + if self.is_nan() { + // normalize to one representation of NaN + hash_float(&T::nan(), state) + } else { + hash_float(&self.0, state) + } + } +} + +impl fmt::Display for OrderedFloat { + #[inline] + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + self.0.fmt(f) + } +} + +impl fmt::LowerExp for OrderedFloat { + #[inline] + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.0.fmt(f) + } +} + +impl fmt::UpperExp for OrderedFloat { + #[inline] + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.0.fmt(f) + } +} + +impl From> for f32 { + #[inline] + fn from(f: OrderedFloat) -> f32 { + f.0 + } +} + +impl From> for f64 { + #[inline] + fn from(f: OrderedFloat) -> f64 { + f.0 + } +} + +impl From for OrderedFloat { + #[inline] + fn from(val: T) -> Self { + OrderedFloat(val) + } +} + +impl Deref for OrderedFloat { + type Target = T; + + #[inline] + fn deref(&self) -> &Self::Target { + &self.0 + } +} + +impl DerefMut for OrderedFloat { + #[inline] + fn deref_mut(&mut self) -> &mut Self::Target { + &mut self.0 + } +} + +impl Eq for OrderedFloat {} + +macro_rules! impl_ordered_float_binop { + ($imp:ident, $method:ident, $assign_imp:ident, $assign_method:ident) => { + impl $imp for OrderedFloat { + type Output = OrderedFloat; + + #[inline] + fn $method(self, other: Self) -> Self::Output { + OrderedFloat((self.0).$method(other.0)) + } + } + + impl $imp for OrderedFloat { + type Output = OrderedFloat; + + #[inline] + fn $method(self, other: T) -> Self::Output { + OrderedFloat((self.0).$method(other)) + } + } + + impl<'a, T> $imp<&'a T> for OrderedFloat + where + T: $imp<&'a T>, + { + type Output = OrderedFloat<>::Output>; + + #[inline] + fn $method(self, other: &'a T) -> Self::Output { + OrderedFloat((self.0).$method(other)) + } + } + + impl<'a, T> $imp<&'a Self> for OrderedFloat + where + T: $imp<&'a T>, + { + type Output = OrderedFloat<>::Output>; + + #[inline] + fn $method(self, other: &'a Self) -> Self::Output { + OrderedFloat((self.0).$method(&other.0)) + } + } + + impl<'a, T> $imp> for &'a OrderedFloat + where + &'a T: $imp, + { + type Output = OrderedFloat<<&'a T as $imp>::Output>; + + #[inline] + fn $method(self, other: OrderedFloat) -> Self::Output { + OrderedFloat((self.0).$method(other.0)) + } + } + + impl<'a, T> $imp for &'a OrderedFloat + where + &'a T: $imp, + { + type Output = OrderedFloat<<&'a T as $imp>::Output>; + + #[inline] + fn $method(self, other: T) -> Self::Output { + OrderedFloat((self.0).$method(other)) + } + } + + impl<'a, T> $imp<&'a T> for &'a OrderedFloat + where + &'a T: $imp, + { + type Output = OrderedFloat<<&'a T as $imp>::Output>; + + #[inline] + fn $method(self, other: &'a T) -> Self::Output { + OrderedFloat((self.0).$method(other)) + } + } + + impl $assign_imp for OrderedFloat { + #[inline] + fn $assign_method(&mut self, other: T) { + (self.0).$assign_method(other); + } + } + + impl<'a, T: $assign_imp<&'a T>> $assign_imp<&'a T> for OrderedFloat { + #[inline] + fn $assign_method(&mut self, other: &'a T) { + (self.0).$assign_method(other); + } + } + + impl $assign_imp for OrderedFloat { + #[inline] + fn $assign_method(&mut self, other: Self) { + (self.0).$assign_method(other.0); + } + } + + impl<'a, T: $assign_imp<&'a T>> $assign_imp<&'a Self> for OrderedFloat { + #[inline] + fn $assign_method(&mut self, other: &'a Self) { + (self.0).$assign_method(&other.0); + } + } + }; +} + +impl_ordered_float_binop! {Add, add, AddAssign, add_assign} +impl_ordered_float_binop! {Sub, sub, SubAssign, sub_assign} +impl_ordered_float_binop! {Mul, mul, MulAssign, mul_assign} +impl_ordered_float_binop! {Div, div, DivAssign, div_assign} +impl_ordered_float_binop! {Rem, rem, RemAssign, rem_assign} + +/// Adds a float directly. +impl Sum for OrderedFloat { + fn sum>>(iter: I) -> Self { + OrderedFloat(iter.map(|v| v.0).sum()) + } +} + +impl<'a, T: Float + Sum + 'a> Sum<&'a OrderedFloat> for OrderedFloat { + #[inline] + fn sum>>(iter: I) -> Self { + iter.cloned().sum() + } +} + +impl Product for OrderedFloat { + fn product>>(iter: I) -> Self { + OrderedFloat(iter.map(|v| v.0).product()) + } +} + +impl<'a, T: Float + Product + 'a> Product<&'a OrderedFloat> for OrderedFloat { + #[inline] + fn product>>(iter: I) -> Self { + iter.cloned().product() + } +} + +impl Signed for OrderedFloat { + #[inline] + fn abs(&self) -> Self { + OrderedFloat(self.0.abs()) + } + + fn abs_sub(&self, other: &Self) -> Self { + OrderedFloat(Signed::abs_sub(&self.0, &other.0)) + } + + #[inline] + fn signum(&self) -> Self { + OrderedFloat(self.0.signum()) + } + #[inline] + fn is_positive(&self) -> bool { + self.0.is_positive() + } + #[inline] + fn is_negative(&self) -> bool { + self.0.is_negative() + } +} + +impl Bounded for OrderedFloat { + #[inline] + fn min_value() -> Self { + OrderedFloat(T::min_value()) + } + + #[inline] + fn max_value() -> Self { + OrderedFloat(T::max_value()) + } +} + +impl FromStr for OrderedFloat { + type Err = T::Err; + + /// Convert a &str to `OrderedFloat`. Returns an error if the string fails to parse. + /// + /// ``` + /// use ordered_float::OrderedFloat; + /// + /// assert!("-10".parse::>().is_ok()); + /// assert!("abc".parse::>().is_err()); + /// assert!("NaN".parse::>().is_ok()); + /// ``` + fn from_str(s: &str) -> Result { + T::from_str(s).map(OrderedFloat) + } +} + +impl Neg for OrderedFloat { + type Output = OrderedFloat; + + #[inline] + fn neg(self) -> Self::Output { + OrderedFloat(-self.0) + } +} + +impl<'a, T> Neg for &'a OrderedFloat +where + &'a T: Neg, +{ + type Output = OrderedFloat<<&'a T as Neg>::Output>; + + #[inline] + fn neg(self) -> Self::Output { + OrderedFloat(-(&self.0)) + } +} + +impl Zero for OrderedFloat { + #[inline] + fn zero() -> Self { + OrderedFloat(T::zero()) + } + + #[inline] + fn is_zero(&self) -> bool { + self.0.is_zero() + } +} + +impl One for OrderedFloat { + #[inline] + fn one() -> Self { + OrderedFloat(T::one()) + } +} + +impl NumCast for OrderedFloat { + #[inline] + fn from(n: F) -> Option { + T::from(n).map(OrderedFloat) + } +} + +macro_rules! impl_as_primitive { + (@ (OrderedFloat<$T: ty>) => $(#[$cfg:meta])* impl (OrderedFloat<$U: ty>) ) => { + $(#[$cfg])* + impl AsPrimitive> for OrderedFloat<$T> { + #[inline] fn as_(self) -> OrderedFloat<$U> { OrderedFloat(self.0 as $U) } + } + }; + (@ ($T: ty) => $(#[$cfg:meta])* impl (OrderedFloat<$U: ty>) ) => { + $(#[$cfg])* + impl AsPrimitive> for $T { + #[inline] fn as_(self) -> OrderedFloat<$U> { OrderedFloat(self as $U) } + } + }; + (@ (OrderedFloat<$T: ty>) => $(#[$cfg:meta])* impl ($U: ty) ) => { + $(#[$cfg])* + impl AsPrimitive<$U> for OrderedFloat<$T> { + #[inline] fn as_(self) -> $U { self.0 as $U } + } + }; + ($T: tt => { $( $U: tt ),* } ) => {$( + impl_as_primitive!(@ $T => impl $U); + )*}; +} + +impl_as_primitive!((OrderedFloat) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((OrderedFloat) => { (OrderedFloat), (OrderedFloat) }); + +impl_as_primitive!((u8) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((i8) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((u16) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((i16) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((u32) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((i32) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((u64) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((i64) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((usize) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((isize) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((f32) => { (OrderedFloat), (OrderedFloat) }); +impl_as_primitive!((f64) => { (OrderedFloat), (OrderedFloat) }); + +impl_as_primitive!((OrderedFloat) => { (u8), (u16), (u32), (u64), (usize), (i8), (i16), (i32), (i64), (isize), (f32), (f64) }); +impl_as_primitive!((OrderedFloat) => { (u8), (u16), (u32), (u64), (usize), (i8), (i16), (i32), (i64), (isize), (f32), (f64) }); + +impl FromPrimitive for OrderedFloat { + fn from_i64(n: i64) -> Option { + T::from_i64(n).map(OrderedFloat) + } + fn from_u64(n: u64) -> Option { + T::from_u64(n).map(OrderedFloat) + } + fn from_isize(n: isize) -> Option { + T::from_isize(n).map(OrderedFloat) + } + fn from_i8(n: i8) -> Option { + T::from_i8(n).map(OrderedFloat) + } + fn from_i16(n: i16) -> Option { + T::from_i16(n).map(OrderedFloat) + } + fn from_i32(n: i32) -> Option { + T::from_i32(n).map(OrderedFloat) + } + fn from_usize(n: usize) -> Option { + T::from_usize(n).map(OrderedFloat) + } + fn from_u8(n: u8) -> Option { + T::from_u8(n).map(OrderedFloat) + } + fn from_u16(n: u16) -> Option { + T::from_u16(n).map(OrderedFloat) + } + fn from_u32(n: u32) -> Option { + T::from_u32(n).map(OrderedFloat) + } + fn from_f32(n: f32) -> Option { + T::from_f32(n).map(OrderedFloat) + } + fn from_f64(n: f64) -> Option { + T::from_f64(n).map(OrderedFloat) + } +} + +impl ToPrimitive for OrderedFloat { + fn to_i64(&self) -> Option { + self.0.to_i64() + } + fn to_u64(&self) -> Option { + self.0.to_u64() + } + fn to_isize(&self) -> Option { + self.0.to_isize() + } + fn to_i8(&self) -> Option { + self.0.to_i8() + } + fn to_i16(&self) -> Option { + self.0.to_i16() + } + fn to_i32(&self) -> Option { + self.0.to_i32() + } + fn to_usize(&self) -> Option { + self.0.to_usize() + } + fn to_u8(&self) -> Option { + self.0.to_u8() + } + fn to_u16(&self) -> Option { + self.0.to_u16() + } + fn to_u32(&self) -> Option { + self.0.to_u32() + } + fn to_f32(&self) -> Option { + self.0.to_f32() + } + fn to_f64(&self) -> Option { + self.0.to_f64() + } +} + +impl num_traits::float::FloatCore for OrderedFloat { + fn nan() -> Self { + OrderedFloat(T::nan()) + } + fn infinity() -> Self { + OrderedFloat(T::infinity()) + } + fn neg_infinity() -> Self { + OrderedFloat(T::neg_infinity()) + } + fn neg_zero() -> Self { + OrderedFloat(T::neg_zero()) + } + fn min_value() -> Self { + OrderedFloat(T::min_value()) + } + fn min_positive_value() -> Self { + OrderedFloat(T::min_positive_value()) + } + fn max_value() -> Self { + OrderedFloat(T::max_value()) + } + fn is_nan(self) -> bool { + self.0.is_nan() + } + fn is_infinite(self) -> bool { + self.0.is_infinite() + } + fn is_finite(self) -> bool { + self.0.is_finite() + } + fn is_normal(self) -> bool { + self.0.is_normal() + } + fn classify(self) -> FpCategory { + self.0.classify() + } + fn floor(self) -> Self { + OrderedFloat(self.0.floor()) + } + fn ceil(self) -> Self { + OrderedFloat(self.0.ceil()) + } + fn round(self) -> Self { + OrderedFloat(self.0.round()) + } + fn trunc(self) -> Self { + OrderedFloat(self.0.trunc()) + } + fn fract(self) -> Self { + OrderedFloat(self.0.fract()) + } + fn abs(self) -> Self { + OrderedFloat(self.0.abs()) + } + fn signum(self) -> Self { + OrderedFloat(self.0.signum()) + } + fn is_sign_positive(self) -> bool { + self.0.is_sign_positive() + } + fn is_sign_negative(self) -> bool { + self.0.is_sign_negative() + } + fn recip(self) -> Self { + OrderedFloat(self.0.recip()) + } + fn powi(self, n: i32) -> Self { + OrderedFloat(self.0.powi(n)) + } + fn integer_decode(self) -> (u64, i16, i8) { + self.0.integer_decode() + } + fn epsilon() -> Self { + OrderedFloat(T::epsilon()) + } + fn to_degrees(self) -> Self { + OrderedFloat(self.0.to_degrees()) + } + fn to_radians(self) -> Self { + OrderedFloat(self.0.to_radians()) + } +} + +#[cfg(feature = "std")] +impl Float for OrderedFloat { + fn nan() -> Self { + OrderedFloat(T::nan()) + } + fn infinity() -> Self { + OrderedFloat(T::infinity()) + } + fn neg_infinity() -> Self { + OrderedFloat(T::neg_infinity()) + } + fn neg_zero() -> Self { + OrderedFloat(T::neg_zero()) + } + fn min_value() -> Self { + OrderedFloat(T::min_value()) + } + fn min_positive_value() -> Self { + OrderedFloat(T::min_positive_value()) + } + fn max_value() -> Self { + OrderedFloat(T::max_value()) + } + fn is_nan(self) -> bool { + self.0.is_nan() + } + fn is_infinite(self) -> bool { + self.0.is_infinite() + } + fn is_finite(self) -> bool { + self.0.is_finite() + } + fn is_normal(self) -> bool { + self.0.is_normal() + } + fn classify(self) -> FpCategory { + self.0.classify() + } + fn floor(self) -> Self { + OrderedFloat(self.0.floor()) + } + fn ceil(self) -> Self { + OrderedFloat(self.0.ceil()) + } + fn round(self) -> Self { + OrderedFloat(self.0.round()) + } + fn trunc(self) -> Self { + OrderedFloat(self.0.trunc()) + } + fn fract(self) -> Self { + OrderedFloat(self.0.fract()) + } + fn abs(self) -> Self { + OrderedFloat(self.0.abs()) + } + fn signum(self) -> Self { + OrderedFloat(self.0.signum()) + } + fn is_sign_positive(self) -> bool { + self.0.is_sign_positive() + } + fn is_sign_negative(self) -> bool { + self.0.is_sign_negative() + } + fn mul_add(self, a: Self, b: Self) -> Self { + OrderedFloat(self.0.mul_add(a.0, b.0)) + } + fn recip(self) -> Self { + OrderedFloat(self.0.recip()) + } + fn powi(self, n: i32) -> Self { + OrderedFloat(self.0.powi(n)) + } + fn powf(self, n: Self) -> Self { + OrderedFloat(self.0.powf(n.0)) + } + fn sqrt(self) -> Self { + OrderedFloat(self.0.sqrt()) + } + fn exp(self) -> Self { + OrderedFloat(self.0.exp()) + } + fn exp2(self) -> Self { + OrderedFloat(self.0.exp2()) + } + fn ln(self) -> Self { + OrderedFloat(self.0.ln()) + } + fn log(self, base: Self) -> Self { + OrderedFloat(self.0.log(base.0)) + } + fn log2(self) -> Self { + OrderedFloat(self.0.log2()) + } + fn log10(self) -> Self { + OrderedFloat(self.0.log10()) + } + fn max(self, other: Self) -> Self { + OrderedFloat(self.0.max(other.0)) + } + fn min(self, other: Self) -> Self { + OrderedFloat(self.0.min(other.0)) + } + fn abs_sub(self, other: Self) -> Self { + OrderedFloat(self.0.abs_sub(other.0)) + } + fn cbrt(self) -> Self { + OrderedFloat(self.0.cbrt()) + } + fn hypot(self, other: Self) -> Self { + OrderedFloat(self.0.hypot(other.0)) + } + fn sin(self) -> Self { + OrderedFloat(self.0.sin()) + } + fn cos(self) -> Self { + OrderedFloat(self.0.cos()) + } + fn tan(self) -> Self { + OrderedFloat(self.0.tan()) + } + fn asin(self) -> Self { + OrderedFloat(self.0.asin()) + } + fn acos(self) -> Self { + OrderedFloat(self.0.acos()) + } + fn atan(self) -> Self { + OrderedFloat(self.0.atan()) + } + fn atan2(self, other: Self) -> Self { + OrderedFloat(self.0.atan2(other.0)) + } + fn sin_cos(self) -> (Self, Self) { + let (a, b) = self.0.sin_cos(); + (OrderedFloat(a), OrderedFloat(b)) + } + fn exp_m1(self) -> Self { + OrderedFloat(self.0.exp_m1()) + } + fn ln_1p(self) -> Self { + OrderedFloat(self.0.ln_1p()) + } + fn sinh(self) -> Self { + OrderedFloat(self.0.sinh()) + } + fn cosh(self) -> Self { + OrderedFloat(self.0.cosh()) + } + fn tanh(self) -> Self { + OrderedFloat(self.0.tanh()) + } + fn asinh(self) -> Self { + OrderedFloat(self.0.asinh()) + } + fn acosh(self) -> Self { + OrderedFloat(self.0.acosh()) + } + fn atanh(self) -> Self { + OrderedFloat(self.0.atanh()) + } + fn integer_decode(self) -> (u64, i16, i8) { + self.0.integer_decode() + } + fn epsilon() -> Self { + OrderedFloat(T::epsilon()) + } + fn to_degrees(self) -> Self { + OrderedFloat(self.0.to_degrees()) + } + fn to_radians(self) -> Self { + OrderedFloat(self.0.to_radians()) + } +} + +impl Num for OrderedFloat { + type FromStrRadixErr = T::FromStrRadixErr; + fn from_str_radix(str: &str, radix: u32) -> Result { + T::from_str_radix(str, radix).map(OrderedFloat) + } +} + +/// A wrapper around floats providing an implementation of `Eq`, `Ord` and `Hash`. +/// +/// A NaN value cannot be stored in this type. +/// +/// ``` +/// use ordered_float::NotNan; +/// +/// let mut v = [ +/// NotNan::new(2.0).unwrap(), +/// NotNan::new(1.0).unwrap(), +/// ]; +/// v.sort(); +/// assert_eq!(v, [1.0, 2.0]); +/// ``` +/// +/// Because `NotNan` implements `Ord` and `Eq`, it can be used as a key in a `HashSet`, +/// `HashMap`, `BTreeMap`, or `BTreeSet` (unlike the primitive `f32` or `f64` types): +/// +/// ``` +/// # use ordered_float::NotNan; +/// # use std::collections::HashSet; +/// +/// let mut s: HashSet> = HashSet::new(); +/// let key = NotNan::new(1.0).unwrap(); +/// s.insert(key); +/// assert!(s.contains(&key)); +/// ``` +/// +/// Arithmetic on NotNan values will panic if it produces a NaN value: +/// +/// ```should_panic +/// # use ordered_float::NotNan; +/// let a = NotNan::new(std::f32::INFINITY).unwrap(); +/// let b = NotNan::new(std::f32::NEG_INFINITY).unwrap(); +/// +/// // This will panic: +/// let c = a + b; +/// ``` +#[derive(PartialOrd, PartialEq, Debug, Default, Clone, Copy)] +#[repr(transparent)] +pub struct NotNan(T); + +impl NotNan { + /// Create a `NotNan` value. + /// + /// Returns `Err` if `val` is NaN + pub fn new(val: T) -> Result { + match val { + ref val if val.is_nan() => Err(FloatIsNan), + val => Ok(NotNan(val)), + } + } +} + +impl NotNan { + /// Get the value out. + #[inline] + pub fn into_inner(self) -> T { + self.0 + } + + /// Create a `NotNan` value from a value that is guaranteed to not be NaN + /// + /// # Safety + /// + /// Behaviour is undefined if `val` is NaN + #[inline] + pub const unsafe fn new_unchecked(val: T) -> Self { + NotNan(val) + } + + /// Create a `NotNan` value from a value that is guaranteed to not be NaN + /// + /// # Safety + /// + /// Behaviour is undefined if `val` is NaN + #[deprecated( + since = "2.5.0", + note = "Please use the new_unchecked function instead." + )] + #[inline] + pub const unsafe fn unchecked_new(val: T) -> Self { + Self::new_unchecked(val) + } +} + +impl AsRef for NotNan { + #[inline] + fn as_ref(&self) -> &T { + &self.0 + } +} + +impl Borrow for NotNan { + #[inline] + fn borrow(&self) -> &f32 { + &self.0 + } +} + +impl Borrow for NotNan { + #[inline] + fn borrow(&self) -> &f64 { + &self.0 + } +} + +#[allow(clippy::derive_ord_xor_partial_ord)] +impl Ord for NotNan { + fn cmp(&self, other: &NotNan) -> Ordering { + match self.partial_cmp(other) { + Some(ord) => ord, + None => unsafe { unreachable_unchecked() }, + } + } +} + +#[allow(clippy::derive_hash_xor_eq)] +impl Hash for NotNan { + #[inline] + fn hash(&self, state: &mut H) { + hash_float(&self.0, state) + } +} + +impl fmt::Display for NotNan { + #[inline] + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + self.0.fmt(f) + } +} + +impl NotNan { + /// Converts this [`NotNan`]`<`[`f64`]`>` to a [`NotNan`]`<`[`f32`]`>` while giving up on + /// precision, [using `roundTiesToEven` as rounding mode, yielding `Infinity` on + /// overflow](https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics). + pub fn as_f32(self) -> NotNan { + // This is not destroying invariants, as it is a pure rounding operation. The only two special + // cases are where f32 would be overflowing, then the operation yields Infinity, or where + // the input is already NaN, in which case the invariant is already broken elsewhere. + NotNan(self.0 as f32) + } +} + +impl From> for f32 { + #[inline] + fn from(value: NotNan) -> Self { + value.0 + } +} + +impl From> for f64 { + #[inline] + fn from(value: NotNan) -> Self { + value.0 + } +} + +impl TryFrom for NotNan { + type Error = FloatIsNan; + #[inline] + fn try_from(v: f32) -> Result { + NotNan::new(v) + } +} + +impl TryFrom for NotNan { + type Error = FloatIsNan; + #[inline] + fn try_from(v: f64) -> Result { + NotNan::new(v) + } +} + +macro_rules! impl_from_int_primitive { + ($primitive:ty, $inner:ty) => { + impl From<$primitive> for NotNan<$inner> { + fn from(source: $primitive) -> Self { + // the primitives with which this macro will be called cannot hold a value that + // f64::from would convert to NaN, so this does not hurt invariants + NotNan(<$inner as From<$primitive>>::from(source)) + } + } + }; +} + +impl_from_int_primitive!(i8, f64); +impl_from_int_primitive!(i16, f64); +impl_from_int_primitive!(i32, f64); +impl_from_int_primitive!(u8, f64); +impl_from_int_primitive!(u16, f64); +impl_from_int_primitive!(u32, f64); + +impl_from_int_primitive!(i8, f32); +impl_from_int_primitive!(i16, f32); +impl_from_int_primitive!(u8, f32); +impl_from_int_primitive!(u16, f32); + +impl From> for NotNan { + #[inline] + fn from(v: NotNan) -> NotNan { + unsafe { NotNan::new_unchecked(v.0 as f64) } + } +} + +impl Deref for NotNan { + type Target = T; + + #[inline] + fn deref(&self) -> &Self::Target { + &self.0 + } +} + +impl Eq for NotNan {} + +impl PartialEq for NotNan { + #[inline] + fn eq(&self, other: &T) -> bool { + self.0 == *other + } +} + +/// Adds a float directly. +/// +/// Panics if the provided value is NaN or the computation results in NaN +impl Add for NotNan { + type Output = Self; + + #[inline] + fn add(self, other: T) -> Self { + NotNan::new(self.0 + other).expect("Addition resulted in NaN") + } +} + +/// Adds a float directly. +/// +/// Panics if the provided value is NaN. +impl Sum for NotNan { + fn sum>>(iter: I) -> Self { + NotNan::new(iter.map(|v| v.0).sum()).expect("Sum resulted in NaN") + } +} + +impl<'a, T: Float + Sum + 'a> Sum<&'a NotNan> for NotNan { + #[inline] + fn sum>>(iter: I) -> Self { + iter.cloned().sum() + } +} + +/// Subtracts a float directly. +/// +/// Panics if the provided value is NaN or the computation results in NaN +impl Sub for NotNan { + type Output = Self; + + #[inline] + fn sub(self, other: T) -> Self { + NotNan::new(self.0 - other).expect("Subtraction resulted in NaN") + } +} + +/// Multiplies a float directly. +/// +/// Panics if the provided value is NaN or the computation results in NaN +impl Mul for NotNan { + type Output = Self; + + #[inline] + fn mul(self, other: T) -> Self { + NotNan::new(self.0 * other).expect("Multiplication resulted in NaN") + } +} + +impl Product for NotNan { + fn product>>(iter: I) -> Self { + NotNan::new(iter.map(|v| v.0).product()).expect("Product resulted in NaN") + } +} + +impl<'a, T: Float + Product + 'a> Product<&'a NotNan> for NotNan { + #[inline] + fn product>>(iter: I) -> Self { + iter.cloned().product() + } +} + +/// Divides a float directly. +/// +/// Panics if the provided value is NaN or the computation results in NaN +impl Div for NotNan { + type Output = Self; + + #[inline] + fn div(self, other: T) -> Self { + NotNan::new(self.0 / other).expect("Division resulted in NaN") + } +} + +/// Calculates `%` with a float directly. +/// +/// Panics if the provided value is NaN or the computation results in NaN +impl Rem for NotNan { + type Output = Self; + + #[inline] + fn rem(self, other: T) -> Self { + NotNan::new(self.0 % other).expect("Rem resulted in NaN") + } +} + +macro_rules! impl_not_nan_binop { + ($imp:ident, $method:ident, $assign_imp:ident, $assign_method:ident) => { + impl $imp for NotNan { + type Output = Self; + + #[inline] + fn $method(self, other: Self) -> Self { + self.$method(other.0) + } + } + + impl $imp<&T> for NotNan { + type Output = NotNan; + + #[inline] + fn $method(self, other: &T) -> Self::Output { + self.$method(*other) + } + } + + impl $imp<&Self> for NotNan { + type Output = NotNan; + + #[inline] + fn $method(self, other: &Self) -> Self::Output { + self.$method(other.0) + } + } + + impl $imp for &NotNan { + type Output = NotNan; + + #[inline] + fn $method(self, other: Self) -> Self::Output { + (*self).$method(other.0) + } + } + + impl $imp> for &NotNan { + type Output = NotNan; + + #[inline] + fn $method(self, other: NotNan) -> Self::Output { + (*self).$method(other.0) + } + } + + impl $imp for &NotNan { + type Output = NotNan; + + #[inline] + fn $method(self, other: T) -> Self::Output { + (*self).$method(other) + } + } + + impl $imp<&T> for &NotNan { + type Output = NotNan; + + #[inline] + fn $method(self, other: &T) -> Self::Output { + (*self).$method(*other) + } + } + + impl $assign_imp for NotNan { + #[inline] + fn $assign_method(&mut self, other: T) { + *self = (*self).$method(other); + } + } + + impl $assign_imp<&T> for NotNan { + #[inline] + fn $assign_method(&mut self, other: &T) { + *self = (*self).$method(*other); + } + } + + impl $assign_imp for NotNan { + #[inline] + fn $assign_method(&mut self, other: Self) { + (*self).$assign_method(other.0); + } + } + + impl $assign_imp<&Self> for NotNan { + #[inline] + fn $assign_method(&mut self, other: &Self) { + (*self).$assign_method(other.0); + } + } + }; +} + +impl_not_nan_binop! {Add, add, AddAssign, add_assign} +impl_not_nan_binop! {Sub, sub, SubAssign, sub_assign} +impl_not_nan_binop! {Mul, mul, MulAssign, mul_assign} +impl_not_nan_binop! {Div, div, DivAssign, div_assign} +impl_not_nan_binop! {Rem, rem, RemAssign, rem_assign} + +impl Neg for NotNan { + type Output = Self; + + #[inline] + fn neg(self) -> Self { + NotNan(-self.0) + } +} + +impl Neg for &NotNan { + type Output = NotNan; + + #[inline] + fn neg(self) -> Self::Output { + NotNan(-self.0) + } +} + +/// An error indicating an attempt to construct NotNan from a NaN +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +pub struct FloatIsNan; + +#[cfg(feature = "std")] +impl Error for FloatIsNan { + fn description(&self) -> &str { + "NotNan constructed with NaN" + } +} + +impl fmt::Display for FloatIsNan { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "NotNan constructed with NaN") + } +} + +#[cfg(feature = "std")] +impl From for std::io::Error { + #[inline] + fn from(e: FloatIsNan) -> std::io::Error { + std::io::Error::new(std::io::ErrorKind::InvalidInput, e) + } +} + +#[inline] +fn hash_float(f: &F, state: &mut H) { + raw_double_bits(f).hash(state); +} + +#[inline] +fn raw_double_bits(f: &F) -> u64 { + if f.is_nan() { + return CANONICAL_NAN_BITS; + } + + let (man, exp, sign) = f.integer_decode(); + if man == 0 { + return CANONICAL_ZERO_BITS; + } + + let exp_u64 = exp as u16 as u64; + let sign_u64 = (sign > 0) as u64; + (man & MAN_MASK) | ((exp_u64 << 52) & EXP_MASK) | ((sign_u64 << 63) & SIGN_MASK) +} + +impl Zero for NotNan { + #[inline] + fn zero() -> Self { + NotNan(T::zero()) + } + + #[inline] + fn is_zero(&self) -> bool { + self.0.is_zero() + } +} + +impl One for NotNan { + #[inline] + fn one() -> Self { + NotNan(T::one()) + } +} + +impl Bounded for NotNan { + #[inline] + fn min_value() -> Self { + NotNan(T::min_value()) + } + + #[inline] + fn max_value() -> Self { + NotNan(T::max_value()) + } +} + +impl FromStr for NotNan { + type Err = ParseNotNanError; + + /// Convert a &str to `NotNan`. Returns an error if the string fails to parse, + /// or if the resulting value is NaN + /// + /// ``` + /// use ordered_float::NotNan; + /// + /// assert!("-10".parse::>().is_ok()); + /// assert!("abc".parse::>().is_err()); + /// assert!("NaN".parse::>().is_err()); + /// ``` + fn from_str(src: &str) -> Result { + src.parse() + .map_err(ParseNotNanError::ParseFloatError) + .and_then(|f| NotNan::new(f).map_err(|_| ParseNotNanError::IsNaN)) + } +} + +impl FromPrimitive for NotNan { + fn from_i64(n: i64) -> Option { + T::from_i64(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_u64(n: u64) -> Option { + T::from_u64(n).and_then(|n| NotNan::new(n).ok()) + } + + fn from_isize(n: isize) -> Option { + T::from_isize(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_i8(n: i8) -> Option { + T::from_i8(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_i16(n: i16) -> Option { + T::from_i16(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_i32(n: i32) -> Option { + T::from_i32(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_usize(n: usize) -> Option { + T::from_usize(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_u8(n: u8) -> Option { + T::from_u8(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_u16(n: u16) -> Option { + T::from_u16(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_u32(n: u32) -> Option { + T::from_u32(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_f32(n: f32) -> Option { + T::from_f32(n).and_then(|n| NotNan::new(n).ok()) + } + fn from_f64(n: f64) -> Option { + T::from_f64(n).and_then(|n| NotNan::new(n).ok()) + } +} + +impl ToPrimitive for NotNan { + fn to_i64(&self) -> Option { + self.0.to_i64() + } + fn to_u64(&self) -> Option { + self.0.to_u64() + } + + fn to_isize(&self) -> Option { + self.0.to_isize() + } + fn to_i8(&self) -> Option { + self.0.to_i8() + } + fn to_i16(&self) -> Option { + self.0.to_i16() + } + fn to_i32(&self) -> Option { + self.0.to_i32() + } + fn to_usize(&self) -> Option { + self.0.to_usize() + } + fn to_u8(&self) -> Option { + self.0.to_u8() + } + fn to_u16(&self) -> Option { + self.0.to_u16() + } + fn to_u32(&self) -> Option { + self.0.to_u32() + } + fn to_f32(&self) -> Option { + self.0.to_f32() + } + fn to_f64(&self) -> Option { + self.0.to_f64() + } +} + +/// An error indicating a parse error from a string for `NotNan`. +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +pub enum ParseNotNanError { + /// A plain parse error from the underlying float type. + ParseFloatError(E), + /// The parsed float value resulted in a NaN. + IsNaN, +} + +#[cfg(feature = "std")] +impl Error for ParseNotNanError { + fn description(&self) -> &str { + "Error parsing a not-NaN floating point value" + } + + fn source(&self) -> Option<&(dyn Error + 'static)> { + match self { + ParseNotNanError::ParseFloatError(e) => Some(e), + ParseNotNanError::IsNaN => None, + } + } +} + +impl fmt::Display for ParseNotNanError { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self { + ParseNotNanError::ParseFloatError(e) => write!(f, "Parse error: {}", e), + ParseNotNanError::IsNaN => write!(f, "NotNan parser encounter a NaN"), + } + } +} + +impl Num for NotNan { + type FromStrRadixErr = ParseNotNanError; + + fn from_str_radix(src: &str, radix: u32) -> Result { + T::from_str_radix(src, radix) + .map_err(ParseNotNanError::ParseFloatError) + .and_then(|n| NotNan::new(n).map_err(|_| ParseNotNanError::IsNaN)) + } +} + +impl Signed for NotNan { + #[inline] + fn abs(&self) -> Self { + NotNan(self.0.abs()) + } + + fn abs_sub(&self, other: &Self) -> Self { + NotNan::new(Signed::abs_sub(&self.0, &other.0)).expect("Subtraction resulted in NaN") + } + + #[inline] + fn signum(&self) -> Self { + NotNan(self.0.signum()) + } + #[inline] + fn is_positive(&self) -> bool { + self.0.is_positive() + } + #[inline] + fn is_negative(&self) -> bool { + self.0.is_negative() + } +} + +impl NumCast for NotNan { + fn from(n: F) -> Option { + T::from(n).and_then(|n| NotNan::new(n).ok()) + } +} + +#[cfg(feature = "serde")] +mod impl_serde { + extern crate serde; + use self::serde::de::{Error, Unexpected}; + use self::serde::{Deserialize, Deserializer, Serialize, Serializer}; + use super::{NotNan, OrderedFloat}; + use core::f64; + #[cfg(not(feature = "std"))] + use num_traits::float::FloatCore as Float; + #[cfg(feature = "std")] + use num_traits::Float; + + #[cfg(test)] + extern crate serde_test; + #[cfg(test)] + use self::serde_test::{assert_de_tokens_error, assert_tokens, Token}; + + impl Serialize for OrderedFloat { + #[inline] + fn serialize(&self, s: S) -> Result { + self.0.serialize(s) + } + } + + impl<'de, T: Float + Deserialize<'de>> Deserialize<'de> for OrderedFloat { + #[inline] + fn deserialize>(d: D) -> Result { + T::deserialize(d).map(OrderedFloat) + } + } + + impl Serialize for NotNan { + #[inline] + fn serialize(&self, s: S) -> Result { + self.0.serialize(s) + } + } + + impl<'de, T: Float + Deserialize<'de>> Deserialize<'de> for NotNan { + fn deserialize>(d: D) -> Result { + let float = T::deserialize(d)?; + NotNan::new(float).map_err(|_| { + Error::invalid_value(Unexpected::Float(f64::NAN), &"float (but not NaN)") + }) + } + } + + #[test] + fn test_ordered_float() { + let float = OrderedFloat(1.0f64); + assert_tokens(&float, &[Token::F64(1.0)]); + } + + #[test] + fn test_not_nan() { + let float = NotNan(1.0f64); + assert_tokens(&float, &[Token::F64(1.0)]); + } + + #[test] + fn test_fail_on_nan() { + assert_de_tokens_error::>( + &[Token::F64(f64::NAN)], + "invalid value: floating point `NaN`, expected float (but not NaN)", + ); + } +} + +#[cfg(feature = "rkyv")] +mod impl_rkyv { + use super::{NotNan, OrderedFloat}; + #[cfg(not(feature = "std"))] + use num_traits::float::FloatCore as Float; + #[cfg(feature = "std")] + use num_traits::Float; + #[cfg(test)] + use rkyv::{archived_root, ser::Serializer}; + use rkyv::{from_archived, Archive, Deserialize, Fallible, Serialize}; + + #[cfg(test)] + type DefaultSerializer = rkyv::ser::serializers::CoreSerializer<16, 16>; + #[cfg(test)] + type DefaultDeserializer = rkyv::Infallible; + + impl Archive for OrderedFloat { + type Archived = OrderedFloat; + + type Resolver = (); + + unsafe fn resolve(&self, _: usize, _: Self::Resolver, out: *mut Self::Archived) { + out.write(*self); + } + } + + impl, S: Fallible + ?Sized> Serialize for OrderedFloat { + fn serialize(&self, _: &mut S) -> Result { + Ok(()) + } + } + + impl, D: Fallible + ?Sized> Deserialize, D> + for OrderedFloat + { + fn deserialize(&self, _: &mut D) -> Result, D::Error> { + Ok(from_archived!(*self)) + } + } + + impl Archive for NotNan { + type Archived = NotNan; + + type Resolver = (); + + unsafe fn resolve(&self, _: usize, _: Self::Resolver, out: *mut Self::Archived) { + out.write(*self); + } + } + + impl, S: Fallible + ?Sized> Serialize for NotNan { + fn serialize(&self, _: &mut S) -> Result { + Ok(()) + } + } + + impl, D: Fallible + ?Sized> Deserialize, D> for NotNan { + fn deserialize(&self, _: &mut D) -> Result, D::Error> { + Ok(from_archived!(*self)) + } + } + + #[test] + fn test_ordered_float() { + let float = OrderedFloat(1.0f64); + let mut serializer = DefaultSerializer::default(); + serializer + .serialize_value(&float) + .expect("failed to archive value"); + let len = serializer.pos(); + let buffer = serializer.into_serializer().into_inner(); + + let archived_value = unsafe { archived_root::>(&buffer[0..len]) }; + assert_eq!(archived_value, &float); + let mut deserializer = DefaultDeserializer::default(); + let deser_float: OrderedFloat = archived_value.deserialize(&mut deserializer).unwrap(); + assert_eq!(deser_float, float); + } + + #[test] + fn test_not_nan() { + let float = NotNan(1.0f64); + let mut serializer = DefaultSerializer::default(); + serializer + .serialize_value(&float) + .expect("failed to archive value"); + let len = serializer.pos(); + let buffer = serializer.into_serializer().into_inner(); + + let archived_value = unsafe { archived_root::>(&buffer[0..len]) }; + assert_eq!(archived_value, &float); + let mut deserializer = DefaultDeserializer::default(); + let deser_float: NotNan = archived_value.deserialize(&mut deserializer).unwrap(); + assert_eq!(deser_float, float); + } +} + +#[cfg(feature = "speedy")] +mod impl_speedy { + use super::{NotNan, OrderedFloat}; + use num_traits::Float; + use speedy::{Context, Readable, Reader, Writable, Writer}; + + impl Writable for OrderedFloat + where + C: Context, + T: Writable, + { + fn write_to>(&self, writer: &mut W) -> Result<(), C::Error> { + self.0.write_to(writer) + } + + fn bytes_needed(&self) -> Result { + self.0.bytes_needed() + } + } + + impl Writable for NotNan + where + C: Context, + T: Writable, + { + fn write_to>(&self, writer: &mut W) -> Result<(), C::Error> { + self.0.write_to(writer) + } + + fn bytes_needed(&self) -> Result { + self.0.bytes_needed() + } + } + + impl<'a, T, C: Context> Readable<'a, C> for OrderedFloat + where + T: Readable<'a, C>, + { + fn read_from>(reader: &mut R) -> Result { + T::read_from(reader).map(OrderedFloat) + } + + fn minimum_bytes_needed() -> usize { + T::minimum_bytes_needed() + } + } + + impl<'a, T: Float, C: Context> Readable<'a, C> for NotNan + where + T: Readable<'a, C>, + { + fn read_from>(reader: &mut R) -> Result { + let value: T = reader.read_value()?; + Self::new(value).map_err(|error| { + speedy::Error::custom(std::format!("failed to read NotNan: {}", error)).into() + }) + } + + fn minimum_bytes_needed() -> usize { + T::minimum_bytes_needed() + } + } + + #[test] + fn test_ordered_float() { + let float = OrderedFloat(1.0f64); + let buffer = float.write_to_vec().unwrap(); + let deser_float: OrderedFloat = OrderedFloat::read_from_buffer(&buffer).unwrap(); + assert_eq!(deser_float, float); + } + + #[test] + fn test_not_nan() { + let float = NotNan(1.0f64); + let buffer = float.write_to_vec().unwrap(); + let deser_float: NotNan = NotNan::read_from_buffer(&buffer).unwrap(); + assert_eq!(deser_float, float); + } + + #[test] + fn test_not_nan_with_nan() { + let nan_buf = f64::nan().write_to_vec().unwrap(); + let nan_err: Result, _> = NotNan::read_from_buffer(&nan_buf); + assert!(nan_err.is_err()); + } +} + +#[cfg(all(feature = "std", feature = "schemars"))] +mod impl_schemars { + extern crate schemars; + use self::schemars::gen::SchemaGenerator; + use self::schemars::schema::{InstanceType, Schema, SchemaObject}; + use super::{NotNan, OrderedFloat}; + + macro_rules! primitive_float_impl { + ($type:ty, $schema_name:literal) => { + impl schemars::JsonSchema for $type { + fn is_referenceable() -> bool { + false + } + + fn schema_name() -> std::string::String { + std::string::String::from($schema_name) + } + + fn json_schema(_: &mut SchemaGenerator) -> Schema { + SchemaObject { + instance_type: Some(InstanceType::Number.into()), + format: Some(std::string::String::from($schema_name)), + ..Default::default() + } + .into() + } + } + }; + } + + primitive_float_impl!(OrderedFloat, "float"); + primitive_float_impl!(OrderedFloat, "double"); + primitive_float_impl!(NotNan, "float"); + primitive_float_impl!(NotNan, "double"); + + #[test] + fn schema_generation_does_not_panic_for_common_floats() { + { + let schema = schemars::gen::SchemaGenerator::default() + .into_root_schema_for::>(); + assert_eq!( + schema.schema.instance_type, + Some(schemars::schema::SingleOrVec::Single(std::boxed::Box::new( + schemars::schema::InstanceType::Number + ))) + ); + assert_eq!( + schema.schema.metadata.unwrap().title.unwrap(), + std::string::String::from("float") + ); + } + { + let schema = schemars::gen::SchemaGenerator::default() + .into_root_schema_for::>(); + assert_eq!( + schema.schema.instance_type, + Some(schemars::schema::SingleOrVec::Single(std::boxed::Box::new( + schemars::schema::InstanceType::Number + ))) + ); + assert_eq!( + schema.schema.metadata.unwrap().title.unwrap(), + std::string::String::from("double") + ); + } + { + let schema = + schemars::gen::SchemaGenerator::default().into_root_schema_for::>(); + assert_eq!( + schema.schema.instance_type, + Some(schemars::schema::SingleOrVec::Single(std::boxed::Box::new( + schemars::schema::InstanceType::Number + ))) + ); + assert_eq!( + schema.schema.metadata.unwrap().title.unwrap(), + std::string::String::from("float") + ); + } + { + let schema = + schemars::gen::SchemaGenerator::default().into_root_schema_for::>(); + assert_eq!( + schema.schema.instance_type, + Some(schemars::schema::SingleOrVec::Single(std::boxed::Box::new( + schemars::schema::InstanceType::Number + ))) + ); + assert_eq!( + schema.schema.metadata.unwrap().title.unwrap(), + std::string::String::from("double") + ); + } + } + #[test] + fn ordered_float_schema_match_primitive_schema() { + { + let of_schema = schemars::gen::SchemaGenerator::default() + .into_root_schema_for::>(); + let prim_schema = + schemars::gen::SchemaGenerator::default().into_root_schema_for::(); + assert_eq!(of_schema, prim_schema); + } + { + let of_schema = schemars::gen::SchemaGenerator::default() + .into_root_schema_for::>(); + let prim_schema = + schemars::gen::SchemaGenerator::default().into_root_schema_for::(); + assert_eq!(of_schema, prim_schema); + } + { + let of_schema = + schemars::gen::SchemaGenerator::default().into_root_schema_for::>(); + let prim_schema = + schemars::gen::SchemaGenerator::default().into_root_schema_for::(); + assert_eq!(of_schema, prim_schema); + } + { + let of_schema = + schemars::gen::SchemaGenerator::default().into_root_schema_for::>(); + let prim_schema = + schemars::gen::SchemaGenerator::default().into_root_schema_for::(); + assert_eq!(of_schema, prim_schema); + } + } +} + +#[cfg(feature = "rand")] +mod impl_rand { + use super::{NotNan, OrderedFloat}; + use rand::distributions::uniform::*; + use rand::distributions::{Distribution, Open01, OpenClosed01, Standard}; + use rand::Rng; + + macro_rules! impl_distribution { + ($dist:ident, $($f:ty),+) => { + $( + impl Distribution> for $dist { + fn sample(&self, rng: &mut R) -> NotNan<$f> { + // 'rand' never generates NaN values in the Standard, Open01, or + // OpenClosed01 distributions. Using 'new_unchecked' is therefore + // safe. + unsafe { NotNan::new_unchecked(self.sample(rng)) } + } + } + + impl Distribution> for $dist { + fn sample(&self, rng: &mut R) -> OrderedFloat<$f> { + OrderedFloat(self.sample(rng)) + } + } + )* + } + } + + impl_distribution! { Standard, f32, f64 } + impl_distribution! { Open01, f32, f64 } + impl_distribution! { OpenClosed01, f32, f64 } + + pub struct UniformNotNan(UniformFloat); + impl SampleUniform for NotNan { + type Sampler = UniformNotNan; + } + impl SampleUniform for NotNan { + type Sampler = UniformNotNan; + } + + pub struct UniformOrdered(UniformFloat); + impl SampleUniform for OrderedFloat { + type Sampler = UniformOrdered; + } + impl SampleUniform for OrderedFloat { + type Sampler = UniformOrdered; + } + + macro_rules! impl_uniform_sampler { + ($f:ty) => { + impl UniformSampler for UniformNotNan<$f> { + type X = NotNan<$f>; + fn new(low: B1, high: B2) -> Self + where + B1: SampleBorrow + Sized, + B2: SampleBorrow + Sized, + { + UniformNotNan(UniformFloat::<$f>::new(low.borrow().0, high.borrow().0)) + } + fn new_inclusive(low: B1, high: B2) -> Self + where + B1: SampleBorrow + Sized, + B2: SampleBorrow + Sized, + { + UniformSampler::new(low, high) + } + fn sample(&self, rng: &mut R) -> Self::X { + // UniformFloat.sample() will never return NaN. + unsafe { NotNan::new_unchecked(self.0.sample(rng)) } + } + } + + impl UniformSampler for UniformOrdered<$f> { + type X = OrderedFloat<$f>; + fn new(low: B1, high: B2) -> Self + where + B1: SampleBorrow + Sized, + B2: SampleBorrow + Sized, + { + UniformOrdered(UniformFloat::<$f>::new(low.borrow().0, high.borrow().0)) + } + fn new_inclusive(low: B1, high: B2) -> Self + where + B1: SampleBorrow + Sized, + B2: SampleBorrow + Sized, + { + UniformSampler::new(low, high) + } + fn sample(&self, rng: &mut R) -> Self::X { + OrderedFloat(self.0.sample(rng)) + } + } + }; + } + + impl_uniform_sampler! { f32 } + impl_uniform_sampler! { f64 } + + #[cfg(all(test, feature = "randtest"))] + mod tests { + use super::*; + + fn sample_fuzz() + where + Standard: Distribution>, + Open01: Distribution>, + OpenClosed01: Distribution>, + Standard: Distribution>, + Open01: Distribution>, + OpenClosed01: Distribution>, + T: crate::Float, + { + let mut rng = rand::thread_rng(); + let f1: NotNan = rng.sample(Standard); + let f2: NotNan = rng.sample(Open01); + let f3: NotNan = rng.sample(OpenClosed01); + let _: OrderedFloat = rng.sample(Standard); + let _: OrderedFloat = rng.sample(Open01); + let _: OrderedFloat = rng.sample(OpenClosed01); + assert!(!f1.into_inner().is_nan()); + assert!(!f2.into_inner().is_nan()); + assert!(!f3.into_inner().is_nan()); + } + + #[test] + fn sampling_f32_does_not_panic() { + sample_fuzz::(); + } + + #[test] + fn sampling_f64_does_not_panic() { + sample_fuzz::(); + } + + #[test] + #[should_panic] + fn uniform_sampling_panic_on_infinity_notnan() { + let (low, high) = ( + NotNan::new(0f64).unwrap(), + NotNan::new(core::f64::INFINITY).unwrap(), + ); + let uniform = Uniform::new(low, high); + let _ = uniform.sample(&mut rand::thread_rng()); + } + + #[test] + #[should_panic] + fn uniform_sampling_panic_on_infinity_ordered() { + let (low, high) = (OrderedFloat(0f64), OrderedFloat(core::f64::INFINITY)); + let uniform = Uniform::new(low, high); + let _ = uniform.sample(&mut rand::thread_rng()); + } + + #[test] + #[should_panic] + fn uniform_sampling_panic_on_nan_ordered() { + let (low, high) = (OrderedFloat(0f64), OrderedFloat(core::f64::NAN)); + let uniform = Uniform::new(low, high); + let _ = uniform.sample(&mut rand::thread_rng()); + } + } +} + +#[cfg(feature = "proptest")] +mod impl_proptest { + use super::{NotNan, OrderedFloat}; + use proptest::arbitrary::{Arbitrary, StrategyFor}; + use proptest::num::{f32, f64}; + use proptest::strategy::{FilterMap, Map, Strategy}; + use std::convert::TryFrom; + + macro_rules! impl_arbitrary { + ($($f:ident),+) => { + $( + impl Arbitrary for NotNan<$f> { + type Strategy = FilterMap, fn(_: $f) -> Option>>; + type Parameters = <$f as Arbitrary>::Parameters; + fn arbitrary_with(params: Self::Parameters) -> Self::Strategy { + <$f>::arbitrary_with(params) + .prop_filter_map("filter nan values", |f| NotNan::try_from(f).ok()) + } + } + + impl Arbitrary for OrderedFloat<$f> { + type Strategy = Map, fn(_: $f) -> OrderedFloat<$f>>; + type Parameters = <$f as Arbitrary>::Parameters; + fn arbitrary_with(params: Self::Parameters) -> Self::Strategy { + <$f>::arbitrary_with(params).prop_map(|f| OrderedFloat::from(f)) + } + } + )* + } + } + impl_arbitrary! { f32, f64 } +} + +#[cfg(feature = "arbitrary")] +mod impl_arbitrary { + use super::{FloatIsNan, NotNan, OrderedFloat}; + use arbitrary::{Arbitrary, Unstructured}; + use num_traits::FromPrimitive; + + macro_rules! impl_arbitrary { + ($($f:ident),+) => { + $( + impl<'a> Arbitrary<'a> for NotNan<$f> { + fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result { + let float: $f = u.arbitrary()?; + match NotNan::new(float) { + Ok(notnan_value) => Ok(notnan_value), + Err(FloatIsNan) => { + // If our arbitrary float input was a NaN (encoded by exponent = max + // value), then replace it with a finite float, reusing the mantissa + // bits. + // + // This means the output is not uniformly distributed among all + // possible float values, but Arbitrary makes no promise that that + // is true. + // + // An alternative implementation would be to return an + // `arbitrary::Error`, but that is not as useful since it forces the + // caller to retry with new random/fuzzed data; and the precendent of + // `arbitrary`'s built-in implementations is to prefer the approach of + // mangling the input bits to fit. + + let (mantissa, _exponent, sign) = + num_traits::Float::integer_decode(float); + let revised_float = <$f>::from_i64( + i64::from(sign) * mantissa as i64 + ).unwrap(); + + // If this unwrap() fails, then there is a bug in the above code. + Ok(NotNan::new(revised_float).unwrap()) + } + } + } + + fn size_hint(depth: usize) -> (usize, Option) { + <$f as Arbitrary>::size_hint(depth) + } + } + + impl<'a> Arbitrary<'a> for OrderedFloat<$f> { + fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result { + let float: $f = u.arbitrary()?; + Ok(OrderedFloat::from(float)) + } + + fn size_hint(depth: usize) -> (usize, Option) { + <$f as Arbitrary>::size_hint(depth) + } + } + )* + } + } + impl_arbitrary! { f32, f64 } +} + +#[cfg(feature = "bytemuck")] +mod impl_bytemuck { + use super::{Float, NotNan, OrderedFloat}; + use bytemuck::{AnyBitPattern, CheckedBitPattern, NoUninit, Pod, Zeroable}; + + unsafe impl Zeroable for OrderedFloat {} + + // The zero bit pattern is indeed not a NaN bit pattern. + unsafe impl Zeroable for NotNan {} + + unsafe impl Pod for OrderedFloat {} + + // `NotNan` can only implement `NoUninit` and not `Pod`, since not every bit pattern is + // valid (NaN bit patterns are invalid). `NoUninit` guarantees that we can read any bit pattern + // from the value, which is fine in this case. + unsafe impl NoUninit for NotNan {} + + unsafe impl CheckedBitPattern for NotNan { + type Bits = T; + + fn is_valid_bit_pattern(bits: &Self::Bits) -> bool { + !bits.is_nan() + } + } + + #[test] + fn test_not_nan_bit_pattern() { + use bytemuck::checked::{try_cast, CheckedCastError}; + + let nan = f64::NAN; + assert_eq!( + try_cast::>(nan), + Err(CheckedCastError::InvalidBitPattern), + ); + + let pi = core::f64::consts::PI; + assert!(try_cast::>(pi).is_ok()); + } +} -- cgit v1.2.3